tech-hub-skills 1.2.0 → 1.5.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/{LICENSE → .claude/LICENSE} +21 -21
- package/.claude/README.md +291 -0
- package/.claude/bin/cli.js +266 -0
- package/{bin → .claude/bin}/copilot.js +182 -182
- package/{bin → .claude/bin}/postinstall.js +42 -42
- package/{tech_hub_skills/skills → .claude/commands}/README.md +336 -336
- package/{tech_hub_skills/skills → .claude/commands}/ai-engineer.md +104 -104
- package/{tech_hub_skills/skills → .claude/commands}/aws.md +143 -143
- package/{tech_hub_skills/skills → .claude/commands}/azure.md +149 -149
- package/{tech_hub_skills/skills → .claude/commands}/backend-developer.md +108 -108
- package/{tech_hub_skills/skills → .claude/commands}/code-review.md +399 -399
- package/{tech_hub_skills/skills → .claude/commands}/compliance-automation.md +747 -747
- package/{tech_hub_skills/skills → .claude/commands}/compliance-officer.md +108 -108
- package/{tech_hub_skills/skills → .claude/commands}/data-engineer.md +113 -113
- package/{tech_hub_skills/skills → .claude/commands}/data-governance.md +102 -102
- package/{tech_hub_skills/skills → .claude/commands}/data-scientist.md +123 -123
- package/{tech_hub_skills/skills → .claude/commands}/database-admin.md +109 -109
- package/{tech_hub_skills/skills → .claude/commands}/devops.md +160 -160
- package/{tech_hub_skills/skills → .claude/commands}/docker.md +160 -160
- package/{tech_hub_skills/skills → .claude/commands}/enterprise-dashboard.md +613 -613
- package/{tech_hub_skills/skills → .claude/commands}/finops.md +184 -184
- package/{tech_hub_skills/skills → .claude/commands}/frontend-developer.md +108 -108
- package/{tech_hub_skills/skills → .claude/commands}/gcp.md +143 -143
- package/{tech_hub_skills/skills → .claude/commands}/ml-engineer.md +115 -115
- package/{tech_hub_skills/skills → .claude/commands}/mlops.md +187 -187
- package/{tech_hub_skills/skills → .claude/commands}/network-engineer.md +109 -109
- package/{tech_hub_skills/skills → .claude/commands}/optimization-advisor.md +329 -329
- package/{tech_hub_skills/skills → .claude/commands}/orchestrator.md +623 -623
- package/{tech_hub_skills/skills → .claude/commands}/platform-engineer.md +102 -102
- package/{tech_hub_skills/skills → .claude/commands}/process-automation.md +226 -226
- package/{tech_hub_skills/skills → .claude/commands}/process-changelog.md +184 -184
- package/{tech_hub_skills/skills → .claude/commands}/process-documentation.md +484 -484
- package/{tech_hub_skills/skills → .claude/commands}/process-kanban.md +324 -324
- package/{tech_hub_skills/skills → .claude/commands}/process-versioning.md +214 -214
- package/{tech_hub_skills/skills → .claude/commands}/product-designer.md +104 -104
- package/{tech_hub_skills/skills → .claude/commands}/project-starter.md +443 -443
- package/{tech_hub_skills/skills → .claude/commands}/qa-engineer.md +109 -109
- package/{tech_hub_skills/skills → .claude/commands}/security-architect.md +135 -135
- package/{tech_hub_skills/skills → .claude/commands}/sre.md +109 -109
- package/{tech_hub_skills/skills → .claude/commands}/system-design.md +126 -126
- package/{tech_hub_skills/skills → .claude/commands}/technical-writer.md +101 -101
- package/.claude/package.json +46 -0
- package/{tech_hub_skills → .claude}/roles/ai-engineer/skills/01-prompt-engineering/README.md +252 -252
- package/.claude/roles/ai-engineer/skills/01-prompt-engineering/prompt_ab_tester.py +356 -0
- package/.claude/roles/ai-engineer/skills/01-prompt-engineering/prompt_template_manager.py +274 -0
- package/.claude/roles/ai-engineer/skills/01-prompt-engineering/token_cost_estimator.py +324 -0
- package/{tech_hub_skills → .claude}/roles/ai-engineer/skills/02-rag-pipeline/README.md +448 -448
- package/.claude/roles/ai-engineer/skills/02-rag-pipeline/document_chunker.py +336 -0
- package/.claude/roles/ai-engineer/skills/02-rag-pipeline/rag_pipeline.sql +213 -0
- package/{tech_hub_skills → .claude}/roles/ai-engineer/skills/03-agent-orchestration/README.md +599 -599
- package/{tech_hub_skills → .claude}/roles/ai-engineer/skills/04-llm-guardrails/README.md +735 -735
- package/{tech_hub_skills → .claude}/roles/ai-engineer/skills/05-vector-embeddings/README.md +711 -711
- package/{tech_hub_skills → .claude}/roles/ai-engineer/skills/06-llm-evaluation/README.md +777 -777
- package/{tech_hub_skills → .claude}/roles/azure/skills/01-infrastructure-fundamentals/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/azure/skills/02-data-factory/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/azure/skills/03-synapse-analytics/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/azure/skills/04-databricks/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/azure/skills/05-functions/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/azure/skills/06-kubernetes-service/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/azure/skills/07-openai-service/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/azure/skills/08-machine-learning/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/azure/skills/09-storage-adls/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/azure/skills/10-networking/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/azure/skills/11-sql-cosmos/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/azure/skills/12-event-hubs/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/code-review/skills/01-automated-code-review/README.md +394 -394
- package/{tech_hub_skills → .claude}/roles/code-review/skills/02-pr-review-workflow/README.md +427 -427
