dsp-collection 0.2.5 → 0.2.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +6 -2
- package/filter/FirFilterWin.d.ts +8 -0
- package/filter/FirFilterWin.d.ts.map +1 -0
- package/filter/FirFilterWin.js +55 -0
- package/filter/FirFilterWin.js.map +1 -0
- package/filter/SpecFilt.d.ts +11 -10
- package/filter/SpecFilt.d.ts.map +1 -0
- package/filter/SpecFilt.js +98 -98
- package/filter/SpecFilt.js.map +1 -1
- package/math/Complex.d.ts +43 -42
- package/math/Complex.d.ts.map +1 -0
- package/math/Complex.js +130 -129
- package/math/Complex.js.map +1 -1
- package/math/ComplexArray.d.ts +37 -36
- package/math/ComplexArray.d.ts.map +1 -0
- package/math/ComplexArray.js +170 -170
- package/math/ComplexArray.js.map +1 -1
- package/math/MathUtils.d.ts +10 -7
- package/math/MathUtils.d.ts.map +1 -0
- package/math/MathUtils.js +116 -81
- package/math/MathUtils.js.map +1 -1
- package/math/MutableComplex.d.ts +24 -22
- package/math/MutableComplex.d.ts.map +1 -0
- package/math/MutableComplex.js +68 -64
- package/math/MutableComplex.js.map +1 -1
- package/math/NumApprox.d.ts +4 -3
- package/math/NumApprox.d.ts.map +1 -0
- package/math/NumApprox.js +67 -67
- package/math/NumApprox.js.map +1 -1
- package/math/PolyReal.d.ts +14 -13
- package/math/PolyReal.d.ts.map +1 -0
- package/math/PolyReal.js +226 -226
- package/math/PolyReal.js.map +1 -1
- package/package.json +11 -3
- package/signal/AdaptiveStft.d.ts +13 -12
- package/signal/AdaptiveStft.d.ts.map +1 -0
- package/signal/AdaptiveStft.js +57 -57
- package/signal/AdaptiveStft.js.map +1 -1
- package/signal/Autocorrelation.d.ts +6 -5
- package/signal/Autocorrelation.d.ts.map +1 -0
- package/signal/Autocorrelation.js +53 -53
- package/signal/Autocorrelation.js.map +1 -1
- package/signal/Dft.d.ts +10 -9
- package/signal/Dft.d.ts.map +1 -0
- package/signal/Dft.js +87 -87
- package/signal/Dft.js.map +1 -1
- package/signal/EnvelopeDetection.d.ts +2 -1
- package/signal/EnvelopeDetection.d.ts.map +1 -0
- package/signal/EnvelopeDetection.js +9 -9
- package/signal/EnvelopeDetection.js.map +1 -1
- package/signal/Fft.d.ts +10 -9
- package/signal/Fft.d.ts.map +1 -0
- package/signal/Fft.js +275 -275
- package/signal/Fft.js.map +1 -1
- package/signal/Goertzel.d.ts +6 -5
- package/signal/Goertzel.d.ts.map +1 -0
- package/signal/Goertzel.js +48 -48
- package/signal/Goertzel.js.map +1 -1
- package/signal/InstFreq.d.ts +9 -8
- package/signal/InstFreq.d.ts.map +1 -0
- package/signal/InstFreq.js +26 -26
- package/signal/InstFreq.js.map +1 -1
- package/signal/PitchDetectionHarm.d.ts +27 -26
- package/signal/PitchDetectionHarm.d.ts.map +1 -0
- package/signal/PitchDetectionHarm.js +72 -68
- package/signal/PitchDetectionHarm.js.map +1 -1
- package/signal/Resampling.d.ts +8 -7
- package/signal/Resampling.d.ts.map +1 -0
- package/signal/Resampling.js +218 -218
- package/signal/Resampling.js.map +1 -1
- package/signal/WindowFunctions.d.ts +42 -40
- package/signal/WindowFunctions.d.ts.map +1 -0
- package/signal/WindowFunctions.js +194 -194
- package/signal/WindowFunctions.js.map +1 -1
- package/utils/ArrayUtils.d.ts +10 -9
- package/utils/ArrayUtils.d.ts.map +1 -0
- package/utils/ArrayUtils.js +68 -68
- package/utils/ArrayUtils.js.map +1 -1
- package/utils/DspUtils.d.ts +5 -2
- package/utils/DspUtils.d.ts.map +1 -0
- package/utils/DspUtils.js +12 -6
- package/utils/DspUtils.js.map +1 -1
- package/utils/MiscUtils.d.ts +7 -6
- package/utils/MiscUtils.d.ts.map +1 -0
- package/utils/MiscUtils.js +20 -20
- package/utils/MiscUtils.js.map +1 -1
package/math/PolyReal.js
CHANGED
|
@@ -1,227 +1,227 @@
|
|
|
1
|
-
import MutableComplex from "./MutableComplex.js";
|
|
2
|
-
export function evaluateReal(a, x) {
|
|
3
|
-
if (a.length == 0) {
|
|
4
|
-
throw new Error("Zero length array.");
|
|
5
|
-
}
|
|
6
|
-
const n = a.length - 1;
|
|
7
|
-
let r = a[n];
|
|
8
|
-
for (let i = n - 1; i >= 0; i--) {
|
|
9
|
-
r *= x;
|
|
10
|
-
r += a[i];
|
|
11
|
-
}
|
|
12
|
-
return r;
|
|
13
|
-
}
|
|
14
|
-
export function evaluateComplex(a, x) {
|
|
15
|
-
if (a.length == 0) {
|
|
16
|
-
throw new Error("Zero length array.");
|
|
17
|
-
}
|
|
18
|
-
const n = a.length - 1;
|
|
19
|
-
const r = new MutableComplex(a[n]);
|
|
20
|
-
for (let i = n - 1; i >= 0; i--) {
|
|
21
|
-
r.mulBy(x);
|
|
22
|
-
r.addRealTo(a[i]);
|
|
23
|
-
}
|
|
24
|
-
return r;
|
|
25
|
-
}
|
|
26
|
-
export function expand(zeros) {
|
|
27
|
-
const n = zeros.length;
|
|
28
|
-
if (n == 0) {
|
|
29
|
-
return Float64Array.of(1);
|
|
30
|
-
}
|
|
31
|
-
let a = Float64Array.of(-zeros[0], 1);
|
|
32
|
-
for (let i = 1; i < n; i++) {
|
|
33
|
-
const a2 = Float64Array.of(-zeros[i], 1);
|
|
34
|
-
a = multiply(a, a2);
|
|
35
|
-
}
|
|
36
|
-
return a;
|
|
37
|
-
}
|
|
38
|
-
export function compareEqual(a1, a2, eps = 0) {
|
|
39
|
-
const n1 = a1.length - 1;
|
|
40
|
-
const n2 = a2.length - 1;
|
|
41
|
-
const n = Math.max(n1, n2);
|
|
42
|
-
for (let i = 0; i <= n; i++) {
|
|
43
|
-
const v1 = (i <= n1) ? a1[i] : 0;
|
|
44
|
-
const v2 = (i <= n2) ? a2[i] : 0;
|
|
45
|
-
if (Math.abs(v1 - v2) > eps) {
|
|
46
|
-
return false;
|
|
47
|
-
}
|
|
48
|
-
}
|
|
49
|
-
return true;
|
|
50
|
-
}
|
|
51
|
-
export function add(a1, a2, eps = 0) {
|
|
52
|
-
const n1 = a1.length - 1;
|
|
53
|
-
const n2 = a2.length - 1;
|
|
54
|
-
const n3 = Math.max(n1, n2);
|
|
55
|
-
const a3 = new Float64Array(n3 + 1);
|
|
56
|
-
for (let i = 0; i <= n3; i++) {
|
|
57
|
-
const v1 = (i <= n1) ? a1[i] : 0;
|
|
58
|
-
const v2 = (i <= n2) ? a2[i] : 0;
|
|
59
