data-structure-typed 1.47.5 → 1.47.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +1 -1
- package/dist/cjs/data-structures/binary-tree/avl-tree.d.ts +8 -8
- package/dist/cjs/data-structures/binary-tree/avl-tree.js +23 -15
- package/dist/cjs/data-structures/binary-tree/avl-tree.js.map +1 -1
- package/dist/cjs/data-structures/binary-tree/binary-tree.d.ts +65 -28
- package/dist/cjs/data-structures/binary-tree/binary-tree.js +66 -82
- package/dist/cjs/data-structures/binary-tree/binary-tree.js.map +1 -1
- package/dist/cjs/data-structures/binary-tree/bst.d.ts +38 -37
- package/dist/cjs/data-structures/binary-tree/bst.js +56 -40
- package/dist/cjs/data-structures/binary-tree/bst.js.map +1 -1
- package/dist/cjs/data-structures/binary-tree/rb-tree.d.ts +11 -7
- package/dist/cjs/data-structures/binary-tree/rb-tree.js +26 -17
- package/dist/cjs/data-structures/binary-tree/rb-tree.js.map +1 -1
- package/dist/cjs/data-structures/binary-tree/tree-multimap.d.ts +16 -16
- package/dist/cjs/data-structures/binary-tree/tree-multimap.js +31 -22
- package/dist/cjs/data-structures/binary-tree/tree-multimap.js.map +1 -1
- package/dist/cjs/data-structures/graph/abstract-graph.js +1 -1
- package/dist/cjs/data-structures/graph/abstract-graph.js.map +1 -1
- package/dist/cjs/data-structures/heap/heap.d.ts +19 -21
- package/dist/cjs/data-structures/heap/heap.js +52 -34
- package/dist/cjs/data-structures/heap/heap.js.map +1 -1
- package/dist/cjs/data-structures/heap/max-heap.d.ts +2 -5
- package/dist/cjs/data-structures/heap/max-heap.js +2 -2
- package/dist/cjs/data-structures/heap/max-heap.js.map +1 -1
- package/dist/cjs/data-structures/heap/min-heap.d.ts +2 -5
- package/dist/cjs/data-structures/heap/min-heap.js +2 -2
- package/dist/cjs/data-structures/heap/min-heap.js.map +1 -1
- package/dist/cjs/data-structures/linked-list/doubly-linked-list.d.ts +2 -1
- package/dist/cjs/data-structures/linked-list/doubly-linked-list.js +9 -1
- package/dist/cjs/data-structures/linked-list/doubly-linked-list.js.map +1 -1
- package/dist/cjs/data-structures/linked-list/singly-linked-list.d.ts +2 -1
- package/dist/cjs/data-structures/linked-list/singly-linked-list.js +8 -1
- package/dist/cjs/data-structures/linked-list/singly-linked-list.js.map +1 -1
- package/dist/cjs/data-structures/priority-queue/max-priority-queue.d.ts +2 -5
- package/dist/cjs/data-structures/priority-queue/max-priority-queue.js +2 -2
- package/dist/cjs/data-structures/priority-queue/max-priority-queue.js.map +1 -1
- package/dist/cjs/data-structures/priority-queue/min-priority-queue.d.ts +2 -5
- package/dist/cjs/data-structures/priority-queue/min-priority-queue.js +2 -2
- package/dist/cjs/data-structures/priority-queue/min-priority-queue.js.map +1 -1
- package/dist/cjs/data-structures/priority-queue/priority-queue.d.ts +2 -5
- package/dist/cjs/data-structures/priority-queue/priority-queue.js +2 -2
- package/dist/cjs/data-structures/priority-queue/priority-queue.js.map +1 -1
- package/dist/cjs/data-structures/queue/deque.d.ts +1 -0
- package/dist/cjs/data-structures/queue/deque.js +3 -0
- package/dist/cjs/data-structures/queue/deque.js.map +1 -1
- package/dist/cjs/data-structures/queue/queue.d.ts +1 -0
- package/dist/cjs/data-structures/queue/queue.js +3 -0
- package/dist/cjs/data-structures/queue/queue.js.map +1 -1
- package/dist/cjs/data-structures/stack/stack.d.ts +2 -1
- package/dist/cjs/data-structures/stack/stack.js +10 -2
- package/dist/cjs/data-structures/stack/stack.js.map +1 -1
- package/dist/cjs/interfaces/binary-tree.d.ts +3 -1
