vralphy 0.3.0 → 0.3.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +4 -0
- package/llms.txt +104 -0
- package/package.json +2 -1
package/README.md
CHANGED
|
@@ -28,6 +28,10 @@ vralphy includes **LLM-friendly documentation** in the `docs/` directory (bundle
|
|
|
28
28
|
- **[docs/WORKFLOWS.md](./docs/WORKFLOWS.md)** - Common workflows and patterns
|
|
29
29
|
- **[docs/EXAMPLES.md](./docs/EXAMPLES.md)** - Real-world usage examples
|
|
30
30
|
|
|
31
|
+
### LLM Discovery Standard
|
|
32
|
+
|
|
33
|
+
vralphy includes an **[llms.txt](./llms.txt)** file following the [llms.txt standard](https://llmstxt.org/) for AI agent discovery. This markdown file provides a structured overview of vralphy's capabilities, making it easy for LLMs to understand and use the tool when working in projects.
|
|
34
|
+
|
|
31
35
|
This documentation is designed to help both humans and LLMs understand and use vralphy effectively.
|
|
32
36
|
|
|
33
37
|
## Installation
|
package/llms.txt
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
1
|
+
# vralphy
|
|
2
|
+
|
|
3
|
+
> vralphy is a CLI tool implementing the Ralph Playbook - an autonomous AI development methodology where AI agents plan, build, test, and commit code changes with minimal human intervention. It works with multiple AI engines (Claude, OpenCode, Codex) and emphasizes specification-driven development, parallel execution, and incremental progress.
|
|
4
|
+
|
|
5
|
+
## Core Documentation
|
|
6
|
+
|
|
7
|
+
- [README](README.md): Quick start, installation, and overview
|
|
8
|
+
- [Methodology](docs/METHODOLOGY.md): Deep dive into the Ralph Playbook methodology - three phases (spec, plan, build), loops, design principles, and autonomous operation patterns
|
|
9
|
+
- [Commands](docs/COMMANDS.md): Complete command reference with all options, flags, examples, and use cases for init, spec, plan, build, cleanup, and utility commands
|
|
10
|
+
- [Design Principles](docs/DESIGN.md): Architecture, design decisions, engine abstraction, model tiering, parallelism strategies, and extensibility patterns
|
|
11
|
+
- [Workflows](docs/WORKFLOWS.md): 10 common workflows including new feature development, bug fixes, refactoring, adding to existing projects, and collaborative development
|
|
12
|
+
- [Examples](docs/EXAMPLES.md): 10 real-world examples across different scenarios - REST APIs, React components, CLI tools, database migrations, testing, and microservices
|
|
13
|
+
|
|
14
|
+
## Key Concepts
|
|
15
|
+
|
|
16
|
+
The Ralph methodology consists of three phases:
|
|
17
|
+
|
|
18
|
+
1. **Specification Phase** (`vralphy spec`): Interactive conversation with AI to define requirements, capture edge cases, and document acceptance criteria
|
|
19
|
+
2. **Planning Phase** (`vralphy plan`): AI analyzes codebase with 500+ parallel subagents, compares against specs, and creates prioritized implementation plan
|
|
20
|
+
3. **Build Phase** (`vralphy build`): AI autonomously implements features, runs tests, commits changes, and updates plan - loops until complete
|
|
21
|
+
|
|
22
|
+
## Project Structure
|
|
23
|
+
|
|
24
|
+
After initialization, vralphy creates:
|
|
25
|
+
|
|
26
|
+
- `.vralphy/AGENTS.md`: AI-generated operational guide (build/test/run commands) - max 60 lines, project-specific
|
|
27
|
+
- `.vralphy/prompts/`: Customizable prompt templates (plan.md, build.md, spec.md)
|
|
28
|
+
- `specs/`: Feature specifications written by humans defining WHAT to build
|
|
29
|
+
- `IMPLEMENTATION_PLAN.md`: Living task list updated by AI showing what's left to do
|
|
30
|
+
|
|
31
|
+
## Commands Quick Reference
|
|
32
|
+
|
|
33
|
+
- `vralphy init`: Initialize project with AI-generated operational guide
|
|
34
|
+
- `vralphy spec <topic>`: Create specification through interactive conversation
|
|
35
|
+
- `vralphy plan [iterations]`: Analyze codebase and create implementation plan