- package/{tech_hub_skills → .claude}/roles/code-review/skills/03-code-quality-gates/README.md +518 -518
- package/{tech_hub_skills → .claude}/roles/code-review/skills/04-reviewer-assignment/README.md +504 -504
- package/{tech_hub_skills → .claude}/roles/code-review/skills/05-review-analytics/README.md +540 -540
- package/{tech_hub_skills → .claude}/roles/data-engineer/skills/01-lakehouse-architecture/README.md +550 -550
- package/.claude/roles/data-engineer/skills/01-lakehouse-architecture/bronze_ingestion.py +337 -0
- package/.claude/roles/data-engineer/skills/01-lakehouse-architecture/medallion_queries.sql +300 -0
- package/{tech_hub_skills → .claude}/roles/data-engineer/skills/02-etl-pipeline/README.md +580 -580
- package/{tech_hub_skills → .claude}/roles/data-engineer/skills/03-data-quality/README.md +579 -579
- package/{tech_hub_skills → .claude}/roles/data-engineer/skills/04-streaming-pipelines/README.md +608 -608
- package/{tech_hub_skills → .claude}/roles/data-engineer/skills/05-performance-optimization/README.md +547 -547
- package/{tech_hub_skills → .claude}/roles/data-governance/skills/01-data-catalog/README.md +112 -112
- package/{tech_hub_skills → .claude}/roles/data-governance/skills/02-data-lineage/README.md +129 -129
- package/{tech_hub_skills → .claude}/roles/data-governance/skills/03-data-quality-framework/README.md +182 -182
- package/{tech_hub_skills → .claude}/roles/data-governance/skills/04-access-control/README.md +39 -39
- package/{tech_hub_skills → .claude}/roles/data-governance/skills/05-master-data-management/README.md +40 -40
- package/{tech_hub_skills → .claude}/roles/data-governance/skills/06-compliance-privacy/README.md +46 -46
- package/{tech_hub_skills → .claude}/roles/data-scientist/skills/01-eda-automation/README.md +230 -230
- package/.claude/roles/data-scientist/skills/01-eda-automation/eda_generator.py +446 -0
- package/{tech_hub_skills → .claude}/roles/data-scientist/skills/02-statistical-modeling/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/data-scientist/skills/03-feature-engineering/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/data-scientist/skills/04-predictive-modeling/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/data-scientist/skills/05-customer-analytics/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/data-scientist/skills/06-campaign-analysis/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/data-scientist/skills/07-experimentation/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/data-scientist/skills/08-data-visualization/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/devops/skills/01-cicd-pipeline/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/devops/skills/02-container-orchestration/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/devops/skills/03-infrastructure-as-code/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/devops/skills/04-gitops/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/devops/skills/05-environment-management/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/devops/skills/06-automated-testing/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/devops/skills/07-release-management/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/devops/skills/08-monitoring-alerting/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/devops/skills/09-devsecops/README.md +265 -265
- package/{tech_hub_skills → .claude}/roles/finops/skills/01-cost-visibility/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/finops/skills/02-resource-tagging/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/finops/skills/03-budget-management/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/finops/skills/04-reserved-instances/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/finops/skills/05-spot-optimization/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/finops/skills/06-storage-tiering/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/finops/skills/07-compute-rightsizing/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/finops/skills/08-chargeback/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/ml-engineer/skills/01-mlops-pipeline/README.md +566 -566
- package/{tech_hub_skills → .claude}/roles/ml-engineer/skills/02-feature-engineering/README.md +655 -655
- package/{tech_hub_skills → .claude}/roles/ml-engineer/skills/03-model-training/README.md +704 -704
- package/{tech_hub_skills → .claude}/roles/ml-engineer/skills/04-model-serving/README.md +845 -845
- package/{tech_hub_skills → .claude}/roles/ml-engineer/skills/05-model-monitoring/README.md +874 -874
- package/{tech_hub_skills → .claude}/roles/mlops/skills/01-ml-pipeline-orchestration/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/mlops/skills/02-experiment-tracking/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/mlops/skills/03-model-registry/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/mlops/skills/04-feature-store/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/mlops/skills/05-model-deployment/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/mlops/skills/06-model-observability/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/mlops/skills/07-data-versioning/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/mlops/skills/08-ab-testing/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/mlops/skills/09-automated-retraining/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/platform-engineer/skills/01-internal-developer-platform/README.md +153 -153
