dsp-collection 0.2.5 → 0.2.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. package/README.md +6 -2
  2. package/filter/FirFilterWin.d.ts +8 -0
  3. package/filter/FirFilterWin.d.ts.map +1 -0
  4. package/filter/FirFilterWin.js +55 -0
  5. package/filter/FirFilterWin.js.map +1 -0
  6. package/filter/SpecFilt.d.ts +11 -10
  7. package/filter/SpecFilt.d.ts.map +1 -0
  8. package/filter/SpecFilt.js +98 -98
  9. package/filter/SpecFilt.js.map +1 -1
  10. package/math/Complex.d.ts +43 -42
  11. package/math/Complex.d.ts.map +1 -0
  12. package/math/Complex.js +130 -129
  13. package/math/Complex.js.map +1 -1
  14. package/math/ComplexArray.d.ts +37 -36
  15. package/math/ComplexArray.d.ts.map +1 -0
  16. package/math/ComplexArray.js +170 -170
  17. package/math/ComplexArray.js.map +1 -1
  18. package/math/MathUtils.d.ts +10 -7
  19. package/math/MathUtils.d.ts.map +1 -0
  20. package/math/MathUtils.js +116 -81
  21. package/math/MathUtils.js.map +1 -1
  22. package/math/MutableComplex.d.ts +24 -22
  23. package/math/MutableComplex.d.ts.map +1 -0
  24. package/math/MutableComplex.js +68 -64
  25. package/math/MutableComplex.js.map +1 -1
  26. package/math/NumApprox.d.ts +4 -3
  27. package/math/NumApprox.d.ts.map +1 -0
  28. package/math/NumApprox.js +67 -67
  29. package/math/NumApprox.js.map +1 -1
  30. package/math/PolyReal.d.ts +14 -13
  31. package/math/PolyReal.d.ts.map +1 -0
  32. package/math/PolyReal.js +226 -226
  33. package/math/PolyReal.js.map +1 -1
  34. package/package.json +11 -3
  35. package/signal/AdaptiveStft.d.ts +13 -12
  36. package/signal/AdaptiveStft.d.ts.map +1 -0
  37. package/signal/AdaptiveStft.js +57 -57
  38. package/signal/AdaptiveStft.js.map +1 -1
  39. package/signal/Autocorrelation.d.ts +6 -5
  40. package/signal/Autocorrelation.d.ts.map +1 -0
  41. package/signal/Autocorrelation.js +53 -53
  42. package/signal/Autocorrelation.js.map +1 -1
  43. package/signal/Dft.d.ts +10 -9
  44. package/signal/Dft.d.ts.map +1 -0
  45. package/signal/Dft.js +87 -87
  46. package/signal/Dft.js.map +1 -1
  47. package/signal/EnvelopeDetection.d.ts +2 -1
  48. package/signal/EnvelopeDetection.d.ts.map +1 -0
  49. package/signal/EnvelopeDetection.js +9 -9
  50. package/signal/EnvelopeDetection.js.map +1 -1
  51. package/signal/Fft.d.ts +10 -9
  52. package/signal/Fft.d.ts.map +1 -0
  53. package/signal/Fft.js +275 -275
  54. package/signal/Fft.js.map +1 -1
  55. package/signal/Goertzel.d.ts +6 -5
  56. package/signal/Goertzel.d.ts.map +1 -0
  57. package/signal/Goertzel.js +48 -48
  58. package/signal/Goertzel.js.map +1 -1
  59. package/signal/InstFreq.d.ts +9 -8
  60. package/signal/InstFreq.d.ts.map +1 -0
  61. package/signal/InstFreq.js +26 -26
  62. package/signal/InstFreq.js.map +1 -1
  63. package/signal/PitchDetectionHarm.d.ts +27 -26
  64. package/signal/PitchDetectionHarm.d.ts.map +1 -0
  65. package/signal/PitchDetectionHarm.js +72 -68
  66. package/signal/PitchDetectionHarm.js.map +1 -1
  67. package/signal/Resampling.d.ts +8 -7
  68. package/signal/Resampling.d.ts.map +1 -0
  69. package/signal/Resampling.js +218 -218
  70. package/signal/Resampling.js.map +1 -1
  71. package/signal/WindowFunctions.d.ts +42 -40
  72. package/signal/WindowFunctions.d.ts.map +1 -0
  73. package/signal/WindowFunctions.js +194 -194
  74. package/signal/WindowFunctions.js.map +1 -1
