jettypod 3.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.claude/PROTECT_SKILLS.md +28 -0
- package/.claude/settings.json +24 -0
- package/.claude/settings.local.json +16 -0
- package/.claude/skills/epic-discover/SKILL.md +262 -0
- package/.claude/skills/feature-discover/SKILL.md +393 -0
- package/.claude/skills/speed-mode/SKILL.md +364 -0
- package/.claude/skills/stable-mode/SKILL.md +591 -0
- package/.github/workflows/test-safety.yml +85 -0
- package/README.md +25 -0
- package/SPEED-STABLE-AUDIT.md +853 -0
- package/SYSTEM-BEHAVIOR.md +1241 -0
- package/TEST_SAFETY_AUDIT.md +314 -0
- package/TEST_SAFETY_IMPLEMENTATION.md +97 -0
- package/cucumber.js +8 -0
- package/docs/COMMAND_REFERENCE.md +903 -0
- package/docs/DECISIONS.md +68 -0
- package/docs/README.md +48 -0
- package/docs/STANDARDS-SYSTEM-DOCUMENTATION.md +374 -0
- package/docs/TEST-REWRITE-PLAN.md +261 -0
- package/docs/ai-test-writing-requirements.md +219 -0
- package/docs/claude-code-skills.md +607 -0
- package/docs/core-jettypod-methodology/comprehensive-jettypod-methodology.md +582 -0
- package/docs/core-jettypod-methodology/deprecated/jettypod-comprehensive-standards.md +1222 -0
- package/docs/core-jettypod-methodology/deprecated/jettypod-operating-guide.md +3399 -0
- package/docs/core-jettypod-methodology/deprecated/jettypod-technical-checklist.md +1325 -0
- package/docs/core-jettypod-methodology/deprecated/jettypod-vibe-coding-framework.md +1544 -0
- package/docs/core-jettypod-methodology/deprecated/prompt-engineering-guide.md +320 -0
- package/docs/core-jettypod-methodology/deprecated/vibe-coding-cheatsheet (1).md +516 -0
- package/docs/core-jettypod-methodology/deprecated/vibe-coding-framework.md +1544 -0
- package/docs/features/jettypod-standards-explained.md +543 -0
- package/docs/features/standards-inventory.md +257 -0
- package/docs/gap-analysis-current-vs-comprehensive-methodology.md +939 -0
- package/docs/jettypod-system-overview.md +409 -0
- package/features/auto-generate-production-chores.feature +14 -0
- package/features/claude-md-protection/steps.js +487 -0
- package/features/decisions/index.js +490 -0
- package/features/decisions/index.test.js +208 -0
- package/features/git-hooks/git-hooks.feature +30 -0
- package/features/git-hooks/index.js +93 -0
- package/features/git-hooks/index.test.js +137 -0
- package/features/git-hooks/post-commit +56 -0
- package/features/git-hooks/post-merge +47 -0
- package/features/git-hooks/pre-commit +28 -0
- package/features/git-hooks/simple-steps.js +53 -0
- package/features/git-hooks/simple-test.feature +10 -0
- package/features/git-hooks/steps.js +196 -0
- package/features/jettypod-update-command.feature +46 -0
- package/features/mode-prompts/index.js +95 -0
- package/features/mode-prompts/simple-steps.js +44 -0
- package/features/mode-prompts/simple-test.feature +9 -0
- package/features/mode-prompts/validation.test.js +120 -0
- package/features/refactor-mode/steps.js +217 -0
- package/features/refactor-mode.feature +49 -0
- package/features/skills-update/index.test.js +216 -0
- package/features/step_definitions/auto-generate-production-chores.steps.js +162 -0
- package/features/step_definitions/terminal-logo.steps.js +145 -0
- package/features/step_definitions/update-command.steps.js +183 -0
- package/features/terminal-logo/index.js +39 -0
- package/features/terminal-logo/terminal-logo.feature +30 -0
- package/features/update-command/index.js +181 -0
- package/features/update-command/index.test.js +225 -0
- package/features/work-commands/bug-workflow-display.feature +22 -0
