dsp-collection 0.2.5 → 0.2.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. package/README.md +6 -2
  2. package/filter/FirFilterWin.d.ts +8 -0
  3. package/filter/FirFilterWin.d.ts.map +1 -0
  4. package/filter/FirFilterWin.js +55 -0
  5. package/filter/FirFilterWin.js.map +1 -0
  6. package/filter/SpecFilt.d.ts +11 -10
  7. package/filter/SpecFilt.d.ts.map +1 -0
  8. package/filter/SpecFilt.js +98 -98
  9. package/filter/SpecFilt.js.map +1 -1
  10. package/math/Complex.d.ts +43 -42
  11. package/math/Complex.d.ts.map +1 -0
  12. package/math/Complex.js +130 -129
  13. package/math/Complex.js.map +1 -1
  14. package/math/ComplexArray.d.ts +37 -36
  15. package/math/ComplexArray.d.ts.map +1 -0
  16. package/math/ComplexArray.js +170 -170
  17. package/math/ComplexArray.js.map +1 -1
  18. package/math/MathUtils.d.ts +10 -7
  19. package/math/MathUtils.d.ts.map +1 -0
  20. package/math/MathUtils.js +116 -81
  21. package/math/MathUtils.js.map +1 -1
  22. package/math/MutableComplex.d.ts +24 -22
  23. package/math/MutableComplex.d.ts.map +1 -0
  24. package/math/MutableComplex.js +68 -64
  25. package/math/MutableComplex.js.map +1 -1
  26. package/math/NumApprox.d.ts +4 -3
  27. package/math/NumApprox.d.ts.map +1 -0
  28. package/math/NumApprox.js +67 -67
  29. package/math/NumApprox.js.map +1 -1
  30. package/math/PolyReal.d.ts +14 -13
  31. package/math/PolyReal.d.ts.map +1 -0
  32. package/math/PolyReal.js +226 -226
  33. package/math/PolyReal.js.map +1 -1
  34. package/package.json +11 -3
  35. package/signal/AdaptiveStft.d.ts +13 -12
  36. package/signal/AdaptiveStft.d.ts.map +1 -0
  37. package/signal/AdaptiveStft.js +57 -57
  38. package/signal/AdaptiveStft.js.map +1 -1
  39. package/signal/Autocorrelation.d.ts +6 -5
  40. package/signal/Autocorrelation.d.ts.map +1 -0
  41. package/signal/Autocorrelation.js +53 -53
  42. package/signal/Autocorrelation.js.map +1 -1
  43. package/signal/Dft.d.ts +10 -9
  44. package/signal/Dft.d.ts.map +1 -0
  45. package/signal/Dft.js +87 -87
  46. package/signal/Dft.js.map +1 -1
  47. package/signal/EnvelopeDetection.d.ts +2 -1
  48. package/signal/EnvelopeDetection.d.ts.map +1 -0
  49. package/signal/EnvelopeDetection.js +9 -9
  50. package/signal/EnvelopeDetection.js.map +1 -1
  51. package/signal/Fft.d.ts +10 -9
  52. package/signal/Fft.d.ts.map +1 -0
  53. package/signal/Fft.js +275 -275
  54. package/signal/Fft.js.map +1 -1
  55. package/signal/Goertzel.d.ts +6 -5
  56. package/signal/Goertzel.d.ts.map +1 -0
  57. package/signal/Goertzel.js +48 -48
  58. package/signal/Goertzel.js.map +1 -1
  59. package/signal/InstFreq.d.ts +9 -8
  60. package/signal/InstFreq.d.ts.map +1 -0
  61. package/signal/InstFreq.js +26 -26
  62. package/signal/InstFreq.js.map +1 -1
  63. package/signal/PitchDetectionHarm.d.ts +27 -26
  64. package/signal/PitchDetectionHarm.d.ts.map +1 -0
  65. package/signal/PitchDetectionHarm.js +72 -68
  66. package/signal/PitchDetectionHarm.js.map +1 -1
  67. package/signal/Resampling.d.ts +8 -7
  68. package/signal/Resampling.d.ts.map +1 -0
  69. package/signal/Resampling.js +218 -218
  70. package/signal/Resampling.js.map +1 -1
  71. package/signal/WindowFunctions.d.ts +42 -40
  72. package/signal/WindowFunctions.d.ts.map +1 -0
  73. package/signal/WindowFunctions.js +194 -194
  74. package/signal/WindowFunctions.js.map +1 -1
  75. package/utils/ArrayUtils.d.ts +10 -9
  76. package/utils/ArrayUtils.d.ts.map +1 -0
  77. package/utils/ArrayUtils.js +68 -68
  78. package/utils/ArrayUtils.js.map +1 -1
  79. package/utils/DspUtils.d.ts +5 -2
  80. package/utils/DspUtils.d.ts.map +1 -0
  81. package/utils/DspUtils.js +12 -6
  82. package/utils/DspUtils.js.map +1 -1
  83. package/utils/MiscUtils.d.ts +7 -6
  84. package/utils/MiscUtils.d.ts.map +1 -0
  85. package/utils/MiscUtils.js +20 -20
  86. package/utils/MiscUtils.js.map +1 -1
package/math/PolyReal.js CHANGED
@@ -1,227 +1,227 @@
1
- import MutableComplex from "./MutableComplex.js";
2
- export function evaluateReal(a, x) {
3
- if (a.length == 0) {
4
- throw new Error("Zero length array.");
5
- }
6
- const n = a.length - 1;
7
- let r = a[n];
8
- for (let i = n - 1; i >= 0; i--) {
9
- r *= x;
10
- r += a[i];
11
- }
12
- return r;
13
- }
14
- export function evaluateComplex(a, x) {
15
- if (a.length == 0) {
16
- throw new Error("Zero length array.");
17
- }
18
- const n = a.length - 1;
19
- const r = new MutableComplex(a[n]);
20
- for (let i = n - 1; i >= 0; i--) {
21
- r.mulBy(x);
22
- r.addRealTo(a[i]);
23
- }
24
- return r;
25
- }
26
- export function expand(zeros) {
27
- const n = zeros.length;
28
- if (n == 0) {
29
- return Float64Array.of(1);
30
- }
31
- let a = Float64Array.of(-zeros[0], 1);
32
- for (let i = 1; i < n; i++) {
33
- const a2 = Float64Array.of(-zeros[i], 1);
34
- a = multiply(a, a2);
35
- }
36
- return a;
37
- }
38
- export function compareEqual(a1, a2, eps = 0) {
39
- const n1 = a1.length - 1;
40
- const n2 = a2.length - 1;
41
- const n = Math.max(n1, n2);
42
- for (let i = 0; i <= n; i++) {