  75. package/utils/ArrayUtils.d.ts +10 -9
  76. package/utils/ArrayUtils.d.ts.map +1 -0
  77. package/utils/ArrayUtils.js +68 -68
  78. package/utils/ArrayUtils.js.map +1 -1
  79. package/utils/DspUtils.d.ts +5 -2
  80. package/utils/DspUtils.d.ts.map +1 -0
  81. package/utils/DspUtils.js +12 -6
  82. package/utils/DspUtils.js.map +1 -1
  83. package/utils/MiscUtils.d.ts +7 -6
  84. package/utils/MiscUtils.d.ts.map +1 -0
  85. package/utils/MiscUtils.js +20 -20
  86. package/utils/MiscUtils.js.map +1 -1
package/math/Complex.js CHANGED
@@ -1,130 +1,131 @@
1
- import * as MathUtils from "./MathUtils.js";
2
- export default class Complex {
3
- constructor(re, im = 0) {
4
- this.re = re;
5
- this.im = im;
6
- }
7
- toString() {
8
- return "(" + this.re + ", " + this.im + ")";
9
- }
10
- toNumber(eps) {
11
- const absIm = Math.abs(this.im);
12
- if (!(absIm <= eps || absIm <= Math.abs(this.re) * eps)) {
13
- throw new Error("The imaginary part of the complex number is not neglectable small for the conversion to a real number. re=" + this.re + " im=" + this.im + " eps=" + eps + ".");
14
- }
15
- return this.re;
16
- }
17
- isNaN() {
18
- return isNaN(this.re) || isNaN(this.im);
19
- }
20
- isInfinite() {
21
- return this.re == Infinity || this.re == -Infinity || this.im == Infinity || this.im == -Infinity;
22
- }
23
- isFinite() {
24
- return isFinite(this.re) && isFinite(this.im);
25
- }
26
- equals(x) {
27
- return x && this.re == x.re && this.im == x.im;
28
- }
29
- fuzzyEquals(x, eps) {
30
- return MathUtils.fuzzyEquals(this.re, x.re, eps) && MathUtils.fuzzyEquals(this.im, x.im, eps);
31
- }
32
- static expj(arg) {
33
- return new Complex(Math.cos(arg), Math.sin(arg));
34
- }
35
- static fromPolar(abs, arg) {
36
- return new Complex(abs * Math.cos(arg), abs * Math.sin(arg));
37
- }
38
- abs() {
39
- return Math.hypot(this.re, this.im);
40
- }
41
- arg() {
42
- return Math.atan2(this.im, this.re);
43
- }
44
- conj() {
45
- return new Complex(this.re, -this.im);
46
- }
47
- neg() {
48
- return new Complex(-this.re, -this.im);
49
- }
50
- reciprocal() {
51
- if (this.isNaN()) {
52
- return Complex.NaN;
53
- }
54
- if (this.isInfinite()) {
55
- return Complex.ZERO;
56
- }
57
- const scale = this.re * this.re + this.im * this.im;
58
- if (scale == 0) {
59
- return Complex.INFINITY;
60
- }
61
- return new Complex(this.re / scale, -this.im / scale);
62
- }
63
- exp() {
64
- return Complex.fromPolar(Math.exp(this.re), this.im);
65
- }
66
- log() {
67
- return new Complex(Math.log(this.abs()), this.arg());
68
- }
69
- sqr() {
70
- return new Complex(this.re * this.re - this.im * this.im, 2 * this.re * this.im);
71
- }
72
- sqrt() {
73
- if (this.re == 0 && this.im == 0) {
74
- return Complex.ZERO;
75
- }
76
- const m = this.abs();
77
- return new Complex(Math.sqrt((m + this.re) / 2), Math.sign(this.im) * Math.sqrt((m - this.re) / 2));
78
- }
79
- addReal(x) {
80
- return new Complex(this.re + x, this.im);
81
- }
82
- add(x) {
83
- return new Complex(this.re + x.re, this.im + x.im);
84
- }
85
- subReal(x) {
86
- return new Complex(this.re - x, this.im);
87
- }
88
- static subFromReal(x, y) {
89
- return new Complex(x - y.re, -y.im);
90
- }
91
- sub(x) {
92
- return new Complex(this.re - x.re, this.im - x.im);
93
- }
94
- mulReal(x) {
95
- return new Complex(this.re * x, this.im * x);
96
- }
97
- mul(x) {
98