- package/features/work-commands/index.js +311 -0
- package/features/work-commands/simple-steps.js +69 -0
- package/features/work-commands/stable-tests.feature +57 -0
- package/features/work-commands/steps.js +1120 -0
- package/features/work-commands/validation.test.js +88 -0
- package/features/work-commands/work-commands.feature +13 -0
- package/features/work-tracking/discovery-validation.test.js +228 -0
- package/features/work-tracking/index.js +1511 -0
- package/features/work-tracking/mode-required.feature +112 -0
- package/features/work-tracking/phase-tracking.test.js +482 -0
- package/features/work-tracking/prototype-tracking.test.js +485 -0
- package/features/work-tracking/tree-view.test.js +310 -0
- package/features/work-tracking/work-set-mode.feature +71 -0
- package/features/work-tracking/work-start-mode.feature +88 -0
- package/full-test.txt +0 -0
- package/install.sh +89 -0
- package/jettypod.js +1640 -0
- package/lib/bug-workflow.js +94 -0
- package/lib/bug-workflow.test.js +177 -0
- package/lib/claudemd.js +130 -0
- package/lib/claudemd.test.js +195 -0
- package/lib/comprehensive-standards-full.json +1778 -0
- package/lib/config.js +181 -0
- package/lib/config.test.js +511 -0
- package/lib/constants.js +107 -0
- package/lib/constants.test.js +164 -0
- package/lib/current-work.js +130 -0
- package/lib/current-work.test.js +146 -0
- package/lib/database-project-config.test.js +107 -0
- package/lib/database.js +256 -0
- package/lib/database.test.js +106 -0
- package/lib/decisions-generator.js +102 -0
- package/lib/decisions-generator.test.js +457 -0
- package/lib/decisions-helpers.js +119 -0
- package/lib/decisions-helpers.test.js +310 -0
- package/lib/discovery-checkpoint.js +83 -0
- package/lib/docs-generator.js +280 -0
- package/lib/external-checklist.js +177 -0
- package/lib/git.js +142 -0
- package/lib/git.test.js +145 -0
- package/lib/logo.js +3 -0
- package/lib/migrations/001-epic-to-parent.js +24 -0
- package/lib/migrations/002-default-work-item-modes.js +37 -0
- package/lib/migrations/002-default-work-item-modes.test.js +351 -0
- package/lib/migrations/003-epic-discovery-fields.js +52 -0
- package/lib/migrations/004-discovery-decisions-table.js +32 -0
- package/lib/migrations/005-migrate-decision-data.js +62 -0
- package/lib/migrations/006-feature-phase-field.js +61 -0
- package/lib/migrations/007-prototype-tracking.js +38 -0
- package/lib/migrations/008-scenario-file-field.js +24 -0
- package/lib/migrations/index.js +74 -0
- package/lib/production-helpers.js +69 -0
- package/lib/project-state.test.js +92 -0
- package/lib/test-helpers.js +184 -0
- package/lib/test-helpers.test.js +255 -0
- package/package.json +36 -0
- package/prototypes/test/index.html +1 -0
- package/setup-dist-repo.sh +68 -0
- package/test-safety-check.sh +80 -0
- package/work-item-tracking-plan.md +199 -0
|
@@ -0,0 +1,320 @@
|
|
|
1
|
+
# Prompt Engineering: A Comprehensive Research-Based Guide
|
|
2
|
+
|
|
3
|
+
## Executive Summary
|
|
4
|
+
|
|
5
|
+
Prompt engineering has emerged as a critical discipline for effectively leveraging Large Language Models (LLMs) in practical applications. This field encompasses techniques for developing and optimizing prompts to efficiently use language models for a wide variety of applications and research topics. Based on analysis of over 1,500 academic papers and research from leading institutions including OpenAI, Anthropic, MIT, Stanford, and Google, this guide synthesizes the most current and effective prompt engineering strategies for 2024-2025.