43
- const v1 = (i <= n1) ? a1[i] : 0;
44
- const v2 = (i <= n2) ? a2[i] : 0;
45
- if (Math.abs(v1 - v2) > eps) {
46
- return false;
47
- }
48
- }
49
- return true;
50
- }
51
- export function add(a1, a2, eps = 0) {
52
- const n1 = a1.length - 1;
53
- const n2 = a2.length - 1;
54
- const n3 = Math.max(n1, n2);
55
- const a3 = new Float64Array(n3 + 1);
56
- for (let i = 0; i <= n3; i++) {
57
- const v1 = (i <= n1) ? a1[i] : 0;
58
- const v2 = (i <= n2) ? a2[i] : 0;
59
- a3[i] = v1 + v2;
60
- }
61
- return trim(a3, eps);
62
- }
63
- export function multiply(a1, a2, eps = 0) {
64
- if (a1.length == 0 || a2.length == 0) {
65
- throw new Error("Zero length arrays.");
66
- }
67
- if (a1.length == 1 && a1[0] == 0 || a2.length == 1 && a2[0] == 0) {
68
- return Float64Array.of(0);
69
- }
70
- const n1 = a1.length - 1;
71
- const n2 = a2.length - 1;
72
- const n3 = n1 + n2;
73
- const a3 = new Float64Array(n3 + 1);
74
- for (let i = 0; i <= n3; i++) {
75
- let t = 0;
76
- const p1 = Math.max(0, i - n2);
77
- const p2 = Math.min(n1, i);
78
- for (let j = p1; j <= p2; j++) {
79
- t += a1[j] * a2[i - j];
80
- }
81
- a3[i] = t;
82
- }
83
- return trim(a3, eps);
84
- }
85
- export function divide(a1r, a2r, eps = 0) {
86
- if (a1r.length == 0 || a2r.length == 0) {
87
- throw new Error("Zero length arrays.");
88
- }
89
- const a1 = trim(a1r, eps);
90
- const a2 = trim(a2r, eps);
91
- if (a2.length == 1) {
92
- if (a2[0] == 0) {
93
- throw new Error("Polynomial division by zero.");
94
- }
95
- if (a2[0] == 1) {
96
- return [Float64Array.from(a1), Float64Array.of(0)];
97
- }
98
- return [divByReal(a1, a2[0]), Float64Array.of(0)];
99
- }
100
- const n1 = a1.length - 1;
101
- const n2 = a2.length - 1;
102
- if (n1 < n2) {
103
- return [Float64Array.of(0), Float64Array.from(a1)];
104
- }
105
- const a = Float64Array.from(a1);
106
- const lc2 = a2[n2];
107
- for (let i = n1 - n2; i >= 0; i--) {
108
- const r = a[n2 + i] / lc2;
109
- a[n2 + i] = r;
110
- for (let j = 0; j < n2; ++j) {
111
- a[i + j] -= r * a2[j];
112
- }
113
- }
114
- const quotient = trim(a.subarray(n2), eps);
115
- const remainder = trim(a.subarray(0, n2), eps);
116
- return [quotient, remainder];
117
- }
118
- export function gcd(a1, a2, eps = 0) {
119
- let r1 = trim(a1, eps);
120
- let r2 = trim(a2, eps);
121
- makeMonic(r1);
122
- makeMonic(r2);
123
- if (r1.length < r2.length) {
124
- [r1, r2] = [r2, r1];
125
- }
126
- while (true) {
127
- if (r2.length < 2) {
128
- return Float64Array.of(1);
129
- }
130
- const r = divide(r1, r2, eps)[1];
131
- if (r.length == 1 && r[0] == 0) {
132
- return r2;
133
- }
134
- makeMonic(r);
135
- r1 = r2;
136
- r2 = r;
137
- }
138
- }
139
- function trim(a, eps = 0) {
140
- if (a.length == 0) {
141
- throw new Error("Zero length array.");
142
- }
143
- if (Math.abs(a[a.length - 1]) > eps) {
144
- return Float64Array.from(a);
145
- }
146
- let len = a.length - 1;
147
- while (len > 0 && Math.abs(a[len - 1]) <= eps) {
148
- len--;
149
- }
150
- if (len == 0) {
151
- return Float64Array.of(0);
152
- }
153
- const a2 = new Float64Array(len);
154
- for (let i = 0; i < len; i++) {
155
- a2[i] = a[i];
156
- }
157
- return a2;
158
- }
159
- function makeMonic(a) {
160
- const len = a.length;
161
- if (len == 0) {
162
- throw new Error("Zero length array.");
163
- }
164
- const lc = a[len - 1];
165
- if (lc == 1) {
166
- return;
167
- }
168
- if (lc == 0) {
169
- throw new Error("Leading coefficient is zero.");
170
- }
171
- a[len - 1] = 1;
172
- for (let i = 0; i < len - 1; i++) {
173
- a[i] /= lc;
174
- }
175
- }
176
- function divByReal(a, b) {
177
- const a2 = new Float64Array(a.length);
178
- for (let i = 0; i < a.length; i++) {
179
- a2[i] = a[i] / b;
180
- }
181
- return a2;
182
- }
183
- function divByRealInPlace(a, b) {
184
- for (let i = 0; i < a.length; i++) {
185
- a[i] /= b;
186
- }
187
- }
188
- export function evaluateFractionComplex(f, x) {
189
- const v1 = evaluateComplex(f[0], x);
190
- const v2 = evaluateComplex(f[1], x);
191
- return v1.div(v2);
192
- }
193
- export function addFractions(f1, f2, eps = 0) {
194
- if (compareEqual(f1[1], f2[1], eps)) {
195
- return [add(f1[0], f2[0], eps), Float64Array.from(f1[1])];
196
- }
197
- const g = gcd(f1[1], f2[1], eps);
198
- if (g.length == 1 && g[0] == 1) {
199
- const top = add(multiply(f1[0], f2[1], eps), multiply(f2[0], f1[1], eps));
200
- const bottom = multiply(f1[1], f2[1], eps);
201
- return [top, bottom];
202
- }
203
- const q1 = divide(f1[1], g, eps);
204
- const q2 = divide(f2[1], g, eps);
205
- const m1 = q1[0];
206
- const m2 = q2[0];
207
- const top = add(multiply(f1[0], m2, eps), multiply(f2[0], m1, eps));
208
- const bottom = multiply(f1[1], m2, eps);
209
- return [top, bottom];
210
- }
211
- export function multiplyFractions(f1, f2, eps = 0) {
212
- const top = multiply(f1[0], f2[0], eps);
213
- const bottom = multiply(f1[1], f2[1], eps);
214
- return [top, bottom];
215
- }
216
- export function normalizeFraction(f, eps = 0) {
217
- const top = trim(f[0], eps);
218