- package/{tech_hub_skills → .claude}/roles/platform-engineer/skills/02-self-service-infrastructure/README.md +57 -57
- package/{tech_hub_skills → .claude}/roles/platform-engineer/skills/03-slo-sli-management/README.md +59 -59
- package/{tech_hub_skills → .claude}/roles/platform-engineer/skills/04-developer-experience/README.md +57 -57
- package/{tech_hub_skills → .claude}/roles/platform-engineer/skills/05-incident-management/README.md +73 -73
- package/{tech_hub_skills → .claude}/roles/platform-engineer/skills/06-capacity-management/README.md +59 -59
- package/{tech_hub_skills → .claude}/roles/product-designer/skills/01-requirements-discovery/README.md +407 -407
- package/{tech_hub_skills → .claude}/roles/product-designer/skills/02-user-research/README.md +382 -382
- package/{tech_hub_skills → .claude}/roles/product-designer/skills/03-brainstorming-ideation/README.md +437 -437
- package/{tech_hub_skills → .claude}/roles/product-designer/skills/04-ux-design/README.md +496 -496
- package/{tech_hub_skills → .claude}/roles/product-designer/skills/05-product-market-fit/README.md +376 -376
- package/{tech_hub_skills → .claude}/roles/product-designer/skills/06-stakeholder-management/README.md +412 -412
- package/{tech_hub_skills → .claude}/roles/security-architect/skills/01-pii-detection/README.md +319 -319
- package/{tech_hub_skills → .claude}/roles/security-architect/skills/02-threat-modeling/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/security-architect/skills/03-infrastructure-security/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/security-architect/skills/04-iam/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/security-architect/skills/05-application-security/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/security-architect/skills/06-secrets-management/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/security-architect/skills/07-security-monitoring/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/system-design/skills/01-architecture-patterns/README.md +337 -337
- package/{tech_hub_skills → .claude}/roles/system-design/skills/02-requirements-engineering/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/system-design/skills/03-scalability/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/system-design/skills/04-high-availability/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/system-design/skills/05-cost-optimization-design/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/system-design/skills/06-api-design/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/system-design/skills/07-observability-architecture/README.md +264 -264
- package/{tech_hub_skills → .claude}/roles/system-design/skills/08-process-automation/PROCESS_TEMPLATE.md +336 -336
- package/{tech_hub_skills → .claude}/roles/system-design/skills/08-process-automation/README.md +521 -521
- package/.claude/roles/system-design/skills/08-process-automation/ai_prompt_generator.py +744 -0
- package/.claude/roles/system-design/skills/08-process-automation/automation_recommender.py +688 -0
- package/.claude/roles/system-design/skills/08-process-automation/plan_generator.py +679 -0
- package/.claude/roles/system-design/skills/08-process-automation/process_analyzer.py +528 -0
- package/.claude/roles/system-design/skills/08-process-automation/process_parser.py +684 -0
- package/.claude/roles/system-design/skills/08-process-automation/role_matcher.py +615 -0
- package/.claude/skills/README.md +336 -0
- package/.claude/skills/ai-engineer.md +104 -0
- package/.claude/skills/aws.md +143 -0
- package/.claude/skills/azure.md +149 -0
- package/.claude/skills/backend-developer.md +108 -0
- package/.claude/skills/code-review.md +399 -0
- package/.claude/skills/compliance-automation.md +747 -0
- package/.claude/skills/compliance-officer.md +108 -0
- package/.claude/skills/data-engineer.md +113 -0
- package/.claude/skills/data-governance.md +102 -0
- package/.claude/skills/data-scientist.md +123 -0
- package/.claude/skills/database-admin.md +109 -0
- package/.claude/skills/devops.md +160 -0
- package/.claude/skills/docker.md +160 -0
- package/.claude/skills/enterprise-dashboard.md +613 -0
- package/.claude/skills/finops.md +184 -0
- package/.claude/skills/frontend-developer.md +108 -0
- package/.claude/skills/gcp.md +143 -0
- package/.claude/skills/ml-engineer.md +115 -0
- package/.claude/skills/mlops.md +187 -0
- package/.claude/skills/network-engineer.md +109 -0
- package/.claude/skills/optimization-advisor.md +329 -0
- package/.claude/skills/orchestrator.md +623 -0
- package/.claude/skills/platform-engineer.md +102 -0
- package/.claude/skills/process-automation.md +226 -0
- package/.claude/skills/process-changelog.md +184 -0
- package/.claude/skills/process-documentation.md +484 -0
- package/.claude/skills/process-kanban.md +324 -0
- package/.claude/skills/process-versioning.md +214 -0
- package/.claude/skills/product-designer.md +104 -0
- package/.claude/skills/project-starter.md +443 -0
- package/.claude/skills/qa-engineer.md +109 -0
- package/.claude/skills/security-architect.md +135 -0
- package/.claude/skills/sre.md +109 -0
- package/.claude/skills/system-design.md +126 -0
- package/.claude/skills/technical-writer.md +101 -0
- package/.gitattributes +2 -0
- package/GITHUB_COPILOT.md +106 -0
- package/README.md +192 -291
- package/package.json +16 -46
- package/bin/cli.js +0 -241
|
@@ -1,230 +1,230 @@
|
|
|
1
|
-
# Skill 1: Automated Exploratory Data Analysis (EDA)
|
|
2
|
-
|
|
3
|
-
## 🎯 Overview
|
|
4
|
-
Automated EDA with statistical profiling, visualization, and insight generation.
