mcp-sequential-research 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,431 @@
1
+ # Tool Contracts
2
+
3
+ This document provides JSON examples for testing both tools without Claude. Use these for regression testing and schema validation.
4
+
5
+ ## Table of Contents
6
+
7
+ - [sequential_research_plan](#sequential_research_plan)
8
+ - [sequential_research_compile](#sequential_research_compile)
9
+ - [raw_results Schema](#raw_results-schema)
10
+ - [Minimum Viable Test Data](#minimum-viable-test-data)
11
+
12
+ ---
13
+
14
+ ## sequential_research_plan
15
+
16
+ ### Input Schema
17
+
18
+ ```json
19
+ {
20
+ "topic": "string (required)",
21
+ "depth": "shallow | standard | deep (default: standard)",
22
+ "focus_areas": ["string array (optional)"],
23
+ "constraints": ["string array (optional)"],
24
+ "output_format": "markdown | json | structured (default: markdown)"
25
+ }
26
+ ```
27
+
28
+ ### Example Input
29
+
30
+ ```json
31
+ {
32
+ "topic": "photonic neural network accelerators",
33
+ "depth": "standard",
34
+ "focus_areas": ["silicon photonics", "energy efficiency"],
35
+ "constraints": ["patent-focused", "post-2020"]
36
+ }
37
+ ```
38
+
39
+ ### Example Output
40
+
41
+ ```json
42
+ {
43
+ "plan_id": "plan-m1abc2def-x9y8z7",
44
+ "topic": "photonic neural network accelerators",
45
+ "created_at": "2025-01-13T10:30:00.000Z",
46
+ "summary": "Research plan for \"photonic neural network accelerators\" with 7 queries at standard depth. Focus areas: silicon photonics, energy efficiency. Execution in 3 phases.",
47
+ "queries": [
48
+ {
49
+ "query_id": "q1",
50
+ "query_text": "What is photonic neural network accelerators",
51
+ "query_type": "definition",
52
+ "extraction_goals": [
53
+ "Primary definition",
54
+ "Key characteristics",
55
+ "Common examples",
56
+ "Related terminology"
57
+ ],
58
+ "priority": "critical"
59
+ },
60
+ {
61
+ "query_id": "q2",
62
+ "query_text": "Current state of photonic neural network accelerators",
63
+ "query_type": "current_state",
64
+ "extraction_goals": [
65
+ "Current status",
66
+ "Recent developments",
67
+ "Key players or stakeholders",
68
+ "Trends"
69
+ ],
70
+ "priority": "critical",
71
+ "depends_on": ["q1"]
72
+ },
73
+ {
74
+ "query_id": "q3",
75
+ "query_text": "Compare photonic neural network accelerators",
76
+ "query_type": "comparison",
77
+ "extraction_goals": [
78
+ "Key similarities",
79
+ "Key differences",
80
+ "Trade-offs",
81
+ "Use case recommendations"
82
+ ],
83
+ "priority": "medium",
84
+ "depends_on": ["q1"]
85
+ },
86
+ {
87
+ "query_id": "q4",
88
+ "query_text": "photonic neural network accelerators: silicon photonics",
89
+ "query_type": "current_state",
90
+ "extraction_goals": [
91
+ "Current state of silicon photonics",
92
+ "Key developments in silicon photonics",
93
+ "Challenges and opportunities"
94
+ ],
95
+ "priority": "high",
96
+ "depends_on": ["q1"]
97
+ },
98
+ {
99
+ "query_id": "q5",
100
+ "query_text": "photonic neural network accelerators: energy efficiency",
101
+ "query_type": "current_state",
102
+ "extraction_goals": [
103
+ "Current state of energy efficiency",
104
+ "Key developments in energy efficiency",
105
+ "Challenges and opportunities"
106
+ ],
107
+ "priority": "high",
108
+ "depends_on": ["q1"]
109
+ }
110
+ ],
111
+ "result_schemas": [
112
+ {
113
+ "query_id": "q1",
114
+ "required_fields": [
115
+ {"field_name": "definition", "field_type": "string", "description": "Core definition", "required": true},
116
+ {"field_name": "characteristics", "field_type": "array", "description": "Key characteristics", "required": true},
117
+ {"field_name": "examples", "field_type": "array", "description": "Illustrative examples", "required": true}
118
+ ],
119
+ "example": {
120
+ "definition": "Example value",
121
+ "characteristics": ["example1", "example2"],
122
+ "examples": ["example1", "example2"]
123
+ }
124
+ }
125
+ ],
126
+ "execution_order": [
127
+ ["q1"],
128
+ ["q2", "q3", "q4", "q5"]
129
+ ],
130
+ "estimated_sources": 15,
131
+ "metadata": {
132
+ "depth": "standard",
133
+ "focus_areas": ["silicon photonics", "energy efficiency"],
134
+ "constraints": ["patent-focused", "post-2020"],
135
+ "output_format": "markdown"
136
+ }
137
+ }
138
+ ```
139
+
140
+ ---
141
+
142
+ ## sequential_research_compile
143
+
144
+ ### Input Schema
145
+
146
+ ```json
147
+ {
148
+ "plan": "PlanOutput object (required)",
149
+ "raw_results": "RawResult[] (required)",
150
+ "include_sources": "boolean (default: true)",
151
+ "include_methodology": "boolean (default: false)",
152
+ "citation_style": "inline | footnote | endnote (default: inline)"
153
+ }
154
+ ```
155
+
156
+ ### Example Input
157
+
158
+ See [Minimum Viable Test Data](#minimum-viable-test-data) below for a complete example.
