red-black-tree-typed 2.2.2 → 2.2.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. package/README.md +92 -37
  2. package/dist/cjs/index.cjs +163 -0
  3. package/dist/cjs/index.cjs.map +1 -1
  4. package/dist/cjs-legacy/index.cjs +164 -0
  5. package/dist/cjs-legacy/index.cjs.map +1 -1
  6. package/dist/esm/index.mjs +163 -0
  7. package/dist/esm/index.mjs.map +1 -1
  8. package/dist/esm-legacy/index.mjs +164 -0
  9. package/dist/esm-legacy/index.mjs.map +1 -1
  10. package/dist/types/data-structures/binary-tree/avl-tree.d.ts +96 -2
  11. package/dist/types/data-structures/binary-tree/binary-tree.d.ts +103 -7
  12. package/dist/types/data-structures/binary-tree/bst.d.ts +156 -13
  13. package/dist/types/data-structures/binary-tree/red-black-tree.d.ts +84 -35
  14. package/dist/types/data-structures/binary-tree/tree-multi-map.d.ts +2 -2
  15. package/dist/types/data-structures/graph/directed-graph.d.ts +126 -1
  16. package/dist/types/data-structures/graph/undirected-graph.d.ts +160 -1
  17. package/dist/types/data-structures/hash/hash-map.d.ts +110 -27
  18. package/dist/types/data-structures/heap/heap.d.ts +107 -58
  19. package/dist/types/data-structures/linked-list/doubly-linked-list.d.ts +72 -404
  20. package/dist/types/data-structures/linked-list/singly-linked-list.d.ts +121 -5
  21. package/dist/types/data-structures/queue/deque.d.ts +95 -67
  22. package/dist/types/data-structures/queue/queue.d.ts +90 -34
  23. package/dist/types/data-structures/stack/stack.d.ts +58 -40
  24. package/dist/types/data-structures/trie/trie.d.ts +109 -47
  25. package/dist/types/interfaces/binary-tree.d.ts +1 -0
  26. package/dist/umd/red-black-tree-typed.js +164 -0
  27. package/dist/umd/red-black-tree-typed.js.map +1 -1
  28. package/dist/umd/red-black-tree-typed.min.js +3 -3
  29. package/dist/umd/red-black-tree-typed.min.js.map +1 -1
  30. package/package.json +2 -2
  31. package/src/data-structures/binary-tree/avl-tree.ts +96 -2
  32. package/src/data-structures/binary-tree/binary-tree.ts +117 -7
  33. package/src/data-structures/binary-tree/bst.ts +322 -13
  34. package/src/data-structures/binary-tree/red-black-tree.ts +84 -35
  35. package/src/data-structures/binary-tree/tree-multi-map.ts +2 -2
  36. package/src/data-structures/graph/directed-graph.ts +126 -1
  37. package/src/data-structures/graph/undirected-graph.ts +160 -1
  38. package/src/data-structures/hash/hash-map.ts +110 -27
  39. package/src/data-structures/heap/heap.ts +107 -58
  40. package/src/data-structures/linked-list/doubly-linked-list.ts +72 -404
  41. package/src/data-structures/linked-list/singly-linked-list.ts +121 -5
  42. package/src/data-structures/queue/deque.ts +95 -67
  43. package/src/data-structures/queue/queue.ts +90 -34
  44. package/src/data-structures/stack/stack.ts +58 -40
  45. package/src/data-structures/trie/trie.ts +109 -47
  46. package/src/interfaces/binary-tree.ts +2 -0
@@ -128,8 +128,102 @@ export declare class AVLTreeNode<K = any, V = any> {
128
128
  * 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.
