red-black-tree-typed 2.2.2 → 2.2.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. package/README.md +92 -37
  2. package/dist/cjs/index.cjs +163 -0
  3. package/dist/cjs/index.cjs.map +1 -1
  4. package/dist/cjs-legacy/index.cjs +164 -0
  5. package/dist/cjs-legacy/index.cjs.map +1 -1
  6. package/dist/esm/index.mjs +163 -0
  7. package/dist/esm/index.mjs.map +1 -1
  8. package/dist/esm-legacy/index.mjs +164 -0
  9. package/dist/esm-legacy/index.mjs.map +1 -1
  10. package/dist/types/data-structures/binary-tree/avl-tree.d.ts +96 -2
  11. package/dist/types/data-structures/binary-tree/binary-tree.d.ts +103 -7
  12. package/dist/types/data-structures/binary-tree/bst.d.ts +156 -13
  13. package/dist/types/data-structures/binary-tree/red-black-tree.d.ts +84 -35
  14. package/dist/types/data-structures/binary-tree/tree-multi-map.d.ts +2 -2
  15. package/dist/types/data-structures/graph/directed-graph.d.ts +126 -1
  16. package/dist/types/data-structures/graph/undirected-graph.d.ts +160 -1
  17. package/dist/types/data-structures/hash/hash-map.d.ts +110 -27
  18. package/dist/types/data-structures/heap/heap.d.ts +107 -58
  19. package/dist/types/data-structures/linked-list/doubly-linked-list.d.ts +72 -404
  20. package/dist/types/data-structures/linked-list/singly-linked-list.d.ts +121 -5
  21. package/dist/types/data-structures/queue/deque.d.ts +95 -67
  22. package/dist/types/data-structures/queue/queue.d.ts +90 -34
  23. package/dist/types/data-structures/stack/stack.d.ts +58 -40
  24. package/dist/types/data-structures/trie/trie.d.ts +109 -47
  25. package/dist/types/interfaces/binary-tree.d.ts +1 -0
  26. package/dist/umd/red-black-tree-typed.js +164 -0
  27. package/dist/umd/red-black-tree-typed.js.map +1 -1
  28. package/dist/umd/red-black-tree-typed.min.js +3 -3
  29. package/dist/umd/red-black-tree-typed.min.js.map +1 -1
  30. package/package.json +2 -2
  31. package/src/data-structures/binary-tree/avl-tree.ts +96 -2
  32. package/src/data-structures/binary-tree/binary-tree.ts +117 -7
  33. package/src/data-structures/binary-tree/bst.ts +322 -13
  34. package/src/data-structures/binary-tree/red-black-tree.ts +84 -35
  35. package/src/data-structures/binary-tree/tree-multi-map.ts +2 -2
  36. package/src/data-structures/graph/directed-graph.ts +126 -1
  37. package/src/data-structures/graph/undirected-graph.ts +160 -1
  38. package/src/data-structures/hash/hash-map.ts +110 -27
  39. package/src/data-structures/heap/heap.ts +107 -58
  40. package/src/data-structures/linked-list/doubly-linked-list.ts +72 -404
  41. package/src/data-structures/linked-list/singly-linked-list.ts +121 -5
  42. package/src/data-structures/queue/deque.ts +95 -67
  43. package/src/data-structures/queue/queue.ts +90 -34
  44. package/src/data-structures/stack/stack.ts +58 -40
  45. package/src/data-structures/trie/trie.ts +109 -47
  46. package/src/interfaces/binary-tree.ts +2 -0
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "red-black-tree-typed",
3
- "version": "2.2.2",
3
+ "version": "2.2.3",
4
4
  "description": "red black tree",
5
5
  "browser": "dist/umd/red-black-tree-typed.min.js",
6
6
  "umd:main": "dist/umd/red-black-tree-typed.min.js",
@@ -180,6 +180,6 @@
180
180
  "typescript": "^4.9.5"
181
181
  },
182
182
  "dependencies": {
183
- "data-structure-typed": "^2.2.2"
183
+ "data-structure-typed": "^2.2.3"
184
184
  }
185
185
  }
@@ -198,8 +198,102 @@ export class AVLTreeNode<K = any, V = any> {
198
198
  * 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.
