dielines 0.10.0 → 0.11.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/dielines.js CHANGED
@@ -3,13 +3,13 @@ var Ui = (i, t, e) => t in i ? Di(i, t, { enumerable: !0, configurable: !0, writ
3
3
  var St = (i, t, e) => Ui(i, typeof t != "symbol" ? t + "" : t, e);
4
4
  var Yi = Object.defineProperty, si = (i) => {
5
5
  throw TypeError(i);
6
- }, Xi = (i, t, e) => t in i ? Yi(i, t, { enumerable: !0, configurable: !0, writable: !0, value: e }) : i[t] = e, F = (i, t, e) => Xi(i, typeof t != "symbol" ? t + "" : t, e), en = (i, t, e) => t.has(i) || si("Cannot " + e), Mt = (i, t, e) => (en(i, t, "read from private field"), e ? e.call(i) : t.get(i)), ri = (i, t, e) => t.has(i) ? si("Cannot add the same private member more than once") : t instanceof WeakSet ? t.add(i) : t.set(i, e), Oe = (i, t, e, n) => (en(i, t, "write to private field"), t.set(i, e), e), Mn = (i, t, e) => (en(i, t, "access private method"), e);
6
+ }, Xi = (i, t, e) => t in i ? Yi(i, t, { enumerable: !0, configurable: !0, writable: !0, value: e }) : i[t] = e, _ = (i, t, e) => Xi(i, typeof t != "symbol" ? t + "" : t, e), en = (i, t, e) => t.has(i) || si("Cannot " + e), Mt = (i, t, e) => (en(i, t, "read from private field"), e ? e.call(i) : t.get(i)), ri = (i, t, e) => t.has(i) ? si("Cannot add the same private member more than once") : t instanceof WeakSet ? t.add(i) : t.set(i, e), Oe = (i, t, e, n) => (en(i, t, "write to private field"), t.set(i, e), e), Mn = (i, t, e) => (en(i, t, "access private method"), e);
7
7
  function me(i, t, e, n) {
8
8
  return i <= n && t >= e;
9
9
  }
10
10
  let oe = class Qt {
11
11
  constructor(t = 1 / 0, e = 1 / 0, n = -1 / 0, s = -1 / 0) {
12
- F(this, "xMin"), F(this, "yMin"), F(this, "xMax"), F(this, "yMax"), this.xMin = t, this.yMin = e, this.xMax = n, this.yMax = s;
12
+ _(this, "xMin"), _(this, "yMin"), _(this, "xMax"), _(this, "yMax"), this.xMin = t, this.yMin = e, this.xMax = n, this.yMax = s;
13
13
  }
14
14
  get width() {
15
15
  return this.xMax - this.xMin;
@@ -78,7 +78,7 @@ function At(i, t = 1e-9) {
78
78
  ).values()
79
79
  );
80
80
  }
81
- const $t = Math.PI / 180, sn = 180 / Math.PI, it = (i) => `[${i[0]}, ${i[1]}]`, R = ([i, t], [e, n], s = 1e-9) => Math.abs(i - e) <= s && Math.abs(t - n) <= s, X = ([i, t], [e, n]) => [i + e, t + n], q = ([i, t], [e, n]) => [i - e, t - n], yt = ([i, t]) => i * i + t * t, Wi = ([i, t]) => Math.sqrt(yt([i, t])), Q = ([i, t], e) => [i * e, t * e], _t = ([i, t], [e, n] = [0, 0]) => (i - e) ** 2 + (t - n) ** 2, J = (i, t = [0, 0]) => Math.sqrt(_t(i, t));
81
+ const $t = Math.PI / 180, sn = 180 / Math.PI, it = (i) => `[${i[0]}, ${i[1]}]`, R = ([i, t], [e, n], s = 1e-9) => Math.abs(i - e) <= s && Math.abs(t - n) <= s, X = ([i, t], [e, n]) => [i + e, t + n], q = ([i, t], [e, n]) => [i - e, t - n], yt = ([i, t]) => i * i + t * t, Wi = ([i, t]) => Math.sqrt(yt([i, t])), Q = ([i, t], e) => [i * e, t * e], Ft = ([i, t], [e, n] = [0, 0]) => (i - e) ** 2 + (t - n) ** 2, J = (i, t = [0, 0]) => Math.sqrt(Ft(i, t));
82
82
  function bt([i, t], [e, n]) {
83
83
  return i * n - t * e;
84
84
  }
@@ -145,7 +145,7 @@ const Bt = (i, t) => {
145
145
  };
146
146
  let ct = class ai {
147
147
  constructor(t) {
148
- F(this, "_matrix", [1, 0, 0, 0, 1, 0, 0, 0, 1]), t && (this._matrix = [...t]);
148
+ _(this, "_matrix", [1, 0, 0, 0, 1, 0, 0, 0, 1]), t && (this._matrix = [...t]);
149
149
  }
150
150
  clone() {
151
151
  return new ai(this._matrix);
@@ -196,7 +196,7 @@ let ct = class ai {
196
196
  return Math.sqrt(t * t + e * e);
197
197
  }
198
198
  };
199
- class Ft {
199
+ class _t {
200
200
  translateX(t) {
201
201
  const e = new ct().translate(t, 0);
202
202
  return this.transform(e);
@@ -233,9 +233,9 @@ class Ft {
233
233
  return t === "x" ? n.mirrorX() : t === "y" ? n.mirrorY() : n.mirrorLine(t, e), this.transform(n);
234
234
  }
235
235
  }
236
- let ae = class extends Ft {
236
+ let ae = class extends _t {
237
237
  constructor(t, e) {
238
- super(), F(this, "precision", 1e-9), this.firstPoint = t, this.lastPoint = e, this.firstPoint = t, this.lastPoint = e;
238
+ super(), _(this, "precision", 1e-9), this.firstPoint = t, this.lastPoint = e, this.firstPoint = t, this.lastPoint = e;
239
239
  }
240
240
  get repr() {
241
241
  return `${this.segmentType} ${it(this.firstPoint)} - ${it(
@@ -250,7 +250,7 @@ let ae = class extends Ft {