- return new Complex(this.re * x.re - this.im * x.im, this.re * x.im + this.im * x.re);
99
- }
100
- divReal(x) {
101
- return new Complex(this.re / x, this.im / x);
102
- }
103
- div(x) {
104
- const m = x.re * x.re + x.im * x.im;
105
- return new Complex((this.re * x.re + this.im * x.im) / m, (this.im * x.re - this.re * x.im) / m);
106
- }
107
- static divFromReal(x, y) {
108
- const m = y.re * y.re + y.im * y.im;
109
- return new Complex(x * y.re / m, -x * y.im / m);
110
- }
111
- powInt(x) {
112
- if (!Number.isInteger(x)) {
113
- throw new Error("powInt() used with non-integer exponent.");
114
- }
115
- return Complex.fromPolar(Math.pow(this.abs(), x), this.arg() * x);
116
- }
117
- powReal(x) {
118
- return this.log().mulReal(x).exp();
119
- }
120
- pow(x) {
121
- return this.log().mul(x).exp();
122
- }
123
- }
124
- Complex.I = new Complex(0, 1);
125
- Complex.ZERO = new Complex(0);
126
- Complex.ONE = new Complex(1);
127
- Complex.TWO = new Complex(2);
128
- Complex.NaN = new Complex(NaN, NaN);
129
- Complex.INFINITY = new Complex(Infinity, Infinity);
1
+ import * as MathUtils from "./MathUtils.js";
2
+ class Complex {
3
+ constructor(re, im = 0) {
4
+ this.re = re;
5
+ this.im = im;
6
+ }
7
+ toString() {
8
+ return "(" + this.re + ", " + this.im + ")";
9
+ }
10
+ toNumber(eps) {
11
+ const absIm = Math.abs(this.im);
12
+ if (!(absIm <= eps || absIm <= Math.abs(this.re) * eps)) {
13
+ throw new Error("The imaginary part of the complex number is not neglectable small for the conversion to a real number. re=" + this.re + " im=" + this.im + " eps=" + eps + ".");
14
+ }
15
+ return this.re;
16
+ }
17
+ isNaN() {
18
+ return isNaN(this.re) || isNaN(this.im);
19
+ }
20
+ isInfinite() {
21
+ return this.re == Infinity || this.re == -Infinity || this.im == Infinity || this.im == -Infinity;
22
+ }
23
+ isFinite() {
24
+ return isFinite(this.re) && isFinite(this.im);
25
+ }
26
+ equals(x) {
27
+ return x && this.re == x.re && this.im == x.im;
28
+ }
29
+ fuzzyEquals(x, eps) {
30
+ return MathUtils.fuzzyEquals(this.re, x.re, eps) && MathUtils.fuzzyEquals(this.im, x.im, eps);
31
+ }
32
+ static expj(arg) {
33
+ return new Complex(Math.cos(arg), Math.sin(arg));
34
+ }
35
+ static fromPolar(abs, arg) {
36
+ return new Complex(abs * Math.cos(arg), abs * Math.sin(arg));
37
+ }
38
+ abs() {
39
+ return Math.hypot(this.re, this.im);
40
+ }
41
+ arg() {
42
+ return Math.atan2(this.im, this.re);
43
+ }
44
+ conj() {
45
+ return new Complex(this.re, -this.im);
46
+ }
47
+ neg() {
48
+ return new Complex(-this.re, -this.im);
49
+ }
50
+ reciprocal() {
51
+ if (this.isNaN()) {
52
+ return Complex.NaN;
53
+ }
54
+ if (this.isInfinite()) {
55
+ return Complex.ZERO;
56
+ }
57
+ const scale = this.re * this.re + this.im * this.im;
58
+ if (scale == 0) {
59
+ return Complex.INFINITY;
60
+ }
61
+ return new Complex(this.re / scale, -this.im / scale);
62
+ }
63
+ exp() {
64
+ return Complex.fromPolar(Math.exp(this.re), this.im);
65
+ }
66
+ log() {
67
+ return new Complex(Math.log(this.abs()), this.arg());
68
+ }
69
+ sqr() {
70
+ return new Complex(this.re * this.re - this.im * this.im, 2 * this.re * this.im);
71
+ }
72
+ sqrt() {
73
+ if (this.re == 0 && this.im == 0) {
74
+ return Complex.ZERO;
75
+ }
76
+ const m = this.abs();
77
+ return new Complex(Math.sqrt((m + this.re) / 2), Math.sign(this.im) * Math.sqrt((m - this.re) / 2));
78
+ }
79
+ addReal(x) {