129
129
  *
130
130
  * @example
131
+ * // basic AVLTree creation and add operation
132
+ * // Create a simple AVLTree with initial values
133
+ * const tree = new AVLTree([5, 2, 8, 1, 9]);
134
+ *
135
+ * tree.print();
136
+ * // _2___
137
+ * // / \
138
+ * // 1 _8_
139
+ * // / \
140
+ * // 5 9
141
+ *
142
+ * // Verify the tree maintains sorted order
143
+ * console.log([...tree.keys()]); // [1, 2, 5, 8, 9];
144
+ *
145
+ * // Check size
146
+ * console.log(tree.size); // 5;
147
+ *
148
+ * // Add a new element
149
+ * tree.add(3);
150
+ * console.log(tree.size); // 6;
151
+ * console.log([...tree.keys()]); // [1, 2, 3, 5, 8, 9];
152
+ * @example
153
+ * // AVLTree has and get operations
154
+ * const tree = new AVLTree<number>([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
155
+ *
156
+ * // Check if element exists
157
+ * console.log(tree.has(6)); // true;
158
+ * console.log(tree.has(99)); // false;
159
+ *
160
+ * // Get node by key
161
+ * const node = tree.getNode(6);
162
+ * console.log(node?.key); // 6;
163
+ *
164
+ * // Verify tree is balanced
165
+ * console.log(tree.isAVLBalanced()); // true;
166
+ * @example
167
+ * // AVLTree delete and balance verification
168
+ * const tree = new AVLTree([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
169
+ *
170
+ * // Delete an element
171
+ * tree.delete(10);
172
+ * console.log(tree.has(10)); // false;
173
+ *
174
+ * // Tree should remain balanced after deletion
175
+ * console.log(tree.isAVLBalanced()); // true;
176
+ *
177
+ * // Size decreased
178
+ * console.log(tree.size); // 15;
179
+ *
180
+ * // Remaining elements are still sorted
181
+ * const keys = [...tree.keys()];
182
+ * console.log(keys); // [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16];
183
+ * @example
184
+ * // AVLTree for university ranking system with strict balance
185
+ * interface University {
186
+ * name: string;
187
+ * rank: number;
188
+ * students: number;
189
+ * }
190
+ *
191
+ * // AVLTree provides highest search efficiency with strict balance
192
+ * // (every node's left/right subtrees differ by at most 1 in height)
193
+ * const universityTree = new AVLTree<number, University>([
194
+ * [1, { name: 'MIT', rank: 1, students: 1200 }],
195
+ * [5, { name: 'Stanford', rank: 5, students: 1800 }],
196
+ * [3, { name: 'Harvard', rank: 3, students: 2300 }],
197
+ * [2, { name: 'Caltech', rank: 2, students: 400 }],
198
+ * [4, { name: 'CMU', rank: 4, students: 1500 }]
199
+ * ]);
200
+ *
201
+ * // Quick lookup by rank
202
+ * const mit = universityTree.get(1);
203
+ * console.log(mit?.name); // 'MIT';
204
+ *
205
+ * const cmulevel = universityTree.getHeight(4);
206
+ * console.log(typeof cmulevel); // 'number';
207
+ *
208
+ * // Tree maintains strict balance during insertions and deletions
209
+ * console.log(universityTree.isAVLBalanced()); // true;
210
+ *
211
+ * // Add more universities
212
+ * universityTree.add(6, { name: 'Oxford', rank: 6, students: 2000 });
213
+ * console.log(universityTree.isAVLBalanced()); // true;
214
+ *
215
+ * // Delete and verify balance is maintained
216
+ * universityTree.delete(2);
217
+ * console.log(universityTree.has(2)); // false;
218
+ * console.log(universityTree.isAVLBalanced()); // true;
219
+ *
220
+ * // Get all remaining universities in rank order
221
+ * const remainingRanks = [...universityTree.keys()];
222
+ * console.log(remainingRanks); // [1, 3, 4, 5, 6];
223
+ * console.log(universityTree.size); // 5;
224
+ * @example
131
225
  * // Find elements in a range
132
- * // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding.
226
+ * // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding.
133
227
  * type Datum = { timestamp: Date; temperature: number };
134
228
  * // Fixed dataset of CPU temperature readings
135
229
  * const cpuData: Datum[] = [
@@ -190,7 +284,7 @@ export declare class AVLTreeNode<K = any, V = any> {
190
284
  * // { minute: 13, temperature: 60.2 },
191
285
  * // { minute: 14, temperature: 59.8 },
192
286
  * // { minute: 15, temperature: 58.6 }
193
- * // ]
287
+ * // ];
194
288
  */
195
289
  export declare class AVLTree<K = any, V = any, R = any> extends BST<K, V, R> implements IBinaryTree<K, V, R> {
196
290
  /**
@@ -125,8 +125,86 @@ export declare class BinaryTreeNode<K = any, V = any> {
125
125
  * 5. Leaf Nodes: Nodes without children are leaves.