|
|
36
|
+
- `vralphy build [iterations]`: Autonomously implement features with tests
|
|
37
|
+
- `vralphy cleanup`: Remove vralphy from project
|
|
38
|
+
- `vralphy engines`: List available AI engines
|
|
39
|
+
- `vralphy --help`: Show all commands and options
|
|
40
|
+
|
|
41
|
+
## Design Philosophy
|
|
42
|
+
|
|
43
|
+
- **Separation of Concerns**: specs/ defines WHAT, .vralphy/AGENTS.md defines HOW, IMPLEMENTATION_PLAN.md tracks what's left
|
|
44
|
+
- **Non-Invasive**: All vralphy files in .vralphy/ directory - no collision with existing AGENTS.md for Claude/OpenCode
|
|
45
|
+
- **Engine Abstraction**: Works with Claude, OpenCode, or Codex - auto-detects available engines
|
|
46
|
+
- **Model Tiering**: Expensive models (opus) for reasoning, cheap models (sonnet) for execution
|
|
47
|
+
- **Massive Parallelism**: 500+ subagents for reading, 1 agent for building/testing
|
|
48
|
+
- **Test-Driven**: Never commits without passing tests - autonomous but safe
|
|
49
|
+
- **Incremental**: Small focused commits, frequent updates to plan
|
|
50
|
+
|
|
51
|
+
## Typical Workflow
|
|
52
|
+
|
|
53
|
+
1. Initialize: `vralphy init` (creates .vralphy/, specs/, plan)
|
|
54
|
+
2. Define feature: `vralphy spec authentication` (interactive conversation)
|
|
55
|
+
3. Plan: `vralphy plan 3` (AI analyzes and creates implementation plan)
|
|
56
|
+
4. Build: `vralphy build 20` (AI implements, tests, commits autonomously)
|
|
57
|
+
5. Verify: Check `IMPLEMENTATION_PLAN.md` for remaining work
|
|
58
|
+
6. Iterate: Repeat steps 3-5 until complete
|
|
59
|
+
|
|
60
|
+
## Installation
|
|
61
|
+
|
|
62
|
+
```bash
|
|
63
|
+
npm install -g vralphy
|
|
64
|
+
```
|
|
65
|
+
|
|
66
|
+
Requires Node.js 18+ and at least one AI engine installed (claude, opencode, or codex).
|
|
67
|
+
|
|
68
|
+
## Configuration
|
|
69
|
+
|
|
70
|
+
Three ways to configure (priority: CLI flags > env vars > config file):
|
|
71
|
+
|
|
72
|
+
- CLI: `vralphy --engine claude --model opus --executor sonnet`
|
|
73
|
+
- Environment: `VRALPHY_ENGINE=claude VRALPHY_MODEL=opus`
|
|
74
|
+
- Config: Create `vralphy.config.json` in project root
|
|
75
|
+
|
|
76
|
+
## Optional Resources
|
|
77
|
+
|
|
78
|
+
- [GitHub Repository](https://github.com/vadimcomanescu/vralphy): Source code, issues, contributions
|
|
79
|
+
- [npm Package](https://www.npmjs.com/package/vralphy): Package registry page
|
|
80
|
+
- [Changelog](https://github.com/vadimcomanescu/vralphy/releases): Version history and release notes
|
|
81
|
+
|
|
82
|
+
## Use Cases
|
|
83
|
+
|
|
84
|
+
vralphy is particularly effective for:
|
|
85
|
+
|
|
86
|
+
- Building REST APIs and microservices from specifications
|
|
87
|
+
- Adding comprehensive test coverage to existing codebases
|
|
88
|
+
- Refactoring and code quality improvements
|
|
89
|
+
- Creating component libraries and design systems
|
|
90
|
+
- Database migrations and schema changes
|
|
91
|
+
- CLI tool development
|
|
92
|
+
- Documentation generation
|
|
93
|
+
- Bug fixes and feature additions
|
|
94
|
+
- Prototyping and MVP development
|
|
95
|
+
|
|
96
|
+
## Time Savings
|
|
97
|
+
|
|
98
|
+
Typical time savings compared to manual development:
|
|
99
|
+
|
|
100
|
+
- New features: 70-80% faster
|
|
101
|
+
- Bug fixes: 80-90% faster
|
|
102
|
+
- Adding tests: 80-85% faster
|
|
103
|
+
- Refactoring: 60-70% faster
|
|
104
|
+
- Documentation: 75-85% faster
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "vralphy",
|
|
3
|
-
"version": "0.3.
|
|
3
|
+
"version": "0.3.1",
|
|
4
4
|
"description": "CLI tool implementing the Ralph Playbook methodology with engine flexibility",
|
|
5
5
|
"type": "module",
|
|
6
6
|
"main": "dist/index.js",
|
|
@@ -11,6 +11,7 @@
|
|
|
11
11
|
"dist",
|
|
12
12
|
"bin",
|
|
13
13
|
"docs",
|
|
14
|
+
"llms.txt",
|
|
14
15
|
"README.md"
|
|
15
16
|
],
|
|
16
17
|
"scripts": {
|