250
250
  }
251
251
  }, D = class jt extends ae {
252
252
  constructor() {
253
- super(...arguments), F(this, "segmentType", "LINE"), F(this, "_V", null), F(this, "_slope", null), F(this, "_yIntercept", null), F(this, "_boundingBox", null);
253
+ super(...arguments), _(this, "segmentType", "LINE"), _(this, "_V", null), _(this, "_slope", null), _(this, "_yIntercept", null), _(this, "_boundingBox", null);
254
254
  }
255
255
  isValidParameter(t) {
256
256
  const e = this.length * this.precision;
@@ -263,7 +263,7 @@ let ae = class extends Ft {
263
263
  return J(this.firstPoint, this.lastPoint);
264
264
  }
265
265
  get squareLength() {
266
- return _t(this.firstPoint, this.lastPoint);
266
+ return Ft(this.firstPoint, this.lastPoint);
267
267
  }
268
268
  get V() {
269
269
  return this._V === null && (this._V = q(this.lastPoint, this.firstPoint)), this._V;
@@ -367,7 +367,7 @@ function Re(i, t, e, n = 1e-9) {
367
367
  let s = t - i;
368
368
  return e && (s = -s), s < 0 && (s += 2 * Math.PI), s > 2 * Math.PI - n ? 0 : s;
369
369
  }
370
- const _e = (i, t, e) => {
370
+ const Fe = (i, t, e) => {
371
371
  const n = bt(i.V, t.V), s = yt(i.V), r = yt(t.V), o = e ? e * e : i.precision * t.precision;
372
372
  if (n * n < s * r * o)
373
373
  return "parallel";
@@ -378,7 +378,7 @@ const _e = (i, t, e) => {
378
378
  };
379
379
  };
380
380
  function hi(i, t, e = !1, n) {
381
- const s = _e(i, t, n);
381
+ const s = Fe(i, t, n);
382
382
  if (s === "parallel") {
383
383
  if (!e) return null;
384
384
  if (i.isSame(t)) return i;
@@ -405,7 +405,7 @@ const ge = (i, t) => {
405
405
  };
406
406
  let z = class qt extends ae {
407
407
  constructor(t, e, n, s = !1, { ignoreChecks: r = !1 } = {}) {
408
- if (super(t, e), F(this, "segmentType", "ARC"), F(this, "center"), F(this, "clockwise"), F(this, "_coefficients", null), F(this, "_angularLength", null), F(this, "_radius", null), F(this, "_firstAngle", null), F(this, "_lastAngle", null), F(this, "_boundingBox", null), this.center = n, this.clockwise = s, !r) {
408
+ if (super(t, e), _(this, "segmentType", "ARC"), _(this, "center"), _(this, "clockwise"), _(this, "_coefficients", null), _(this, "_angularLength", null), _(this, "_radius", null), _(this, "_firstAngle", null), _(this, "_lastAngle", null), _(this, "_boundingBox", null), this.center = n, this.clockwise = s, !r) {
409
409
  if (R(t, e))
410
410
  throw new Error("Invalid arc, cannot be a full circle");
411
411
  if (Math.abs(this.radius - J(this.lastPoint, this.center)) > this.precision)
@@ -531,8 +531,8 @@ let z = class qt extends ae {
531
531
  const [e, n] = ge(t, this.center);
532
532
  return this.isValidParameter(this.angleToParam(n)) ? Math.abs(e - this.radius) : Math.sqrt(
533
533
  Math.min(
534
- _t(t, this.firstPoint),
535
- _t(t, this.lastPoint)
534
+ Ft(t, this.firstPoint),
535
+ Ft(t, this.lastPoint)
536
536
  )
537
537
  );
538
538
  }
@@ -600,7 +600,7 @@ let z = class qt extends ae {
600
600
  }
601
601
  };
602
602
  function Ki(i, t, e) {
603
- const n = new D(t, i), s = new D(t, e), r = nt(n.tangentAtFirstPoint), o = nt(s.tangentAtLastPoint), a = _e(
603
+ const n = new D(t, i), s = new D(t, e), r = nt(n.tangentAtFirstPoint), o = nt(s.tangentAtLastPoint), a = Fe(
604
604
  { firstPoint: n.midPoint, V: r, precision: 1e-9 },
605
605
  { firstPoint: s.midPoint, V: o, precision: 1e-9 }
606
606
  );
@@ -619,7 +619,7 @@ function Ki(i, t, e) {
619
619
  );
620
620
  }
621
621
  function li(i, t, e) {
622
- const n = new D(i, t), s = nt(n.tangentAtFirstPoint), r = _e(
622
+ const n = new D(i, t), s = nt(n.tangentAtFirstPoint), r = Fe(
623
623
  { firstPoint: n.midPoint, V: s, precision: 1e-9 },
624
624
  {
625
625
  firstPoint: i,
@@ -661,7 +661,7 @@ function xn(i, t = 0, e = 1, n = 110, s = 1e3) {
661
661
  const vn = 0.381966, ts = 1e-11;
662
662
  class es {
663
663
  constructor(t, e = 148e-10, n = 500) {
664
- F(this, "xmin"), F(this, "fval"), F(this, "iter"), F(this, "funcalls"), F(this, "brack"), this.func = t, this.tol = e, this.maxiter = n, this.func = t, this.tol = e, this.maxiter = n, this.xmin = 1 / 0, this.fval = 1 / 0, this.iter = 0, this.funcalls = 0, this.brack = null;
664
+ _(this, "xmin"), _(this, "fval"), _(this, "iter"), _(this, "funcalls"), _(this, "brack"), this.func = t, this.tol = e, this.maxiter = n, this.func = t, this.tol = e, this.maxiter = n, this.xmin = 1 / 0, this.fval = 1 / 0, this.iter = 0, this.funcalls = 0, this.brack = null;