|
-
a3[i] = v1 + v2;
|
|
60
|
-
}
|
|
61
|
-
return trim(a3, eps);
|
|
62
|
-
}
|
|
63
|
-
export function multiply(a1, a2, eps = 0) {
|
|
64
|
-
if (a1.length == 0 || a2.length == 0) {
|
|
65
|
-
throw new Error("Zero length arrays.");
|
|
66
|
-
}
|
|
67
|
-
if (a1.length == 1 && a1[0] == 0 || a2.length == 1 && a2[0] == 0) {
|
|
68
|
-
return Float64Array.of(0);
|
|
69
|
-
}
|
|
70
|
-
const n1 = a1.length - 1;
|
|
71
|
-
const n2 = a2.length - 1;
|
|
72
|
-
const n3 = n1 + n2;
|
|
73
|
-
const a3 = new Float64Array(n3 + 1);
|
|
74
|
-
for (let i = 0; i <= n3; i++) {
|
|
75
|
-
let t = 0;
|
|
76
|
-
const p1 = Math.max(0, i - n2);
|
|
77
|
-
const p2 = Math.min(n1, i);
|
|
78
|
-
for (let j = p1; j <= p2; j++) {
|
|
79
|
-
t += a1[j] * a2[i - j];
|
|
80
|
-
}
|
|
81
|
-
a3[i] = t;
|
|
82
|
-
}
|
|
83
|
-
return trim(a3, eps);
|
|
84
|
-
}
|
|
85
|
-
export function divide(a1r, a2r, eps = 0) {
|
|
86
|
-
if (a1r.length == 0 || a2r.length == 0) {
|
|
87
|
-
throw new Error("Zero length arrays.");
|
|
88
|
-
}
|
|
89
|
-
const a1 = trim(a1r, eps);
|
|
90
|
-
const a2 = trim(a2r, eps);
|
|
91
|
-
if (a2.length == 1) {
|
|
92
|
-
if (a2[0] == 0) {
|
|
93
|
-
throw new Error("Polynomial division by zero.");
|
|
94
|
-
}
|
|
95
|
-
if (a2[0] == 1) {
|
|
96
|
-
return [Float64Array.from(a1), Float64Array.of(0)];
|
|
97
|
-
}
|
|
98
|
-
return [divByReal(a1, a2[0]), Float64Array.of(0)];
|
|
99
|
-
}
|
|
100
|
-
const n1 = a1.length - 1;
|
|
101
|
-
const n2 = a2.length - 1;
|
|
102
|
-
if (n1 < n2) {
|
|
103
|
-
return [Float64Array.of(0), Float64Array.from(a1)];
|
|
104
|
-
}
|
|
105
|
-
const a = Float64Array.from(a1);
|
|
106
|
-
const lc2 = a2[n2];
|
|
107
|
-
for (let i = n1 - n2; i >= 0; i--) {
|
|
108
|
-
const r = a[n2 + i] / lc2;
|
|
109
|
-
a[n2 + i] = r;
|
|
110
|
-
for (let j = 0; j < n2; ++j) {
|
|
111
|
-
a[i + j] -= r * a2[j];
|
|
112
|
-
}
|
|
113
|
-
}
|
|
114
|
-
const quotient = trim(a.subarray(n2), eps);
|
|
115
|
-
const remainder = trim(a.subarray(0, n2), eps);
|
|
116
|
-
return [quotient, remainder];
|
|
117
|
-
}
|
|
118
|
-
export function gcd(a1, a2, eps = 0) {
|
|
119
|
-
let r1 = trim(a1, eps);
|
|
120
|
-
let r2 = trim(a2, eps);
|
|
121
|
-
makeMonic(r1);
|
|
122
|
-
makeMonic(r2);
|
|
123
|
-
if (r1.length < r2.length) {
|
|
124
|
-
[r1, r2] = [r2, r1];
|
|
125
|
-
}
|
|
126
|
-
while (true) {
|
|
127
|
-
if (r2.length < 2) {
|
|
128
|
-
return Float64Array.of(1);
|
|
129
|
-
}
|
|
130
|
-
const r = divide(r1, r2, eps)[1];
|
|
131
|
-
if (r.length == 1 && r[0] == 0) {
|
|
132
|
-
return r2;
|
|
133
|
-
}
|
|
134
|
-
makeMonic(r);
|
|
135
|
-
r1 = r2;
|
|
136
|
-
r2 = r;
|
|
137
|
-
}
|
|
138
|
-
}
|
|
139
|
-
function trim(a, eps = 0) {
|
|
140
|
-
if (a.length == 0) {
|
|
141
|
-
throw new Error("Zero length array.");
|
|
142
|
-
}
|
|
143
|
-
if (Math.abs(a[a.length - 1]) > eps) {
|
|
144
|
-
return Float64Array.from(a);
|
|
145
|
-
}
|
|
146
|
-
let len = a.length - 1;
|
|
147
|
-
while (len > 0 && Math.abs(a[len - 1]) <= eps) {
|
|
148
|
-
len--;
|
|
149
|
-
}
|
|
150
|
-
if (len == 0) {
|
|
151
|
-
return Float64Array.of(0);
|
|
152
|
-
}
|
|
153
|
-
const a2 = new Float64Array(len);
|
|
154
|
-
for (let i = 0; i < len; i++) {
|
|
155
|
-
a2[i] = a[i];
|
|
156
|
-
}
|
|
157
|
-
return a2;
|
|
158
|
-
}
|
|
159
|
-
function makeMonic(a) {
|
|
160
|
-
const len = a.length;
|
|
161
|
-
if (len == 0) {
|
|
162
|
-
throw new Error("Zero length array.");
|
|
163
|
-
}
|
|
164
|
-
const lc = a[len - 1];
|
|
165
|
-
if (lc == 1) {
|
|
166
|
-
return;
|
|
167
|
-
}
|
|
168
|
-
if (lc == 0) {
|
|
169
|
-
throw new Error("Leading coefficient is zero.");
|
|
170
|
-
}
|
|
171
|
-
a[len - 1] = 1;
|
|
172
|
-
for (let i = 0; i < len - 1; i++) {
|
|
173
|
-
a[i] /= lc;
|
|
174
|
-
}
|
|
175
|
-
}
|
|
176
|
-
function divByReal(a, b) {
|
|
177
|
-
const a2 = new Float64Array(a.length);
|
|
178
|
-
for (let i = 0; i < a.length; i++) {
|
|
179
|
-
a2[i] = a[i] / b;
|
|
180
|
-
}
|
|
181
|
-
return a2;
|
|
182
|
-
}
|
|
183
|
-
function divByRealInPlace(a, b) {
|
|
184
|
-
for (let i = 0; i < a.length; i++) {
|
|
185
|
-
a[i] /= b;
|
|
186
|
-
}
|
|
187
|
-
}
|
|
188
|
-
export function evaluateFractionComplex(f, x) {
|
|
189
|
-
const v1 = evaluateComplex(f[0], x);
|
|
190
|
-
const v2 = evaluateComplex(f[1], x);
|
|
191
|
-
return v1.div(v2);
|
|
192
|
-
}
|
|
193
|
-
export function addFractions(f1, f2, eps = 0) {
|
|
194
|
-
if (compareEqual(f1[1], f2[1], eps)) {
|
|
195
|
-
return [add(f1[0], f2[0], eps), Float64Array.from(f1[1])];
|
|
196
|
-
}
|
|
197
|
-
const g = gcd(f1[1], f2[1], eps);
|
|
198
|
-
if (g.length == 1 && g[0] == 1) {
|
|
199
|
-
const top = add(multiply(f1[0], f2[1], eps), multiply(f2[0], f1[1], eps));
|
|
200
|
-
const bottom = multiply(f1[1], f2[1], eps);
|
|
201
|
-
return [top, bottom];
|
|
202
|
-
}
|
|
203
|
-
const q1 = divide(f1[1], g, eps);
|
|
204
|
-
const q2 = divide(f2[1], g, eps);
|
|
205
|
-
const m1 = q1[0];
|
|
206
|
-
const m2 = q2[0];
|
|
207
|
-
const top = add(multiply(f1[0], m2, eps), multiply(f2[0], m1, eps));
|
|
208
|
-
const bottom = multiply(f1[1], m2, eps);
|
|
209
|
-
return [top, bottom];
|
|
210
|
-
}
|
|
211
|
-
export function multiplyFractions(f1, f2, eps = 0) {
|
|
212
|
-
const top = multiply(f1[0], f2[0], eps);
|
|
213
|
-
const bottom = multiply(f1[1], f2[1], eps);
|
|
214
|
-
return [top, bottom];
|
|
215
|
-
}
|
|
216
|
-
export function normalizeFraction(f, eps = 0) {
|
|
217
|
-
const top = trim(f[0], eps);
|