|
|
6
|
+
|
|
7
|
+
The key finding from recent research is clear: prompt engineering is far faster than other methods of model behavior control, such as finetuning, and can often yield leaps in performance in far less time. Moreover, it maintains model flexibility, requires minimal resources, and preserves the model's broad capabilities while allowing rapid iteration and experimentation.
|
|
8
|
+
|
|
9
|
+
## Part 1: Foundational Concepts and Principles
|
|
10
|
+
|
|
11
|
+
### What is Prompt Engineering?
|
|
12
|
+
|
|
13
|
+
Prompt engineering is a relatively new discipline for developing and optimizing prompts to efficiently use language models for a wide variety of applications. It goes beyond simple prompt design - it encompasses understanding model capabilities, limitations, and the cognitive patterns that influence model behavior.
|
|
14
|
+
|
|
15
|
+
### The Current State of Research
|
|
16
|
+
|
|
17
|
+
The field has experienced explosive growth. In 2022, there were merely 10 papers on RAG. In 2023, there were 93 papers published. However, 2024 saw an unprecedented surge, with 1,202 RAG-related papers published in a single year. This growth reflects the critical importance of prompt engineering as LLMs become more central to enterprise applications.
|
|
18
|
+
|
|
19
|
+
### Why Prompt Engineering Over Fine-Tuning?
|
|
20
|
+
|
|
21
|
+
Research from Anthropic provides compelling evidence for choosing prompt engineering:
|
|
22
|
+
|
|
23
|
+
**Advantages:**
|
|
24
|
+
- Resource efficiency: Fine-tuning requires high-end GPUs and large memory, while prompt engineering uses the base model
|
|
25
|
+
- Cost-effectiveness: For cloud-based AI services, fine-tuning incurs significant costs. Prompt engineering uses the base model, which is typically cheaper
|
|
26
|
+
- Time-saving: Fine-tuning can take hours or even days. In contrast, prompt engineering provides nearly instantaneous results
|
|
27
|
+
- Comprehension improvements: Prompt engineering is far more effective than finetuning at helping models better understand and utilize external content such as retrieved documents
|
|
28
|
+
|
|
29
|
+
## Part 2: Core Prompting Techniques
|
|
30
|
+
|
|
31
|
+
### 1. Zero-Shot, One-Shot, and Few-Shot Prompting
|
|
32
|
+
|
|
33
|
+
These fundamental techniques form the basis of prompt engineering:
|
|
34
|
+
|
|
35
|
+
**Zero-Shot Prompting**
|
|
36
|
+
- No examples provided
|
|
37
|
+
- Relies entirely on model's pre-trained knowledge
|
|
38
|
+
- Best for straightforward tasks with clear instructions
|
|
39
|
+
|
|
40
|
+
**One-Shot Prompting**
|
|
41
|
+
- Single example provided
|
|
42
|
+
- Helps clarify task format and expectations
|
|
43
|
+
- Useful when task pattern is simple but needs demonstration
|
|
44
|
+
|
|
45
|
+
**Few-Shot Prompting**
|
|
46
|
+
- According to Touvron et al. 2023, few shot properties first appeared when models were scaled to a sufficient size
|
|
47
|
+
- Multiple examples (typically 2-8) provided
|
|
48
|
+
- Multiple research papers point to major gains after 2 examples and then a plateau
|
|
49
|
+
- Critical finding: Order matters - The right permutation of examples led to near state-of-the-art performance, while others fell to nearly chance levels
|
|
50
|
+
|
|
51
|
+
**Best Practices for Few-Shot Prompting:**
|
|
52
|
+
- Place most critical examples last
|
|
53
|
+
- Use diverse, representative examples
|
|
54
|
+
- Maintain consistent formatting across examples
|
|
55
|
+
- Adding more examples does not necessarily improve accuracy; in some cases adding more examples can actually reduce accuracy
|
|
56
|
+
|
|
57
|
+
### 2. Chain-of-Thought (CoT) Prompting
|
|
58
|
+
|
|
59
|
+
Chain of thought prompting enables models to decompose multi-step problems into intermediate steps. This technique has proven particularly powerful for complex reasoning tasks.