- package/dist/cjs/types/common.d.ts +2 -0
- package/dist/cjs/types/common.js.map +1 -1
- package/dist/cjs/types/data-structures/binary-tree/binary-tree.d.ts +1 -1
- package/dist/cjs/types/data-structures/binary-tree/bst.d.ts +2 -2
- package/dist/cjs/types/data-structures/heap/heap.d.ts +4 -1
- package/dist/cjs/types/data-structures/priority-queue/priority-queue.d.ts +2 -1
- package/dist/mjs/data-structures/binary-tree/avl-tree.d.ts +8 -8
- package/dist/mjs/data-structures/binary-tree/avl-tree.js +26 -16
- package/dist/mjs/data-structures/binary-tree/binary-tree.d.ts +65 -28
- package/dist/mjs/data-structures/binary-tree/binary-tree.js +66 -83
- package/dist/mjs/data-structures/binary-tree/bst.d.ts +38 -37
- package/dist/mjs/data-structures/binary-tree/bst.js +59 -41
- package/dist/mjs/data-structures/binary-tree/rb-tree.d.ts +11 -7
- package/dist/mjs/data-structures/binary-tree/rb-tree.js +30 -19
- package/dist/mjs/data-structures/binary-tree/tree-multimap.d.ts +16 -16
- package/dist/mjs/data-structures/binary-tree/tree-multimap.js +34 -23
- package/dist/mjs/data-structures/graph/abstract-graph.js +1 -1
- package/dist/mjs/data-structures/heap/heap.d.ts +19 -21
- package/dist/mjs/data-structures/heap/heap.js +53 -35
- package/dist/mjs/data-structures/heap/max-heap.d.ts +2 -5
- package/dist/mjs/data-structures/heap/max-heap.js +2 -2
- package/dist/mjs/data-structures/heap/min-heap.d.ts +2 -5
- package/dist/mjs/data-structures/heap/min-heap.js +2 -2
- package/dist/mjs/data-structures/linked-list/doubly-linked-list.d.ts +2 -1
- package/dist/mjs/data-structures/linked-list/doubly-linked-list.js +9 -1
- package/dist/mjs/data-structures/linked-list/singly-linked-list.d.ts +2 -1
- package/dist/mjs/data-structures/linked-list/singly-linked-list.js +8 -1
- package/dist/mjs/data-structures/priority-queue/max-priority-queue.d.ts +2 -5
- package/dist/mjs/data-structures/priority-queue/max-priority-queue.js +2 -2
- package/dist/mjs/data-structures/priority-queue/min-priority-queue.d.ts +2 -5
- package/dist/mjs/data-structures/priority-queue/min-priority-queue.js +2 -2
- package/dist/mjs/data-structures/priority-queue/priority-queue.d.ts +2 -5
- package/dist/mjs/data-structures/priority-queue/priority-queue.js +2 -2
- package/dist/mjs/data-structures/queue/deque.d.ts +1 -0
- package/dist/mjs/data-structures/queue/deque.js +3 -0
- package/dist/mjs/data-structures/queue/queue.d.ts +1 -0
- package/dist/mjs/data-structures/queue/queue.js +3 -0
- package/dist/mjs/data-structures/stack/stack.d.ts +2 -1
- package/dist/mjs/data-structures/stack/stack.js +10 -2
- package/dist/mjs/interfaces/binary-tree.d.ts +3 -1
- package/dist/mjs/types/common.d.ts +2 -0
- package/dist/mjs/types/data-structures/binary-tree/binary-tree.d.ts +1 -1
- package/dist/mjs/types/data-structures/binary-tree/bst.d.ts +2 -2
- package/dist/mjs/types/data-structures/heap/heap.d.ts +4 -1
- package/dist/mjs/types/data-structures/priority-queue/priority-queue.d.ts +2 -1
- package/dist/umd/data-structure-typed.js +307 -229
- package/dist/umd/data-structure-typed.min.js +2 -2
- package/dist/umd/data-structure-typed.min.js.map +1 -1
- package/package.json +1 -1
- package/src/data-structures/binary-tree/avl-tree.ts +27 -17
- package/src/data-structures/binary-tree/binary-tree.ts +114 -97
- package/src/data-structures/binary-tree/bst.ts +67 -47
- package/src/data-structures/binary-tree/rb-tree.ts +34 -20
- package/src/data-structures/binary-tree/tree-multimap.ts +43 -25
- package/src/data-structures/graph/abstract-graph.ts +1 -1