|
218
|
-
const bottom = trim(f[1], eps);
|
|
219
|
-
const lc = bottom[bottom.length - 1];
|
|
220
|
-
if (lc == 0) {
|
|
221
|
-
throw new Error("Fraction denominator is zero.");
|
|
222
|
-
}
|
|
223
|
-
divByRealInPlace(top, lc);
|
|
224
|
-
divByRealInPlace(bottom, lc);
|
|
225
|
-
return [top, bottom];
|
|
226
|
-
}
|
|
1
|
+
import MutableComplex from "./MutableComplex.js";
|
|
2
|
+
export function evaluateReal(a, x) {
|
|
3
|
+
if (a.length == 0) {
|
|
4
|
+
throw new Error("Zero length array.");
|
|
5
|
+
}
|
|
6
|
+
const n = a.length - 1;
|
|
7
|
+
let r = a[n];
|
|
8
|
+
for (let i = n - 1; i >= 0; i--) {
|
|
9
|
+
r *= x;
|
|
10
|
+
r += a[i];
|
|
11
|
+
}
|
|
12
|
+
return r;
|
|
13
|
+
}
|
|
14
|
+
export function evaluateComplex(a, x) {
|
|
15
|
+
if (a.length == 0) {
|
|
16
|
+
throw new Error("Zero length array.");
|
|
17
|
+
}
|
|
18
|
+
const n = a.length - 1;
|
|
19
|
+
const r = new MutableComplex(a[n]);
|
|
20
|
+
for (let i = n - 1; i >= 0; i--) {
|
|
21
|
+
r.mulBy(x);
|
|
22
|
+
r.addRealTo(a[i]);
|
|
23
|
+
}
|
|
24
|
+
return r;
|
|
25
|
+
}
|
|
26
|
+
export function expand(zeros) {
|
|
27
|
+
const n = zeros.length;
|
|
28
|
+
if (n == 0) {
|
|
29
|
+
return Float64Array.of(1);
|
|
30
|
+
}
|
|
31
|
+
let a = Float64Array.of(-zeros[0], 1);
|
|
32
|
+
for (let i = 1; i < n; i++) {
|
|
33
|
+
const a2 = Float64Array.of(-zeros[i], 1);
|
|
34
|
+
a = multiply(a, a2);
|
|
35
|
+
}
|
|
36
|
+
return a;
|
|
37
|
+
}
|
|
38
|
+
export function compareEqual(a1, a2, eps = 0) {
|
|
39
|
+
const n1 = a1.length - 1;
|
|
40
|
+
const n2 = a2.length - 1;
|
|
41
|
+
const n = Math.max(n1, n2);
|
|
42
|
+
for (let i = 0; i <= n; i++) {
|
|
43
|
+
const v1 = (i <= n1) ? a1[i] : 0;
|
|
44
|
+
const v2 = (i <= n2) ? a2[i] : 0;
|
|
45
|
+
if (Math.abs(v1 - v2) > eps) {
|
|
46
|
+
return false;
|
|
47
|
+
}
|
|
48
|
+
}
|
|
49
|
+
return true;
|
|
50
|
+
}
|
|
51
|
+
export function add(a1, a2, eps = 0) {
|
|
52
|
+
const n1 = a1.length - 1;
|
|
53
|
+
const n2 = a2.length - 1;
|
|
54
|
+
const n3 = Math.max(n1, n2);
|
|
55
|
+
const a3 = new Float64Array(n3 + 1);
|
|
56
|
+
for (let i = 0; i <= n3; i++) {
|
|
57
|
+
const v1 = (i <= n1) ? a1[i] : 0;
|
|
58
|
+
const v2 = (i <= n2) ? a2[i] : 0;
|
|
59
|
+
a3[i] = v1 + v2;
|
|
60
|
+
}
|
|
61
|
+
return trim(a3, eps);
|
|
62
|
+
}
|
|
63
|
+
export function multiply(a1, a2, eps = 0) {
|
|
64
|
+
if (a1.length == 0 || a2.length == 0) {
|
|
65
|
+
throw new Error("Zero length arrays.");
|
|
66
|
+
}
|
|
67
|
+
if (a1.length == 1 && a1[0] == 0 || a2.length == 1 && a2[0] == 0) {
|
|
68
|
+
return Float64Array.of(0);
|
|
69
|
+
}
|
|
70
|
+
const n1 = a1.length - 1;
|
|
71
|
+
const n2 = a2.length - 1;
|
|
72
|
+
const n3 = n1 + n2;
|
|
73
|
+
const a3 = new Float64Array(n3 + 1);
|
|
74
|
+
for (let i = 0; i <= n3; i++) {
|
|
75
|
+
let t = 0;
|
|
76
|
+
const p1 = Math.max(0, i - n2);
|
|
77
|
+
const p2 = Math.min(n1, i);
|
|
78
|
+
for (let j = p1; j <= p2; j++) {
|
|
79
|
+
t += a1[j] * a2[i - j];
|
|
80
|
+
}
|
|
81
|
+
a3[i] = t;
|
|
82
|
+
}
|
|
83
|
+
return trim(a3, eps);
|
|
84
|
+
}
|
|
85
|
+
export function divide(a1r, a2r, eps = 0) {
|
|
86
|
+
if (a1r.length == 0 || a2r.length == 0) {
|
|
87
|
+
throw new Error("Zero length arrays.");
|
|
88
|
+
}
|
|
89
|
+
const a1 = trim(a1r, eps);
|
|
90
|
+
const a2 = trim(a2r, eps);
|
|
91
|
+
if (a2.length == 1) {
|
|
92
|
+
if (a2[0] == 0) {
|
|
93
|
+
throw new Error("Polynomial division by zero.");
|
|
94
|
+
}
|
|
95
|
+
if (a2[0] == 1) {
|
|
96
|
+
return [Float64Array.from(a1), Float64Array.of(0)];
|
|
97
|
+
}
|
|
98
|
+
return [divByReal(a1, a2[0]), Float64Array.of(0)];
|
|
99
|
+
}
|
|
100
|
+
const n1 = a1.length - 1;
|
|
101
|
+
const n2 = a2.length - 1;
|
|
102
|
+
if (n1 < n2) {
|
|
103
|
+
return [Float64Array.of(0), Float64Array.from(a1)];
|
|
104
|
+
}
|
|
105
|
+
const a = Float64Array.from(a1);
|
|
106
|
+
const lc2 = a2[n2];
|
|
107
|
+
for (let i = n1 - n2; i >= 0; i--) {
|
|
108
|
+
const r = a[n2 + i] / lc2;
|
|
109
|
+
a[n2 + i] = r;
|
|
110
|
+
for (let j = 0; j < n2; ++j) {
|
|
111
|
+
a[i + j] -= r * a2[j];
|
|
112
|
+
}
|
|
113
|
+
}
|
|
114
|
+
const quotient = trim(a.subarray(n2), eps);
|
|
115
|
+
const remainder = trim(a.subarray(0, n2), eps);
|
|
116
|
+
return [quotient, remainder];
|
|
117
|
+
}
|
|
118
|
+
export function gcd(a1, a2, eps = 0) {
|
|
119
|
+
let r1 = trim(a1, eps);
|
|
120
|
+
let r2 = trim(a2, eps);
|
|
121
|
+
makeMonic(r1);
|
|
122
|
+
makeMonic(r2);
|
|
123
|
+
if (r1.length < r2.length) {
|
|
124
|
+
[r1, r2] = [r2, r1];
|
|
125
|
+
}
|
|
126
|
+
while (true) {
|
|
127
|
+
if (r2.length < 2) {
|
|
128
|
+
return Float64Array.of(1);
|
|
129
|
+
}
|
|
130
|
+
const r = divide(r1, r2, eps)[1];
|
|
131
|
+
if (r.length == 1 && r[0] == 0) {
|
|
132
|
+
return r2;
|
|
133
|
+
}
|
|
134
|
+
makeMonic(r);
|
|
135
|
+
r1 = r2;
|
|
136
|
+
r2 = r;
|
|
137
|
+
}
|
|
138
|
+
}
|
|
139
|
+
function trim(a, eps = 0) {
|
|
140
|
+
if (a.length == 0) {
|
|
141
|
+
throw new Error("Zero length array.");
|
|
142
|
+
}
|
|
143
|
+
if (Math.abs(a[a.length - 1]) > eps) {
|
|
144
|
+
return Float64Array.from(a);
|
|
145
|
+
}
|
|
146
|
+
let len = a.length - 1;
|
|
147
|
+
while (len > 0 && Math.abs(a[len - 1]) <= eps) {
|
|
148
|
+
len--;
|
|
149
|
+
}
|
|
150
|
+
if (len == 0) {
|
|
151
|
+
return Float64Array.of(0);
|
|
152
|
+
}
|
|
153
|
+
const a2 = new Float64Array(len);
|
|
154
|
+
for (let i = 0; i < len; i++) {
|
|
155
|
+
a2[i] = a[i];