665
665
  }
666
666
  setBracket(t = null) {
667
667
  this.brack = t;
@@ -1306,7 +1306,7 @@ function Xe(i, t, e, n, s) {
1306
1306
  if (de("startRow", t), de("endRow", e), de("startColumn", n), de("endColumn", s), t > e || n > s || t < 0 || t >= i.rows || e < 0 || e >= i.rows || n < 0 || n >= i.columns || s < 0 || s >= i.columns)
1307
1307
  throw new RangeError("Submatrix indices are out of range");
1308
1308
  }
1309
- function Fe(i, t = 0) {
1309
+ function _e(i, t = 0) {
1310
1310
  let e = [];
1311
1311
  for (let n = 0; n < i; n++)
1312
1312
  e.push(t);
@@ -1321,14 +1321,14 @@ function Vt(i) {
1321
1321
  throw new Error("Empty matrix has no elements to index");
1322
1322
  }
1323
1323
  function gs(i) {
1324
- let t = Fe(i.rows);
1324
+ let t = _e(i.rows);
1325
1325
  for (let e = 0; e < i.rows; ++e)
1326
1326
  for (let n = 0; n < i.columns; ++n)
1327
1327
  t[e] += i.get(e, n);
1328
1328
  return t;
1329
1329
  }
1330
1330
  function ps(i) {
1331
- let t = Fe(i.columns);
1331
+ let t = _e(i.columns);
1332
1332
  for (let e = 0; e < i.rows; ++e)
1333
1333
  for (let n = 0; n < i.columns; ++n)
1334
1334
  t[n] += i.get(e, n);
@@ -1342,14 +1342,14 @@ function ws(i) {
1342
1342
  return t;
1343
1343
  }
1344
1344
  function ds(i) {
1345
- let t = Fe(i.rows, 1);
1345
+ let t = _e(i.rows, 1);
1346
1346
  for (let e = 0; e < i.rows; ++e)
1347
1347
  for (let n = 0; n < i.columns; ++n)
1348
1348
  t[e] *= i.get(e, n);
1349
1349
  return t;
1350
1350
  }
1351
1351
  function Ps(i) {
1352
- let t = Fe(i.columns, 1);
1352
+ let t = _e(i.columns, 1);
1353
1353
  for (let e = 0; e < i.rows; ++e)
1354
1354
  for (let n = 0; n < i.columns; ++n)
1355
1355
  t[n] *= i.get(e, n);
@@ -2009,7 +2009,7 @@ let Z = class st {
2009
2009
  strassen3x3(t) {
2010
2010
  t = E.checkMatrix(t);
2011
2011
  let e = new E(3, 3);
2012
- const n = this.get(0, 0), s = this.get(0, 1), r = this.get(0, 2), o = this.get(1, 0), a = this.get(1, 1), h = this.get(1, 2), l = this.get(2, 0), c = this.get(2, 1), u = this.get(2, 2), m = t.get(0, 0), w = t.get(0, 1), g = t.get(0, 2), p = t.get(1, 0), M = t.get(1, 1), f = t.get(1, 2), P = t.get(2, 0), b = t.get(2, 1), S = t.get(2, 2), C = (n + s + r - o - a - c - u) * M, V = (n - o) * (-w + M), v = a * (-m + w + p - M - f - P + S), k = (-n + o + a) * (m - w + M), j = (o + a) * (-m + w), d = n * m, x = (-n + l + c) * (m - g + f), A = (-n + l) * (g - f), y = (l + c) * (-m + g), I = (n + s + r - a - h - l - c) * f, $ = c * (-m + g + p - M - f - P + b), _ = (-r + c + u) * (M + P - b), W = (r - u) * (M - b), L = r * P, N = (c + u) * (-P + b), B = (-r + a + h) * (f + P - S), Y = (r - h) * (f - S), H = (a + h) * (-P + S), T = s * p, U = h * b, tt = o * g, K = l * w, G = u * S, Ve = d + L + T, je = C + k + j + d + _ + L + N, qe = d + x + y + I + L + B + H, Ne = V + v + k + d + L + B + Y, he = V + k + j + d + U, le = L + B + Y + H + tt, ue = d + x + A + $ + _ + W + L, ce = _ + W + L + N + K, fe = d + x + A + y + G;
2012
+ const n = this.get(0, 0), s = this.get(0, 1), r = this.get(0, 2), o = this.get(1, 0), a = this.get(1, 1), h = this.get(1, 2), l = this.get(2, 0), c = this.get(2, 1), u = this.get(2, 2), m = t.get(0, 0), w = t.get(0, 1), g = t.get(0, 2), p = t.get(1, 0), M = t.get(1, 1), f = t.get(1, 2), P = t.get(2, 0), b = t.get(2, 1), S = t.get(2, 2), C = (n + s + r - o - a - c - u) * M, V = (n - o) * (-w + M), v = a * (-m + w + p - M - f - P + S), k = (-n + o + a) * (m - w + M), j = (o + a) * (-m + w), d = n * m, x = (-n + l + c) * (m - g + f), A = (-n + l) * (g - f), y = (l + c) * (-m + g), I = (n + s + r - a - h - l - c) * f, $ = c * (-m + g + p - M - f - P + b), F = (-r + c + u) * (M + P - b), W = (r - u) * (M - b), L = r * P, N = (c + u) * (-P + b), B = (-r + a + h) * (f + P - S), Y = (r - h) * (f - S), H = (a + h) * (-P + S), T = s * p, U = h * b, tt = o * g, K = l * w, G = u * S, Ve = d + L + T, je = C + k + j + d + F + L + N, qe = d + x + y + I + L + B + H, Ne = V + v + k + d + L + B + Y, he = V + k + j + d + U, le = L + B + Y + H + tt, ue = d + x + A + $ + F + W + L, ce = F + W + L + N + K, fe = d + x + A + y + G;
2013
2013
  return e.set(0, 0, Ve), e.set(0, 1, je), e.set(0, 2, qe), e.set(1, 0, Ne), e.set(1, 1, he), e.set(1, 2, le), e.set(2, 0, ue), e.set(2, 1, ce), e.set(2, 2, fe), e;