126
126
  *
127
127
  * @example
128
+ * // basic BinaryTree creation and insertion
129
+ * // Create a BinaryTree with entries
130
+ * const entries: [number, string][] = [
131
+ * [6, 'six'],
132
+ * [1, 'one'],
133
+ * [2, 'two'],
134
+ * [7, 'seven'],
135
+ * [5, 'five'],
136
+ * [3, 'three'],
137
+ * [4, 'four'],
138
+ * [9, 'nine'],
139
+ * [8, 'eight']
140
+ * ];
141
+ *
142
+ * const tree = new BinaryTree(entries);
143
+ *
144
+ * // Verify size
145
+ * console.log(tree.size); // 9;
146
+ *
147
+ * // Add new element
148
+ * tree.add(10, 'ten');
149
+ * console.log(tree.size); // 10;
150
+ * @example
151
+ * // BinaryTree get and has operations
152
+ * const tree = new BinaryTree(
153
+ * [
154
+ * [5, 'five'],
155
+ * [3, 'three'],
156
+ * [7, 'seven'],
157
+ * [1, 'one'],
158
+ * [4, 'four'],
159
+ * [6, 'six'],
160
+ * [8, 'eight']
161
+ * ],
162
+ * { isMapMode: false }
163
+ * );
164
+ *
165
+ * // Check if key exists
166
+ * console.log(tree.has(5)); // true;
167
+ * console.log(tree.has(10)); // false;
168
+ *
169
+ * // Get value by key
170
+ * console.log(tree.get(3)); // 'three';
171
+ * console.log(tree.get(7)); // 'seven';
172
+ * console.log(tree.get(100)); // undefined;
173
+ *
174
+ * // Get node structure
175
+ * const node = tree.getNode(5);
176
+ * console.log(node?.key); // 5;
177
+ * console.log(node?.value); // 'five';
178
+ * @example
179
+ * // BinaryTree level-order traversal
180
+ * const tree = new BinaryTree([
181
+ * [1, 'one'],
182
+ * [2, 'two'],
183
+ * [3, 'three'],
184
+ * [4, 'four'],
185
+ * [5, 'five'],
186
+ * [6, 'six'],
187
+ * [7, 'seven']
188
+ * ]);
189
+ *
190
+ * // Binary tree maintains level-order insertion
191
+ * // Complete binary tree structure
192
+ * console.log(tree.size); // 7;
193
+ *
194
+ * // Verify all keys are present
195
+ * console.log(tree.has(1)); // true;
196
+ * console.log(tree.has(4)); // true;
197
+ * console.log(tree.has(7)); // true;
198
+ *
199
+ * // Iterate through tree
200
+ * const keys: number[] = [];
201
+ * for (const [key] of tree) {
202
+ * keys.push(key);
203
+ * }
204
+ * console.log(keys.length); // 7;
205
+ * @example
128
206
  * // determine loan approval using a decision tree
129
- * // Decision tree structure
207
+ * // Decision tree structure
130
208
  * const loanDecisionTree = new BinaryTree<string>(
131
209
  * ['stableIncome', 'goodCredit', 'Rejected', 'Approved', 'Rejected'],
132
210
  * { isDuplicate: true }
@@ -148,19 +226,19 @@ export declare class BinaryTreeNode<K = any, V = any> {
148
226
  * }
149
227
  *
150
228
  * // Test case 1: Stable income and good credit score
151
- * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: true })); // 'Approved'
229
+ * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: true })); // 'Approved';
152
230
  *
153
231
  * // Test case 2: Stable income but poor credit score
154
- * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: false })); // 'Rejected'
232
+ * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: false })); // 'Rejected';
155
233
  *
156
234
  * // Test case 3: No stable income
157
- * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: true })); // 'Rejected'
235
+ * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: true })); // 'Rejected';
158
236
  *
159
237
  * // Test case 4: No stable income and poor credit score
160
- * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: false })); // 'Rejected'
238
+ * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: false })); // 'Rejected';
161
239
  * @example
162
240
  * // evaluate the arithmetic expression represented by the binary tree
163
- * const expressionTree = new BinaryTree<number | string>(['+', 3, '*', null, null, 5, '-', null, null, 2, 8]);
241
+ * const expressionTree = new BinaryTree<number | string>(['+', 3, '*', null, null, 5, '-', null, null, 2, 8]);
164
242
  *
165
243
  * function evaluate(node?: BinaryTreeNode<number | string> | null): number {
166
244
  * if (!node) return 0;
@@ -185,7 +263,7 @@ export declare class BinaryTreeNode<K = any, V = any> {
185
263
  * }
186
264
  * }
187
265
  *
188
- * console.log(evaluate(expressionTree.root)); // -27
266
+ * console.log(evaluate(expressionTree.root)); // -27;
189
267
  */
190
268
  export declare class BinaryTree<K = any, V = any, R = any> extends IterableEntryBase<K, V | undefined> implements IBinaryTree<K, V, R> {
191
269
  iterationType: IterationType;
@@ -360,6 +438,15 @@ export declare class BinaryTree<K = any, V = any, R = any> extends IterableEntry
360
438
  * @returns True if the addition was successful, false otherwise.