159
+
160
+ ### Example Output
161
+
162
+ ```json
163
+ {
164
+ "report_id": "report-n2bcd3efg-a1b2c3",
165
+ "plan_id": "plan-m1abc2def-x9y8z7",
166
+ "title": "Research Report: photonic neural network accelerators",
167
+ "compiled_at": "2025-01-13T10:35:00.000Z",
168
+ "executive_summary": "This report presents research findings on **photonic neural network accelerators**. The analysis covers 5 research queries across 4 sections. Key topics include: Overview, Current State, Comparison, Types and Categories.",
169
+ "sections": [
170
+ {
171
+ "heading": "Overview",
172
+ "level": 2,
173
+ "content": "Photonic neural network accelerators use optical signals... [1]\n\n**Key Characteristics:**\n- Low latency\n- High bandwidth\n- Energy efficient",
174
+ "citations_used": ["[1]"]
175
+ }
176
+ ],
177
+ "markdown_report": "# Research Report: photonic neural network accelerators\n\n## Executive Summary\n\nThis report presents research findings...\n\n## Overview\n\nPhotonic neural network accelerators use optical signals... [1]\n\n---\n\n### References\n\n- **[1]**: US Patent 11,123,456 <https://patents.google.com/patent/US11123456>",
178
+ "sources": [
179
+ {
180
+ "id": "[1]",
181
+ "source_type": "document",
182
+ "title": "US Patent 11,123,456",
183
+ "url": "https://patents.google.com/patent/US11123456"
184
+ }
185
+ ],
186
+ "statistics": {
187
+ "queries_executed": 5,
188
+ "queries_succeeded": 5,
189
+ "queries_failed": 0,
190
+ "total_sources": 6,
191
+ "word_count": 450
192
+ }
193
+ }
194
+ ```
195
+
196
+ ---
197
+
198
+ ## raw_results Schema
199
+
200
+ Each element in the `raw_results` array must conform to this schema:
201
+
202
+ ```typescript
203
+ interface RawResult {
204
+ // Required
205
+ query_id: string; // Must match a query_id from the plan
206
+ success: boolean; // Whether execution succeeded
207
+
208
+ // Optional (required if success=true)
209
+ data?: {
210
+ [key: string]: unknown; // Must match the result_schema for this query
211
+ };
212
+
213
+ // Optional
214
+ sources?: Citation[]; // Sources consulted
215
+ error?: string; // Error message if success=false
216
+ execution_notes?: string; // Notes about execution
217
+ }
218
+
219
+ interface Citation {
220
+ id: string; // e.g., "S1", "S2"
221
+ source_type: "web" | "document" | "api" | "database" | "manual";
222
+ title: string;
223
+ url?: string;
224
+ accessed_date?: string; // ISO date
225
+ excerpt?: string; // Relevant quote
226
+ }
227
+ ```
228
+
229
+ ### Validation Rules
230
+
231
+ 1. `query_id` must exist in `plan.queries`
232
+ 2. If `success=true`, `data` should be populated
233
+ 3. If `success=false`, `error` should explain why
234
+ 4. `sources[].id` should be unique within results
235
+ 5. `sources[].id` format: `S1`, `S2`, etc. (gets renumbered to `[1]`, `[2]` in output)
236
+
237
+ ---
238
+
239
+ ## Minimum Viable Test Data
240
+
241
+ Use this data set for regression testing. It includes 3 patents + 3 web sources.
242
+
243
+ ### Test Plan Input
244
+
245
+ ```json
246
+ {
247
+ "topic": "optical matrix multiplication",
248
+ "depth": "shallow",
249
+ "focus_areas": ["photonic tensor cores"],
250
+ "output_format": "markdown"
251
+ }
252
+ ```
253
+
254
+ ### Test Raw Results (3 patents + 3 web)
255
+
256
+ ```json
257
+ [
258
+ {
259
+ "query_id": "q1",
260
+ "success": true,
261
+ "data": {
262
+ "definition": "Optical matrix multiplication performs linear algebra operations using photons instead of electrons, enabling parallel computation at the speed of light.",
263
+ "characteristics": [
264
+ "Parallel processing of matrix elements",
265
+ "Low power consumption",
266
+ "High bandwidth",
267
+ "Wavelength division multiplexing"
268
+ ],
269
+ "examples": [
270
+ "Mach-Zehnder interferometer arrays",
271
+ "Photonic tensor cores",
272
+ "Optical dot product engines"
273
+ ]
274
+ },
275
+ "sources": [
276
+ {
277
+ "id": "S1",
278
+ "source_type": "document",
279
+ "title": "US11123456B2 - Optical matrix multiplication system",
280
+ "url": "https://patents.google.com/patent/US11123456B2",
281
+ "accessed_date": "2025-01-13",
282
+ "excerpt": "A system for performing matrix multiplication using coherent optical signals..."