199
199
  *
200
200
  * @example
201
+ * // basic AVLTree creation and add operation
202
+ * // Create a simple AVLTree with initial values
203
+ * const tree = new AVLTree([5, 2, 8, 1, 9]);
204
+ *
205
+ * tree.print();
206
+ * // _2___
207
+ * // / \
208
+ * // 1 _8_
209
+ * // / \
210
+ * // 5 9
211
+ *
212
+ * // Verify the tree maintains sorted order
213
+ * console.log([...tree.keys()]); // [1, 2, 5, 8, 9];
214
+ *
215
+ * // Check size
216
+ * console.log(tree.size); // 5;
217
+ *
218
+ * // Add a new element
219
+ * tree.add(3);
220
+ * console.log(tree.size); // 6;
221
+ * console.log([...tree.keys()]); // [1, 2, 3, 5, 8, 9];
222
+ * @example
223
+ * // AVLTree has and get operations
224
+ * const tree = new AVLTree<number>([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
225
+ *
226
+ * // Check if element exists
227
+ * console.log(tree.has(6)); // true;
228
+ * console.log(tree.has(99)); // false;
229
+ *
230
+ * // Get node by key
231
+ * const node = tree.getNode(6);
232
+ * console.log(node?.key); // 6;
233
+ *
234
+ * // Verify tree is balanced
235
+ * console.log(tree.isAVLBalanced()); // true;
236
+ * @example
237
+ * // AVLTree delete and balance verification
238
+ * const tree = new AVLTree([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
239
+ *
240
+ * // Delete an element
241
+ * tree.delete(10);
242
+ * console.log(tree.has(10)); // false;
243
+ *
244
+ * // Tree should remain balanced after deletion
245
+ * console.log(tree.isAVLBalanced()); // true;
246
+ *
247
+ * // Size decreased
248
+ * console.log(tree.size); // 15;
249
+ *
250
+ * // Remaining elements are still sorted
251
+ * const keys = [...tree.keys()];
252
+ * console.log(keys); // [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16];
253
+ * @example
254
+ * // AVLTree for university ranking system with strict balance
255
+ * interface University {
256
+ * name: string;
257
+ * rank: number;
258
+ * students: number;
259
+ * }
260
+ *
261
+ * // AVLTree provides highest search efficiency with strict balance
262
+ * // (every node's left/right subtrees differ by at most 1 in height)
263
+ * const universityTree = new AVLTree<number, University>([
264
+ * [1, { name: 'MIT', rank: 1, students: 1200 }],
265
+ * [5, { name: 'Stanford', rank: 5, students: 1800 }],
266
+ * [3, { name: 'Harvard', rank: 3, students: 2300 }],
267
+ * [2, { name: 'Caltech', rank: 2, students: 400 }],
268
+ * [4, { name: 'CMU', rank: 4, students: 1500 }]
269
+ * ]);
270
+ *
271
+ * // Quick lookup by rank
272
+ * const mit = universityTree.get(1);
273
+ * console.log(mit?.name); // 'MIT';
274
+ *
275
+ * const cmulevel = universityTree.getHeight(4);
276
+ * console.log(typeof cmulevel); // 'number';
277
+ *
278
+ * // Tree maintains strict balance during insertions and deletions
279
+ * console.log(universityTree.isAVLBalanced()); // true;
280
+ *
281
+ * // Add more universities
282
+ * universityTree.add(6, { name: 'Oxford', rank: 6, students: 2000 });
283
+ * console.log(universityTree.isAVLBalanced()); // true;
284
+ *
285
+ * // Delete and verify balance is maintained
286
+ * universityTree.delete(2);
287
+ * console.log(universityTree.has(2)); // false;
288
+ * console.log(universityTree.isAVLBalanced()); // true;
289
+ *
290
+ * // Get all remaining universities in rank order
291
+ * const remainingRanks = [...universityTree.keys()];
292
+ * console.log(remainingRanks); // [1, 3, 4, 5, 6];
293
+ * console.log(universityTree.size); // 5;
294
+ * @example
201
295
  * // Find elements in a range
202
- * // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding.
296
+ * // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding.