361
439
  */
362
440
  add(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, value?: V): boolean;
441
+ /**
442
+ * Adds or updates a new node to the tree.
443
+ * @remarks Time O(log N), For BST, Red-Black Tree, and AVL Tree subclasses, the worst-case time is O(log N). This implementation adds the node at the first available position in a level-order (BFS) traversal. This is NOT a Binary Search Tree insertion. Time O(N), where N is the number of nodes. It must traverse level-by-level to find an empty slot. Space O(N) in the worst case for the BFS queue (e.g., a full last level).
444
+ *
445
+ * @param keyNodeOrEntry - The key, node, or entry to add or update.
446
+ * @param [value] - The value, if providing just a key.
447
+ * @returns True if the addition was successful, false otherwise.
448
+ */
449
+ set(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, value?: V): boolean;
363
450
  /**
364
451
  * Adds multiple items to the tree.
365
452
  * @remarks Time O(N * M), where N is the number of items to add and M is the size of the tree at insertion (due to O(M) `add` operation). Space O(M) (from `add`) + O(N) (for the `inserted` array).
@@ -369,6 +456,15 @@ export declare class BinaryTree<K = any, V = any, R = any> extends IterableEntry
369
456
  * @returns An array of booleans indicating the success of each individual `add` operation.
370
457
  */
371
458
  addMany(keysNodesEntriesOrRaws: Iterable<K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R>, values?: Iterable<V | undefined>): boolean[];
459
+ /**
460
+ * Adds or updates multiple items to the tree.
461
+ * @remarks Time O(N * M), where N is the number of items to add and M is the size of the tree at insertion (due to O(M) `add` operation). Space O(M) (from `add`) + O(N) (for the `inserted` array).
462
+ *
463
+ * @param keysNodesEntriesOrRaws - An iterable of items to add or update.
464
+ * @param [values] - An optional parallel iterable of values.
465
+ * @returns An array of booleans indicating the success of each individual `add` operation.
466
+ */
467
+ setMany(keysNodesEntriesOrRaws: Iterable<K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R>, values?: Iterable<V | undefined>): boolean[];
372
468
  /**
373
469
  * Merges another tree into this one by adding all its nodes.
374
470
  * @remarks Time O(N * M), same as `addMany`, where N is the size of `anotherTree` and M is the size of this tree. Space O(M) (from `add`).
@@ -126,8 +126,57 @@ export declare class BSTNode<K = any, V = any> {
126
126
  * 7. No Auto-Balancing: Standard BSTs don't automatically balance themselves.
127
127
  *
128
128
  * @example
129
+ * // basic BST creation and add operation
130
+ * // Create a simple BST with numeric keys
131
+ * const bst = new BST<number>([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
132
+ *
133
+ * bst.print();
134
+ * // _______8__________
135
+ * // / \
136
+ * // ___4___ ____12_____
137
+ * // / \ / \
138
+ * // _2_ _6_ _10__ _14__
139
+ * // / \ / \ / \ / \
140
+ * // 1 3 5 7 9 11 13 15__
141
+ * // \
142
+ * // 16
143
+ *
144
+ * // Verify size
145
+ * console.log(bst.size); // 16;
146
+ *
147
+ * // Add new elements
148
+ * bst.add(17);
149
+ * bst.add(0);
150
+ * console.log(bst.size); // 18;
151
+ *
152
+ * // Verify keys are searchable
153
+ * console.log(bst.has(11)); // true;
154
+ * console.log(bst.has(100)); // false;
155
+ * @example
156
+ * // BST delete and search after deletion
157
+ * const bst = new BST<number>([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
158
+ *
159
+ * // Delete a leaf node
160
+ * bst.delete(1);
161
+ * console.log(bst.has(1)); // false;
162
+ *
163
+ * // Delete a node with one child
164
+ * bst.delete(2);
165
+ * console.log(bst.has(2)); // false;
166
+ *
167
+ * // Delete a node with two children
168
+ * bst.delete(3);
169
+ * console.log(bst.has(3)); // false;
170
+ *
171
+ * // Size decreases with each deletion
172
+ * console.log(bst.size); // 13;
173