80
+ return new Complex(this.re + x, this.im);
81
+ }
82
+ add(x) {
83
+ return new Complex(this.re + x.re, this.im + x.im);
84
+ }
85
+ subReal(x) {
86
+ return new Complex(this.re - x, this.im);
87
+ }
88
+ static subFromReal(x, y) {
89
+ return new Complex(x - y.re, -y.im);
90
+ }
91
+ sub(x) {
92
+ return new Complex(this.re - x.re, this.im - x.im);
93
+ }
94
+ mulReal(x) {
95
+ return new Complex(this.re * x, this.im * x);
96
+ }
97
+ mul(x) {
98
+ return new Complex(this.re * x.re - this.im * x.im, this.re * x.im + this.im * x.re);
99
+ }
100
+ divReal(x) {
101
+ return new Complex(this.re / x, this.im / x);
102
+ }
103
+ div(x) {
104
+ const m = x.re * x.re + x.im * x.im;
105
+ return new Complex((this.re * x.re + this.im * x.im) / m, (this.im * x.re - this.re * x.im) / m);
106
+ }
107
+ static divFromReal(x, y) {
108
+ const m = y.re * y.re + y.im * y.im;
109
+ return new Complex(x * y.re / m, -x * y.im / m);
110
+ }
111
+ powInt(x) {
112
+ if (!Number.isInteger(x)) {
113
+ throw new Error("powInt() used with non-integer exponent.");
114
+ }
115
+ return Complex.fromPolar(Math.pow(this.abs(), x), this.arg() * x);
116
+ }
117
+ powReal(x) {
118
+ return this.log().mulReal(x).exp();
119
+ }
120
+ pow(x) {
121
+ return this.log().mul(x).exp();
122
+ }
123
+ }
124
+ Complex.I = new Complex(0, 1);
125
+ Complex.ZERO = new Complex(0);
126
+ Complex.ONE = new Complex(1);
127
+ Complex.TWO = new Complex(2);
128
+ Complex.NaN = new Complex(NaN, NaN);
129
+ Complex.INFINITY = new Complex(Infinity, Infinity);
130
+ export default Complex;
130
131
  //# sourceMappingURL=Complex.js.map
@@ -1 +1 @@
1
- {"version":3,"file":"Complex.js","sourceRoot":"","sources":["../../src/math/Complex.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,SAAS,MAAM,gBAAgB,CAAC;AAK5C,MAAM,CAAC,OAAO,OAAO,OAAO;IA4CzB,YAAoB,EAAU,EAAE,KAAa,CAAC;QAC3C,IAAI,CAAC,EAAE,GAAG,EAAE,CAAC;QACb,IAAI,CAAC,EAAE,GAAG,EAAE,CAAC;IAAC,CAAC;IAOX,QAAQ;QACZ,OAAO,GAAG,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,GAAG,IAAI,CAAC,EAAE,GAAG,GAAG,CAAC;IAAC,CAAC;IAM1C,QAAQ,CAAE,GAAW;QACzB,MAAM,KAAK,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;QAChC,IAAI,CAAC,CAAC,KAAK,IAAI,GAAG,IAAI,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC,EAAE;YACtD,MAAM,IAAI,KAAK,CAAC,4GAA4G,GAAG,IAAI,CAAC,EAAE,GAAG,MAAM,GAAG,IAAI,CAAC,EAAE,GAAG,OAAO,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;SAAE;QACtL,OAAO,IAAI,CAAC,EAAE,CAAC;IAAC,CAAC;IAKb,KAAK;QACT,OAAO,KAAK,CAAC,IAAI,CAAC,EAAE,CAAC,IAAI,KAAK,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKtC,UAAU;QACd,OAAO,IAAI,CAAC,EAAE,IAAI,QAAQ,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,QAAQ,IAAI,IAAI,CAAC,EAAE,IAAI,QAAQ,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,QAAQ,CAAC;IAAC,CAAC;IAKhG,QAAQ;QACZ,OAAO,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,IAAI,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAK5C,MAAM,CAAE,CAAU;QACtB,OAAO,CAAC,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,CAAC;IAAC,CAAC;IAM7C,WAAW,CAAE,CAAU,EAAE,GAAW;QACxC,OAAO,SAAS,CAAC,WAAW,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,IAAI,SAAS,CAAC,WAAW,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;IAAC,CAAC;IAO5F,MAAM,CAAC,IAAI,CAAE,GAAW;QAC5B,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAK/C,MAAM,CAAC,SAAS,CAAE,GAAW,EAAE,GAAW;QAC9C,OAAO,IAAI,OAAO,