203
297
  * type Datum = { timestamp: Date; temperature: number };
204
298
  * // Fixed dataset of CPU temperature readings
205
299
  * const cpuData: Datum[] = [
@@ -260,7 +354,7 @@ export class AVLTreeNode<K = any, V = any> {
260
354
  * // { minute: 13, temperature: 60.2 },
261
355
  * // { minute: 14, temperature: 59.8 },
262
356
  * // { minute: 15, temperature: 58.6 }
263
- * // ]
357
+ * // ];
264
358
  */
265
359
  export class AVLTree<K = any, V = any, R = any> extends BST<K, V, R> implements IBinaryTree<K, V, R> {
266
360
  /**
@@ -205,8 +205,86 @@ export class BinaryTreeNode<K = any, V = any> {
205
205
  * 5. Leaf Nodes: Nodes without children are leaves.
206
206
  *
207
207
  * @example
208
+ * // basic BinaryTree creation and insertion
209
+ * // Create a BinaryTree with entries
210
+ * const entries: [number, string][] = [
211
+ * [6, 'six'],
212
+ * [1, 'one'],
213
+ * [2, 'two'],
214
+ * [7, 'seven'],
215
+ * [5, 'five'],
216
+ * [3, 'three'],
217
+ * [4, 'four'],
218
+ * [9, 'nine'],
219
+ * [8, 'eight']
220
+ * ];
221
+ *
222
+ * const tree = new BinaryTree(entries);
223
+ *
224
+ * // Verify size
225
+ * console.log(tree.size); // 9;
226
+ *
227
+ * // Add new element
228
+ * tree.add(10, 'ten');
229
+ * console.log(tree.size); // 10;
230
+ * @example
231
+ * // BinaryTree get and has operations
232
+ * const tree = new BinaryTree(
233
+ * [
234
+ * [5, 'five'],
235
+ * [3, 'three'],
236
+ * [7, 'seven'],
237
+ * [1, 'one'],
238
+ * [4, 'four'],
239
+ * [6, 'six'],
240
+ * [8, 'eight']
241
+ * ],
242
+ * { isMapMode: false }
243
+ * );
244
+ *
245
+ * // Check if key exists
246
+ * console.log(tree.has(5)); // true;
247
+ * console.log(tree.has(10)); // false;
248
+ *
249
+ * // Get value by key
250
+ * console.log(tree.get(3)); // 'three';
251
+ * console.log(tree.get(7)); // 'seven';
252
+ * console.log(tree.get(100)); // undefined;
253
+ *
254
+ * // Get node structure
255
+ * const node = tree.getNode(5);
256
+ * console.log(node?.key); // 5;
257
+ * console.log(node?.value); // 'five';
258
+ * @example
259
+ * // BinaryTree level-order traversal
260
+ * const tree = new BinaryTree([
261
+ * [1, 'one'],
262
+ * [2, 'two'],
263
+ * [3, 'three'],
264
+ * [4, 'four'],
265
+ * [5, 'five'],
266
+ * [6, 'six'],
267
+ * [7, 'seven']
268
+ * ]);
269
+ *
270
+ * // Binary tree maintains level-order insertion
271
+ * // Complete binary tree structure
272
+ * console.log(tree.size); // 7;
273
+ *
274
+ * // Verify all keys are present
275
+ * console.log(tree.has(1)); // true;
276
+ * console.log(tree.has(4)); // true;
277
+ * console.log(tree.has(7)); // true;
278
+ *
279
+ * // Iterate through tree
280
+ * const keys: number[] = [];
281
+ * for (const [key] of tree) {
282
+ * keys.push(key);
283
+ * }
284
+ * console.log(keys.length); // 7;
285
+ * @example
208
286
  * // determine loan approval using a decision tree
209
- * // Decision tree structure
287
+ * // Decision tree structure
210
288
  * const loanDecisionTree = new BinaryTree<string>(
211
289
  * ['stableIncome', 'goodCredit', 'Rejected', 'Approved', 'Rejected'],
212
290
  * { isDuplicate: true }
@@ -228,19 +306,19 @@ export class BinaryTreeNode<K = any, V = any> {
228
306
  * }
229
307
  *
230
308
  * // Test case 1: Stable income and good credit score
231
- * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: true })); // 'Approved'
309
+ * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: true })); // 'Approved';
232
310
  *
233
311
  * // Test case 2: Stable income but poor credit score
234
- * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: false })); // 'Rejected'
312
+ * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: false })); // 'Rejected';
235
313
  *
236
314
  * // Test case 3: No stable income
237
- * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: true })); // 'Rejected'
315
+ * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: true })); // 'Rejected';
238
316
  *
239
317
  * // Test case 4: No stable income and poor credit score
240
- * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: false })); // 'Rejected'
318
+ * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: false })); // 'Rejected';
241
319
  * @example
242
320
  * // evaluate the arithmetic expression represented by the binary tree
243
- * const expressionTree = new BinaryTree<number | string>(['+', 3, '*', null, null, 5, '-', null, null, 2, 8]);
321
+ * const expressionTree = new BinaryTree<number | string>(['+', 3, '*', null, null, 5, '-', null, null, 2, 8]);
244
322
  *
245
323
  * function evaluate(node?: BinaryTreeNode<number | string> | null): number {
246
324
  * if (!node) return 0;
@@ -265,7 +343,7 @@ export class BinaryTreeNode<K = any, V = any> {
265
343
  * }
266
344
  * }
267
345
  *
268
- * console.log(evaluate(expressionTree.root)); // -27
346
+ * console.log(evaluate(expressionTree.root)); // -27;
269
347
  */
270
348
  export class BinaryTree<K = any, V = any, R = any>
271
349
  extends IterableEntryBase<K, V | undefined>
@@ -620,6 +698,21 @@ export class BinaryTree<K = any, V = any, R = any>
620
698
  return false; // Should not happen if tree is not full?
621
699
  }
622
700
 
701
+ /**
702
+ * Adds or updates a new node to the tree.
703
+ * @remarks Time O(log N), For BST, Red-Black Tree, and AVL Tree subclasses, the worst-case time is O(log N). This implementation adds the node at the first available position in a level-order (BFS) traversal. This is NOT a Binary Search Tree insertion. Time O(N), where N is the number of nodes. It must traverse level-by-level to find an empty slot. Space O(N) in the worst case for the BFS queue (e.g., a full last level).
704
+ *
705
+ * @param keyNodeOrEntry - The key, node, or entry to add or update.
706
+ * @param [value] - The value, if providing just a key.
707
+ * @returns True if the addition was successful, false otherwise.
708
+ */
709
+ set(
710
+ keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined,
711
+ value?: V
712
+ ): boolean {
713
+ return this.add(keyNodeOrEntry, value);
714
+ }
715
+
623
716
  /**
624
717
  * Adds multiple items to the tree.
625
718
  * @remarks Time O(N * M), where N is the number of items to add and M is the size of the tree at insertion (due to O(M) `add` operation). Space O(M) (from `add`) + O(N) (for the `inserted` array).
@@ -657,6 +750,23 @@ export class BinaryTree<K = any, V = any, R = any>
657
750
  return inserted;
658
751
  }
659
752
 
753
+ /**
754
+ * Adds or updates multiple items to the tree.
755
+ * @remarks Time O(N * M), where N is the number of items to add and M is the size of the tree at insertion (due to O(M) `add` operation). Space O(M) (from `add`) + O(N) (for the `inserted` array).
756
+ *
757
+ * @param keysNodesEntriesOrRaws - An iterable of items to add or update.
758
+ * @param [values] - An optional parallel iterable of values.
759
+ * @returns An array of booleans indicating the success of each individual `add` operation.
760
+ */
761
+ setMany(
762
+ keysNodesEntriesOrRaws: Iterable<
763
+ K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R
764
+ >,
765
+ values?: Iterable<V | undefined>
766
+ ): boolean[] {
767
+ return this.addMany(keysNodesEntriesOrRaws, values);
768
+ }
769
+
660
770
  /**
661
771
  * Merges another tree into this one by adding all its nodes.
662
772
  * @remarks Time O(N * M), same as `addMany`, where N is the size of `anotherTree` and M is the size of this tree. Space O(M) (from `add`).
@@ -201,8 +201,57 @@ export class BSTNode<K = any, V = any> {
201
201
  * 7. No Auto-Balancing: Standard BSTs don't automatically balance themselves.