2014
2014
  }
2015
2015
  mmulStrassen(t) {
@@ -2048,12 +2048,12 @@ let Z = class st {
2048
2048
  st.add(V, k),
2049
2049
  p,
2050
2050
  M
2051
- ), _ = st.add(j, A);
2052
- _.sub(y), _.add($);
2051
+ ), F = st.add(j, A);
2052
+ F.sub(y), F.add($);
2053
2053
  let W = st.add(x, y), L = st.add(d, A), N = st.sub(j, d);
2054
2054
  N.add(x), N.add(I);
2055
- let B = st.zeros(2 * _.rows, 2 * _.columns);
2056
- return B = B.setSubMatrix(_, 0, 0), B = B.setSubMatrix(W, _.rows, 0), B = B.setSubMatrix(L, 0, _.columns), B = B.setSubMatrix(N, _.rows, _.columns), B.subMatrix(0, w - 1, 0, g - 1);
2055
+ let B = st.zeros(2 * F.rows, 2 * F.columns);
2056
+ return B = B.setSubMatrix(F, 0, 0), B = B.setSubMatrix(W, F.rows, 0), B = B.setSubMatrix(L, 0, F.columns), B = B.setSubMatrix(N, F.rows, F.columns), B.subMatrix(0, w - 1, 0, g - 1);
2057
2057
  }
2058
2058
  return c(e, t, h, l);
2059
2059
  }
@@ -2394,7 +2394,7 @@ Z.prototype.tensorProduct = Z.prototype.kroneckerProduct;
2394
2394
  var Pe, ze, Me;
2395
2395
  let E = (Me = class extends Z {
2396
2396
  constructor(i, t) {
2397
- if (super(), ri(this, Pe), F(this, "data"), Me.isMatrix(i))
2397
+ if (super(), ri(this, Pe), _(this, "data"), Me.isMatrix(i))
2398
2398
  Mn(this, Pe, ze).call(this, i.rows, i.columns), Me.copy(i, this);
2399
2399
  else if (Number.isInteger(i) && i >= 0)
2400
2400
  Mn(this, Pe, ze).call(this, i, t);
@@ -2470,7 +2470,7 @@ ze = function(i, t) {
2470
2470
  }, Me);
2471
2471
  ms(Z, E);
2472
2472
  var ht;
2473
- const _s = class We extends Z {
2473
+ const Fs = class We extends Z {
2474
2474
  /**
2475
2475
  * @param {number | AbstractMatrix | ArrayLike<ArrayLike<number>>} diagonalSize
2476
2476
  * @return {this}
@@ -2626,7 +2626,7 @@ const _s = class We extends Z {
2626
2626
  }
2627
2627
  };
2628
2628
  ht = /* @__PURE__ */ new WeakMap();
2629
- let te = _s;
2629
+ let te = Fs;
2630
2630
  te.prototype.klassType = "SymmetricMatrix";
2631
2631
  let gi = class pi extends te {
2632
2632
  /**
@@ -2709,7 +2709,7 @@ let Et = class extends Z {
2709
2709
  super(), this.matrix = t, this.rows = e, this.columns = n;
2710
2710
  }
2711
2711
  };
2712
- class Fs extends Et {
2712
+ class _s extends Et {
2713
2713
  constructor(t, e) {
2714
2714
  wt(t, e), super(t, t.rows, 1), this.column = e;
2715
2715
  }
@@ -3170,10 +3170,10 @@ let Wt = class {
3170
3170
  let A = f[v - 2];
3171
3171
  f[v - 2] = 0;
3172
3172
  for (let y = v - 2; y >= d; y--) {
3173
- let I = xt(g[y], A), $ = g[y] / I, _ = A / I;
3174
- if (g[y] = I, y !== d && (A = -_ * f[y - 1], f[y - 1] = $ * f[y - 1]), l)
3173
+ let I = xt(g[y], A), $ = g[y] / I, F = A / I;
3174
+ if (g[y] = I, y !== d && (A = -F * f[y - 1], f[y - 1] = $ * f[y - 1]), l)
3175
3175
  for (let W = 0; W < s; W++)
3176
- I = $ * M.get(W, y) + _ * M.get(W, v - 1), M.set(W, v - 1, -_ * M.get(W, y) + $ * M.get(W, v - 1)), M.set(W, y, I);
3176
+ I = $ * M.get(W, y) + F * M.get(W, v - 1), M.set(W, v - 1, -F * M.get(W, y) + $ * M.get(W, v - 1)), M.set(W, y, I);
3177
3177
  }
3178
3178
  break;
3179
3179
  }
@@ -3181,10 +3181,10 @@ let Wt = class {
3181
3181
  let A = f[d - 1];
3182
3182
  f[d - 1] = 0;
3183
3183
  for (let y = d; y < v; y++) {
3184
- let I = xt(g[y], A), $ = g[y] / I, _ = A / I;
3185
- if (g[y] = I, A = -_ * f[y], f[y] = $ * f[y], h)
3184
+ let I = xt(g[y], A), $ = g[y] / I, F = A / I;
3185
+ if (g[y] = I, A = -F * f[y], f[y] = $ * f[y], h)
3186
3186
  for (let W = 0; W < n; W++)
3187
- I = $ * p.get(W, y) + _ * p.get(W, d - 1), p.set(W, d - 1, -_ * p.get(W, y) + $ * p.get(W, d - 1)), p.set(W, y, I);
3187
+ I = $ * p.get(W, y) + F * p.get(W, d - 1), p.set(W, d - 1, -F * p.get(W, y) + $ * p.get(W, d - 1)), p.set(W, y, I);
3188
3188
  }
3189
3189
  break;
3190
3190
  }
@@ -3195,10 +3195,10 @@ let Wt = class {
3195
3195
  Math.abs(f[v - 2]),
3196
3196
  Math.abs(g[d]),
3197
3197
  Math.abs(f[d])
3198
- ), y = g[v - 1] / A, I = g[v - 2] / A, $ = f[v - 2] / A, _ = g[d] / A, W = f[d] / A, L = ((I + y) * (I - y) + $ * $) / 2, N = y * $ * (y * $);
3198
+ ), y = g[v - 1] / A, I = g[v - 2] / A, $ = f[v - 2] / A, F = g[d] / A, W = f[d] / A, L = ((I + y) * (I - y) + $ * $) / 2, N = y * $ * (y * $);
3199
3199
  let B = 0;
3200
3200
  (L !== 0 || N !== 0) && (L < 0 ? B = 0 - Math.sqrt(L * L + N) : B = Math.sqrt(L * L + N), B = N / (L + B));