- package/src/data-structures/heap/heap.ts +57 -39
- package/src/data-structures/heap/max-heap.ts +5 -5
- package/src/data-structures/heap/min-heap.ts +5 -5
- package/src/data-structures/linked-list/doubly-linked-list.ts +10 -1
- package/src/data-structures/linked-list/singly-linked-list.ts +9 -1
- package/src/data-structures/priority-queue/max-priority-queue.ts +4 -3
- package/src/data-structures/priority-queue/min-priority-queue.ts +12 -12
- package/src/data-structures/priority-queue/priority-queue.ts +3 -3
- package/src/data-structures/queue/deque.ts +4 -0
- package/src/data-structures/queue/queue.ts +4 -0
- package/src/data-structures/stack/stack.ts +12 -3
- package/src/interfaces/binary-tree.ts +13 -1
- package/src/types/common.ts +5 -1
- package/src/types/data-structures/binary-tree/binary-tree.ts +1 -1
- package/src/types/data-structures/binary-tree/bst.ts +2 -3
- package/src/types/data-structures/heap/heap.ts +3 -1
- package/src/types/data-structures/priority-queue/priority-queue.ts +3 -1
- package/test/performance/data-structures/comparison/comparison.test.ts +7 -6
- package/test/performance/data-structures/heap/heap.test.ts +2 -2
- package/test/performance/data-structures/priority-queue/priority-queue.test.ts +1 -1
- package/test/unit/data-structures/binary-tree/avl-tree.test.ts +1 -1
- package/test/unit/data-structures/binary-tree/binary-tree.test.ts +6 -6
- package/test/unit/data-structures/binary-tree/bst.test.ts +1 -1
- package/test/unit/data-structures/binary-tree/tree-multimap.test.ts +1 -1
- package/test/unit/data-structures/heap/heap.test.ts +2 -2
- package/test/unit/data-structures/heap/max-heap.test.ts +1 -1
- package/test/unit/data-structures/heap/min-heap.test.ts +1 -1
- package/test/unit/data-structures/priority-queue/max-priority-queue.test.ts +4 -3
- package/test/unit/data-structures/priority-queue/priority-queue.test.ts +9 -10
- package/test/unit/data-structures/stack/stack.test.ts +2 -2
- package/test/unit/unrestricted-interconversion.test.ts +100 -0
- package/test/integration/conversion.test.ts +0 -0
|
@@ -5,8 +5,8 @@
|
|
|
5
5
|
* @copyright Copyright (c) 2022 Tyler Zeng <zrwusa@gmail.com>
|
|
6
6
|
* @license MIT License
|
|
7
7
|
*/
|
|
8
|
-
import type { BSTNested, BSTNodeNested, BSTOptions, BTNCallback, BTNKey } from '../../types';
|
|
9
|
-
import { CP, IterationType } from '../../types';
|
|
8
|
+
import type { BSTNested, BSTNodeNested, BSTOptions, BTNCallback, BTNKey, Comparator } from '../../types';
|
|
9
|
+
import { CP, IterableEntriesOrKeys, IterationType } from '../../types';
|
|
10
10
|
import { BinaryTree, BinaryTreeNode } from './binary-tree';
|
|
11
11
|
import { IBinaryTree } from '../../interfaces';
|
|
12
12
|
export declare class BSTNode<V = any, N extends BSTNode<V, N> = BSTNodeNested<V>> extends BinaryTreeNode<V, N> {
|
|
@@ -34,18 +34,18 @@ export declare class BSTNode<V = any, N extends BSTNode<V, N> = BSTNodeNested<V>
|
|
|
34
34
|
set right(v: N | undefined);
|
|
35
35
|
}
|
|
36
36
|
export declare class BST<V = any, N extends BSTNode<V, N> = BSTNode<V, BSTNodeNested<V>>, TREE extends BST<V, N, TREE> = BST<V, N, BSTNested<V, N>>> extends BinaryTree<V, N, TREE> implements IBinaryTree<V, N, TREE> {
|
|
37
|
-
options: BSTOptions;
|
|
38
37
|
/**
|
|
39
38
|
* The constructor function initializes a binary search tree with an optional comparator function.
|
|
40
39
|
* @param {BSTOptions} [options] - An optional object that contains additional configuration options
|
|
41
40
|
* for the binary search tree.