202
202
  *
203
203
  * @example
204
+ * // basic BST creation and add operation
205
+ * // Create a simple BST with numeric keys
206
+ * const bst = new BST<number>([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
207
+ *
208
+ * bst.print();
209
+ * // _______8__________
210
+ * // / \
211
+ * // ___4___ ____12_____
212
+ * // / \ / \
213
+ * // _2_ _6_ _10__ _14__
214
+ * // / \ / \ / \ / \
215
+ * // 1 3 5 7 9 11 13 15__
216
+ * // \
217
+ * // 16
218
+ *
219
+ * // Verify size
220
+ * console.log(bst.size); // 16;
221
+ *
222
+ * // Add new elements
223
+ * bst.add(17);
224
+ * bst.add(0);
225
+ * console.log(bst.size); // 18;
226
+ *
227
+ * // Verify keys are searchable
228
+ * console.log(bst.has(11)); // true;
229
+ * console.log(bst.has(100)); // false;
230
+ * @example
231
+ * // BST delete and search after deletion
232
+ * const bst = new BST<number>([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
233
+ *
234
+ * // Delete a leaf node
235
+ * bst.delete(1);
236
+ * console.log(bst.has(1)); // false;
237
+ *
238
+ * // Delete a node with one child
239
+ * bst.delete(2);
240
+ * console.log(bst.has(2)); // false;
241
+ *
242
+ * // Delete a node with two children
243
+ * bst.delete(3);
244
+ * console.log(bst.has(3)); // false;
245
+ *
246
+ * // Size decreases with each deletion
247
+ * console.log(bst.size); // 13;
248
+ *
249
+ * // Other nodes remain searchable
250
+ * console.log(bst.has(11)); // true;
251
+ * console.log(bst.has(15)); // true;
252
+ * @example
204
253
  * // Merge 3 sorted datasets
205
- * const dataset1 = new BST<number, string>([
254
+ * const dataset1 = new BST<number, string>([
206
255
  * [1, 'A'],
207
256
  * [7, 'G']
208
257
  * ]);
@@ -222,18 +271,58 @@ export class BSTNode<K = any, V = any> {
222
271
  * merged.merge(dataset3);
223
272
  *
224
273
  * // Verify merged dataset is in sorted order
225
- * console.log([...merged.values()]); // ['A', 'B', 'C', 'D', 'E', 'F', 'G']
274
+ * console.log([...merged.values()]); // ['A', 'B', 'C', 'D', 'E', 'F', 'G'];
226
275
  * @example
227
- * // Find elements in a range
228
- * const bst = new BST<number>([10, 5, 15, 3, 7, 12, 18]);
229
- * console.log(bst.search(new Range(5, 10))); // [5, 7, 10]
230
- * console.log(bst.rangeSearch([4, 12], node => node.key.toString())); // ['5', '7', '10', '12']
231
- * console.log(bst.search(new Range(4, 12, true, false))); // [5, 7, 10]
232
- * console.log(bst.rangeSearch([15, 20])); // [15, 18]
233
- * console.log(bst.search(new Range(15, 20, false))); // [18]
276
+ * // BST with custom objects for expression evaluation
277
+ * interface Expression {
278
+ * id: number;
279
+ * operator: string;
280
+ * precedence: number;
281
+ * }
282
+ *
283
+ * // BST efficiently stores and retrieves operators by precedence
284
+ * const operatorTree = new BST<number, Expression>(
285
+ * [
286
+ * [1, { id: 1, operator: '+', precedence: 1 }],
287
+ * [2, { id: 2, operator: '*', precedence: 2 }],
288
+ * [3, { id: 3, operator: '/', precedence: 2 }],
289
+ * [4, { id: 4, operator: '-', precedence: 1 }],
290
+ * [5, { id: 5, operator: '^', precedence: 3 }]
291
+ * ],
292
+ * { isMapMode: false }
293
+ * );
294
+ *
295
+ * console.log(operatorTree.size); // 5;
296
+ *
297
+ * // Quick lookup of operators
298
+ * const mult = operatorTree.get(2);
299
+ * console.log(mult?.operator); // '*';
300
+ * console.log(mult?.precedence); // 2;
301
+ *
302
+ * // Check if operator exists
303