3201
- let Y = (_ + y) * (_ - y) + B, H = _ * W;
3201
+ let Y = (F + y) * (F - y) + B, H = F * W;
3202
3202
  for (let T = d; T < v - 1; T++) {
3203
3203
  let U = xt(Y, H);
3204
3204
  U === 0 && (U = Number.MIN_VALUE);
@@ -3737,7 +3737,7 @@ O.LU = Le;
3737
3737
  O.LuDecomposition = Le;
3738
3738
  var er = O.Matrix = E;
3739
3739
  O.MatrixColumnSelectionView = Ls;
3740
- O.MatrixColumnView = Fs;
3740
+ O.MatrixColumnView = _s;
3741
3741
  O.MatrixFlipColumnView = Bs;
3742
3742
  O.MatrixFlipRowView = Vs;
3743
3743
  O.MatrixRowSelectionView = qs;
@@ -3864,44 +3864,44 @@ function rr(i, t, e, n, s) {
3864
3864
  (L == 0 || U < d) && (k = N, j = B, d = U);
3865
3865
  }
3866
3866
  const x = k, A = j;
3867
- let y = 0, I = 0, $ = 0, _ = 0;
3867
+ let y = 0, I = 0, $ = 0, F = 0;
3868
3868
  if (x < 0) {
3869
3869
  const L = Math.sqrt(-x);
3870
- if (y = f + L, I = P + L * A, $ = f - L, _ = P - L * A, Math.abs(_) < Math.abs(I) ? _ = n / I : Math.abs(_) > Math.abs(I) && (I = n / _), Math.abs(y) != Math.abs($)) {
3870
+ if (y = f + L, I = P + L * A, $ = f - L, F = P - L * A, Math.abs(F) < Math.abs(I) ? F = n / I : Math.abs(F) > Math.abs(I) && (I = n / F), Math.abs(y) != Math.abs($)) {
3871
3871
  let N = null, B = null;
3872
3872
  if (Math.abs(y) < Math.abs($)) {
3873
- const H = (e - I * $) / _, T = (t - _ - I) / $;
3873
+ const H = (e - I * $) / F, T = (t - F - I) / $;
3874
3874
  N = [i - $, H, T], B = [$, $, $];
3875
3875
  } else {
3876
- const H = (e - y * _) / I, T = (t - _ - I) / y, U = i - y;
3876
+ const H = (e - y * F) / I, T = (t - F - I) / y, U = i - y;
3877
3877
  N = [y, y, y], B = [U, H, T];
3878
3878
  }
3879
3879
  let Y = 0;
3880
3880
  for (let H = 0; H < 3; H++) {
3881
3881
  const T = N[H], U = B[H];
3882
3882
  if (isFinite(T) && isFinite(U)) {
3883
- const tt = r(T, I, U, _);
3883
+ const tt = r(T, I, U, F);
3884
3884
  (H == 0 || tt < Y) && (y = T, $ = U, Y = tt);
3885
3885
  }
3886
3886
  }
3887
3887
  }
3888
3888
  } else if (x == 0) {
3889
3889
  const L = n - P * P;
3890
- y = f, I = P + Math.sqrt(-L), $ = f, _ = P - Math.sqrt(-L), Math.abs(I) > Math.abs(_) ? _ = n / I : Math.abs(_) > Math.abs(I) && (I = n / _);
3890
+ y = f, I = P + Math.sqrt(-L), $ = f, F = P - Math.sqrt(-L), Math.abs(I) > Math.abs(F) ? F = n / I : Math.abs(F) > Math.abs(I) && (I = n / F);
3891
3891
  } else
3892
3892
  return [];
3893
- let W = o(y, I, $, _);
3893
+ let W = o(y, I, $, F);
3894
3894
  for (let L = 0; L < 8 && W != 0; L++) {
3895
- const N = I * _ - n, B = I * $ + y * _ - e, Y = I + y * $ + _ - t, H = y + $ - i, T = y - $, U = I * I - I * ($ * T + 2 * _) + _ * (y * T + _);
3895
+ const N = I * F - n, B = I * $ + y * F - e, Y = I + y * $ + F - t, H = y + $ - i, T = y - $, U = I * I - I * ($ * T + 2 * F) + F * (y * T + F);
3896
3896
  if (U == 0)
3897
3897
  break;
3898
- const tt = 1 / U, K = _ - I, G = I * $ - y * _, Ve = T * N + K * B + G * Y - (I * K + y * G) * H, je = (y * T + K) * N - I * (T * B + K * Y + G * H), qe = -T * N - K * B - G * Y + ($ * G + _ * K) * H, Ne = -($ * T + K) * N + _ * (T * B + K * Y + G * H), he = y - tt * Ve, le = I - tt * je, ue = $ - tt * qe, ce = _ - tt * Ne, fe = o(he, le, ue, ce);
3898
+ const tt = 1 / U, K = F - I, G = I * $ - y * F, Ve = T * N + K * B + G * Y - (I * K + y * G) * H, je = (y * T + K) * N - I * (T * B + K * Y + G * H), qe = -T * N - K * B - G * Y + ($ * G + F * K) * H, Ne = -($ * T + K) * N + F * (T * B + K * Y + G * H), he = y - tt * Ve, le = I - tt * je, ue = $ - tt * qe, ce = F - tt * Ne, fe = o(he, le, ue, ce);
3899
3899
  if (fe < W)
3900
- y = he, I = le, $ = ue, _ = ce, W = fe;
3900
+ y = he, I = le, $ = ue, F = ce, W = fe;
3901
3901
  else
3902
3902
  break;
3903
3903
  }
3904
- return [y, I, $, _];
3904
+ return [y, I, $, F];
3905
3905
  }
3906
3906
  function or(i, t) {
3907
3907
  const e = -0.3333333333333333 * i, n = 0.5 * t;
@@ -3964,7 +3964,7 @@ function un(i, t) {
3964
3964
  }
3965
3965
  let rt = class zt extends ae {
3966
3966
  constructor(t, e, n, s) {
3967
- super(t, e), F(this, "segmentType", "CUBIC_BEZIER"), F(this, "firstControlPoint"), F(this, "lastControlPoint"), F(this, "_boundingBox", null), F(this, "_polynomialCoefficients", null), this.firstControlPoint = n, this.lastControlPoint = s;
3967