|
|
5
|
-
|
|
6
|
-
## 🔗 Connections
|
|
7
|
-
- **Data Engineer**: Provides feedback on data quality issues (de-01, de-03)
|
|
8
|
-
- **ML Engineer**: Identifies promising features for modeling (ml-01, ml-02)
|
|
9
|
-
- **MLOps**: Experiment tracking for EDA findings (mo-01)
|
|
10
|
-
- **AI Engineer**: Generates insights for LLM context (ai-02, ai-03)
|
|
11
|
-
- **Security Architect**: PII detection in datasets (sa-01)
|
|
12
|
-
- **FinOps**: Cost-effective analytics compute (fo-06)
|
|
13
|
-
- **DevOps**: Automated reporting pipelines (do-01)
|
|
14
|
-
|
|
15
|
-
## 🛠️ Tools Included
|
|
16
|
-
|
|
17
|
-
### 1. `eda_generator.py`
|
|
18
|
-
Automated EDA report generation with ydata-profiling.
|
|
19
|
-
|
|
20
|
-
### 2. `statistical_analyzer.py`
|
|
21
|
-
Statistical tests, distributions, and correlations.
|
|
22
|
-
|
|
23
|
-
### 3. `visualization_suite.py`
|
|
24
|
-
Interactive visualizations with Plotly.
|
|
25
|
-
|
|
26
|
-
### 4. `insight_extractor.py`
|
|
27
|
-
Automated insight extraction and anomaly detection.
|
|
28
|
-
|
|
29
|
-
### 5. `eda_queries.sql`
|
|
30
|
-
SQL templates for common analytical queries.
|
|
31
|
-
|
|
32
|
-
## 📊 Key Outputs
|
|
33
|
-
- Automated profiling reports (HTML)
|
|
34
|
-
- Statistical summaries
|
|
35
|
-
- Correlation matrices
|
|
36
|
-
- Distribution plots
|
|
37
|
-
- Anomaly detection alerts
|
|
38
|
-
|
|
39
|
-
## 🚀 Quick Start
|
|
40
|
-
|
|
41
|
-
```python
|
|
42
|
-
from eda_generator import EDAGenerator
|
|
43
|
-
|
|
44
|
-
# Initialize
|
|
45
|
-
eda = EDAGenerator()
|
|
46
|
-
|
|
47
|
-
# Load data
|
|
48
|
-
df = pd.read_csv("customer_data.csv")
|
|
49
|
-
|
|
50
|
-
# Generate comprehensive report
|
|
51
|
-
report = eda.generate_report(
|
|
52
|
-
df=df,
|
|
53
|
-
title="Customer Data Analysis",
|
|
54
|
-
output_file="eda_report.html"
|
|
55
|
-
)
|
|
56
|
-
|
|
57
|
-
# Extract key insights
|
|
58
|
-
insights = eda.extract_insights(df)
|
|
59
|
-
print(insights)
|
|
60
|
-
```
|
|
61
|
-
|
|
62
|
-
## 📚 Best Practices
|
|
63
|
-
|
|
64
|
-
### Data Quality & Security (Cross-Role Integration)
|
|
65
|
-
|
|
66
|
-
1. **PII Detection Before Analysis**
|
|
67
|
-
- Scan datasets for PII before profiling
|
|
68
|
-
- Mask sensitive data in reports and visualizations
|
|
69
|
-
- Track data lineage for compliance
|
|
70
|
-
- Reference: Security Architect sa-01 (PII Detection)
|
|
71
|
-
|
|
72
|
-
2. **Data Quality Validation**
|
|
73
|
-
- Validate schema before EDA
|
|
74
|
-
- Check completeness, accuracy, consistency
|
|
75
|
-
- Alert Data Engineering team on quality issues
|
|
76
|
-
- Reference: Data Engineer de-03 (Data Quality)
|
|
77
|
-
|
|
78
|
-
3. **Automated Quality Feedback Loop**
|
|
79
|
-
- Generate data quality scorecards
|
|
80
|
-
- Feed insights back to data pipelines
|
|
81
|
-
- Track quality improvements over time
|
|
82
|
-
- Reference: Data Engineer de-01, de-03
|
|
83
|
-
|
|
84
|
-
### Cost Optimization (FinOps Integration)
|
|
85
|
-
|
|
86
|
-
4. **Optimize Compute for Analysis**
|
|
87
|
-
- Use appropriate instance sizes for EDA workloads
|
|
88
|
-
- Auto-shutdown notebooks when idle
|
|
89
|
-
- Sample large datasets intelligently
|
|
90
|
-
- Monitor analysis costs per project
|
|
91
|
-