+ * console.log(operatorTree.has(5)); // true;
304
+ * console.log(operatorTree.has(99)); // false;
305
+ *
306
+ * // Retrieve operator by precedence level
307
+ * const expNode = operatorTree.getNode(3);
308
+ * console.log(expNode?.key); // 3;
309
+ * console.log(expNode?.value?.precedence); // 2;
310
+ *
311
+ * // Delete operator and verify
312
+ * operatorTree.delete(1);
313
+ * console.log(operatorTree.has(1)); // false;
314
+ * console.log(operatorTree.size); // 4;
315
+ *
316
+ * // Get tree height for optimization analysis
317
+ * const treeHeight = operatorTree.getHeight();
318
+ * console.log(treeHeight); // > 0;
319
+ *
320
+ * // Remaining operators are still accessible
321
+ * const remaining = operatorTree.get(2);
322
+ * console.log(remaining); // defined;
234
323
  * @example
235
324
  * // Find lowest common ancestor
236
- * const bst = new BST<number>([20, 10, 30, 5, 15, 25, 35, 3, 7, 12, 18]);
325
+ * const bst = new BST<number>([20, 10, 30, 5, 15, 25, 35, 3, 7, 12, 18]);
237
326
  *
238
327
  * // LCA helper function
239
328
  * const findLCA = (num1: number, num2: number): number | undefined => {
@@ -253,9 +342,9 @@ export class BSTNode<K = any, V = any> {
253
342
  * }
254
343
  *
255
344
  * // Assertions
256
- * console.log(findLCA(3, 10)); // 7
257
- * console.log(findLCA(5, 35)); // 15
258
- * console.log(findLCA(20, 30)); // 25
345
+ * console.log(findLCA(3, 10)); // 7;
346
+ * console.log(findLCA(5, 35)); // 15;
347
+ * console.log(findLCA(20, 30)); // 25;
259
348
  */
260
349
  export class BST<K = any, V = any, R = any> extends BinaryTree<K, V, R> implements IBinaryTree<K, V, R> {
261
350
  /**
@@ -756,6 +845,52 @@ export class BST<K = any, V = any, R = any> extends BinaryTree<K, V, R> implemen
756
845
  return inserted;
757
846
  }
758
847
 
848
+ /**
849
+ * Returns the first node with a key greater than or equal to the given key.
850
+ * This is equivalent to C++ std::lower_bound on a BST.
851
+ * Supports RECURSIVE and ITERATIVE implementations.
852
+ * Time Complexity: O(log n) on average, O(h) where h is tree height.
853
+ * Space Complexity: O(h) for recursion, O(1) for iteration.
854
+ * @param keyNodeEntryOrPredicate - The key, node, entry, or predicate function to search for.
855
+ * @param iterationType The iteration type (RECURSIVE or ITERATIVE). Defaults to this.iterationType.
856
+ * @returns The first node with key >= given key, or undefined if no such node exists.
857
+ */
858
+ lowerBound(
859
+ keyNodeEntryOrPredicate:
860
+ | K
861
+ | BSTNode<K, V>
862
+ | [K | null | undefined, V | undefined]
863
+ | null
864
+ | undefined
865
+ | NodePredicate<BSTNode<K, V>>,
866
+ iterationType: IterationType = this.iterationType
867
+ ): BSTNode<K, V> | undefined {
868
+ return this._bound(keyNodeEntryOrPredicate, true, iterationType);
869
+ }
870
+
871
+ /**
872
+ * Returns the first node with a key strictly greater than the given key.
873
+ * This is equivalent to C++ std::upper_bound on a BST.
874
+ * Supports RECURSIVE and ITERATIVE implementations.
875
+ * Time Complexity: O(log n) on average, O(h) where h is tree height.
876
+ * Space Complexity: O(h) for recursion, O(1) for iteration.
877
+ * @param keyNodeEntryOrPredicate - The key, node, entry, or predicate function to search for.
878
+ * @param iterationType The iteration type (RECURSIVE or ITERATIVE). Defaults to this.iterationType.
879
+ * @returns The first node with key > given key, or undefined if no such node exists.