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAO3D,GAAG;QACP,OAAO,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKlC,GAAG;QACP,OAAO,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKlC,IAAI;QACR,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKpC,GAAG;QACP,OAAO,IAAI,OAAO,CAAC,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKrC,UAAU;QACd,IAAI,IAAI,CAAC,KAAK,EAAE,EAAE;YACf,OAAO,OAAO,CAAC,GAAG,CAAC;SAAE;QACxB,IAAI,IAAI,CAAC,UAAU,EAAE,EAAE;YACpB,OAAO,OAAO,CAAC,IAAI,CAAC;SAAE;QACzB,MAAM,KAAK,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC;QACpD,IAAI,KAAK,IAAI,CAAC,EAAE;YACb,OAAO,OAAO,CAAC,QAAQ,CAAC;SAAE;QAC7B,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,KAAK,EAAE,CAAC,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC;IAAC,CAAC;IAMpD,GAAG;QACP,OAAO,OAAO,CAAC,SAAS,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKnD,GAAG;QACP,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,EAAE,CAAC,CAAC;IAAC,CAAC;IAKnD,GAAG;QACP,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,EAAE,CAAC,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAK/E,IAAI;QACR,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,EAAE;YAC/B,OAAO,OAAO,CAAC,IAAI,CAAC;SAAE;QACzB,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,EAAE,CAAC;QACrB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAOlG,OAAO,CAAE,CAAS;QACtB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKvC,GAAG,CAAE,CAAU;QACnB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKjD,OAAO,CAAE,CAAS;QACtB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKvC,MAAM,CAAC,WAAW,CAAE,CAAS,EAAE,CAAU;QAC7C,OAAO,IAAI,OAAO,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKlC,GAAG,CAAE,CAAU;QACnB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKjD,OAAO,CAAE,CAAS;QACtB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAK3C,GAAG,CAAE,CAAU;QACnB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKnF,OAAO,CAAE,CAAS;QACtB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAK3C,GAAG,CAAE,CAAU;QACnB,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC;QACpC,OAAO,IAAI,OAAO,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAK/F,MAAM,CAAC,WAAW,CAAE,CAAS,EAAE,CAAU;QAC7C,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC;QACpC,OAAO,IAAI,OAAO,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAK9C,MAAM,CAAE,CAAS;QACrB,IAAI,CAAC,MAAM,CAAC,SAAS,CAAC,CAAC,CAAC,EAAE;YACvB,MAAM,IAAI,KAAK,CAAC,0CAA0C,CAAC,CAAC;SAAE;QACjE,OAAO,OAAO,CAAC,SAAS,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,EAAE,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAKhE,OAAO,CAAE,CAAS;QACtB,OAAO,IAAI,CAAC,GAAG,EAAE,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC;IAAC,CAAC;IAKjC,GAAG,CAAE,CAAU;QACnB,OAAO,IAAI,CAAC,GAAG,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC;IAAC,CAAC;;AA7Pb,SAAC,GAAG,IAAI,OAAO,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;AAGtB,YAAI,GAAG,IAAI,OAAO,CAAC,CAAC,CAAC,CAAC;AAGtB,WAAG,GAAG,IAAI,OAAO,CAAC,CAAC,CAAC,CAAC;AAGrB,WAAG,GAAG,IAAI,OAAO,CAAC,CAAC,CAAC,CAAC;AAGrB,WAAG,GAAG,IAAI,OAAO,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;AAG5B,gBAAQ,GAAG,IAAI,OAAO,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC"}
1