+ *
174
+ * // Other nodes remain searchable
175
+ * console.log(bst.has(11)); // true;
176
+ * console.log(bst.has(15)); // true;
177
+ * @example
129
178
  * // Merge 3 sorted datasets
130
- * const dataset1 = new BST<number, string>([
179
+ * const dataset1 = new BST<number, string>([
131
180
  * [1, 'A'],
132
181
  * [7, 'G']
133
182
  * ]);
@@ -147,18 +196,58 @@ export declare class BSTNode<K = any, V = any> {
147
196
  * merged.merge(dataset3);
148
197
  *
149
198
  * // Verify merged dataset is in sorted order
150
- * console.log([...merged.values()]); // ['A', 'B', 'C', 'D', 'E', 'F', 'G']
199
+ * console.log([...merged.values()]); // ['A', 'B', 'C', 'D', 'E', 'F', 'G'];
151
200
  * @example
152
- * // Find elements in a range
153
- * const bst = new BST<number>([10, 5, 15, 3, 7, 12, 18]);
154
- * console.log(bst.search(new Range(5, 10))); // [5, 7, 10]
155
- * console.log(bst.rangeSearch([4, 12], node => node.key.toString())); // ['5', '7', '10', '12']
156
- * console.log(bst.search(new Range(4, 12, true, false))); // [5, 7, 10]
157
- * console.log(bst.rangeSearch([15, 20])); // [15, 18]
158
- * console.log(bst.search(new Range(15, 20, false))); // [18]
201
+ * // BST with custom objects for expression evaluation
202
+ * interface Expression {
203
+ * id: number;
204
+ * operator: string;
205
+ * precedence: number;
206
+ * }
207
+ *
208
+ * // BST efficiently stores and retrieves operators by precedence
209
+ * const operatorTree = new BST<number, Expression>(
210
+ * [
211
+ * [1, { id: 1, operator: '+', precedence: 1 }],
212
+ * [2, { id: 2, operator: '*', precedence: 2 }],
213
+ * [3, { id: 3, operator: '/', precedence: 2 }],
214
+ * [4, { id: 4, operator: '-', precedence: 1 }],
215
+ * [5, { id: 5, operator: '^', precedence: 3 }]
216
+ * ],
217
+ * { isMapMode: false }
218
+ * );
219
+ *
220
+ * console.log(operatorTree.size); // 5;
221
+ *
222
+ * // Quick lookup of operators
223
+ * const mult = operatorTree.get(2);
224
+ * console.log(mult?.operator); // '*';
225
+ * console.log(mult?.precedence); // 2;
226
+ *
227
+ * // Check if operator exists
228
+ * console.log(operatorTree.has(5)); // true;
229
+ * console.log(operatorTree.has(99)); // false;
230
+ *
231
+ * // Retrieve operator by precedence level
232
+ * const expNode = operatorTree.getNode(3);
233
+ * console.log(expNode?.key); // 3;
234
+ * console.log(expNode?.value?.precedence); // 2;
235
+ *
236
+ * // Delete operator and verify
237
+ * operatorTree.delete(1);
238
+ * console.log(operatorTree.has(1)); // false;
239
+ * console.log(operatorTree.size); // 4;
240
+ *
241
+ * // Get tree height for optimization analysis
242
+ * const treeHeight = operatorTree.getHeight();
243
+ * console.log(treeHeight); // > 0;
244
+ *
245
+ * // Remaining operators are still accessible
246
+ * const remaining = operatorTree.get(2);
247
+ * console.log(remaining); // defined;
159
248
  * @example
160
249
  * // Find lowest common ancestor
161
- * const bst = new BST<number>([20, 10, 30, 5, 15, 25, 35, 3, 7, 12, 18]);
250
+ * const bst = new BST<number>([20, 10, 30, 5, 15, 25, 35, 3, 7, 12, 18]);
162
251
  *
163
252
  * // LCA helper function
164
253
  * const findLCA = (num1: number, num2: number): number | undefined => {
@@ -178,9 +267,9 @@ export declare class BSTNode<K = any, V = any> {
178
267
  * }
179
268
  *
180
269
  * // Assertions
181
- * console.log(findLCA(3, 10)); // 7
182
- * console.log(findLCA(5, 35)); // 15
183
- * console.log(findLCA(20, 30)); // 25
270
+ * console.log(findLCA(3, 10)); // 7;
271
+ * console.log(findLCA(5, 35)); // 15;
272
+ * console.log(findLCA(20, 30)); // 25;
184
273
  */
185
274
  export declare class BST<K = any, V = any, R = any> extends BinaryTree<K, V, R> implements IBinaryTree<K, V, R> {
186
275
  /**
@@ -355,6 +444,28 @@ export declare class BST<K = any, V = any, R = any> extends BinaryTree<K, V, R>
355
444
  * @returns An array of booleans indicating the success of each individual `add` operation.