|
|
60
|
+
|
|
61
|
+
**Key Research Findings:**
|
|
62
|
+
- Chain of thought prompting is an emergent property of model scale - the benefits only materialize with a sufficient number of parameters (~100B)
|
|
63
|
+
- CoT only yields performance gains when used with models of ∼100B parameters. Smaller models wrote illogical chains of thought, which led to worse accuracy than standard prompting
|
|
64
|
+
|
|
65
|
+
**Implementation Strategies:**
|
|
66
|
+
|
|
67
|
+
1. **Explicit CoT Prompting**: Include step-by-step reasoning in examples
|
|
68
|
+
2. **Zero-Shot CoT**: Simply add "Let's think step by step" to prompts
|
|
69
|
+
3. **Auto-CoT**: Leveraging LLMs with "Let's think step by step" prompt to generate reasoning chains for demonstrations automatically
|
|
70
|
+
|
|
71
|
+
### 3. Advanced Techniques from Leading Research
|
|
72
|
+
|
|
73
|
+
#### The "Think" Tool (Anthropic Research)
|
|
74
|
+
|
|
75
|
+
The "think" tool achieved 0.570 on the pass^1 metric, compared to just 0.370 for the baseline—a 54% relative improvement in airline domain tasks. This approach involves:
|
|
76
|
+
- Providing a dedicated reasoning space before generating final answers
|
|
77
|
+
- Using XML-like tags to structure thinking process
|
|
78
|
+
- Combining with optimized prompting for complex domains
|
|
79
|
+
|
|
80
|
+
#### Structured Prompting with XML Tags
|
|
81
|
+
|
|
82
|
+
Anthropic research shows that Claude has been trained to recognize and respond to XML-style tags. These tags act like signposts, helping the model separate instructions, examples, and inputs more effectively.
|
|
83
|
+
|
|
84
|
+
Example structure:
|
|
85
|
+
```
|
|
86
|
+
<instructions>
|
|
87
|
+
[Clear task description]
|
|
88
|
+
</instructions>
|
|
89
|
+
|
|
90
|
+
<examples>
|
|
91
|
+
[Few-shot examples]
|
|
92
|
+
</examples>
|
|
93
|
+
|
|
94
|
+
<input>
|
|
95
|
+
[User query]
|
|
96
|
+
</input>
|
|
97
|
+
```
|
|
98
|
+
|
|
99
|
+
## Part 3: Retrieval-Augmented Generation (RAG)
|
|
100
|
+
|
|
101
|
+
### The RAG Revolution
|
|
102
|
+
|
|
103
|
+
RAG has become essential for production LLM applications. RAG extends the already powerful capabilities of LLMs to specific domains or an organization's internal knowledge base, all without the need to retrain the model.
|
|
104
|
+
|
|
105
|
+
### Core RAG Architecture
|
|
106
|
+
|
|
107
|
+
RAG combines an information retrieval component with a text generator model. RAG can be fine-tuned and its internal knowledge can be modified in an efficient manner and without needing retraining of the entire model.