- const bottom = trim(f[1], eps);
219
- const lc = bottom[bottom.length - 1];
220
- if (lc == 0) {
221
- throw new Error("Fraction denominator is zero.");
222
- }
223
- divByRealInPlace(top, lc);
224
- divByRealInPlace(bottom, lc);
225
- return [top, bottom];
226
- }
1
+ import MutableComplex from "./MutableComplex.js";
2
+ export function evaluateReal(a, x) {
3
+ if (a.length == 0) {
4
+ throw new Error("Zero length array.");
5
+ }
6
+ const n = a.length - 1;
7
+ let r = a[n];
8
+ for (let i = n - 1; i >= 0; i--) {
9
+ r *= x;
10
+ r += a[i];
11
+ }
12
+ return r;
13
+ }
14
+ export function evaluateComplex(a, x) {
15
+ if (a.length == 0) {
16
+ throw new Error("Zero length array.");
17
+ }
18
+ const n = a.length - 1;
19
+ const r = new MutableComplex(a[n]);
20
+ for (let i = n - 1; i >= 0; i--) {
21
+ r.mulBy(x);
22
+ r.addRealTo(a[i]);
23
+ }
24
+ return r;
25
+ }
26
+ export function expand(zeros) {
27
+ const n = zeros.length;
28
+ if (n == 0) {
29
+ return Float64Array.of(1);
30
+ }
31
+ let a = Float64Array.of(-zeros[0], 1);
32
+ for (let i = 1; i < n; i++) {
33
+ const a2 = Float64Array.of(-zeros[i], 1);
34
+ a = multiply(a, a2);
35
+ }
36
+ return a;
37
+ }
38
+ export function compareEqual(a1, a2, eps = 0) {
39
+ const n1 = a1.length - 1;
40
+ const n2 = a2.length - 1;
41
+ const n = Math.max(n1, n2);
42
+ for (let i = 0; i <= n; i++) {
43
+ const v1 = (i <= n1) ? a1[i] : 0;
44
+ const v2 = (i <= n2) ? a2[i] : 0;
45
+ if (Math.abs(v1 - v2) > eps) {
46
+ return false;
47
+ }
48
+ }
49
+ return true;
50
+ }
51
+ export function add(a1, a2, eps = 0) {
52
+ const n1 = a1.length - 1;
53
+ const n2 = a2.length - 1;
54
+ const n3 = Math.max(n1, n2);
55
+ const a3 = new Float64Array(n3 + 1);
56
+ for (let i = 0; i <= n3; i++) {
57
+ const v1 = (i <= n1) ? a1[i] : 0;
58
+ const v2 = (i <= n2) ? a2[i] : 0;
59
+ a3[i] = v1 + v2;
60
+ }
61
+ return trim(a3, eps);
62
+ }
63
+ export function multiply(a1, a2, eps = 0) {
64
+ if (a1.length == 0 || a2.length == 0) {
65
+ throw new Error("Zero length arrays.");
66
+ }
67
+ if (a1.length == 1 && a1[0] == 0 || a2.length == 1 && a2[0] == 0) {
68
+ return Float64Array.of(0);
69
+ }
70
+ const n1 = a1.length - 1;
71
+ const n2 = a2.length - 1;
72
+ const n3 = n1 + n2;
73
+ const a3 = new Float64Array(n3 + 1);
74
+ for (let i = 0; i <= n3; i++) {
75
+ let t = 0;
76
+ const p1 = Math.max(0, i - n2);
77
+ const p2 = Math.min(n1, i);
78
+ for (let j = p1; j <= p2; j++) {
79
+ t += a1[j] * a2[i - j];
80
+ }
81
+ a3[i] = t;
82
+ }
83
+ return trim(a3, eps);
84
+ }
85
+ export function divide(a1r, a2r, eps = 0) {
86
+ if (a1r.length == 0 || a2r.length == 0) {
87
+ throw new Error("Zero length arrays.");
88
+ }
89
+ const a1 = trim(a1r, eps);
90
+ const a2 = trim(a2r, eps);
91
+ if (a2.length == 1) {
92
+ if (a2[0] == 0) {
93
+ throw new Error("Polynomial division by zero.");
94
+ }
95
+ if (a2[0] == 1) {
96
+ return [Float64Array.from(a1), Float64Array.of(0)];
97
+ }
98
+ return [divByReal(a1, a2[0]), Float64Array.of(0)];
99
+ }
100
+ const n1 = a1.length - 1;
101
+ const n2 = a2.length - 1;
102
+ if (n1 < n2) {
103
+ return [Float64Array.of(0), Float64Array.from(a1)];
104
+ }
105
+ const a = Float64Array.from(a1);
106
+ const lc2 = a2[n2];
107
+ for (let i = n1 - n2; i >= 0; i--) {
108
+ const r = a[n2 + i] / lc2;
109
+ a[n2 + i] = r;
110
+ for (let j = 0; j < n2; ++j) {
111
+ a[i + j] -= r * a2[j];
112
+ }
113
+ }
114
+ const quotient = trim(a.subarray(n2), eps);
115
+ const remainder = trim(a.subarray(0, n2), eps);
116
+ return [quotient, remainder];
117
+ }
118
+ export function gcd(a1, a2, eps = 0) {
119
+ let r1 = trim(a1, eps);
120
+ let r2 = trim(a2, eps);
121
+ makeMonic(r1);
122
+ makeMonic(r2);
123
+ if (r1.length < r2.length) {
124
+ [r1, r2] = [r2, r1];
125
+ }
126
+ while (true) {
127
+ if (r2.length < 2) {
128
+ return Float64Array.of(1);
129
+ }
130
+ const r = divide(r1, r2, eps)[1];
131
+ if (r.length == 1 && r[0] == 0) {
132
+ return r2;
133
+ }
134
+ makeMonic(r);
135
+ r1 = r2;
136
+ r2 = r;
137
+ }
138
+ }
139
+ function trim(a, eps = 0) {
140
+ if (a.length == 0) {
141
+ throw new Error("Zero length array.");
142
+ }
143
+ if (Math.abs(a[a.length - 1]) > eps) {
144
+ return Float64Array.from(a);
145
+ }
146
+ let len = a.length - 1;
147
+ while (len > 0 && Math.abs(a[len - 1]) <= eps) {
148
+ len--;
149
+ }
150
+ if (len == 0) {
151
+ return Float64Array.of(0);
152
+ }
153
+ const a2 = new Float64Array(len);
154
+ for (let i = 0; i < len; i++) {
155
+ a2[i] = a[i];
156
+ }
157
+ return a2;
158
+ }
159
+ function makeMonic(a) {
160
+ const len = a.length;
161
+ if (len == 0) {
162
+ throw new Error("Zero length array.");
163
+ }
164
+ const lc = a[len - 1];
165
+ if (lc == 1) {
166
+ return;
167
+ }
168
+ if (lc == 0) {
169
+ throw new Error("Leading coefficient is zero.");
170
+ }
171
+ a[len - 1] = 1;
172
+ for (let i = 0; i < len - 1; i++) {
173
+ a[i] /= lc;
174
+ }
175
+ }
176
+ function divByReal(a, b) {
177
+ const a2 = new Float64Array(a.length);
178