356
445
  */
357
446
  addMany(keysNodesEntriesOrRaws: Iterable<R | BTNRep<K, V, BSTNode<K, V>>>, values?: Iterable<V | undefined>, isBalanceAdd?: boolean, iterationType?: IterationType): boolean[];
447
+ /**
448
+ * Returns the first node with a key greater than or equal to the given key.
449
+ * This is equivalent to C++ std::lower_bound on a BST.
450
+ * Supports RECURSIVE and ITERATIVE implementations.
451
+ * Time Complexity: O(log n) on average, O(h) where h is tree height.
452
+ * Space Complexity: O(h) for recursion, O(1) for iteration.
453
+ * @param keyNodeEntryOrPredicate - The key, node, entry, or predicate function to search for.
454
+ * @param iterationType The iteration type (RECURSIVE or ITERATIVE). Defaults to this.iterationType.
455
+ * @returns The first node with key >= given key, or undefined if no such node exists.
456
+ */
457
+ lowerBound(keyNodeEntryOrPredicate: K | BSTNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BSTNode<K, V>>, iterationType?: IterationType): BSTNode<K, V> | undefined;
458
+ /**
459
+ * Returns the first node with a key strictly greater than the given key.
460
+ * This is equivalent to C++ std::upper_bound on a BST.
461
+ * Supports RECURSIVE and ITERATIVE implementations.
462
+ * Time Complexity: O(log n) on average, O(h) where h is tree height.
463
+ * Space Complexity: O(h) for recursion, O(1) for iteration.
464
+ * @param keyNodeEntryOrPredicate - The key, node, entry, or predicate function to search for.
465
+ * @param iterationType The iteration type (RECURSIVE or ITERATIVE). Defaults to this.iterationType.
466
+ * @returns The first node with key > given key, or undefined if no such node exists.
467
+ */
468
+ upperBound(keyNodeEntryOrPredicate: K | BSTNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BSTNode<K, V>>, iterationType?: IterationType): BSTNode<K, V> | undefined;
358
469
  /**
359
470
  * Traverses the tree and returns nodes that are lesser or greater than a target node.
360
471
  * @remarks Time O(N), as it performs a full traversal. Space O(log N) or O(N).
@@ -405,6 +516,38 @@ export declare class BST<K = any, V = any, R = any> extends BinaryTree<K, V, R>
405
516
  * @returns True if a node was deleted, false otherwise.
406
517
  */
407
518
  deleteWhere(predicate: (key: K, value: V | undefined, index: number, tree: this) => boolean): boolean;
519
+ /**
520
+ * (Protected) Core bound search implementation supporting all parameter types.
521
+ * Unified logic for both lowerBound and upperBound.
522
+ * Resolves various input types (Key, Node, Entry, Predicate) using parent class utilities.
523
+ * @param keyNodeEntryOrPredicate - The key, node, entry, or predicate function to search for.
524
+ * @param isLower - True for lowerBound (>=), false for upperBound (>).
525
+ * @param iterationType - The iteration type (RECURSIVE or ITERATIVE).
526
+ * @returns The first matching node, or undefined if no such node exists.
527
+ */
528
+ protected _bound(keyNodeEntryOrPredicate: K | BSTNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BSTNode<K, V>>, isLower: boolean, iterationType: IterationType): BSTNode<K, V> | undefined;
529
+ /**
530
+ * (Protected) Binary search for bound by key with pruning optimization.
531
+ * Performs standard BST binary search, choosing left or right subtree based on comparator result.
532
+ * For lowerBound: finds first node where key >= target.
533
+ * For upperBound: finds first node where key > target.
534
+ * @param key - The target key to search for.
535
+ * @param isLower - True for lowerBound (>=), false for upperBound (>).