|
|
156
|
+
}
|
|
157
|
+
return a2;
|
|
158
|
+
}
|
|
159
|
+
function makeMonic(a) {
|
|
160
|
+
const len = a.length;
|
|
161
|
+
if (len == 0) {
|
|
162
|
+
throw new Error("Zero length array.");
|
|
163
|
+
}
|
|
164
|
+
const lc = a[len - 1];
|
|
165
|
+
if (lc == 1) {
|
|
166
|
+
return;
|
|
167
|
+
}
|
|
168
|
+
if (lc == 0) {
|
|
169
|
+
throw new Error("Leading coefficient is zero.");
|
|
170
|
+
}
|
|
171
|
+
a[len - 1] = 1;
|
|
172
|
+
for (let i = 0; i < len - 1; i++) {
|
|
173
|
+
a[i] /= lc;
|
|
174
|
+
}
|
|
175
|
+
}
|
|
176
|
+
function divByReal(a, b) {
|
|
177
|
+
const a2 = new Float64Array(a.length);
|
|
178
|
+
for (let i = 0; i < a.length; i++) {
|
|
179
|
+
a2[i] = a[i] / b;
|
|
180
|
+
}
|
|
181
|
+
return a2;
|
|
182
|
+
}
|
|
183
|
+
function divByRealInPlace(a, b) {
|
|
184
|
+
for (let i = 0; i < a.length; i++) {
|
|
185
|
+
a[i] /= b;
|
|
186
|
+
}
|
|
187
|
+
}
|
|
188
|
+
export function evaluateFractionComplex(f, x) {
|
|
189
|
+
const v1 = evaluateComplex(f[0], x);
|
|
190
|
+
const v2 = evaluateComplex(f[1], x);
|
|
191
|
+
return v1.div(v2);
|
|
192
|
+
}
|
|
193
|
+
export function addFractions(f1, f2, eps = 0) {
|
|
194
|
+
if (compareEqual(f1[1], f2[1], eps)) {
|
|
195
|
+
return [add(f1[0], f2[0], eps), Float64Array.from(f1[1])];
|
|
196
|
+
}
|
|
197
|
+
const g = gcd(f1[1], f2[1], eps);
|
|
198
|
+
if (g.length == 1 && g[0] == 1) {
|
|
199
|
+
const top = add(multiply(f1[0], f2[1], eps), multiply(f2[0], f1[1], eps));
|
|
200
|
+
const bottom = multiply(f1[1], f2[1], eps);
|
|
201
|
+
return [top, bottom];
|
|
202
|
+
}
|
|
203
|
+
const q1 = divide(f1[1], g, eps);
|
|
204
|
+
const q2 = divide(f2[1], g, eps);
|
|
205
|
+
const m1 = q1[0];
|
|
206
|
+
const m2 = q2[0];
|
|
207
|
+
const top = add(multiply(f1[0], m2, eps), multiply(f2[0], m1, eps));
|
|
208
|
+
const bottom = multiply(f1[1], m2, eps);
|
|
209
|
+
return [top, bottom];
|
|
210
|
+
}
|
|
211
|
+
export function multiplyFractions(f1, f2, eps = 0) {
|
|
212
|
+
const top = multiply(f1[0], f2[0], eps);
|
|
213
|
+
const bottom = multiply(f1[1], f2[1], eps);
|
|
214
|
+
return [top, bottom];
|
|
215
|
+
}
|
|
216
|
+
export function normalizeFraction(f, eps = 0) {
|
|
217
|
+
const top = trim(f[0], eps);
|
|
218
|
+
const bottom = trim(f[1], eps);
|
|
219
|
+
const lc = bottom[bottom.length - 1];
|
|
220
|
+
if (lc == 0) {
|
|
221
|
+
throw new Error("Fraction denominator is zero.");
|
|
222
|
+
}
|
|
223
|
+
divByRealInPlace(top, lc);
|
|
224
|
+
divByRealInPlace(bottom, lc);
|
|
225
|
+
return [top, bottom];
|
|
226
|
+
}
|
|
227
227
|
//# sourceMappingURL=PolyReal.js.map
|
package/math/PolyReal.js.map
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"PolyReal.js","sourceRoot":"","sources":["../../src/math/PolyReal.ts"],"names":[],"mappings":"AAiBA,OAAO,cAAc,MAAM,qBAAqB,CAAC;AAYjD,MAAM,UAAU,YAAY,CAAE,CAAoB,EAAE,CAAS;IAC1D,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE;QAChB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;KAAE;IAC3C,MAAM,CAAC,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACb,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE;QAC9B,CAAC,IAAI,CAAC,CAAC;QACP,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;KAAE;IACf,OAAO,CAAC,CAAC;AAAC,CAAC;AAYd,MAAM,UAAU,eAAe,CAAE,CAAoB,EAAE,CAAU;IAC9D,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE;QAChB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;KAAE;IAC3C,MAAM,CAAC,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,MAAM,CAAC,GAAG,IAAI,cAAc,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IACnC,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE;QAC9B,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;QACX,CAAC,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;KAAE;IACvB,OAAO,CAAC,CAAC;AAAC,CAAC;AAKd,MAAM,UAAU,MAAM,CAAE,KAAwB;IAC7C,MAAM,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC;IACvB,IAAI,CAAC,IAAI,CAAC,EAAE;QACT,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;KAAE;IAC/B,IAAI,CAAC,GAAG,YAAY,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACtC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;QACzB,MAAM,EAAE,GAAG,YAAY,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QACzC,CAAC,GAAG,QAAQ,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;KAAE;IACzB,OAAO,CAAC,CAAC;AAAC,CAAC;AAKd,MAAM,UAAU,YAAY,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IAChF,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAC3B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE;QAC1B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,IAAI,IAAI,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,GAAG,EAAE;YAC1B,OAAO,KAAK,CAAC;SAAE;KAAC;IACtB,OAAO,IAAI,CAAC;AAAC,CAAC;AAKjB,MAAM,UAAU,GAAG,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IACvE,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAC5B,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IACpC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE;QAC3B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,EAAE,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,CAAC;KAAE;IACrB,OAAO,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,QAAQ,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IAC5E,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,EAAE;QACnC,MAAM,IAAI,KAAK,CAAC,qBAAqB,CAAC,CAAC;KAAE;IAC5C,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE;QAC/D,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;KAAE;IAC/B,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;