+ {"version":3,"file":"Complex.js","sourceRoot":"","sources":["../../src/math/Complex.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,SAAS,MAAM,gBAAgB,CAAC;AAK5C,MAAqB,OAAO;IA4CzB,YAAoB,EAAU,EAAE,KAAa,CAAC;QAC3C,IAAI,CAAC,EAAE,GAAG,EAAE,CAAC;QACb,IAAI,CAAC,EAAE,GAAG,EAAE,CAAC;IAAC,CAAC;IAOX,QAAQ;QACZ,OAAO,GAAG,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,GAAG,IAAI,CAAC,EAAE,GAAG,GAAG,CAAC;IAAC,CAAC;IAM1C,QAAQ,CAAE,GAAW;QACzB,MAAM,KAAK,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;QAChC,IAAI,CAAC,CAAC,KAAK,IAAI,GAAG,IAAI,KAAK,IAAI,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC,EAAE,CAAC;YACvD,MAAM,IAAI,KAAK,CAAC,4GAA4G,GAAG,IAAI,CAAC,EAAE,GAAG,MAAM,GAAG,IAAI,CAAC,EAAE,GAAG,OAAO,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;QAAC,CAAC;QACtL,OAAO,IAAI,CAAC,EAAE,CAAC;IAAC,CAAC;IAKb,KAAK;QACT,OAAO,KAAK,CAAC,IAAI,CAAC,EAAE,CAAC,IAAI,KAAK,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKtC,UAAU;QACd,OAAO,IAAI,CAAC,EAAE,IAAI,QAAQ,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,QAAQ,IAAI,IAAI,CAAC,EAAE,IAAI,QAAQ,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,QAAQ,CAAC;IAAC,CAAC;IAKhG,QAAQ;QACZ,OAAO,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,IAAI,QAAQ,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAK5C,MAAM,CAAE,CAAU;QACtB,OAAO,CAAC,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,CAAC;IAAC,CAAC;IAM7C,WAAW,CAAE,CAAU,EAAE,GAAW;QACxC,OAAO,SAAS,CAAC,WAAW,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,IAAI,SAAS,CAAC,WAAW,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,CAAC;IAAC,CAAC;IAO5F,MAAM,CAAC,IAAI,CAAE,GAAW;QAC5B,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAK/C,MAAM,CAAC,SAAS,CAAE,GAAW,EAAE,GAAW;QAC9C,OAAO,IAAI,OAAO,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAO3D,GAAG;QACP,OAAO,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKlC,GAAG;QACP,OAAO,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKlC,IAAI;QACR,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKpC,GAAG;QACP,OAAO,IAAI,OAAO,CAAC,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKrC,UAAU;QACd,IAAI,IAAI,CAAC,KAAK,EAAE,EAAE,CAAC;YAChB,OAAO,OAAO,CAAC,GAAG,CAAC;QAAC,CAAC;QACxB,IAAI,IAAI,CAAC,UAAU,EAAE,EAAE,CAAC;YACrB,OAAO,OAAO,CAAC,IAAI,CAAC;QAAC,CAAC;QACzB,MAAM,KAAK,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC;QACpD,IAAI,KAAK,IAAI,CAAC,EAAE,CAAC;YACd,OAAO,OAAO,CAAC,QAAQ,CAAC;QAAC,CAAC;QAC7B,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,KAAK,EAAE,CAAC,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,CAAC;IAAC,CAAC;IAMpD,GAAG;QACP,OAAO,OAAO,CAAC,SAAS,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKnD,GAAG;QACP,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,EAAE,CAAC,CAAC;IAAC,CAAC;IAKnD,GAAG;QACP,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,EAAE,CAAC,GAAG,IAAI,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAK/E,IAAI;QACR,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC;YAChC,OAAO,OAAO,CAAC,IAAI,CAAC;QAAC,CAAC;QACzB,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,EAAE,CAAC;QACrB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IAAC,CAAC;IAOlG,OAAO,CAAE,CAAS;QACtB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKvC,GAAG,CAAE,CAAU;QACnB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKjD,OAAO,CAAE,CAAS;QACtB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKvC,MAAM,CAAC,WAAW,CAAE,CAAS,EAAE,CAAU;QAC7C,OAAO,IAAI,OAAO,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKlC,GAAG,CAAE,CAAU;QACnB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKjD,OAAO,CAAE,CAAS;QACtB