+ for (let i = 0; i < a.length; i++) {
179
+ a2[i] = a[i] / b;
180
+ }
181
+ return a2;
182
+ }
183
+ function divByRealInPlace(a, b) {
184
+ for (let i = 0; i < a.length; i++) {
185
+ a[i] /= b;
186
+ }
187
+ }
188
+ export function evaluateFractionComplex(f, x) {
189
+ const v1 = evaluateComplex(f[0], x);
190
+ const v2 = evaluateComplex(f[1], x);
191
+ return v1.div(v2);
192
+ }
193
+ export function addFractions(f1, f2, eps = 0) {
194
+ if (compareEqual(f1[1], f2[1], eps)) {
195
+ return [add(f1[0], f2[0], eps), Float64Array.from(f1[1])];
196
+ }
197
+ const g = gcd(f1[1], f2[1], eps);
198
+ if (g.length == 1 && g[0] == 1) {
199
+ const top = add(multiply(f1[0], f2[1], eps), multiply(f2[0], f1[1], eps));
200
+ const bottom = multiply(f1[1], f2[1], eps);
201
+ return [top, bottom];
202
+ }
203
+ const q1 = divide(f1[1], g, eps);
204
+ const q2 = divide(f2[1], g, eps);
205
+ const m1 = q1[0];
206
+ const m2 = q2[0];
207
+ const top = add(multiply(f1[0], m2, eps), multiply(f2[0], m1, eps));
208
+ const bottom = multiply(f1[1], m2, eps);
209
+ return [top, bottom];
210
+ }
211
+ export function multiplyFractions(f1, f2, eps = 0) {
212
+ const top = multiply(f1[0], f2[0], eps);
213
+ const bottom = multiply(f1[1], f2[1], eps);
214
+ return [top, bottom];
215
+ }
216
+ export function normalizeFraction(f, eps = 0) {
217
+ const top = trim(f[0], eps);
218
+ const bottom = trim(f[1], eps);
219
+ const lc = bottom[bottom.length - 1];
220
+ if (lc == 0) {
221
+ throw new Error("Fraction denominator is zero.");
222
+ }
223
+ divByRealInPlace(top, lc);
224
+ divByRealInPlace(bottom, lc);
225
+ return [top, bottom];
226
+ }
227
227
  //# sourceMappingURL=PolyReal.js.map
@@ -1 +1 @@
1
- {"version":3,"file":"PolyReal.js","sourceRoot":"","sources":["../../src/math/PolyReal.ts"],"names":[],"mappings":"AAiBA,OAAO,cAAc,MAAM,qBAAqB,CAAC;AAYjD,MAAM,UAAU,YAAY,CAAE,CAAoB,EAAE,CAAS;IAC1D,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE;QAChB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;KAAE;IAC3C,MAAM,CAAC,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACb,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE;QAC9B,CAAC,IAAI,CAAC,CAAC;QACP,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;KAAE;IACf,OAAO,CAAC,CAAC;AAAC,CAAC;AAYd,MAAM,UAAU,eAAe,CAAE,CAAoB,EAAE,CAAU;IAC9D,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE;QAChB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;KAAE;IAC3C,MAAM,CAAC,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,MAAM,CAAC,GAAG,IAAI,cAAc,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IACnC,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE;QAC9B,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;QACX,CAAC,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;KAAE;IACvB,OAAO,CAAC,CAAC;AAAC,CAAC;AAKd,MAAM,UAAU,MAAM,CAAE,KAAwB;IAC7C,MAAM,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC;IACvB,IAAI,CAAC,IAAI,CAAC,EAAE;QACT,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;KAAE;IAC/B,IAAI,CAAC,GAAG,YAAY,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACtC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;QACzB,MAAM,EAAE,GAAG,YAAY,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QACzC,CAAC,GAAG,QAAQ,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;KAAE;IACzB,OAAO,CAAC,CAAC;AAAC,CAAC;AAKd,MAAM,UAAU,YAAY,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IAChF,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAC3B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE;QAC1B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,IAAI,IAAI,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,GAAG,EAAE;YAC1B,OAAO,KAAK,CAAC;SAAE;KAAC;IACtB,OAAO,IAAI,CAAC;AAAC,CAAC;AAKjB,MAAM,UAAU,GAAG,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IACvE,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAC5B,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IACpC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE;QAC3B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,EAAE,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,CAAC;KAAE;IACrB,OAAO,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,QAAQ,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IAC5E,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,EAAE;QACnC,MAAM,IAAI,KAAK,CAAC,qBAAqB,CAAC,CAAC;KAAE;IAC5C,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE;QAC/D,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;KAAE;IAC/B,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;IACnB,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IACpC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE;QAC3B,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;QAC/B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;QAC3B,KAAK,IAAI,CAAC,GAAG,EAAE,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE;YAC5B,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;SAAE;QAC5B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;KAAE;IACf,OAAO,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