- Reference: FinOps fo-06 (Compute Optimization)
|
|
92
|
-
|
|
93
|
-
5. **Efficient Data Sampling**
|
|
94
|
-
- Use stratified sampling for large datasets
|
|
95
|
-
- Profile samples before full dataset analysis
|
|
96
|
-
- Cache intermediate results
|
|
97
|
-
- Minimize data movement and storage
|
|
98
|
-
- Reference: FinOps fo-05, Data Engineer de-01
|
|
99
|
-
|
|
100
|
-
### MLOps Integration
|
|
101
|
-
|
|
102
|
-
6. **Track EDA Experiments**
|
|
103
|
-
- Log EDA findings in MLflow/Azure ML
|
|
104
|
-
- Version datasets used for analysis
|
|
105
|
-
- Document feature engineering insights
|
|
106
|
-
- Link EDA to downstream model experiments
|
|
107
|
-
- Reference: MLOps mo-01 (Experiment Tracking)
|
|
108
|
-
|
|
109
|
-
7. **Feature Discovery Documentation**
|
|
110
|
-
- Document promising features for ML
|
|
111
|
-
- Track feature importance from EDA
|
|
112
|
-
- Share insights with ML Engineering team
|
|
113
|
-
- Maintain feature catalog
|
|
114
|
-
- Reference: ML Engineer ml-02 (Feature Engineering)
|
|
115
|
-
|
|
116
|
-
### Automation & Deployment (DevOps Integration)
|
|
117
|
-
|
|
118
|
-
8. **Automated EDA Pipelines**
|
|
119
|
-
- Schedule regular EDA reports for key datasets
|
|
120
|
-
- Automate anomaly detection and alerting
|
|
121
|
-
- Deploy EDA as part of data pipeline monitoring
|
|
122
|
-
- Version control EDA scripts
|
|
123
|
-
- Reference: DevOps do-01 (CI/CD), do-08 (Monitoring)
|
|
124
|
-
|
|
125
|
-
9. **Reproducible Analysis**
|
|
126
|
-
- Use containerized environments
|
|
127
|
-
- Pin package versions
|
|
128
|
-
- Document analysis dependencies
|
|
129
|
-
- Enable one-click report regeneration
|
|
130
|
-
- Reference: DevOps do-03 (Containerization)
|
|
131
|
-
|
|
132
|
-
### AI Integration
|
|
133
|
-
|
|
134
|
-
10. **LLM-Powered Insights**
|
|
135
|
-
- Use LLMs to generate narrative insights
|
|
136
|
-
- Automate insight extraction from distributions
|
|
137
|
-
- Create natural language data summaries
|
|
138
|
-
- Reference: AI Engineer ai-01, ai-07
|
|
139
|
-
|
|
140
|
-
## 💰 Cost Optimization Examples
|
|
141
|
-
|
|
142
|
-
### Compute Cost Tracking
|
|
143
|
-
```python
|
|
144
|
-
from eda_generator import EDAGenerator
|
|
145
|
-
from finops_tracker import AnalyticsCostTracker
|
|
146
|
-
|
|
147
|
-
cost_tracker = AnalyticsCostTracker()
|
|
148
|
-
|
|
149
|
-
# Track EDA compute costs
|
|
150
|
-
@cost_tracker.track_analysis_cost
|
|
151
|
-
def run_eda(dataset_path: str):
|
|
152
|
-
eda = EDAGenerator()
|
|
153
|
-
df = pd.read_csv(dataset_path)
|
|
154
|
-
|
|
155
|
-
# Smart sampling for large datasets
|
|
156
|
-
if len(df) > 1_000_000:
|
|
157
|
-
df = df.sample(n=100_000, random_state=42) # Cost savings
|
|
158
|
-
|
|
159
|
-
report = eda.generate_report(df)
|
|
160
|
-
return report
|
|
161
|
-
|
|
162
|
-
# Cost report
|
|
163
|
-
report = cost_tracker.monthly_report()
|
|
164
|
-
print(f"Total EDA costs: ${report.total_cost:.2f}")
|
|
165
|
-
print(f"Cost per analysis: ${report.avg_cost:.2f}")
|
|
166
|
-
```
|
|
167
|
-
|
|
168
|
-
## 🔒 Security Best Practices
|
|
169
|
-
|
|
170
|
-
### PII Masking in Reports
|
|
171
|
-
```python
|
|
172
|
-
from pii_detector import PIIDetector
|
|
173
|
-
from eda_generator import EDAGenerator