+ super(t, e), _(this, "segmentType", "CUBIC_BEZIER"), _(this, "firstControlPoint"), _(this, "lastControlPoint"), _(this, "_boundingBox", null), _(this, "_polynomialCoefficients", null), this.firstControlPoint = n, this.lastControlPoint = s;
3968
3968
  }
3969
3969
  get midPoint() {
3970
3970
  return this.paramPoint(0.5);
@@ -4020,7 +4020,7 @@ let rt = class zt extends ae {
4020
4020
  return t.segmentType !== "CUBIC_BEZIER" ? !1 : R(this.firstPoint, t.firstPoint) && R(this.lastPoint, t.lastPoint) && R(this.firstControlPoint, t.firstControlPoint) && R(this.lastControlPoint, t.lastControlPoint);
4021
4021
  }
4022
4022
  distanceFrom(t) {
4023
- const e = ui((n) => _t(this.paramPoint(n), t), this.precision);
4023
+ const e = ui((n) => Ft(this.paramPoint(n), t), this.precision);
4024
4024
  return e.argMin < -this.precision || e.argMin > 1 + this.precision ? Math.min(
4025
4025
  J(this.firstPoint, t),
4026
4026
  J(this.lastPoint, t)
@@ -4168,7 +4168,7 @@ let rt = class zt extends ae {
4168
4168
  ignoreChecks: h = !1,
4169
4169
  angleUnits: l = "deg"
4170
4170
  } = {}) {
4171
- super(t, e), F(this, "segmentType", "ELLIPSE_ARC"), F(this, "precision", 1e-6), F(this, "majorRadius"), F(this, "minorRadius"), F(this, "center"), F(this, "tiltAngle"), F(this, "clockwise"), F(this, "_coefficients", null), F(this, "_boundingBox"), F(this, "_linearExentricity"), F(this, "_exentricity"), F(this, "_focals"), F(this, "_ellipseReferenceFrameTransform"), F(this, "_reverseEllipseReferenceFrameTransform"), F(this, "_rotateFromEllipseReferenceFrame"), F(this, "_firstAngle"), F(this, "_lastAngle"), F(this, "_deltaAngle"), this.center = n;
4171
+ super(t, e), _(this, "segmentType", "ELLIPSE_ARC"), _(this, "precision", 1e-6), _(this, "majorRadius"), _(this, "minorRadius"), _(this, "center"), _(this, "tiltAngle"), _(this, "clockwise"), _(this, "_coefficients", null), _(this, "_boundingBox"), _(this, "_linearExentricity"), _(this, "_exentricity"), _(this, "_focals"), _(this, "_ellipseReferenceFrameTransform"), _(this, "_reverseEllipseReferenceFrameTransform"), _(this, "_rotateFromEllipseReferenceFrame"), _(this, "_firstAngle"), _(this, "_lastAngle"), _(this, "_deltaAngle"), this.center = n;
4172
4172
  const c = s >= r;
4173
4173
  this.majorRadius = c ? s : r, this.minorRadius = c ? r : s;
4174
4174
  const u = l === "deg" ? o * $t : o;
@@ -4471,7 +4471,7 @@ function cr(i, t, e) {
4471
4471
  }
4472
4472
  let et = class Dt extends ae {
4473
4473
  constructor(t, e, n) {
4474
- super(t, e), F(this, "segmentType", "QUADRATIC_BEZIER"), F(this, "controlPoint"), F(this, "_boundingBox", null), F(this, "_polynomialCoefficients", null), this.controlPoint = n;
4474
+ super(t, e), _(this, "segmentType", "QUADRATIC_BEZIER"), _(this, "controlPoint"), _(this, "_boundingBox", null), _(this, "_polynomialCoefficients", null), this.controlPoint = n;
4475
4475
  }
4476
4476
  get midPoint() {
4477
4477
  return this.paramPoint(0.5);
@@ -4518,7 +4518,7 @@ let et = class Dt extends ae {
4518
4518
  return t.segmentType !== "QUADRATIC_BEZIER" ? !1 : R(this.firstPoint, t.firstPoint) && R(this.lastPoint, t.lastPoint) && R(this.controlPoint, t.controlPoint);
4519
4519
  }
4520
4520
  distanceFrom(t) {
4521
- const e = ui((n) => _t(this.paramPoint(n), t), this.precision);
4521
+ const e = ui((n) => Ft(this.paramPoint(n), t), this.precision);
4522
4522
  return e.argMin < -this.precision || e.argMin > 1 + this.precision ? Math.min(
4523
4523
  J(this.firstPoint, t),
4524
4524
  J(this.lastPoint, t)
@@ -4946,7 +4946,7 @@ function Rr(i) {
4946
4946
  Math.max(...r)
4947
4947
  );
4948
4948
  }
4949
- function _n(i, t) {
4949
+ function Fn(i, t) {
4950
4950
  const e = [];
4951
4951
  for (let n = 1; n < i.length; n++) {
4952
4952
  const s = i[n];
@@ -5024,11 +5024,11 @@ class Ir {
5024
5024
  return this.distances[3];
5025
5025
  }
5026
5026
  }
5027
- function Fn(i, t) {
5028
- const e = Cr(t, i), n = _n(
5027
+ function _n(i, t) {
5028
+ const e = Cr(t, i), n = Fn(
5029
5029
  e.topHull,
5030
5030
  i.negativeThickness
5031
- ), s = _n(
5031
+ ), s = Fn(
5032
5032
  e.bottomHull,
5033
5033
  i.positiveThickness
5034
5034
  ), r = e.endDistance >= i.negativeThickness && e.endDistance <= i.positiveThickness;
@@ -5044,10 +5044,10 @@ function Fn(i, t) {
5044
5044
  return o.length === 2 ? new Ht(o[0], o[1]) : r ? new Ht(o[0], "end") : new Ht("start", o[0]);
5045
5045
  }
5046
5046