|
|
108
|
+
|
|
109
|
+
**Key Components:**
|
|
110
|
+
1. **Retrieval System**: Searches relevant documents from knowledge base
|
|
111
|
+
2. **Embedding Model**: Converts text to vector representations
|
|
112
|
+
3. **Vector Database**: Stores and indexes document embeddings
|
|
113
|
+
4. **Generation Model**: Produces final output using retrieved context
|
|
114
|
+
|
|
115
|
+
### RAG Best Practices
|
|
116
|
+
|
|
117
|
+
Based on 2024 research findings:
|
|
118
|
+
|
|
119
|
+
1. **Start Wide, Then Narrow**: Search strategy should mirror expert human research: explore the landscape before drilling into specifics
|
|
120
|
+
|
|
121
|
+
2. **Context Window Optimization**: With models now supporting 1M+ tokens, careful selection of relevant context becomes critical
|
|
122
|
+
|
|
123
|
+
3. **Hybrid Approaches**: Combining RAG with fine-tuned models for optimal performance
|
|
124
|
+
|
|
125
|
+
4. **Multi-Modal RAG**: Extending beyond text to include images and structured data
|
|
126
|
+
|
|
127
|
+
## Part 4: Practical Implementation Guidelines
|
|
128
|
+
|
|
129
|
+
### 1. Clear and Specific Instructions
|
|
130
|
+
|
|
131
|
+
Claude performs best when instructions are specific, detailed, and unambiguous. Vague prompts leave room for misinterpretation, while clear directives improve output quality.
|
|
132
|
+
|
|
133
|
+
**Framework:**
|
|
134
|
+
- State the exact task and goal
|
|
135
|
+
- Define all technical terms
|
|
136
|
+
- Specify output format requirements
|
|
137
|
+
- Include edge case handling
|
|
138
|
+
|
|
139
|
+
### 2. Context Management
|
|
140
|
+
|
|
141
|
+
Claude supports a large context window—up to 100,000 tokens, or about 70,000 words. Best practices include:
|
|
142
|
+
- Front-load critical information
|
|
143
|
+
- Use hierarchical organization for long contexts
|
|
144
|
+
- Implement smart truncation strategies
|
|
145
|
+
- Consider context caching for repeated use
|
|
146
|
+
|
|
147
|
+
### 3. Iterative Refinement Process
|
|
148
|
+
|
|
149
|
+
1. **Establish Success Criteria**: Define clear, measurable objectives
|
|
150
|
+
2. **Create Baseline**: Start with simple prompts
|
|
151
|
+
3. **Systematic Testing**: Use evaluation frameworks
|
|
152
|
+
4. **Incremental Improvement**: Apply techniques progressively
|
|
153
|
+
5. **Documentation**: Maintain prompt versioning
|
|
154
|
+
|
|
155
|
+
### 4. Template-Based Approaches
|
|
156
|
+
|
|
157
|
+
Recent MIT research suggests: The most powerful approach isn't crafting the perfect one-off prompt; it's having a reliable arsenal of templates ready to deploy.
|
|
158
|
+
|
|
159
|
+
**Recommended Template Categories:**
|
|
160
|
+
- Task-specific templates
|
|
161
|
+
- Domain-specific templates
|
|
162
|
+
- Output format templates
|
|
163
|
+
- Error handling templates
|
|
164
|
+
- Chain-of-thought templates
|
|
165
|
+
|
|
166
|
+
## Part 5: Evaluation and Optimization
|
|
167
|
+
|
|
168
|
+
### Measuring Prompt Effectiveness
|
|
169
|
+
|
|
170
|
+
Key metrics to track:
|
|
171
|
+
1. **Accuracy**: Correctness of outputs
|
|
172
|
+
2. **Consistency**: Reliability across similar inputs
|
|
173
|
+
3. **Latency**: Response time
|
|
174
|
+
4. **Cost**: Token usage efficiency
|
|
175
|
+
5. **User Satisfaction**: Subjective quality measures
|
|
176
|
+
|
|
177
|
+
### Optimization Strategies
|
|
178
|
+
|
|
179
|
+
#### 1. Prompt Compression
|
|
180
|
+
LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models - reducing prompt length while maintaining effectiveness.