283
+ },
284
+ {
285
+ "id": "S2",
286
+ "source_type": "web",
287
+ "title": "Introduction to Photonic Computing - MIT",
288
+ "url": "https://example.mit.edu/photonic-computing-intro",
289
+ "accessed_date": "2025-01-13"
290
+ }
291
+ ]
292
+ },
293
+ {
294
+ "query_id": "q2",
295
+ "success": true,
296
+ "data": {
297
+ "current_status": "Optical matrix multiplication is transitioning from research to early commercialization, with several startups demonstrating prototype systems.",
298
+ "recent_developments": [
299
+ "Lightmatter announced Envise chip (2024)",
300
+ "Intel demonstrated silicon photonics integration",
301
+ "NVIDIA exploring hybrid optical-electronic accelerators"
302
+ ],
303
+ "key_players": [
304
+ "Lightmatter",
305
+ "Luminous Computing",
306
+ "Intel Silicon Photonics",
307
+ "MIT Photonics Lab"
308
+ ]
309
+ },
310
+ "sources": [
311
+ {
312
+ "id": "S3",
313
+ "source_type": "document",
314
+ "title": "US20240001234A1 - Integrated photonic tensor processor",
315
+ "url": "https://patents.google.com/patent/US20240001234A1",
316
+ "accessed_date": "2025-01-13",
317
+ "excerpt": "An integrated photonic processor comprising multiple tensor cores..."
318
+ },
319
+ {
320
+ "id": "S4",
321
+ "source_type": "web",
322
+ "title": "Lightmatter Envise Technical Overview",
323
+ "url": "https://lightmatter.co/envise",
324
+ "accessed_date": "2025-01-13"
325
+ }
326
+ ]
327
+ },
328
+ {
329
+ "query_id": "q3",
330
+ "success": true,
331
+ "data": {
332
+ "items": [
333
+ "Free-space optical systems",
334
+ "Integrated photonic circuits",
335
+ "Hybrid electro-optical systems",
336
+ "Wavelength-multiplexed arrays"
337
+ ],
338
+ "categories": {
339
+ "Architecture": ["Free-space", "Integrated", "Hybrid"],
340
+ "Technology": ["Silicon photonics", "III-V compounds", "Polymer waveguides"]
341
+ }
342
+ },
343
+ "sources": [
344
+ {
345
+ "id": "S5",
346
+ "source_type": "document",
347
+ "title": "EP3987654A1 - Wavelength-multiplexed optical computing",
348
+ "url": "https://patents.google.com/patent/EP3987654A1",
349
+ "accessed_date": "2025-01-13",
350
+ "excerpt": "A wavelength-multiplexed optical computing architecture..."
351
+ },
352
+ {
353
+ "id": "S6",
354
+ "source_type": "web",
355
+ "title": "Survey of Optical Computing Architectures - Nature",
356
+ "url": "https://nature.com/articles/optical-computing-survey",
357
+ "accessed_date": "2025-01-13"
358
+ }
359
+ ]
360
+ }
361
+ ]
362
+ ```
363
+
364
+ ### Expected Compile Output Statistics
365
+
366
+ ```json
367
+ {
368
+ "queries_executed": 3,
369
+ "queries_succeeded": 3,
370
+ "queries_failed": 0,
371
+ "total_sources": 6,
372
+ "word_count": 300
373
+ }
374
+ ```
375
+
376
+ ### Testing Commands
377
+
378
+ ```bash
379
+ # Start the server
380
+ npm run dev
381
+
382
+ # In another terminal, send test requests via stdio
383
+ echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | npm run dev
384
+
385
+ # Or use the MCP inspector
386
+ npx @anthropic/mcp-inspector
387
+ ```
388
+
389
+ ---
390
+
391
+ ## Error Cases to Test
392
+
393
+ ### 1. Missing Required Field
394
+
395
+ ```json
396
+ {
397
+ "depth": "standard"
398
+ }
399
+ ```
400
+ Expected: Validation error for missing `topic`
401
+
402
+ ### 2. Invalid Enum Value
403
+
404
+ ```json
405
+ {
406
+ "topic": "test",
407
+ "depth": "ultra-deep"
408
+ }
409
+ ```
410
+ Expected: Validation error for invalid `depth`
411
+
412
+ ### 3. Failed Query in Results
413
+
414
+ ```json
415
+ {
416
+ "query_id": "q1",
417
+ "success": false,
418
+ "error": "API rate limit exceeded"
419
+ }
420
+ ```
421
+ Expected: Warning in output, query skipped in report
422
+
423
+ ### 4. Empty Results Array
424
+
425
+ ```json
426
+ {
427
+ "plan": { ... },
428
+ "raw_results": []
429
+ }
430
+ ```
431
+ Expected: Empty report with 0 sources, warning about no data