;AAAC,CAAC;AAM1B,MAAM,UAAU,MAAM,CAAE,GAAsB,EAAE,GAAsB,EAAE,GAAG,GAAG,CAAC;IAC5E,IAAI,GAAG,CAAC,MAAM,IAAI,CAAC,IAAI,GAAG,CAAC,MAAM,IAAI,CAAC,EAAE;QACrC,MAAM,IAAI,KAAK,CAAC,qBAAqB,CAAC,CAAC;KAAE;IAC5C,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IAC1B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IAC1B,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,EAAE;QACjB,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE;YACb,MAAM,IAAI,KAAK,CAAC,8BAA8B,CAAC,CAAC;SAAE;QACrD,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE;YACb,OAAO,CAAC,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;SAAE;QACxD,OAAO,CAAC,SAAS,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;KAAE;IACvD,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,IAAI,EAAE,GAAG,EAAE,EAAE;QACV,OAAO,CAAC,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;KAAE;IACxD,MAAM,CAAC,GAAG,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAChC,MAAM,GAAG,GAAG,EAAE,CAAC,EAAE,CAAC,CAAC;IACnB,KAAK,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE;QAChC,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC;QAC1B,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;QACd,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,EAAE,CAAC,EAAE;YAC1B,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;SAAE;KAAC;IAC/B,MAAM,QAAQ,GAAG,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,MAAM,SAAS,GAAG,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,EAAE,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAC/C,OAAO,CAAC,QAAQ,EAAE,SAAS,CAAC,CAAC;AAAC,CAAC;AAKlC,MAAM,UAAU,GAAG,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IACvE,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;IACvB,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;IACvB,SAAS,CAAC,EAAE,CAAC,CAAC;IACd,SAAS,CAAC,EAAE,CAAC,CAAC;IACd,IAAI,EAAE,CAAC,MAAM,GAAG,EAAE,CAAC,MAAM,EAAE;QACxB,CAAC,EAAE,EAAE,EAAE,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;KAAE;IACzB,OAAO,IAAI,EAAE;QACV,IAAI,EAAE,CAAC,MAAM,GAAG,CAAC,EAAE;YAChB,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;SAAE;QAC/B,MAAM,CAAC,GAAG,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE;YAC7B,OAAO,EAAE,CAAC;SAAE;QACf,SAAS,CAAC,CAAC,CAAC,CAAC;QACb,EAAE,GAAG,EAAE,CAAC;QACR,EAAE,GAAG,CAAC,CAAC;KAAE;AAAA,CAAC;AAGhB,SAAS,IAAI,CAAE,CAAoB,EAAE,GAAG,GAAG,CAAC;IACzC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE;QAChB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;KAAE;IAC3C,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,EAAE;QAClC,OAAO,YAAY,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;KAAE;IACjC,IAAI,GAAG,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,OAAO,GAAG,GAAG,CAAC,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,EAAE;QAC5C,GAAG,EAAE,CAAC;KAAE;IACX,IAAI,GAAG,IAAI,CAAC,EAAE;QACX,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;KAAE;IAC/B,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,GAAG,CAAC,CAAC;IACjC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,GAAG,EAAE,CAAC,EAAE,EAAE;QAC3B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;KAAE;IAClB,OAAO,EAAE,CAAC;AAAC,CAAC;AAGf,SAAS,SAAS,CAAE,CAAe;IAChC,MAAM,GAAG,GAAG,CAAC,CAAC,MAAM,CAAC;IACrB,IAAI,GAAG,IAAI,CAAC,EAAE;QACX,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;KAAE;IAC3C,MAAM,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IACtB,IAAI,EAAE,IAAI,CAAC,EAAE;QACV,OAAO;KAAE;IACZ,IAAI,EAAE,IAAI,CAAC,EAAE;QACV,MAAM,IAAI,KAAK,CAAC,8BAA8B,CAAC,CAAC;KAAE;IACrD,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IACf,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,GAAG,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;QAC/B,CAAC,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;KAAE;AAAA,CAAC;AAEpB,SAAS,SAAS,CAAE,CAAoB,EAAE,CAAS;IAChD,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC;IACtC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE;QAChC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;KAAE;IACtB,OAAO,EAAE,CAAC;AAAC,CAAC;AAEf,SAAS,gBAAgB,CAAE,CAAe,EAAE,CAAS;IAClD,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE;QAChC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC;KAAE;AAAA,CAAC;AAOnB,MAAM,UAAU,uBAAuB,CAAE,CAAsB,EAAE,CAAU;IACxE,MAAM,EAAE,GAAG,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACpC,MAAM,EAAE,GAAG,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACpC,OAAO,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC;AAAC,CAAC;AAKvB,MAAM,UAAU,YAAY,CAAE,EAAuB,EAAE,EAAuB,EAAE,GAAG,GAAG,CAAC;IACpF,IAAI,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE;QAClC,OAAO,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;KAAE;IAC/D,MAAM,CAAC,GAAG,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IACjC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE;QAC7B,MAAM,GAAG,GAAG,GAAG,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;QAC1E,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;QAC3C,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;KAAE;IAC1B,MAAM,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