IACnB,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IACpC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE;QAC3B,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;QAC/B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;QAC3B,KAAK,IAAI,CAAC,GAAG,EAAE,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE;YAC5B,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;SAAE;QAC5B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;KAAE;IACf,OAAO,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;AAAC,CAAC;AAM1B,MAAM,UAAU,MAAM,CAAE,GAAsB,EAAE,GAAsB,EAAE,GAAG,GAAG,CAAC;IAC5E,IAAI,GAAG,CAAC,MAAM,IAAI,CAAC,IAAI,GAAG,CAAC,MAAM,IAAI,CAAC,EAAE;QACrC,MAAM,IAAI,KAAK,CAAC,qBAAqB,CAAC,CAAC;KAAE;IAC5C,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IAC1B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IAC1B,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,EAAE;QACjB,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE;YACb,MAAM,IAAI,KAAK,CAAC,8BAA8B,CAAC,CAAC;SAAE;QACrD,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE;YACb,OAAO,CAAC,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;SAAE;QACxD,OAAO,CAAC,SAAS,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;KAAE;IACvD,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,IAAI,EAAE,GAAG,EAAE,EAAE;QACV,OAAO,CAAC,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;KAAE;IACxD,MAAM,CAAC,GAAG,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAChC,MAAM,GAAG,GAAG,EAAE,CAAC,EAAE,CAAC,CAAC;IACnB,KAAK,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE;QAChC,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC;QAC1B,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;QACd,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,EAAE,CAAC,EAAE;YAC1B,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;SAAE;KAAC;IAC/B,MAAM,QAAQ,GAAG,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,MAAM,SAAS,GAAG,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,EAAE,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAC/C,OAAO,CAAC,QAAQ,EAAE,SAAS,CAAC,CAAC;AAAC,CAAC;AAKlC,MAAM,UAAU,GAAG,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IACvE,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;IACvB,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;IACvB,SAAS,CAAC,EAAE,CAAC,CAAC;IACd,SAAS,CAAC,EAAE,CAAC,CAAC;IACd,IAAI,EAAE,CAAC,MAAM,GAAG,EAAE,CAAC,MAAM,EAAE;QACxB,CAAC,EAAE,EAAE,EAAE,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;KAAE;IACzB,OAAO,IAAI,EAAE;QACV,IAAI,EAAE,CAAC,MAAM,GAAG,CAAC,EAAE;YAChB,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;SAAE;QAC/B,MAAM,CAAC,GAAG,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE;YAC7B,OAAO,EAAE,CAAC;SAAE;QACf,SAAS,CAAC,CAAC,CAAC,CAAC;QACb,EAAE,GAAG,EAAE,CAAC;QACR,EAAE,GAAG,CAAC,CAAC;KAAE;AAAA,CAAC;AAGhB,SAAS,IAAI,CAAE,CAAoB,EAAE,GAAG,GAAG,CAAC;IACzC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE;QAChB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;KAAE;IAC3C,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,EAAE;QAClC,OAAO,YAAY,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;KAAE;IACjC,IAAI,GAAG,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,OAAO,GAAG,GAAG,CAAC,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,EAAE;QAC5C,GAAG,EAAE,CAAC;KAAE;IACX,IAAI,GAAG,IAAI,CAAC,EAAE;QACX,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;KAAE;IAC/B,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,GAAG,CAAC,CAAC;IACjC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,GAAG,EAAE,CAAC,EAAE,EAAE;QAC3B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;KAAE;IAClB,OAAO,EAAE,CAAC;AAAC,CAAC;AAGf,SAAS,SAAS,CAAE,CAAe;IAChC,MAAM,GAAG,GAAG,CAAC,CAAC,MAAM,CAAC;IACrB,IAAI,GAAG,IAAI,CAAC,EAAE;QACX,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;KAAE;IAC3C,MAAM,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IACtB,IAAI,EAAE,IAAI,CAAC,EAAE;QACV,OAAO;KAAE;IACZ,IAAI,EAAE,IAAI,CAAC,EAAE;QACV,MAAM,IAAI,KAAK,CAAC,8BAA8B,CAAC,CAAC;KAAE;IACrD,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IACf,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,GAAG,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;QAC/B,CAAC,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;KAAE;AAAA,CAAC;AAEpB,SAAS,SAAS,CAAE,CAAoB,EAAE,CAAS;IAChD,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC;IACtC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE;QAChC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;KAAE;IACtB,OAAO,EAAE,CAAC;AAAC,CAAC;AAEf,SAAS,gBAAgB,CAAE,CAAe,EAAE,CAAS;IAClD,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE;QAChC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC;KAAE;AAAA,CAAC;AAOnB,MAAM,UAAU,uBAAuB,CAAE,CAAsB,EAAE,CAAU;IACxE,MAAM,EAAE,GAAG,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACpC,MAAM,EAAE,GAAG,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACpC,OAAO,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC;AAAC,CAAC;AAKvB,MAAM,UAAU,YAAY,CAAE,EAAuB,EAAE,EAAuB,EAAE,GAAG,GAAG,CAAC;IACpF,IAAI,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE;QAClC,OAAO,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;KAAE;IAC/D,MAAM,CAAC,GAAG,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IACjC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE;QAC7B,MAAM,GAAG,GAAG,GAAG,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;QAC1E,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;QAC3C,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;KAAE;IAC1B,MAAM,