880
+ */
881
+ upperBound(
882
+ keyNodeEntryOrPredicate:
883
+ | K
884
+ | BSTNode<K, V>
885
+ | [K | null | undefined, V | undefined]
886
+ | null
887
+ | undefined
888
+ | NodePredicate<BSTNode<K, V>>,
889
+ iterationType: IterationType = this.iterationType
890
+ ): BSTNode<K, V> | undefined {
891
+ return this._bound(keyNodeEntryOrPredicate, false, iterationType);
892
+ }
893
+
759
894
  /**
760
895
  * Traverses the tree and returns nodes that are lesser or greater than a target node.
761
896
  * @remarks Time O(N), as it performs a full traversal. Space O(log N) or O(N).
@@ -945,6 +1080,180 @@ export class BST<K = any, V = any, R = any> extends BinaryTree<K, V, R> implemen
945
1080
  return false;
946
1081
  }
947
1082
 
1083
+ /**
1084
+ * (Protected) Core bound search implementation supporting all parameter types.
1085
+ * Unified logic for both lowerBound and upperBound.
1086
+ * Resolves various input types (Key, Node, Entry, Predicate) using parent class utilities.
1087
+ * @param keyNodeEntryOrPredicate - The key, node, entry, or predicate function to search for.
1088
+ * @param isLower - True for lowerBound (>=), false for upperBound (>).
1089
+ * @param iterationType - The iteration type (RECURSIVE or ITERATIVE).
1090
+ * @returns The first matching node, or undefined if no such node exists.
1091
+ */
1092
+ protected _bound(
1093
+ keyNodeEntryOrPredicate:
1094
+ | K
1095
+ | BSTNode<K, V>
1096
+ | [K | null | undefined, V | undefined]
1097
+ | null
1098
+ | undefined
1099
+ | NodePredicate<BSTNode<K, V>>,
1100
+ isLower: boolean,
1101
+ iterationType: IterationType
1102
+ ): BSTNode<K, V> | undefined {
1103
+ if (keyNodeEntryOrPredicate === null || keyNodeEntryOrPredicate === undefined) {
1104
+ return undefined;
1105
+ }
1106
+
1107
+ // Check if input is a predicate function first
1108
+ if (this._isPredicate(keyNodeEntryOrPredicate)) {
1109
+ return this._boundByPredicate(keyNodeEntryOrPredicate, iterationType);
1110
+ }
1111
+
1112
+ // Resolve input to a comparable key
1113
+ let targetKey: K | undefined;
1114
+
1115
+ if (this.isNode(keyNodeEntryOrPredicate)) {
1116
+ // Input is a BSTNode - extract its key
1117
+ targetKey = keyNodeEntryOrPredicate.key;
1118
+ } else if (this.isEntry(keyNodeEntryOrPredicate)) {
1119
+ // Input is a [key, value] entry - extract the key
1120
+ const key = keyNodeEntryOrPredicate[0];
1121
+ if (key === null || key === undefined) {
1122
+ return undefined;
1123
+ }
1124
+ targetKey = key;
1125
+ } else {
1126
+ // Input is a raw key
1127
+ targetKey = keyNodeEntryOrPredicate;
1128
+ }
1129
+
1130
+ // Execute key-based search with binary search optimization
1131
+ if (targetKey !== undefined) {
1132
+ return this._boundByKey(targetKey, isLower, iterationType);
1133
+ }
1134
+
1135
+ return undefined;
1136
+ }
1137
+
1138
+ /**
1139
+ * (Protected) Binary search for bound by key with pruning optimization.
1140
+ * Performs standard BST binary search, choosing left or right subtree based on comparator result.
1141
+ * For lowerBound: finds first node where key >= target.
1142
+ * For upperBound: finds first node where key > target.
1143
+ * @param key - The target key to search for.
1144
+ * @param isLower - True for lowerBound (>=), false for upperBound (>).
1145
+ * @param iterationType - The iteration type (RECURSIVE or ITERATIVE).
1146
+ * @returns The first node matching the bound condition, or undefined if none exists.
1147
+ */
1148
+ protected _boundByKey(key: K, isLower: boolean, iterationType: IterationType): BSTNode<K, V> | undefined {
1149
+ if (iterationType === 'RECURSIVE') {
1150
+ // Recursive binary search implementation
1151
+ const dfs = (cur: BSTNode<K, V> | null | undefined): BSTNode<K, V> | undefined => {
1152
+ if (!this.isRealNode(cur)) return undefined;
1153
+
1154
+ const cmp = this.comparator(cur.key!, key);
1155
+ const condition = isLower ? cmp >= 0 : cmp > 0;
1156
+
1157
+ if (condition) {
1158
+ // Current node satisfies the bound condition.