  function Ln(i, t) {
5047
- const e = kr(i), n = Fn(e, t);
5047
+ const e = kr(i), n = _n(e, t);
5048
5048
  if (!n)
5049
5049
  return null;
5050
- const s = Rr(i), r = Fn(
5050
+ const s = Rr(i), r = _n(
5051
5051
  s,
5052
5052
  t
5053
5053
  );
@@ -5125,7 +5125,7 @@ function $r(i, t) {
5125
5125
  if (e.length === 4)
5126
5126
  return [i];
5127
5127
  }
5128
- function _r(i, t, e = !1) {
5128
+ function Fr(i, t, e = !1) {
5129
5129
  const n = Math.max(i.precision, t.precision);
5130
5130
  if (e) {
5131
5131
  const s = $r(i, t);
@@ -5134,7 +5134,7 @@ function _r(i, t, e = !1) {
5134
5134
  }
5135
5135
  return It(i, t, n);
5136
5136
  }
5137
- function Fr(i, t) {
5137
+ function _r(i, t) {
5138
5138
  const e = [];
5139
5139
  if ([
5140
5140
  [i.firstPoint, t],
@@ -5155,7 +5155,7 @@ function Fr(i, t) {
5155
5155
  function Lr(i, t, e = !1) {
5156
5156
  const n = Math.max(i.precision, t.precision);
5157
5157
  if (e) {
5158
- const s = Fr(i, t);
5158
+ const s = _r(i, t);
5159
5159
  if (s)
5160
5160
  return s;
5161
5161
  }
@@ -5300,7 +5300,7 @@ function se(i, t, e) {
5300
5300
  return { intersections: n, overlaps: [], count: n.length };
5301
5301
  }
5302
5302
  if (i instanceof rt && t instanceof rt) {
5303
- const n = _r(
5303
+ const n = Fr(
5304
5304
  i,
5305
5305
  t
5306
5306
  );
@@ -5327,7 +5327,7 @@ function* Qe(i) {
5327
5327
  for (const [t, e] of Ei(i.length))
5328
5328
  t !== e && (yield [i[t], i[e]]);
5329
5329
  }
5330
- class Si extends Ft {
5330
+ class Si extends _t {
5331
5331
  constructor(t, { ignoreChecks: e = !1 } = {}) {
5332
5332
  super(), ut(this, "segments"), ut(this, "_boundingBox", null), e || ki(t), this.segments = t;
5333
5333
  }
@@ -5490,7 +5490,7 @@ let Rt = class Ut extends Si {
5490
5490
  }
5491
5491
  };
5492
5492
  const jr = (i, t) => {
5493
- const e = _e(t, {
5493
+ const e = Fe(t, {
5494
5494
  V: [1, 0],
5495
5495
  firstPoint: i,
5496
5496
  precision: t.precision
@@ -5505,7 +5505,7 @@ const jr = (i, t) => {
5505
5505
  }
5506
5506
  return 1;
5507
5507
  };
5508
- let fn = class {
5508
+ class fn {
5509
5509
  constructor(t) {
5510
5510
  ut(this, "_count", 0), ut(this, "segment"), this.segment = t;
5511
5511
  }
@@ -5515,11 +5515,11 @@ let fn = class {
5515
5515
  get count() {
5516
5516
  return this._count;
5517
5517
  }
5518
- };
5518
+ }
5519
5519
  const qr = (i, t) => {
5520
5520
  const e = t.precision, n = Math.abs(i[1] - t.center[1]);
5521
5521
  if (n > t.radius + e) return 0;
5522
- const s = _t(i, t.center), r = t.radius * t.radius, o = e * e;
5522
+ const s = Ft(i, t.center), r = t.radius * t.radius, o = e * e;
5523
5523
  if (Math.abs(s - r) < o && t.isOnSegment(i))
5524
5524
  return 0;
5525
5525
  const a = s - r > o;
@@ -5947,7 +5947,7 @@ function $i(i, t = 1e-7) {
5947
5947
  }
5948
5948
  }), n;
5949
5949
  }
5950
- let mt = class Se extends Ft {
5950
+ let mt = class Se extends _t {
5951
5951
  constructor(t, e = [], { ignoreChecks: n = !1 } = {}) {
5952
5952
  super(), ut(this, "contour"), ut(this, "holes"), n || Qr(t, e), this.contour = t, this.holes = e;
5953
5953
  }
@@ -6027,7 +6027,7 @@ const xe = (i, t, e = 1e-7) => Math.abs(i - t) <= e, Gr = (i, t) => {
6027
6027
  n[a] = o;
6028
6028
  });
6029
6029
  }), e;
6030
- }, _i = (i) => i.map((t, e) => {
6030
+ }, Fi = (i) => i.map((t, e) => {
6031
6031
  const n = t.segments[0].midPoint, s = i.filter((r, o) => e === o ? !1 : r.contains(n));
6032
6032
  return {
6033
6033
  loop: t,
@@ -6039,7 +6039,7 @@ const xe = (i, t, e = 1e-7) => Math.abs(i - t) <= e, Gr = (i, t) => {
6039
6039
  )
6040
6040
  )), eo = (i, t) => {
6041
6041
  const e = t.filter(({ isIn: s }) => s.length <= 1), n = gn(
6042
- _i(i.map(({ loop: s }) => s))
6042
+ Fi(i.map(({ loop: s }) => s))
6043
6043
  );
6044
6044
  return [e, ...n];
6045
6045
  }, gn = (i) => {
@@ -6049,7 +6049,7 @@ const xe = (i, t, e = 1e-7) => Math.abs(i - t) <= e, Gr = (i, t) => {
6049
6049
  };
6050
6050
  function ee(i) {
6051
6051
  const t = Zr(i);
6052
- return Kr(t).map(_i).flatMap(gn).map((e) => {
6052
+ return Kr(t).map(Fi).flatMap(gn).map((e) => {
6053
6053
  if (e.length === 1) return new mt(e[0].loop);
6054
6054
  e.sort((r, o) => r.isIn.length - o.isIn.length);
6055
6055
  const [n, ...s] = e.map(({ loop: r }) => r);
@@ -6294,11 +6294,11 @@ function lo(i) {
6294
6294