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IACjC,MAAM,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAKjC,MAAM,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;IACjB,MAAM,GAAG,GAAG,GAAG,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,EAAE,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC;IACpE,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC;IACxC,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,iBAAiB,CAAE,EAAuB,EAAE,EAAuB,EAAE,GAAG,GAAG,CAAC;IACzF,MAAM,GAAG,GAAM,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,iBAAiB,CAAE,CAAsB,EAAE,GAAG,GAAG,CAAC;IAC/D,MAAM,GAAG,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC5B,MAAM,MAAM,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC/B,MAAM,EAAE,GAAG,MAAM,CAAC,MAAM,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;IACrC,IAAI,EAAE,IAAI,CAAC,EAAE;QACV,MAAM,IAAI,KAAK,CAAC,+BAA+B,CAAC,CAAC;KAAE;IACtD,gBAAgB,CAAC,GAAG,EAAE,EAAE,CAAC,CAAC;IAC1B,gBAAgB,CAAC,MAAM,EAAE,EAAE,CAAC,CAAC;IAC7B,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC"}
|
|
1
|
+
{"version":3,"file":"PolyReal.js","sourceRoot":"","sources":["../../src/math/PolyReal.ts"],"names":[],"mappings":"AAiBA,OAAO,cAAc,MAAM,qBAAqB,CAAC;AAYjD,MAAM,UAAU,YAAY,CAAE,CAAoB,EAAE,CAAS;IAC1D,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QACjB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;IAAC,CAAC;IAC3C,MAAM,CAAC,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACb,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAC/B,CAAC,IAAI,CAAC,CAAC;QACP,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IACf,OAAO,CAAC,CAAC;AAAC,CAAC;AAYd,MAAM,UAAU,eAAe,CAAE,CAAoB,EAAE,CAAU;IAC9D,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QACjB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;IAAC,CAAC;IAC3C,MAAM,CAAC,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,MAAM,CAAC,GAAG,IAAI,cAAc,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IACnC,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAC/B,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;QACX,CAAC,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IACvB,OAAO,CAAC,CAAC;AAAC,CAAC;AAKd,MAAM,UAAU,MAAM,CAAE,KAAwB;IAC7C,MAAM,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC;IACvB,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC;QACV,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAC/B,IAAI,CAAC,GAAiB,YAAY,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACpD,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAC1B,MAAM,EAAE,GAAG,YAAY,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QACzC,CAAC,GAAG,QAAQ,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;IAAC,CAAC;IACzB,OAAO,CAAC,CAAC;AAAC,CAAC;AAKd,MAAM,UAAU,YAAY,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IAChF,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAC3B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAC3B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,IAAI,IAAI,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,GAAG,EAAE,CAAC;YAC3B,OAAO,KAAK,CAAC;QAAC,CAAC;IAAA,CAAC;IACtB,OAAO,IAAI,CAAC;AAAC,CAAC;AAKjB,MAAM,UAAU,GAAG,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IACvE,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAC5B,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IACpC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC;QAC5B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,EAAE,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,CAAC;IAAC,CAAC;IACrB,OAAO,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,QAAQ,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IAC5E,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QACpC,MAAM,IAAI,KAAK,CAAC,qBAAqB,CAAC,CAAC;IAAC,CAAC;IAC5C,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;QAChE,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAC/B,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;IACnB,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IACpC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC;QAC5B,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;QAC/B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;QAC3B,KAAK,IAAI,CAAC,GAAG,EAAE,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC;YAC7B,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAAC,CAAC;QAC5B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;IAAC,CAAC;IACf,OAAO,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;AAAC,CAAC;AAM1B,MAAM,UAAU,MAAM,CAAE,GAAsB,EAAE,GAAsB,EAAE,GAAG,GAAG,CAAC;IAC5E,IAAI,GAAG,CAAC,MAAM,IAAI,CAAC,IAAI,GAAG,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QACtC,MAAM,IAAI,KAAK,CAAC,qBAAqB,CAAC,CAAC;IAAC,CAAC;IAC5C,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IAC1B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IAC1B,IAAI,EAAE,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QAClB,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;YACd,MAAM,IAAI,KAAK,CAAC,8BAA8B,CAAC,CAAC;QAAC,CAAC;QACrD,IAAI,EAAE,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;YACd,OAAO,CAAC,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAAC,CAAC;QACxD,OAAO,CAAC,SAAS,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IACvD,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,IAAI,EAAE,GAAG,EAAE,EAAE,CAAC;QACX,OAAO,CAAC,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;IAAC,CAAC;IACxD,MAAM,CAAC,GAAG,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAChC,MAAM,GAAG,GAAG,EAAE,CAAC,EAAE,CAAC,CAAC;IACnB,KAAK,IAAI,CAAC,GAAG,EAAE,GAAG,EAAE,