IACjC,MAAM,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAKjC,MAAM,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;IACjB,MAAM,GAAG,GAAG,GAAG,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,EAAE,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC;IACpE,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC;IACxC,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,iBAAiB,CAAE,EAAuB,EAAE,EAAuB,EAAE,GAAG,GAAG,CAAC;IACzF,MAAM,GAAG,GAAM,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,iBAAiB,CAAE,CAAsB,EAAE,GAAG,GAAG,CAAC;IAC/D,MAAM,GAAG,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC5B,MAAM,MAAM,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC/B,MAAM,EAAE,GAAG,MAAM,CAAC,MAAM,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;IACrC,IAAI,EAAE,IAAI,CAAC,EAAE;QACV,MAAM,IAAI,KAAK,CAAC,+BAA+B,CAAC,CAAC;KAAE;IACtD,gBAAgB,CAAC,GAAG,EAAE,EAAE,CAAC,CAAC;IAC1B,gBAAgB,CAAC,MAAM,EAAE,EAAE,CAAC,CAAC;IAC7B,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC"}
1
+ {"version":3,"file":"PolyReal.js","sourceRoot":"","sources":["../../src/math/PolyReal.ts"],"names":[],"mappings":"AAiBA,OAAO,cAAc,MAAM,qBAAqB,CAAC;AAYjD,MAAM,UAAU,YAAY,CAAE,CAAoB,EAAE,CAAS;IAC1D,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QACjB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;IAAC,CAAC;IAC3C,MAAM,CAAC,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACb,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAC/B,CAAC,IAAI,CAAC,CAAC;QACP,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IACf,OAAO,CAAC,CAAC;AAAC,CAAC;AAYd,MAAM,UAAU,eAAe,CAAE,CAAoB,EAAE,CAAU;IAC9D,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QACjB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;IAAC,CAAC;IAC3C,MAAM,CAAC,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,MAAM,CAAC,GAAG,IAAI,cAAc,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IACnC,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAC/B,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;QACX,CAAC,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IACvB,OAAO,CAAC,CAAC;AAAC,CAAC;AAKd,MAAM,UAAU,MAAM,CAAE,KAAwB;IAC7C,MAAM,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC;IACvB,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC;QACV,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAC/B,IAAI,CAAC,GAAiB,YAAY,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACpD,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAC1B,MAAM,EAAE,GAAG,YAAY,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QACzC,CAAC,GAAG,QAAQ,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;IAAC,CAAC;IACzB,OAAO,CAAC,CAAC;AAAC,CAAC;AAKd,MAAM,UAAU,YAAY,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IAChF,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAC3B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAC3B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,IAAI,IAAI,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,GAAG,EAAE,CAAC;YAC3B,OAAO,KAAK,CAAC;QAAC,CAAC;IAAA,CAAC;IACtB,OAAO,IAAI,CAAC;AAAC,CAAC;AAKjB,MAAM,UAAU,GAAG,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IACvE,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAC5B,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IACpC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC;QAC5B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,EAAE,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,CAAC;IAAC,CAAC;IACrB,OAAO,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,QAAQ,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IAC5E,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QACpC,MAAM,IAAI,KAAK,CAAC,qBAAqB,CAAC,CAAC;IAAC,CAAC;IAC5C,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;QAChE,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAC/B,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;IACnB,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IACpC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC;QAC5B,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;QAC/B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;QAC3B,KAAK,IAAI,CAAC,GAAG,EAAE,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC;YAC7B,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAAC,CAAC;QAC5B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;IAAC,CAAC;IACf,OAAO,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;AAAC,CAAC;AAM1B,MAAM,UAAU,MAAM,CAAE,GAAsB,EAAE,GAAsB,EAAE,GAAG,GAAG,CAAC;IAC5E,IAAI,GAAG,CAAC,MAAM,IAAI,CAAC,IAAI,GAAG,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QACtC,MAAM,IAAI,KAAK,CAAC,qBAAqB,CAAC,CAAC;IAAC,CAAC;IAC5C,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IAC1B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IAC1B,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QAClB,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;YACd,MAAM,IAAI,KAAK,CAAC,8BAA8B,CAAC,CAAC;QAAC,CAAC;QACrD,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;YACd,OAAO,CAAC,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAAC,CAAC;QACxD