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAK3C,GAAG,CAAE,CAAU;QACnB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC;IAAC,CAAC;IAKnF,OAAO,CAAE,CAAS;QACtB,OAAO,IAAI,OAAO,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAK3C,GAAG,CAAE,CAAU;QACnB,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC;QACpC,OAAO,IAAI,OAAO,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAK/F,MAAM,CAAC,WAAW,CAAE,CAAS,EAAE,CAAU;QAC7C,MAAM,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC;QACpC,OAAO,IAAI,OAAO,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAK9C,MAAM,CAAE,CAAS;QACrB,IAAI,CAAC,MAAM,CAAC,SAAS,CAAC,CAAC,CAAC,EAAE,CAAC;YACxB,MAAM,IAAI,KAAK,CAAC,0CAA0C,CAAC,CAAC;QAAC,CAAC;QACjE,OAAO,OAAO,CAAC,SAAS,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,EAAE,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC,CAAC;IAAC,CAAC;IAKhE,OAAO,CAAE,CAAS;QACtB,OAAO,IAAI,CAAC,GAAG,EAAE,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC;IAAC,CAAC;IAKjC,GAAG,CAAE,CAAU;QACnB,OAAO,IAAI,CAAC,GAAG,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC;IAAC,CAAC;;AA7Pb,SAAC,GAAG,IAAI,OAAO,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;AAGtB,YAAI,GAAG,IAAI,OAAO,CAAC,CAAC,CAAC,CAAC;AAGtB,WAAG,GAAG,IAAI,OAAO,CAAC,CAAC,CAAC,CAAC;AAGrB,WAAG,GAAG,IAAI,OAAO,CAAC,CAAC,CAAC,CAAC;AAGrB,WAAG,GAAG,IAAI,OAAO,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;AAG5B,gBAAQ,GAAG,IAAI,OAAO,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC;eAtBhD,OAAO"}
@@ -1,36 +1,37 @@
1
- import Complex from "./Complex.js";
2
- import MutableComplex from "./MutableComplex.js";
3
- export default class ComplexArray {
4
- re: Float64Array;
5
- im: Float64Array;
6
- length: number;
7
- constructor(x?: number | Complex[] | ArrayLike<number>);
8
- private constructByLength;
9
- private constructByArrayOfComplex;
10
- private constructByArrayOfNumber;
11
- static fromPolar(absArray: ArrayLike<number>, argArray: ArrayLike<number>): ComplexArray;
12
- slice(begin?: number, end?: number): ComplexArray;
13
- subarray(begin: number, end: number): ComplexArray;
14
- set(i: number, c: Complex): void;
15
- setReIm(i: number, re: number, im: number): void;
16
- setPolar(i: number, abs: number, arg: number): void;
17
- static copy1(a1: ComplexArray, i1: number, a2: ComplexArray, i2: number): void;
18
- get(i: number): MutableComplex;
19
- getAbs(i: number): number;
20
- getArg(i: number): number;
21
- toString(): string;
22
- getAbsArray(): Float64Array;
23
- getArgArray(): Float64Array;
24
- addRealTo(i: number, x: number): void;
25
- addTo(i: number, x: Complex): void;
26
- subRealFrom(i: number, x: number): void;
27
- subFrom(i: number, x: Complex): void;
28
- mulByReal(i: number, x: number): void;
29
- mulBy(i: number, x: Complex): void;
30
- divByReal(i: number, x: number): void;
31
- divBy(i: number, x: Complex): void;
32
- mulByArray(a2: ComplexArray): void;
33
- mulAllByReal(x: number): void;
34
- setMul(i: number, re1: number, im1: number, re2: number, im2: number): void;
35
- setDiv(i: number, re1: number, im1: number, re2: number, im2: number): void;
36
- }
1
+ import Complex from "./Complex.ts";
2
+ import MutableComplex from "./MutableComplex.ts";
3
+ export default class ComplexArray {
4
+ re: Float64Array;
5
+ im: Float64Array;
6
+ length: number;
7
+ constructor(x?: number | Complex[] | ArrayLike<number>);
8
+ private constructByLength;