536
+ * @param iterationType - The iteration type (RECURSIVE or ITERATIVE).
537
+ * @returns The first node matching the bound condition, or undefined if none exists.
538
+ */
539
+ protected _boundByKey(key: K, isLower: boolean, iterationType: IterationType): BSTNode<K, V> | undefined;
540
+ /**
541
+ * (Protected) In-order traversal search by predicate.
542
+ * Falls back to linear in-order traversal when predicate-based search is required.
543
+ * Returns the first node that satisfies the predicate function.
544
+ * Note: Predicate-based search cannot leverage BST's binary search optimization.
545
+ * Time Complexity: O(n) since it may visit every node.
546
+ * @param predicate - The predicate function to test nodes.
547
+ * @param iterationType - The iteration type (RECURSIVE or ITERATIVE).
548
+ * @returns The first node satisfying predicate, or undefined if none found.
549
+ */
550
+ protected _boundByPredicate(predicate: NodePredicate<BSTNode<K, V>>, iterationType: IterationType): BSTNode<K, V> | undefined;
408
551
  /**
409
552
  * (Protected) Creates a new, empty instance of the same BST constructor.
410
553
  * @remarks Time O(1)
@@ -112,48 +112,97 @@ export declare class RedBlackTreeNode<K = any, V = any> {
112
112
  * 2. It is BST itself. Compared with Heap which is not completely ordered, RedBlackTree is completely ordered.
113
113
  *
114
114
  * @example
115
- * // using Red-Black Tree as a price-based index for stock data
116
- * // Define the structure of individual stock records
117
- * interface StockRecord {
118
- * price: number; // Stock price (key for indexing)
119
- * symbol: string; // Stock ticker symbol
120
- * volume: number; // Trade volume
115
+ * // basic Red-Black Tree with simple number keys
116
+ * // Create a simple Red-Black Tree with numeric keys
117
+ * const tree = new RedBlackTree([5, 2, 8, 1, 9]);
118
+ *
119
+ * tree.print();
120
+ * // _2___
121
+ * // / \
122
+ * // 1 _8_
123
+ * // / \
124
+ * // 5 9
125
+ *
126
+ * // Verify the tree maintains sorted order
127
+ * console.log([...tree.keys()]); // [1, 2, 5, 8, 9];
128
+ *
129
+ * // Check size
130
+ * console.log(tree.size); // 5;
131
+ * @example
132
+ * // Red-Black Tree with key-value pairs for lookups
133
+ * interface Employee {
134
+ * id: number;
135
+ * name: string;
121
136
  * }
122
137
  *
123
- * // Simulate stock market data as it might come from an external feed
124
- * const marketStockData: StockRecord[] = [
125
- * { price: 142.5, symbol: 'AAPL', volume: 1000000 },
126
- * { price: 335.2, symbol: 'MSFT', volume: 800000 },
127
- * { price: 3285.04, symbol: 'AMZN', volume: 500000 },
128
- * { price: 267.98, symbol: 'META', volume: 750000 },
129
- * { price: 234.57, symbol: 'GOOGL', volume: 900000 }
130
- * ];
138
+ * // Create tree with employee data
139
+ * const employees = new RedBlackTree<number, Employee>([
140
+ * [1, { id: 1, name: 'Alice' }],
141
+ * [3, { id: 3, name: 'Charlie' }],
142
+ * [2, { id: 2, name: 'Bob' }]
143
+ * ]);
144
+ *
145
+ * // Retrieve employee by ID
146
+ * const alice = employees.get(1);
147
+ * console.log(alice?.name); // 'Alice';
148
+ *
149
+ * // Verify sorted order by ID
150
+ * console.log([...employees.keys()]); // [1, 2, 3];
151
+ * @example
152
+ * // Red-Black Tree range search for filtering
153
+ * interface Product {
154
+ * name: string;
155
+ * price: number;
156
+ * }
131
157
  *
132
- * // Extend the stock record type to include metadata for database usage
133
- * type StockTableRecord = StockRecord & { lastUpdated: Date };
158
+ * const products = new RedBlackTree<number, Product>([
159
+ * [10, { name: 'Item A', price: 10 }],
160
+ * [25, { name: 'Item B', price: 25 }],
161
+ * [40, { name: 'Item C', price: 40 }],
162
+ * [50, { name: 'Item D', price: 50 }]
163
+ * ]);
134
164
  *