,OAAO,CAAC,SAAS,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IACvD,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,IAAI,EAAE,GAAG,EAAE,EAAE,CAAC;QACX,OAAO,CAAC,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;IAAC,CAAC;IACxD,MAAM,CAAC,GAAG,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAChC,MAAM,GAAG,GAAG,EAAE,CAAC,EAAE,CAAC,CAAC;IACnB,KAAK,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QACjC,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC;QAC1B,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;QACd,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,EAAE,CAAC,EAAE,CAAC;YAC3B,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;QAAC,CAAC;IAAA,CAAC;IAC/B,MAAM,QAAQ,GAAG,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,MAAM,SAAS,GAAG,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,EAAE,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAC/C,OAAO,CAAC,QAAQ,EAAE,SAAS,CAAC,CAAC;AAAC,CAAC;AAKlC,MAAM,UAAU,GAAG,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IACvE,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;IACvB,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;IACvB,SAAS,CAAC,EAAE,CAAC,CAAC;IACd,SAAS,CAAC,EAAE,CAAC,CAAC;IACd,IAAI,EAAE,CAAC,MAAM,GAAG,EAAE,CAAC,MAAM,EAAE,CAAC;QACzB,CAAC,EAAE,EAAE,EAAE,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAAC,CAAC;IACzB,OAAO,IAAI,EAAE,CAAC;QACX,IAAI,EAAE,CAAC,MAAM,GAAG,CAAC,EAAE,CAAC;YACjB,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;QAAC,CAAC;QAC/B,MAAM,CAAC,GAAG,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;YAC9B,OAAO,EAAE,CAAC;QAAC,CAAC;QACf,SAAS,CAAC,CAAC,CAAC,CAAC;QACb,EAAE,GAAG,EAAE,CAAC;QACR,EAAE,GAAG,CAAC,CAAC;IAAC,CAAC;AAAA,CAAC;AAGhB,SAAS,IAAI,CAAE,CAAoB,EAAE,GAAG,GAAG,CAAC;IACzC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QACjB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;IAAC,CAAC;IAC3C,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,EAAE,CAAC;QACnC,OAAO,YAAY,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IACjC,IAAI,GAAG,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,OAAO,GAAG,GAAG,CAAC,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,EAAE,CAAC;QAC7C,GAAG,EAAE,CAAC;IAAC,CAAC;IACX,IAAI,GAAG,IAAI,CAAC,EAAE,CAAC;QACZ,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAC/B,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,GAAG,CAAC,CAAC;IACjC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,GAAG,EAAE,CAAC,EAAE,EAAE,CAAC;QAC5B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAClB,OAAO,EAAE,CAAC;AAAC,CAAC;AAGf,SAAS,SAAS,CAAE,CAAe;IAChC,MAAM,GAAG,GAAG,CAAC,CAAC,MAAM,CAAC;IACrB,IAAI,GAAG,IAAI,CAAC,EAAE,CAAC;QACZ,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;IAAC,CAAC;IAC3C,MAAM,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IACtB,IAAI,EAAE,IAAI,CAAC,EAAE,CAAC;QACX,OAAO;IAAC,CAAC;IACZ,IAAI,EAAE,IAAI,CAAC,EAAE,CAAC;QACX,MAAM,IAAI,KAAK,CAAC,8BAA8B,CAAC,CAAC;IAAC,CAAC;IACrD,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IACf,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,GAAG,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAChC,CAAC,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;IAAC,CAAC;AAAA,CAAC;AAEpB,SAAS,SAAS,CAAE,CAAoB,EAAE,CAAS;IAChD,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC;IACtC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;QACjC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;IAAC,CAAC;IACtB,OAAO,EAAE,CAAC;AAAC,CAAC;AAEf,SAAS,gBAAgB,CAAE,CAAe,EAAE,CAAS;IAClD,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;QACjC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC;IAAC,CAAC;AAAA,CAAC;AAOnB,MAAM,UAAU,uBAAuB,CAAE,CAAsB,EAAE,CAAU;IACxE,MAAM,EAAE,GAAG,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACpC,MAAM,EAAE,GAAG,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACpC,OAAO,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC;AAAC,CAAC;AAKvB,MAAM,UAAU,YAAY,CAAE,EAAuB,EAAE,EAAuB,EAAE,GAAG,GAAG,CAAC;IACpF,IAAI,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;QACnC,OAAO,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAC/D,MAAM,CAAC,GAAG,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IACjC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;QAC9B,MAAM,GAAG,GAAG,GAAG,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;QAC1E,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;QAC3C,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;IAAC,CAAC;IAC1B,MAAM,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IACjC,MAAM,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAKjC,MAAM,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;IACjB,MAAM,GAAG,GAAG,GAAG,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,EAAE,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC;IACpE,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC;IACxC,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,iBAAiB,CAAE,EAAuB,EAAE,EAAuB,EAAE,GAAG,GAAG,CAAC;IACzF,MAAM,GAAG,GAAM,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,iBAAiB,CAAE,CAAsB,EAAE,GAAG,GAAG,CAAC;IAC/D,MAAM,GAAG,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC5B,MAAM,MAAM,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC/B,MAAM,EAAE,GAAG,MAAM,CAAC,MAAM,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;IACrC,IAAI,EAAE,IAAI,CAAC,EAAE,CAAC;QACX,MAAM,IAAI,KAAK,CAAC,+BAA+B,CAAC,CAAC;IAAC,CAAC;IACtD,gBAAgB,CAAC,GAAG,EAAE,EAAE,CAAC,CAAC;IAC1B,gBAAgB,CAAC,MAAM,EAAE,EAAE,CAAC,CAAC;IAC7B,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC"}