|
|
42
41
|
*/
|
|
43
|
-
constructor(options?: BSTOptions);
|
|
42
|
+
constructor(elements?: IterableEntriesOrKeys<V>, options?: Partial<BSTOptions>);
|
|
44
43
|
protected _root?: N;
|
|
45
44
|
/**
|
|
46
45
|
* Get the root node of the binary tree.
|
|
47
46
|
*/
|
|
48
47
|
get root(): N | undefined;
|
|
48
|
+
comparator: Comparator<BTNKey>;
|
|
49
49
|
/**
|
|
50
50
|
* The function creates a new binary search tree node with the given key and value.
|
|
51
51
|
* @param {BTNKey} key - The key parameter is the key value that will be associated with
|
|
@@ -55,11 +55,7 @@ export declare class BST<V = any, N extends BSTNode<V, N> = BSTNode<V, BSTNodeNe
|
|
|
55
55
|
* @returns a new instance of the BSTNode class with the specified key and value.
|
|
56
56
|
*/
|
|
57
57
|
createNode(key: BTNKey, value?: V): N;
|
|
58
|
-
createTree(options?: BSTOptions): TREE;
|
|
59
|
-
/**
|
|
60
|
-
* Time Complexity: O(log n) - Average case for a balanced tree. In the worst case (unbalanced tree), it can be O(n).
|
|
61
|
-
* Space Complexity: O(1) - Constant space is used.
|
|
62
|
-
*/
|
|
58
|
+
createTree(options?: Partial<BSTOptions>): TREE;
|
|
63
59
|
/**
|
|
64
60
|
* Time Complexity: O(log n) - Average case for a balanced tree. In the worst case (unbalanced tree), it can be O(n).
|
|
65
61
|
* Space Complexity: O(1) - Constant space is used.
|
|
@@ -74,8 +70,8 @@ export declare class BST<V = any, N extends BSTNode<V, N> = BSTNode<V, BSTNodeNe
|
|
|
74
70
|
*/
|
|
75
71
|
add(keyOrNode: BTNKey | N | null | undefined, value?: V): N | undefined;
|
|
76
72
|
/**
|
|
77
|
-
* Time Complexity: O(
|
|
78
|
-
* Space Complexity: O(
|
|
73
|
+
* Time Complexity: O(log n) - Average case for a balanced tree. In the worst case (unbalanced tree), it can be O(n).
|
|
74
|
+
* Space Complexity: O(1) - Constant space is used.
|
|
79
75
|
*/
|
|
80
76
|
/**
|
|
81
77
|
* Time Complexity: O(n log n) - Adding each element individually in a balanced tree.
|
|
@@ -97,10 +93,10 @@ export declare class BST<V = any, N extends BSTNode<V, N> = BSTNode<V, BSTNodeNe
|
|
|
97
93
|
* current instance of the binary search tree
|
|
98
94
|
* @returns The function `addMany` returns an array of nodes (`N`) or `undefined` values.
|
|
99
95
|
*/
|
|
100
|
-
addMany(keysOrNodes: (BTNKey | N | undefined)[], data?: (V | undefined)[], isBalanceAdd?: boolean, iterationType?: IterationType
|
|
96
|
+
addMany(keysOrNodes: (BTNKey | N | undefined)[], data?: (V | undefined)[], isBalanceAdd?: boolean, iterationType?: IterationType): (N | undefined)[];
|
|
101
97
|
/**
|
|
102
|
-
* Time Complexity: O(log n) -
|
|
103
|
-
* Space Complexity: O(
|
|
98
|
+
* Time Complexity: O(n log n) - Adding each element individually in a balanced tree.
|
|
99
|
+
* Space Complexity: O(n) - Additional space is required for the sorted array.
|
|
104
100
|
*/
|
|
105
101
|
/**
|
|
106
102
|
* Time Complexity: O(log n) - Average case for a balanced tree.
|
|
@@ -117,10 +113,10 @@ export declare class BST<V = any, N extends BSTNode<V, N> = BSTNode<V, BSTNodeNe
|
|
|
117
113
|
* the key of the leftmost node if the comparison result is greater than, and the key of the
|
|
118
114
|
* rightmost node otherwise. If no node is found, it returns 0.
|
|
119
115
|
*/
|
|
120
|
-
lastKey(beginRoot?: BTNKey | N | undefined, iterationType?: IterationType
|
|
116
|
+
lastKey(beginRoot?: BTNKey | N | undefined, iterationType?: IterationType): BTNKey;
|
|
121
117
|
/**
|
|
122
118
|
* Time Complexity: O(log n) - Average case for a balanced tree.