|
|
174
|
-
|
|
175
|
-
detector = PIIDetector()
|
|
176
|
-
eda = EDAGenerator()
|
|
177
|
-
|
|
178
|
-
def secure_eda(df: pd.DataFrame):
|
|
179
|
-
# Detect PII columns
|
|
180
|
-
pii_columns = []
|
|
181
|
-
for col in df.columns:
|
|
182
|
-
sample = df[col].astype(str).sample(min(100, len(df)))
|
|
183
|
-
if detector.contains_pii(sample.tolist()):
|
|
184
|
-
pii_columns.append(col)
|
|
185
|
-
|
|
186
|
-
# Mask PII before EDA
|
|
187
|
-
df_masked = df.copy()
|
|
188
|
-
for col in pii_columns:
|
|
189
|
-
df_masked[col] = "***MASKED***"
|
|
190
|
-
|
|
191
|
-
# Generate report on masked data
|
|
192
|
-
report = eda.generate_report(
|
|
193
|
-
df_masked,
|
|
194
|
-
title="Customer Data Analysis (PII Masked)"
|
|
195
|
-
)
|
|
196
|
-
|
|
197
|
-
return report, pii_columns
|
|
198
|
-
```
|
|
199
|
-
|
|
200
|
-
## 🔄 Integration Workflow
|
|
201
|
-
|
|
202
|
-
### End-to-End EDA Pipeline
|
|
203
|
-
```
|
|
204
|
-
1. Data Ingestion (de-01)
|
|
205
|
-
↓
|
|
206
|
-
2. PII Detection (sa-01)
|
|
207
|
-
↓
|
|
208
|
-
3. Data Quality Check (de-03)
|
|
209
|
-
↓
|
|
210
|
-
4. Automated EDA (ds-01)
|
|
211
|
-
↓
|
|
212
|
-
5. Track Findings (mo-01)
|
|
213
|
-
↓
|
|
214
|
-
6. Feature Discovery (ml-02)
|
|
215
|
-
↓
|
|
216
|
-
7. Generate Insights (ai-07)
|
|
217
|
-
↓
|
|
218
|
-
8. Share Report (Automated)
|
|
219
|
-
↓
|
|
220
|
-
9. Monitor Costs (fo-06)
|
|
221
|
-
```
|
|
222
|
-
|
|
223
|
-
## 🎯 Quick Wins
|
|
224
|
-
|
|
225
|
-
1. **Automate PII detection** - Prevent compliance violations in reports
|
|
226
|
-
2. **Set up cost tracking** - Monitor analysis compute spending
|
|
227
|
-
3. **Enable auto-shutdown** - Stop idle notebooks to save costs
|
|
228
|
-
4. **Sample large datasets** - Faster EDA at lower cost
|
|
229
|
-
5. **Track EDA experiments** - Link insights to model performance
|
|
230
|
-
6. **Automate report generation** - Schedule weekly data profiling
|
|
1
|
+
# Skill 1: Automated Exploratory Data Analysis (EDA)
|
|
2
|
+
|
|
3
|
+
## 🎯 Overview
|
|
4
|
+
Automated EDA with statistical profiling, visualization, and insight generation.
|
|
5
|
+
|
|
6
|
+
## 🔗 Connections
|
|
7
|
+
- **Data Engineer**: Provides feedback on data quality issues (de-01, de-03)
|
|
8
|
+
- **ML Engineer**: Identifies promising features for modeling (ml-01, ml-02)
|
|
9
|
+
- **MLOps**: Experiment tracking for EDA findings (mo-01)
|
|
10
|
+
- **AI Engineer**: Generates insights for LLM context (ai-02, ai-03)
|
|
11
|
+
- **Security Architect**: PII detection in datasets (sa-01)
|
|
12
|
+
- **FinOps**: Cost-effective analytics compute (fo-06)
|
|
13
|
+
- **DevOps**: Automated reporting pipelines (do-01)
|
|
14
|
+
|
|
15
|
+
## 🛠️ Tools Included
|
|
16
|
+
|
|
17
|
+
### 1. `eda_generator.py`
|
|
18
|
+
Automated EDA report generation with ydata-profiling.
|
|
19
|
+
|
|
20
|
+
### 2. `statistical_analyzer.py`
|
|
21
|
+
Statistical tests, distributions, and correlations.
|
|
22
|
+
|
|
23
|
+
### 3. `visualization_suite.py`
|
|
24
|
+
Interactive visualizations with Plotly.
|
|
25
|
+
|
|
26
|
+
### 4. `insight_extractor.py`
|
|
27
|
+
Automated insight extraction and anomaly detection.
|
|
28
|
+
|
|
29
|
+
### 5. `eda_queries.sql`
|
|
30
|
+
SQL templates for common analytical queries.