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "dsp-collection",
3
- "version": "0.2.5",
3
+ "version": "0.2.7",
4
4
  "description": "A collection of JavaScript modules for digital signal processing (written in TypeScript)",
5
5
  "keywords": [
6
6
  "DSP",
@@ -13,11 +13,16 @@
13
13
  "Spectral filtering",
14
14
  "Window functions",
15
15
  "Instantaneous frequency",
16
- "Pitch estimation"
16
+ "Pitch estimation",
17
+ "Simple moving average (SMA)",
18
+ "triangular moving average (TMA)"
17
19
  ],
18
20
  "license": "MIT",
19
21
  "homepage": "http://www.source-code.biz/dsp/js",
20
- "repository": "github:chdh/dsp-collection-js",
22
+ "repository": {
23
+ "type": "git",
24
+ "url": "git+https://github.com/chdh/dsp-collection-js.git"
25
+ },
21
26
  "contributors": [
22
27
  {
23
28
  "name": "Christian d'Heureuse",
@@ -32,5 +37,8 @@
32
37
  "doPack": "cd dist && npm pack",
33
38
  "doPublish": "cd dist && npm publish"
34
39
  },
40
+ "devDependencies": {
41
+ "@types/node": "^22"
42
+ },
35
43
  "type": "module"
36
44
  }
@@ -1,12 +1,13 @@
1
- import Complex from "../math/Complex.js";
2
- import * as WindowFunctions from "./WindowFunctions.js";
3
- export interface ComponentResult {
4
- component: Complex;
5
- frequency: number;
6
- windowStartPosition: number;
7
- windowWidth: number;
8
- }
9
- export declare function getSingle_relWindow(samples: Float64Array | Float32Array, roughFrequency: number, roughWindowCenterPosition: number, relWindowWidth: number, windowFunction: WindowFunctions.WindowFunction | undefined): ComponentResult | undefined;
10
- export declare function getSingle_maxWindow(samples: Float64Array | Float32Array, roughFrequency: number, roughWindowCenterPosition: number, maxWindowWidth: number, windowFunction: WindowFunctions.WindowFunction | undefined): ComponentResult | undefined;
11
- export declare function getSingle(samples: Float64Array | Float32Array, roughFrequency: number, windowFunction: WindowFunctions.WindowFunction | undefined): Complex;
12
- export declare function getHarmonicAmplitudes(samples: Float64Array | Float32Array, windowCenterPosition: number, f0: number, harmonics: number, relWindowWidth?: number, windowFunction?: typeof WindowFunctions.flatTopWindowNorm): Float64Array | undefined;
1
+ import Complex from "../math/Complex.ts";
2
+ import * as WindowFunctions from "./WindowFunctions.ts";
3
+ export interface ComponentResult {
4
+ component: Complex;
5
+ frequency: number;
6
+ windowStartPosition: number;
7
+ windowWidth: number;
8
+ }
9
+ export declare function getSingle_relWindow(samples: Float64Array | Float32Array, roughFrequency: number, roughWindowCenterPosition: number, relWindowWidth: number, windowFunction: WindowFunctions.WindowFunction | undefined): ComponentResult | undefined;
10
+ export declare function getSingle_maxWindow(samples: Float64Array | Float32Array, roughFrequency: number, roughWindowCenterPosition: number, maxWindowWidth: number, windowFunction: WindowFunctions.WindowFunction | undefined): ComponentResult | undefined;
11
+ export declare function getSingle(samples: Float64Array | Float32Array, roughFrequency: number, windowFunction: WindowFunctions.WindowFunction | undefined): Complex;
12
+ export declare function getHarmonicAmplitudes(samples: Float64Array | Float32Array, windowCenterPosition: number, f0: number, harmonics: number, relWindowWidth?: number, windowFunction?: typeof WindowFunctions.flatTopWindowNorm): Float64Array | undefined;
13
+ //# sourceMappingURL=AdaptiveStft.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"AdaptiveStft.d.ts","sourceRoot":"","sources":["../../src/signal/AdaptiveStft.ts"],"names":[],"mappings":"AASA,OAAO,OAAO,MAAM,oBAAoB,CAAC;AAEzC,OAAO,KAAK,eAAe,MAAM,sBAAsB,CAAC;AAExD,MAAM,WAAW,eAAe;IAC7B,SAAS,EAAiB,OAAO,CAAC;IAClC,SAAS,EAAiB,MAAM,CAAC;IACjC,mBAAmB,EAAO,MAAM,CAAC;IACjC,WAAW,EAAe,MAAM,CAAC;CAAE;AAyBtC,wBAAgB,mBAAmB,CAAE,OAAO,EAAE,YAAY,GAAG,YAAY,EAAE,cAAc,EAAE,MAAM,EAAE,yBAAyB,EAAE,MAAM,EAC9H,cAAc,EAAE,MAAM,EAAE,cAAc,EAAE,eAAe,CAAC,cAAc,GAAG,SAAS,GAAI,eAAe,GAAG,SAAS,CAkB1E;AAwB7C,wBAAgB,mBAAmB,CAAE,OAAO,EAAE,YAAY,GAAG,YAAY,EAAE,cAAc,EAAE,MAAM,EAAE,yBAAyB,EAAE,MAAM,EAC9H,cAAc,EAAE,MAAM,EAAE,cAAc,EAAE,eAAe,CAAC,cAAc,GAAG,SAAS,GAAI,eAAe,GAAG,SAAS,CAGH;AAiBpH,wBAAgB,SAAS,CAAE,OAAO,EAAE,YAAY,GAAG,YAAY,EAAE,cAAc,EAAE,MAAM,EAAE,cAAc,EAAE,eAAe,CAAC,cAAc,GAAG,SAAS,GAAI,OAAO,CAEpH;AAuB1C,wBAAgB,qBAAqB,CAAE,OAAO,EAAE,YAAY,GAAG,YAAY,EAAE,oBAAoB,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,SAAI,EAAE,cAAc,2CAAoC,GAAI,YAAY,GAAG,SAAS,CAgBrN"}