|
|
181
|
+
|
|
182
|
+
#### 2. Automated Optimization
|
|
183
|
+
Recent advances include:
|
|
184
|
+
- DSPy for systematic prompt optimization
|
|
185
|
+
- Meta-prompting techniques for self-improvement
|
|
186
|
+
- Claude 4 models can be excellent prompt engineers. When given a prompt and a failure mode, they are able to diagnose why the agent is failing and suggest improvements
|
|
187
|
+
|
|
188
|
+
#### 3. A/B Testing Frameworks
|
|
189
|
+
- Systematic comparison of prompt variations
|
|
190
|
+
- Statistical significance testing
|
|
191
|
+
- User preference studies
|
|
192
|
+
|
|
193
|
+
## Part 6: Domain-Specific Applications
|
|
194
|
+
|
|
195
|
+
### Software Development
|
|
196
|
+
|
|
197
|
+
Claude Code gives engineers and researchers a more native way to integrate Claude into their coding workflows. Key strategies:
|
|
198
|
+
- Provide full project context when possible
|
|
199
|
+
- Use structured commands for repetitive tasks
|
|
200
|
+
- Leverage git history for context
|
|
201
|
+
- Implement error handling patterns
|
|
202
|
+
|
|
203
|
+
### Research and Analysis
|
|
204
|
+
|
|
205
|
+
For complex research tasks:
|
|
206
|
+
- Multi-agent systems can operate reliably at scale with careful engineering, comprehensive testing, detail-oriented prompt and tool design
|
|
207
|
+
- Break down complex queries into subtasks
|
|
208
|
+
- Use parallel processing for efficiency
|
|
209
|
+
- Implement verification steps
|
|
210
|
+
|
|
211
|
+
### Creative Applications
|
|
212
|
+
|
|
213
|
+
- Balance structure with flexibility
|
|
214
|
+
- Use temperature and other parameters strategically
|
|
215
|
+
- Implement iterative refinement cycles
|
|
216
|
+
- Combine multiple generation approaches
|
|
217
|
+
|
|
218
|
+
## Part 7: Common Pitfalls and Solutions
|
|
219
|
+
|
|
220
|
+
### 1. Hallucination Mitigation
|
|
221
|
+
|
|
222
|
+
**Problem**: Models generate plausible but incorrect information
|
|
223
|
+
|
|
224
|
+
**Solutions**:
|
|
225
|
+
- Implement RAG for factual grounding
|
|
226
|
+
- Use chain-of-thought for transparency
|
|
227
|
+
- Add verification steps
|
|
228
|
+
- Cite sources explicitly
|
|
229
|
+
|
|
230
|
+
### 2. Inconsistent Outputs
|
|
231
|
+
|
|
232
|
+
**Problem**: Same prompt produces varying results
|
|
233
|
+
|
|
234
|
+
**Solutions**:
|
|
235
|
+
- Use temperature=0 for deterministic outputs
|
|
236
|
+
- Implement structured output formats
|
|
237
|
+
- Add explicit constraints
|
|
238
|
+
- Use few-shot examples for consistency
|
|
239
|
+
|
|
240
|
+
### 3. Context Limitations
|
|
241
|
+
|
|
242
|
+
**Problem**: Important information lost in long contexts
|
|
243
|
+
|
|
244
|
+
**Solutions**:
|
|
245
|
+
- Hierarchical summarization
|
|
246
|
+
- Smart chunking strategies
|
|
247
|
+
- Context window management
|
|
248
|
+
- Key information repetition
|
|
249
|
+
|
|
250
|
+
## Part 8: Future Directions and Emerging Trends
|
|
251
|
+
|
|
252
|
+
### 1. Multi-Modal Prompting
|
|
253
|
+
Visual Chain-of-thought Prompting for knowledge-based visual reasoning, which involves the interaction between visual content and natural language
|
|
254
|
+
|
|
255
|
+
### 2. Agent-Based Systems
|
|
256
|
+
- Multi-agent collaboration patterns
|
|
257
|
+
- Tool use and function calling
|
|
258
|
+
- Autonomous reasoning systems
|
|
259
|
+
|
|
260
|
+
### 3. Extended Thinking Models
|
|
261
|
+
Anthropic's Claude 4 introduces extended thinking capabilities, allowing deeper reasoning for complex problems.