  (w) => c.some((g) => w.intersects(g))
6295
6295
  )) return;
6296
6296
  let m;
6297
- h.length > 1 || c.length > 1 ? m = re(h, c) : m = Fi(h[0], c[0]), r.fusedWith.add(l), r.current = m, u || t.set(l, r);
6297
+ h.length > 1 || c.length > 1 ? m = re(h, c) : m = _i(h[0], c[0]), r.fusedWith.add(l), r.current = m, u || t.set(l, r);
6298
6298
  });
6299
6299
  }), e.flatMap(({ current: n }) => n);
6300
6300
  }
6301
- function Fi(i, t) {
6301
+ function _i(i, t) {
6302
6302
  const e = ho(i.contour, t.contour), n = t.holes.flatMap((o) => Te(o, i.contour)), s = i.holes.flatMap((o) => Te(o, t.contour)), r = no(i.holes, t.holes).flatMap(
6303
6303
  ([o, a]) => wn(o, a)
6304
6304
  );
@@ -6357,7 +6357,7 @@ function re(i, t) {
6357
6357
  e = re([n], e);
6358
6358
  }), e;
6359
6359
  }
6360
- return i.length === 1 && t.length === 1 ? Fi(i[0], t[0]) : [];
6360
+ return i.length === 1 && t.length === 1 ? _i(i[0], t[0]) : [];
6361
6361
  }
6362
6362
  function Xt(i, t) {
6363
6363
  if (!i.length) return [];
@@ -6374,7 +6374,7 @@ function Xt(i, t) {
6374
6374
  function Ke(i, t) {
6375
6375
  return !i.length || !t.length ? [] : i.length === 1 && t.length === 1 ? uo(i[0], t[0]) : i.length > 1 ? i.flatMap((e) => Ke([e], t)) : t.flatMap((e) => Ke(i, [e]));
6376
6376
  }
6377
- class dt extends Ft {
6377
+ class dt extends _t {
6378
6378
  constructor(t = [], { ignoreChecks: e = !1 } = {}) {
6379
6379
  super(), ut(this, "figures"), ut(this, "_boundingBox", null), e || co(t), this.figures = t;
6380
6380
  }
@@ -6603,7 +6603,7 @@ const Po = (i) => {
6603
6603
  function Qn(i, { ignoreChecks: t = !1 } = {}) {
6604
6604
  return new dt([new mt(new Lt([...i], { ignoreChecks: t }))]);
6605
6605
  }
6606
- let Mo = class {
6606
+ class Mo {
6607
6607
  constructor(t = [0, 0]) {
6608
6608
  ve(this, "pointer"), ve(this, "firstPoint"), ve(this, "pendingSegments"), ve(this, "_nextCorner"), this.pointer = t, this.firstPoint = t, this.pendingSegments = [], this._nextCorner = null;
6609
6609
  }
@@ -6826,7 +6826,7 @@ let Mo = class {
6826
6826
  var t;
6827
6827
  return R(this.pointer, (t = this.pendingSegments[0]) == null ? void 0 : t.firstPoint);
6828
6828
  }
6829
- };
6829
+ }
6830
6830
  function Vi(i = [0, 0]) {
6831
6831
  return new Mo(i);
6832
6832
  }
@@ -6992,7 +6992,7 @@ function Eo(i, {
6992
6992
  e
6993
6993
  );
6994
6994
  }
6995
- class Zt extends Ft {
6995
+ class Zt extends _t {
6996
6996
  constructor(e, {
6997
6997
  cutLines: n = [],
6998
6998
  foldLines: s = [],
@@ -7098,13 +7098,13 @@ function zi(i, t, {
7098
7098
  function Ro(i, t, e = {}) {
7099
7099
  return zi(i, t, e).mirror("y");
7100
7100
  }
7101
- const qo = {
7101
+ const Vo = {
7102
7102
  right: Ro,
7103
7103
  left: zi,
7104
7104
  top: So,
7105
7105
  bottom: ko
7106
7106
  }, ii = (i, t) => Vi([-i / 2, 0]).line(t, -t).hLine(i - 2 * t).line(t, t);
7107
- class tn extends Ft {
7107
+ class tn extends _t {
7108
7108
  constructor(e, n = 0.2) {
7109
7109
  super();
7110
7110
  St(this, "cut");
@@ -7134,7 +7134,7 @@ class tn extends Ft {
7134
7134
  e.fuseBody(this.bump);
7135
7135
  }
7136
7136
  }
7137
- class Be extends Ft {
7137
+ class Be extends _t {
7138
7138
  constructor(t) {
7139
7139
  super(), this.points = t, this.points = t;
7140
7140
  }
@@ -7148,7 +7148,7 @@ class Be extends Ft {
7148
7148
  return this.points.map((e) => t.clone().translateTo(e));
7149
7149
  }
7150
7150
  }
7151
- function No(i, t, e = 3, n = 0) {
7151
+ function jo(i, t, e = 3, n = 0) {
7152
7152
  if (i <= t * 2)
7153
7153
  throw new Error("totalWidth must be greater than twice the objectWidth");
7154
7154
  const s = Math.max(
@@ -7161,7 +7161,7 @@ function No(i, t, e = 3, n = 0) {
7161
7161
  );
7162
7162
  return new Be(a.map((h) => [h, 0]));
7163
7163
  }
7164
- function Oo(i, t, e = "x") {
7164
+ function qo(i, t, e = "x") {
7165
7165
  const n = i * (t - 1), s = [];
7166
7166
  for (let r = 0; r < t; r++)
7167
7167
  s.push(r * i - n / 2);
@@ -7173,10 +7173,10 @@ export {
7173
7173
  Zt as Dieline,
7174
7174
  tn as FoldLockBump,
7175
7175
  ko as bottomFlap,
7176
- qo as drawFlaps,
7176
+ Vo as drawFlaps,
7177
7177
  zi as leftFlap,
7178
- No as linearDistribution,
7179
- Oo as linearSpread,
7178
+ jo as linearDistribution,
7179
+ qo as linearSpread,
7180
7180
  Ro as rightFlap,
7181
7181
  So as topFlap
7182
7182
  };