vralphy 0.3.0 → 0.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (3) hide show
  1. package/README.md +4 -0
  2. package/llms.txt +104 -0
  3. package/package.json +2 -1
package/README.md CHANGED
@@ -28,6 +28,10 @@ vralphy includes **LLM-friendly documentation** in the `docs/` directory (bundle
28
28
  - **[docs/WORKFLOWS.md](./docs/WORKFLOWS.md)** - Common workflows and patterns
29
29
  - **[docs/EXAMPLES.md](./docs/EXAMPLES.md)** - Real-world usage examples
30
30
 
31
+ ### LLM Discovery Standard
32
+
33
+ vralphy includes an **[llms.txt](./llms.txt)** file following the [llms.txt standard](https://llmstxt.org/) for AI agent discovery. This markdown file provides a structured overview of vralphy's capabilities, making it easy for LLMs to understand and use the tool when working in projects.
34
+
31
35
  This documentation is designed to help both humans and LLMs understand and use vralphy effectively.
32
36
 
33
37
  ## Installation
package/llms.txt ADDED
@@ -0,0 +1,104 @@
1
+ # vralphy
2
+
3
+ > vralphy is a CLI tool implementing the Ralph Playbook - an autonomous AI development methodology where AI agents plan, build, test, and commit code changes with minimal human intervention. It works with multiple AI engines (Claude, OpenCode, Codex) and emphasizes specification-driven development, parallel execution, and incremental progress.
4
+
5
+ ## Core Documentation
6
+
7
+ - [README](README.md): Quick start, installation, and overview
8
+ - [Methodology](docs/METHODOLOGY.md): Deep dive into the Ralph Playbook methodology - three phases (spec, plan, build), loops, design principles, and autonomous operation patterns
9
+ - [Commands](docs/COMMANDS.md): Complete command reference with all options, flags, examples, and use cases for init, spec, plan, build, cleanup, and utility commands
10
+ - [Design Principles](docs/DESIGN.md): Architecture, design decisions, engine abstraction, model tiering, parallelism strategies, and extensibility patterns
11
+ - [Workflows](docs/WORKFLOWS.md): 10 common workflows including new feature development, bug fixes, refactoring, adding to existing projects, and collaborative development
12
+ - [Examples](docs/EXAMPLES.md): 10 real-world examples across different scenarios - REST APIs, React components, CLI tools, database migrations, testing, and microservices
13
+
14
+ ## Key Concepts
15
+
16
+ The Ralph methodology consists of three phases:
17
+
18
+ 1. **Specification Phase** (`vralphy spec`): Interactive conversation with AI to define requirements, capture edge cases, and document acceptance criteria
19
+ 2. **Planning Phase** (`vralphy plan`): AI analyzes codebase with 500+ parallel subagents, compares against specs, and creates prioritized implementation plan
20
+ 3. **Build Phase** (`vralphy build`): AI autonomously implements features, runs tests, commits changes, and updates plan - loops until complete
21
+
22
+ ## Project Structure
23
+
24
+ After initialization, vralphy creates:
25
+
26
+ - `.vralphy/AGENTS.md`: AI-generated operational guide (build/test/run commands) - max 60 lines, project-specific
27
+ - `.vralphy/prompts/`: Customizable prompt templates (plan.md, build.md, spec.md)
28
+ - `specs/`: Feature specifications written by humans defining WHAT to build
29
+ - `IMPLEMENTATION_PLAN.md`: Living task list updated by AI showing what's left to do
30
+
31
+ ## Commands Quick Reference
32
+
33
+ - `vralphy init`: Initialize project with AI-generated operational guide
34
+ - `vralphy spec <topic>`: Create specification through interactive conversation
35
+ - `vralphy plan [iterations]`: Analyze codebase and create implementation plan
36
+ - `vralphy build [iterations]`: Autonomously implement features with tests
37
+ - `vralphy cleanup`: Remove vralphy from project
38
+ - `vralphy engines`: List available AI engines
39
+ - `vralphy --help`: Show all commands and options
40
+
41
+ ## Design Philosophy
42
+
43
+ - **Separation of Concerns**: specs/ defines WHAT, .vralphy/AGENTS.md defines HOW, IMPLEMENTATION_PLAN.md tracks what's left
44
+ - **Non-Invasive**: All vralphy files in .vralphy/ directory - no collision with existing AGENTS.md for Claude/OpenCode
45
+ - **Engine Abstraction**: Works with Claude, OpenCode, or Codex - auto-detects available engines
46
+ - **Model Tiering**: Expensive models (opus) for reasoning, cheap models (sonnet) for execution
47
+ - **Massive Parallelism**: 500+ subagents for reading, 1 agent for building/testing
48
+ - **Test-Driven**: Never commits without passing tests - autonomous but safe
49
+ - **Incremental**: Small focused commits, frequent updates to plan
50
+
51
+ ## Typical Workflow
52
+
53
+ 1. Initialize: `vralphy init` (creates .vralphy/, specs/, plan)
54
+ 2. Define feature: `vralphy spec authentication` (interactive conversation)
55
+ 3. Plan: `vralphy plan 3` (AI analyzes and creates implementation plan)
56
+ 4. Build: `vralphy build 20` (AI implements, tests, commits autonomously)
57
+ 5. Verify: Check `IMPLEMENTATION_PLAN.md` for remaining work
58
+ 6. Iterate: Repeat steps 3-5 until complete
59
+
60
+ ## Installation
61
+
62
+ ```bash
63
+ npm install -g vralphy
64
+ ```
65
+
66
+ Requires Node.js 18+ and at least one AI engine installed (claude, opencode, or codex).
67
+
68
+ ## Configuration
69
+
70
+ Three ways to configure (priority: CLI flags > env vars > config file):
71
+
72
+ - CLI: `vralphy --engine claude --model opus --executor sonnet`
73
+ - Environment: `VRALPHY_ENGINE=claude VRALPHY_MODEL=opus`
74
+ - Config: Create `vralphy.config.json` in project root
75
+
76
+ ## Optional Resources
77
+
78
+ - [GitHub Repository](https://github.com/vadimcomanescu/vralphy): Source code, issues, contributions
79
+ - [npm Package](https://www.npmjs.com/package/vralphy): Package registry page
80
+ - [Changelog](https://github.com/vadimcomanescu/vralphy/releases): Version history and release notes
81
+
82
+ ## Use Cases
83
+
84
+ vralphy is particularly effective for:
85
+
86
+ - Building REST APIs and microservices from specifications
87
+ - Adding comprehensive test coverage to existing codebases
88
+ - Refactoring and code quality improvements
89
+ - Creating component libraries and design systems
90
+ - Database migrations and schema changes
91
+ - CLI tool development
92
+ - Documentation generation
93
+ - Bug fixes and feature additions
94
+ - Prototyping and MVP development
95
+
96
+ ## Time Savings
97
+
98
+ Typical time savings compared to manual development:
99
+
100
+ - New features: 70-80% faster
101
+ - Bug fixes: 80-90% faster
102
+ - Adding tests: 80-85% faster
103
+ - Refactoring: 60-70% faster
104
+ - Documentation: 75-85% faster
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "vralphy",
3
- "version": "0.3.0",
3
+ "version": "0.3.1",
4
4
  "description": "CLI tool implementing the Ralph Playbook methodology with engine flexibility",
5
5
  "type": "module",
6
6
  "main": "dist/index.js",
@@ -11,6 +11,7 @@
11
11
  "dist",
12
12
  "bin",
13
13
  "docs",
14
+ "llms.txt",
14
15
  "README.md"
15
16
  ],
16
17
  "scripts": {