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QACjC,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC;QAC1B,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;QACd,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,EAAE,CAAC,EAAE,CAAC;YAC3B,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;QAAC,CAAC;IAAA,CAAC;IAC/B,MAAM,QAAQ,GAAG,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,MAAM,SAAS,GAAG,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,EAAE,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAC/C,OAAO,CAAC,QAAQ,EAAE,SAAS,CAAC,CAAC;AAAC,CAAC;AAKlC,MAAM,UAAU,GAAG,CAAE,EAAqB,EAAE,EAAqB,EAAE,GAAG,GAAG,CAAC;IACvE,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;IACvB,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;IACvB,SAAS,CAAC,EAAE,CAAC,CAAC;IACd,SAAS,CAAC,EAAE,CAAC,CAAC;IACd,IAAI,EAAE,CAAC,MAAM,GAAG,EAAE,CAAC,MAAM,EAAE,CAAC;QACzB,CAAC,EAAE,EAAE,EAAE,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAAC,CAAC;IACzB,OAAO,IAAI,EAAE,CAAC;QACX,IAAI,EAAE,CAAC,MAAM,GAAG,CAAC,EAAE,CAAC;YACjB,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;QAAC,CAAC;QAC/B,MAAM,CAAC,GAAG,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;YAC9B,OAAO,EAAE,CAAC;QAAC,CAAC;QACf,SAAS,CAAC,CAAC,CAAC,CAAC;QACb,EAAE,GAAG,EAAE,CAAC;QACR,EAAE,GAAG,CAAC,CAAC;IAAC,CAAC;AAAA,CAAC;AAGhB,SAAS,IAAI,CAAE,CAAoB,EAAE,GAAG,GAAG,CAAC;IACzC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,EAAE,CAAC;QACjB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;IAAC,CAAC;IAC3C,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,EAAE,CAAC;QACnC,OAAO,YAAY,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IACjC,IAAI,GAAG,GAAG,CAAC,CAAC,MAAM,GAAG,CAAC,CAAC;IACvB,OAAO,GAAG,GAAG,CAAC,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,EAAE,CAAC;QAC7C,GAAG,EAAE,CAAC;IAAC,CAAC;IACX,IAAI,GAAG,IAAI,CAAC,EAAE,CAAC;QACZ,OAAO,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAC/B,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,GAAG,CAAC,CAAC;IACjC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,GAAG,EAAE,CAAC,EAAE,EAAE,CAAC;QAC5B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAClB,OAAO,EAAE,CAAC;AAAC,CAAC;AAGf,SAAS,SAAS,CAAE,CAAe;IAChC,MAAM,GAAG,GAAG,CAAC,CAAC,MAAM,CAAC;IACrB,IAAI,GAAG,IAAI,CAAC,EAAE,CAAC;QACZ,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;IAAC,CAAC;IAC3C,MAAM,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;IACtB,IAAI,EAAE,IAAI,CAAC,EAAE,CAAC;QACX,OAAO;IAAC,CAAC;IACZ,IAAI,EAAE,IAAI,CAAC,EAAE,CAAC;QACX,MAAM,IAAI,KAAK,CAAC,8BAA8B,CAAC,CAAC;IAAC,CAAC;IACrD,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IACf,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,GAAG,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAChC,CAAC,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;IAAC,CAAC;AAAA,CAAC;AAEpB,SAAS,SAAS,CAAE,CAAoB,EAAE,CAAS;IAChD,MAAM,EAAE,GAAG,IAAI,YAAY,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC;IACtC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;QACjC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;IAAC,CAAC;IACtB,OAAO,EAAE,CAAC;AAAC,CAAC;AAEf,SAAS,gBAAgB,CAAE,CAAe,EAAE,CAAS;IAClD,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;QACjC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC;IAAC,CAAC;AAAA,CAAC;AAOnB,MAAM,UAAU,uBAAuB,CAAE,CAAsB,EAAE,CAAU;IACxE,MAAM,EAAE,GAAG,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACpC,MAAM,EAAE,GAAG,eAAe,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACpC,OAAO,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC;AAAC,CAAC;AAKvB,MAAM,UAAU,YAAY,CAAE,EAAuB,EAAE,EAAuB,EAAE,GAAG,GAAG,CAAC;IACpF,IAAI,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;QACnC,OAAO,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,YAAY,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAC/D,MAAM,CAAC,GAAG,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IACjC,IAAI,CAAC,CAAC,MAAM,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC;QAC9B,MAAM,GAAG,GAAG,GAAG,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;QAC1E,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;QAC3C,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;IAAC,CAAC;IAC1B,MAAM,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IACjC,MAAM,EAAE,GAAG,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAKjC,MAAM,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC;IACjB,MAAM,GAAG,GAAG,GAAG,CAAC,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,EAAE,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC;IACpE,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,GAAG,CAAC,CAAC;IACxC,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,iBAAiB,CAAE,EAAuB,EAAE,EAAuB,EAAE,GAAG,GAAG,CAAC;IACzF,MAAM,GAAG,GAAM,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,MAAM,MAAM,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC3C,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC;AAK1B,MAAM,UAAU,iBAAiB,CAAE,CAAsB,EAAE,GAAG,GAAG,CAAC;IAC/D,MAAM,GAAG,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC5B,MAAM,MAAM,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC;IAC/B,MAAM,EAAE,GAAG,MAAM,CAAC,MAAM,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;IACrC,IAAI,EAAE,IAAI,CAAC,EAAE,CAAC;QACX,MAAM,IAAI,KAAK,CAAC,+BAA+B,CAAC,CAAC;IAAC,CAAC;IACtD,gBAAgB,CAAC,GAAG,EAAE,EAAE,CAAC,CAAC;IAC1B,gBAAgB,CAAC,MAAM,EAAE,EAAE,CAAC,CAAC;IAC7B,OAAO,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC;AAAC,CAAC"}
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "dsp-collection",
|
|
3
|
-
"version": "0.2.