|
|
31
|
+
|
|
32
|
+
## 📊 Key Outputs
|
|
33
|
+
- Automated profiling reports (HTML)
|
|
34
|
+
- Statistical summaries
|
|
35
|
+
- Correlation matrices
|
|
36
|
+
- Distribution plots
|
|
37
|
+
- Anomaly detection alerts
|
|
38
|
+
|
|
39
|
+
## 🚀 Quick Start
|
|
40
|
+
|
|
41
|
+
```python
|
|
42
|
+
from eda_generator import EDAGenerator
|
|
43
|
+
|
|
44
|
+
# Initialize
|
|
45
|
+
eda = EDAGenerator()
|
|
46
|
+
|
|
47
|
+
# Load data
|
|
48
|
+
df = pd.read_csv("customer_data.csv")
|
|
49
|
+
|
|
50
|
+
# Generate comprehensive report
|
|
51
|
+
report = eda.generate_report(
|
|
52
|
+
df=df,
|
|
53
|
+
title="Customer Data Analysis",
|
|
54
|
+
output_file="eda_report.html"
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
# Extract key insights
|
|
58
|
+
insights = eda.extract_insights(df)
|
|
59
|
+
print(insights)
|
|
60
|
+
```
|
|
61
|
+
|
|
62
|
+
## 📚 Best Practices
|
|
63
|
+
|
|
64
|
+
### Data Quality & Security (Cross-Role Integration)
|
|
65
|
+
|
|
66
|
+
1. **PII Detection Before Analysis**
|
|
67
|
+
- Scan datasets for PII before profiling
|
|
68
|
+
- Mask sensitive data in reports and visualizations
|
|
69
|
+
- Track data lineage for compliance
|
|
70
|
+
- Reference: Security Architect sa-01 (PII Detection)
|
|
71
|
+
|
|
72
|
+
2. **Data Quality Validation**
|
|
73
|
+
- Validate schema before EDA
|
|
74
|
+
- Check completeness, accuracy, consistency
|
|
75
|
+
- Alert Data Engineering team on quality issues
|
|
76
|
+
- Reference: Data Engineer de-03 (Data Quality)
|
|
77
|
+
|
|
78
|
+
3. **Automated Quality Feedback Loop**
|
|
79
|
+
- Generate data quality scorecards
|
|
80
|
+
- Feed insights back to data pipelines
|
|
81
|
+
- Track quality improvements over time
|
|
82
|
+
- Reference: Data Engineer de-01, de-03
|
|
83
|
+
|
|
84
|
+
### Cost Optimization (FinOps Integration)
|
|
85
|
+
|
|
86
|
+
4. **Optimize Compute for Analysis**
|
|
87
|
+
- Use appropriate instance sizes for EDA workloads
|
|
88
|
+
- Auto-shutdown notebooks when idle
|
|
89
|
+
- Sample large datasets intelligently
|
|
90
|
+
- Monitor analysis costs per project
|
|
91
|
+
- Reference: FinOps fo-06 (Compute Optimization)
|
|
92
|
+
|
|
93
|
+
5. **Efficient Data Sampling**
|
|
94
|
+
- Use stratified sampling for large datasets
|
|
95
|
+
- Profile samples before full dataset analysis
|
|
96
|
+
- Cache intermediate results
|
|
97
|
+
- Minimize data movement and storage
|
|
98
|
+
- Reference: FinOps fo-05, Data Engineer de-01
|
|
99
|
+
|
|
100
|
+
### MLOps Integration
|
|
101
|
+
|
|
102
|
+
6. **Track EDA Experiments**
|
|
103
|
+
- Log EDA findings in MLflow/Azure ML
|
|
104
|
+
- Version datasets used for analysis
|
|
105
|
+
- Document feature engineering insights
|
|
106
|
+
- Link EDA to downstream model experiments
|
|
107
|
+
- Reference: MLOps mo-01 (Experiment Tracking)
|
|
108
|
+
|
|
109
|
+
7. **Feature Discovery Documentation**
|
|
110
|
+
- Document promising features for ML
|
|
111
|
+
- Track feature importance from EDA
|
|
112
|
+
- Share insights with ML Engineering team
|
|
113
|
+
- Maintain feature catalog
|
|
114
|
+
- Reference: ML Engineer ml-02 (Feature Engineering)
|
|
115
|
+
|
|
116
|
+
### Automation & Deployment (DevOps Integration)
|
|
117
|
+
|
|
118
|
+
8. **Automated EDA Pipelines**
|
|
119
|
+
- Schedule regular EDA reports for key datasets
|
|
120
|
+
- Automate anomaly detection and alerting
|
|
121
|
+
- Deploy EDA as part of data pipeline monitoring
|
|
122
|
+
- Version control EDA scripts
|
|
123
|
+
- Reference: DevOps do-01 (CI/CD), do-08 (Monitoring)
|
|
124
|
+
|
|
125
|
+
9. **Reproducible Analysis**
|
|
126
|
+
- Use containerized environments