|
|
262
|
+
|
|
263
|
+
### 4. Prompt Caching and Optimization
|
|
264
|
+
- Reducing latency through intelligent caching
|
|
265
|
+
- Dynamic prompt adaptation
|
|
266
|
+
- Cost optimization strategies
|
|
267
|
+
|
|
268
|
+
## Best Practices Summary
|
|
269
|
+
|
|
270
|
+
### Essential Principles
|
|
271
|
+
|
|
272
|
+
1. **Start Simple**: Begin with basic prompts and add complexity gradually
|
|
273
|
+
2. **Be Specific**: Clarity trumps brevity
|
|
274
|
+
3. **Test Systematically**: Use consistent evaluation methods
|
|
275
|
+
4. **Document Everything**: Maintain prompt libraries and version control
|
|
276
|
+
5. **Iterate Rapidly**: Prompt engineering provides nearly instantaneous results, allowing for quick problem-solving
|
|
277
|
+
|
|
278
|
+
### The Golden Rules
|
|
279
|
+
|
|
280
|
+
1. **Understand Your Model**: Different models have different strengths
|
|
281
|
+
2. **Know Your Use Case**: Tailor techniques to specific applications
|
|
282
|
+
3. **Measure What Matters**: Define success criteria upfront
|
|
283
|
+
4. **Leverage Templates**: Build reusable prompt components
|
|
284
|
+
5. **Stay Current**: The field evolves rapidly
|
|
285
|
+
|
|
286
|
+
## Conclusion
|
|
287
|
+
|
|
288
|
+
Prompt engineering represents a paradigm shift in how we interact with AI systems. The research clearly demonstrates that effective prompt engineering can achieve performance improvements comparable to or exceeding fine-tuning, while maintaining flexibility and reducing costs.
|
|
289
|
+
|
|
290
|
+
As we move into 2025, the convergence of larger context windows, multi-modal capabilities, and sophisticated reasoning systems will create new opportunities for prompt engineers. The key to success lies not in mastering every technique, but in understanding the principles, maintaining systematic approaches, and continuously adapting to new capabilities.
|
|
291
|
+
|
|
292
|
+
The most important takeaway: prompt engineering is both an art and a science. While research provides frameworks and techniques, practical application requires creativity, experimentation, and deep understanding of both the technology and the problem domain.
|
|
293
|
+
|
|
294
|
+
---
|
|
295
|
+
|
|
296
|
+
## References and Further Reading
|
|
297
|
+
|
|
298
|
+
### Academic Papers
|
|
299
|
+
- "The Prompt Report: A Systematic Survey of Prompt Engineering Techniques" (2025)
|
|
300
|
+
- "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models" (Wei et al., 2022)
|
|
301
|
+
- "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks" (Lewis et al., 2021)
|
|
302
|
+
|
|
303
|
+
### Industry Resources
|
|
304
|
+
- Anthropic's Prompt Engineering Documentation
|
|
305
|
+
- OpenAI's Prompt Engineering Guide
|
|
306
|
+
- Google's Vertex AI Prompt Guidelines
|
|
307
|
+
|
|
308
|
+
### Tools and Frameworks
|
|
309
|
+
- LangChain for RAG implementation
|
|
310
|
+
- DSPy for prompt optimization
|
|
311
|
+
- Claude Code for development workflows
|
|
312
|
+
|
|
313
|
+
### Communities and Learning
|
|
314
|
+
- Prompt Engineering Guide (promptingguide.ai)
|
|
315
|
+
- Learn Prompting interactive courses
|
|
316
|
+
- Research papers repository on arXiv
|
|
317
|
+
|
|
318
|
+
---
|
|
319
|
+
|
|
320
|
+
*This guide represents the state of prompt engineering as of 2025, based on peer-reviewed research and industry best practices. The field continues to evolve rapidly, and practitioners should stay current with the latest developments.*
|