|
|
3
|
+
"version": "0.2.7",
|
|
4
4
|
"description": "A collection of JavaScript modules for digital signal processing (written in TypeScript)",
|
|
5
5
|
"keywords": [
|
|
6
6
|
"DSP",
|
|
@@ -13,11 +13,16 @@
|
|
|
13
13
|
"Spectral filtering",
|
|
14
14
|
"Window functions",
|
|
15
15
|
"Instantaneous frequency",
|
|
16
|
-
"Pitch estimation"
|
|
16
|
+
"Pitch estimation",
|
|
17
|
+
"Simple moving average (SMA)",
|
|
18
|
+
"triangular moving average (TMA)"
|
|
17
19
|
],
|
|
18
20
|
"license": "MIT",
|
|
19
21
|
"homepage": "http://www.source-code.biz/dsp/js",
|
|
20
|
-
"repository":
|
|
22
|
+
"repository": {
|
|
23
|
+
"type": "git",
|
|
24
|
+
"url": "git+https://github.com/chdh/dsp-collection-js.git"
|
|
25
|
+
},
|
|
21
26
|
"contributors": [
|
|
22
27
|
{
|
|
23
28
|
"name": "Christian d'Heureuse",
|
|
@@ -32,5 +37,8 @@
|
|
|
32
37
|
"doPack": "cd dist && npm pack",
|
|
33
38
|
"doPublish": "cd dist && npm publish"
|
|
34
39
|
},
|
|
40
|
+
"devDependencies": {
|
|
41
|
+
"@types/node": "^22"
|
|
42
|
+
},
|
|
35
43
|
"type": "module"
|
|
36
44
|
}
|
package/signal/AdaptiveStft.d.ts
CHANGED
|
@@ -1,12 +1,13 @@
|
|
|
1
|
-
import Complex from "../math/Complex.
|
|
2
|
-
import * as WindowFunctions from "./WindowFunctions.
|
|
3
|
-
export interface ComponentResult {
|
|
4
|
-
component: Complex;
|
|
5
|
-
frequency: number;
|
|
6
|
-
windowStartPosition: number;
|
|
7
|
-
windowWidth: number;
|
|
8
|
-
}
|
|
9
|
-
export declare function getSingle_relWindow(samples: Float64Array | Float32Array, roughFrequency: number, roughWindowCenterPosition: number, relWindowWidth: number, windowFunction: WindowFunctions.WindowFunction | undefined): ComponentResult | undefined;
|
|
10
|
-
export declare function getSingle_maxWindow(samples: Float64Array | Float32Array, roughFrequency: number, roughWindowCenterPosition: number, maxWindowWidth: number, windowFunction: WindowFunctions.WindowFunction | undefined): ComponentResult | undefined;
|
|
11
|
-
export declare function getSingle(samples: Float64Array | Float32Array, roughFrequency: number, windowFunction: WindowFunctions.WindowFunction | undefined): Complex;
|
|
12
|
-
export declare function getHarmonicAmplitudes(samples: Float64Array | Float32Array, windowCenterPosition: number, f0: number, harmonics: number, relWindowWidth?: number, windowFunction?: typeof WindowFunctions.flatTopWindowNorm): Float64Array | undefined;
|
|
1
|
+
import Complex from "../math/Complex.ts";
|
|
2
|
+
import * as WindowFunctions from "./WindowFunctions.ts";
|
|
3
|
+
export interface ComponentResult {
|
|
4
|
+
component: Complex;
|
|
5
|
+
frequency: number;
|
|
6
|
+
windowStartPosition: number;
|
|
7
|
+
windowWidth: number;
|
|
8
|
+
}
|
|
9
|
+
export declare function getSingle_relWindow(samples: Float64Array | Float32Array, roughFrequency: number, roughWindowCenterPosition: number, relWindowWidth: number, windowFunction: WindowFunctions.WindowFunction | undefined): ComponentResult | undefined;
|
|
10
|
+
export declare function getSingle_maxWindow(samples: Float64Array | Float32Array, roughFrequency: number, roughWindowCenterPosition: number, maxWindowWidth: number, windowFunction: WindowFunctions.WindowFunction | undefined): ComponentResult | undefined;
|
|
11
|
+
export declare function getSingle(samples: Float64Array | Float32Array, roughFrequency: number, windowFunction: WindowFunctions.WindowFunction | undefined): Complex;
|
|
12
|
+
export declare function getHarmonicAmplitudes(samples: Float64Array | Float32Array, windowCenterPosition: number, f0: number, harmonics: number, relWindowWidth?: number, windowFunction?: typeof WindowFunctions.flatTopWindowNorm): Float64Array | undefined;
|
|
13
|
+
//# sourceMappingURL=AdaptiveStft.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"AdaptiveStft.d.ts","sourceRoot":"","sources":["../../src/signal/AdaptiveStft.ts"],"names":[],"mappings":"AASA,OAAO,OAAO,MAAM,oBAAoB,CAAC;AAEzC,OAAO,KAAK,eAAe,MAAM,sBAAsB,CAAC;AAExD,MAAM,WAAW,eAAe;IAC7B,SAAS,EAAiB,OAAO,CAAC;IAClC,SAAS,EAAiB,MAAM,CAAC;IACjC,mBAAmB,EAAO,MAAM,CAAC;IACjC,WAAW,EAAe,MAAM,CAAC;CAAE;AAyBtC,wBAAgB,mBAAmB,CAAE,OAAO,EAAE,YAAY,GAAG,YAAY,EAAE,cAAc,EAAE,MAAM,EAAE,yBAAyB,EAAE,MAAM,EAC9H,cAAc,EAAE,MAAM,EAAE,cAAc,EAAE,eAAe,CAAC,cAAc,GAAG,SAAS,GAAI,eAAe,GAAG,SAAS,CAkB1E;AAwB7C,wBAAgB,mBAAmB,CAAE,OAAO,EAAE,YAAY,GAAG,YAAY,EAAE,cAAc,EAAE,MAAM,EAAE,yBAAyB,EAAE,MAAM,EAC9H,cAAc,EAAE,MAAM,EAAE,cAAc,EAAE,eAAe,CAAC,cAAc,GAAG,SAAS,GAAI,eAAe,GAAG,SAAS,CAGH;AAiBpH,wBAAgB,SAAS,CAAE,OAAO,EAAE,YAAY,GAAG,YAAY,EAAE,cAAc,EAAE,MAAM,EAAE,cAAc,EAAE,eAAe,CAAC,cAAc,GAAG,SAAS,GAAI,OAAO,CAEpH;AAuB1C,wBAAgB,qBAAqB,CAAE,OAAO,EAAE,YAAY,GAAG,YAAY,EAAE,oBAAoB,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,SAAI,EAAE,cAAc,2CAAoC,GAAI,YAAY,GAAG,SAAS,CAgBrN"}
|