|
|
127
|
+
- Pin package versions
|
|
128
|
+
- Document analysis dependencies
|
|
129
|
+
- Enable one-click report regeneration
|
|
130
|
+
- Reference: DevOps do-03 (Containerization)
|
|
131
|
+
|
|
132
|
+
### AI Integration
|
|
133
|
+
|
|
134
|
+
10. **LLM-Powered Insights**
|
|
135
|
+
- Use LLMs to generate narrative insights
|
|
136
|
+
- Automate insight extraction from distributions
|
|
137
|
+
- Create natural language data summaries
|
|
138
|
+
- Reference: AI Engineer ai-01, ai-07
|
|
139
|
+
|
|
140
|
+
## 💰 Cost Optimization Examples
|
|
141
|
+
|
|
142
|
+
### Compute Cost Tracking
|
|
143
|
+
```python
|
|
144
|
+
from eda_generator import EDAGenerator
|
|
145
|
+
from finops_tracker import AnalyticsCostTracker
|
|
146
|
+
|
|
147
|
+
cost_tracker = AnalyticsCostTracker()
|
|
148
|
+
|
|
149
|
+
# Track EDA compute costs
|
|
150
|
+
@cost_tracker.track_analysis_cost
|
|
151
|
+
def run_eda(dataset_path: str):
|
|
152
|
+
eda = EDAGenerator()
|
|
153
|
+
df = pd.read_csv(dataset_path)
|
|
154
|
+
|
|
155
|
+
# Smart sampling for large datasets
|
|
156
|
+
if len(df) > 1_000_000:
|
|
157
|
+
df = df.sample(n=100_000, random_state=42) # Cost savings
|
|
158
|
+
|
|
159
|
+
report = eda.generate_report(df)
|
|
160
|
+
return report
|
|
161
|
+
|
|
162
|
+
# Cost report
|
|
163
|
+
report = cost_tracker.monthly_report()
|
|
164
|
+
print(f"Total EDA costs: ${report.total_cost:.2f}")
|
|
165
|
+
print(f"Cost per analysis: ${report.avg_cost:.2f}")
|
|
166
|
+
```
|
|
167
|
+
|
|
168
|
+
## 🔒 Security Best Practices
|
|
169
|
+
|
|
170
|
+
### PII Masking in Reports
|
|
171
|
+
```python
|
|
172
|
+
from pii_detector import PIIDetector
|
|
173
|
+
from eda_generator import EDAGenerator
|
|
174
|
+
|
|
175
|
+
detector = PIIDetector()
|
|
176
|
+
eda = EDAGenerator()
|
|
177
|
+
|
|
178
|
+
def secure_eda(df: pd.DataFrame):
|
|
179
|
+
# Detect PII columns
|
|
180
|
+
pii_columns = []
|
|
181
|
+
for col in df.columns:
|
|
182
|
+
sample = df[col].astype(str).sample(min(100, len(df)))
|
|
183
|
+
if detector.contains_pii(sample.tolist()):
|
|
184
|
+
pii_columns.append(col)
|
|
185
|
+
|
|
186
|
+
# Mask PII before EDA
|
|
187
|
+
df_masked = df.copy()
|
|
188
|
+
for col in pii_columns:
|
|
189
|
+
df_masked[col] = "***MASKED***"
|
|
190
|
+
|
|
191
|
+
# Generate report on masked data
|
|
192
|
+
report = eda.generate_report(
|
|
193
|
+
df_masked,
|
|
194
|
+
title="Customer Data Analysis (PII Masked)"
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
return report, pii_columns
|
|
198
|
+
```
|
|
199
|
+
|
|
200
|
+
## 🔄 Integration Workflow
|
|
201
|
+
|
|
202
|
+
### End-to-End EDA Pipeline
|
|
203
|
+
```
|
|
204
|
+
1. Data Ingestion (de-01)
|
|
205
|
+
↓
|
|
206
|
+
2. PII Detection (sa-01)
|
|
207
|
+
↓
|
|
208
|
+
3. Data Quality Check (de-03)
|
|
209
|
+
↓
|
|
210
|
+
4. Automated EDA (ds-01)
|
|
211
|
+
↓
|
|
212
|
+
5. Track Findings (mo-01)
|
|
213
|
+
↓
|
|
214
|
+
6. Feature Discovery (ml-02)
|
|
215
|
+
↓
|
|
216
|
+
7. Generate Insights (ai-07)
|
|
217
|
+
↓
|
|
218
|
+
8. Share Report (Automated)
|
|
219
|
+
↓
|
|
220
|
+
9. Monitor Costs (fo-06)
|
|
221
|
+
```
|
|
222
|
+
|
|
223
|
+
## 🎯 Quick Wins
|
|
224
|
+
|
|
225
|
+
1. **Automate PII detection** - Prevent compliance violations in reports
|
|
226
|
+
2. **Set up cost tracking** - Monitor analysis compute spending
|
|
227
|
+
3. **Enable auto-shutdown** - Stop idle notebooks to save costs
|
|
228
|
+
4. **Sample large datasets** - Faster EDA at lower cost
|
|
229
|
+
5. **Track EDA experiments** - Link insights to model performance
|
|
230
|
+
6. **Automate report generation** - Schedule weekly data profiling
|