9
+ private constructByArrayOfComplex;
10
+ private constructByArrayOfNumber;
11
+ static fromPolar(absArray: ArrayLike<number>, argArray: ArrayLike<number>): ComplexArray;
12
+ slice(begin?: number, end?: number): ComplexArray;
13
+ subarray(begin: number, end: number): ComplexArray;
14
+ set(i: number, c: Complex): void;
15
+ setReIm(i: number, re: number, im: number): void;
16
+ setPolar(i: number, abs: number, arg: number): void;
17
+ static copy1(a1: ComplexArray, i1: number, a2: ComplexArray, i2: number): void;
18
+ get(i: number): MutableComplex;
19
+ getAbs(i: number): number;
20
+ getArg(i: number): number;
21
+ toString(): string;
22
+ getAbsArray(): Float64Array;
23
+ getArgArray(): Float64Array;
24
+ addRealTo(i: number, x: number): void;
25
+ addTo(i: number, x: Complex): void;
26
+ subRealFrom(i: number, x: number): void;
27
+ subFrom(i: number, x: Complex): void;
28
+ mulByReal(i: number, x: number): void;
29
+ mulBy(i: number, x: Complex): void;
30
+ divByReal(i: number, x: number): void;
31
+ divBy(i: number, x: Complex): void;
32
+ mulByArray(a2: ComplexArray): void;
33
+ mulAllByReal(x: number): void;
34
+ setMul(i: number, re1: number, im1: number, re2: number, im2: number): void;
35
+ setDiv(i: number, re1: number, im1: number, re2: number, im2: number): void;
36
+ }
37
+ //# sourceMappingURL=ComplexArray.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"ComplexArray.d.ts","sourceRoot":"","sources":["../../src/math/ComplexArray.ts"],"names":[],"mappings":"AAAA,OAAO,OAAO,MAAM,cAAc,CAAC;AACnC,OAAO,cAAc,MAAM,qBAAqB,CAAC;AAUjD,MAAM,CAAC,OAAO,OAAO,YAAY;IAEtB,EAAE,EAAM,YAAY,CAAC;IACrB,EAAE,EAAM,YAAY,CAAC;IACrB,MAAM,EAAE,MAAM,CAAC;gBAEH,CAAC,GAAE,MAAM,GAAG,OAAO,EAAE,GAAG,SAAS,CAAC,MAAM,CAAK;IAUjE,OAAO,CAAC,iBAAiB;IASzB,OAAO,CAAC,yBAAyB;IAQjC,OAAO,CAAC,wBAAwB;WAKlB,SAAS,CAAE,QAAQ,EAAE,SAAS,CAAC,MAAM,CAAC,EAAE,QAAQ,EAAE,SAAS,CAAC,MAAM,CAAC,GAAI,YAAY;IAQ1F,KAAK,CAAE,KAAK,CAAC,EAAE,MAAM,EAAE,GAAG,CAAC,EAAE,MAAM,GAAI,YAAY;IAOnD,QAAQ,CAAE,KAAK,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,GAAI,YAAY;IASpD,GAAG,CAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,OAAO;IAI1B,OAAO,CAAE,CAAC,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM;IAI1C,QAAQ,CAAE,CAAC,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM;WAItC,KAAK,CAAE,EAAE,EAAE,YAAY,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,YAAY,EAAE,EAAE,EAAE,MAAM;IAMxE,GAAG,CAAE,CAAC,EAAE,MAAM,GAAI,cAAc;IAGhC,MAAM,CAAE,CAAC,EAAE,MAAM,GAAI,MAAM;IAG3B,MAAM,CAAE,CAAC,EAAE,MAAM,GAAI,MAAM;IAK3B,QAAQ,IAAK,MAAM;IASnB,WAAW,IAAK,YAAY;IAO5B,WAAW,IAAK,YAAY;IAS5B,SAAS,CAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM;IAG/B,KAAK,CAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,OAAO;IAI5B,WAAW,CAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM;IAGjC,OAAO,CAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,OAAO;IAI9B,SAAS,CAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM;IAI/B,KAAK,CAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,OAAO;IAG5B,SAAS,CAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM;IAI/B,KAAK,CAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,OAAO;IAO5B,UAAU,CAAE,EAAE,EAAE,YAAY;IAM5B,YAAY,CAAE,CAAC,EAAE,MAAM;IAUvB,MAAM,CAAE,CAAC,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM;IAOrE,MAAM,CAAE,CAAC,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM;CAK3E"}