135
- * // Create a Red-Black Tree to index stock records by price
136
- * // Simulates a database index with stock price as the key for quick lookups
137
- * const priceIndex = new RedBlackTree<number, StockTableRecord, StockRecord>(marketStockData, {
138
- * toEntryFn: stockRecord => [
139
- * stockRecord.price, // Use stock price as the key
140
- * {
141
- * ...stockRecord,
142
- * lastUpdated: new Date() // Add a timestamp for when the record was indexed
143
- * }
144
- * ]
165
+ * // Find products in price range [20, 45]
166
+ * const pricesInRange = products.rangeSearch([20, 45], node => {
167
+ * return products.get(node)?.name;
145
168
  * });
146
169
  *
147
- * // Query the stock with the highest price
148
- * const highestPricedStock = priceIndex.getRightMost();
149
- * console.log(priceIndex.get(highestPricedStock)?.symbol); // 'AMZN' // Amazon has the highest price
170
+ * console.log(pricesInRange); // ['Item B', 'Item C'];
171
+ * @example
172
+ * // Red-Black Tree as database index for stock market data
173
+ * interface StockPrice {
174
+ * symbol: string;
175
+ * volume: number;
176
+ * timestamp: Date;
177
+ * }
178
+ *
179
+ * // Simulate real-time stock price index
180
+ * const priceIndex = new RedBlackTree<number, StockPrice>([
181
+ * [142.5, { symbol: 'AAPL', volume: 1000000, timestamp: new Date() }],
182
+ * [335.2, { symbol: 'MSFT', volume: 800000, timestamp: new Date() }],
183
+ * [3285.04, { symbol: 'AMZN', volume: 500000, timestamp: new Date() }],
184
+ * [267.98, { symbol: 'META', volume: 750000, timestamp: new Date() }],
185
+ * [234.57, { symbol: 'GOOGL', volume: 900000, timestamp: new Date() }]
186
+ * ]);
187
+ *
188
+ * // Find highest-priced stock
189
+ * const maxPrice = priceIndex.getRightMost();
190
+ * console.log(priceIndex.get(maxPrice)?.symbol); // 'AMZN';
191
+ *
192
+ * // Find stocks in price range [200, 400] for portfolio balancing
193
+ * const stocksInRange = priceIndex.rangeSearch([200, 400], node => {
194
+ * const stock = priceIndex.get(node);
195
+ * return {
196
+ * symbol: stock?.symbol,
197
+ * price: node,
198
+ * volume: stock?.volume
199
+ * };
200
+ * });
150
201
  *
151
- * // Query stocks within a specific price range (200 to 400)
152
- * const stocksInRange = priceIndex.rangeSearch(
153
- * [200, 400], // Price range
154
- * node => priceIndex.get(node)?.symbol // Extract stock symbols for the result
155
- * );
156
- * console.log(stocksInRange); // ['GOOGL', 'META', 'MSFT']
202
+ * console.log(stocksInRange.length); // 3;
203
+ * console.log(stocksInRange.some((s: any) => s.symbol === 'GOOGL')); // true;
204
+ * console.log(stocksInRange.some((s: any) => s.symbol === 'META')); // true;
205
+ * console.log(stocksInRange.some((s: any) => s.symbol === 'MSFT')); // true;
157
206
  */
158
207
  export declare class RedBlackTree<K = any, V = any, R = any> extends BST<K, V, R> implements IBinaryTree<K, V, R> {
159
208
  constructor(keysNodesEntriesOrRaws?: Iterable<K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R>, options?: RedBlackTreeOptions<K, V, R>);
@@ -116,7 +116,7 @@ export declare class TreeMultiMapNode<K = any, V = any> {
116
116
  *
117
117
  * @example
118
118
  * // players ranked by score with their equipment
119
- * type Equipment = {
119
+ * type Equipment = {
120
120
  * name: string; // Equipment name
121
121
  * quality: 'legendary' | 'epic' | 'rare' | 'common';
122
122
  * level: number;
@@ -277,7 +277,7 @@ export declare class TreeMultiMapNode<K = any, V = any> {
277
277
  * // },
278
278
  * // { name: 'Level 3 Backpack', quality: 'epic', level: 80 }
279
279
  * // ]
280
- * // ]
280
+ * // ];
281
281
  */
282
282
  export declare class TreeMultiMap<K = any, V = any, R = any> extends RedBlackTree<K, V[], R> implements IBinaryTree<K, V[], R> {
283
283
  /**