1159
+ // Try to find a closer (smaller key) candidate in the left subtree.
1160
+ const leftResult = dfs(cur.left);
1161
+ return leftResult ?? cur;
1162
+ } else {
1163
+ // Current node does not satisfy the condition.
1164
+ // Move right to find larger keys.
1165
+ return dfs(cur.right);
1166
+ }
1167
+ };
1168
+
1169
+ return dfs(this.root);
1170
+ } else {
1171
+ // Iterative binary search implementation
1172
+ let current: BSTNode<K, V> | undefined = this.root;
1173
+ let result: BSTNode<K, V> | undefined = undefined;
1174
+
1175
+ while (this.isRealNode(current)) {
1176
+ const cmp = this.comparator(current.key!, key);
1177
+ const condition = isLower ? cmp >= 0 : cmp > 0;
1178
+
1179
+ if (condition) {
1180
+ // Current node is a candidate. Save it and try left subtree for a closer match.
1181
+ result = current;
1182
+ current = current.left ?? undefined;
1183
+ } else {
1184
+ // Move right to find larger keys.
1185
+ current = current.right ?? undefined;
1186
+ }
1187
+ }
1188
+
1189
+ return result;
1190
+ }
1191
+ }
1192
+
1193
+ /**
1194
+ * (Protected) In-order traversal search by predicate.
1195
+ * Falls back to linear in-order traversal when predicate-based search is required.
1196
+ * Returns the first node that satisfies the predicate function.
1197
+ * Note: Predicate-based search cannot leverage BST's binary search optimization.
1198
+ * Time Complexity: O(n) since it may visit every node.
1199
+ * @param predicate - The predicate function to test nodes.
1200
+ * @param iterationType - The iteration type (RECURSIVE or ITERATIVE).
1201
+ * @returns The first node satisfying predicate, or undefined if none found.
1202
+ */
1203
+ protected _boundByPredicate(
1204
+ predicate: NodePredicate<BSTNode<K, V>>,
1205
+ iterationType: IterationType
1206
+ ): BSTNode<K, V> | undefined {
1207
+ if (iterationType === 'RECURSIVE') {
1208
+ // Recursive in-order traversal
1209
+ let result: BSTNode<K, V> | undefined = undefined;
1210
+
1211
+ const dfs = (cur: BSTNode<K, V> | null | undefined): void => {
1212
+ if (result || !this.isRealNode(cur)) return;
1213
+
1214
+ // In-order: process left subtree first
1215
+ if (this.isRealNode(cur.left)) dfs(cur.left);
1216
+
1217
+ // Check current node
1218
+ if (!result && predicate(cur)) {
1219
+ result = cur;
1220
+ }
1221
+
1222
+ // Process right subtree
1223
+ if (!result && this.isRealNode(cur.right)) dfs(cur.right);
1224
+ };
1225
+
1226
+ dfs(this.root);
1227
+ return result;
1228
+ } else {
1229
+ // Iterative in-order traversal using explicit stack
1230
+ const stack: (BSTNode<K, V> | null | undefined)[] = [];
1231
+ let current: BSTNode<K, V> | null | undefined = this.root;
1232
+
1233
+ while (stack.length > 0 || this.isRealNode(current)) {
1234
+ if (this.isRealNode(current)) {
1235
+ // Go to the leftmost node
1236
+ stack.push(current);
1237
+ current = current.left;
1238
+ } else {
1239
+ // Pop from stack and process
1240
+ const node = stack.pop();
1241
+ if (!this.isRealNode(node)) break;
1242
+
1243
+ // Check if current node satisfies predicate
1244
+ if (predicate(node)) {
1245
+ return node;
1246
+ }
1247
+
1248
+ // Visit right subtree
1249
+ current = node.right;
1250
+ }
1251
+ }
1252
+
1253
+ return undefined;
1254
+ }
1255
+ }
1256
+
948
1257
  /**
949
1258
  * (Protected) Creates a new, empty instance of the same BST constructor.
950
1259
  * @remarks Time O(1)