|
|
123
|
-
* Space Complexity: O(
|
|
119
|
+
* Space Complexity: O(1) - Constant space is used.
|
|
124
120
|
*/
|
|
125
121
|
/**
|
|
126
122
|
* Time Complexity: O(log n) - Average case for a balanced tree.
|
|
@@ -137,6 +133,10 @@ export declare class BST<V = any, N extends BSTNode<V, N> = BSTNode<V, BSTNodeNe
|
|
|
137
133
|
* found in the binary tree. If no node is found, it returns `undefined`.
|
|
138
134
|
*/
|
|
139
135
|
getNodeByKey(key: BTNKey, iterationType?: IterationType): N | undefined;
|
|
136
|
+
/**
|
|
137
|
+
* Time Complexity: O(log n) - Average case for a balanced tree.
|
|
138
|
+
* Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
|
|
139
|
+
*/
|
|
140
140
|
/**
|
|
141
141
|
* The function `ensureNotKey` returns the node corresponding to the given key if it is a node key,
|
|
142
142
|
* otherwise it returns the key itself.
|
|
@@ -147,10 +147,6 @@ export declare class BST<V = any, N extends BSTNode<V, N> = BSTNode<V, BSTNodeNe
|
|
|
147
147
|
* @returns either a node object (N) or undefined.
|
|
148
148
|
*/
|
|
149
149
|
ensureNotKey(key: BTNKey | N | undefined, iterationType?: IterationType): N | undefined;
|
|
150
|
-
/**
|
|
151
|
-
* Time Complexity: O(log n) - Average case for a balanced tree. O(n) - Visiting each node once when identifier is not node's key.
|
|
152
|
-
* Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
|
|
153
|
-
*/
|
|
154
150
|
/**
|
|
155
151
|
* Time Complexity: O(log n) - Average case for a balanced tree. O(n) - Visiting each node once when identifier is not node's key.
|
|
156
152
|
* Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
|
|
@@ -174,7 +170,7 @@ export declare class BST<V = any, N extends BSTNode<V, N> = BSTNode<V, BSTNodeNe
|
|
|
174
170
|
* performed on the binary tree. It can have two possible values:
|
|
175
171
|
* @returns The method returns an array of nodes (`N[]`).
|
|
176
172
|
*/
|
|
177
|
-
getNodes<C extends BTNCallback<N>>(identifier: ReturnType<C> | undefined, callback?: C, onlyOne?: boolean, beginRoot?: BTNKey | N | undefined, iterationType?: IterationType
|
|
173
|
+
getNodes<C extends BTNCallback<N>>(identifier: ReturnType<C> | undefined, callback?: C, onlyOne?: boolean, beginRoot?: BTNKey | N | undefined, iterationType?: IterationType): N[];
|
|
178
174
|
/**
|
|
179
175
|
* Time Complexity: O(log n) - Average case for a balanced tree. O(n) - Visiting each node once when identifier is not node's key.
|
|
180
176
|
* Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
|
|
@@ -200,19 +196,10 @@ export declare class BST<V = any, N extends BSTNode<V, N> = BSTNode<V, BSTNodeNe
|
|
|
200
196
|
* @returns The function `lesserOrGreaterTraverse` returns an array of values of type
|
|
201
197
|
* `ReturnType<C>`, which is the return type of the callback function passed as an argument.
|
|
202
198
|
*/
|
|
203
|
-
lesserOrGreaterTraverse<C extends BTNCallback<N>>(callback?: C, lesserOrGreater?: CP, targetNode?: BTNKey | N | undefined, iterationType?: IterationType
|
|
204
|
-
/**
|
|
205
|
-
* Balancing Adjustment:
|
|
206
|
-
* Perfectly Balanced Binary Tree: Since the balance of a perfectly balanced binary tree is already fixed, no additional balancing adjustment is needed. Any insertion or deletion operation will disrupt the perfect balance, often requiring a complete reconstruction of the tree.
|
|
207
|
-
* AVL Tree: After insertion or deletion operations, an AVL tree performs rotation adjustments based on the balance factor of nodes to restore the tree's balance. These rotations can be left rotations, right rotations, left-right rotations, or right-left rotations, performed as needed.
|
|
208
|
-
*
|
|
209
|
-
* Use Cases and Efficiency:
|
|
210
|
-
* Perfectly Balanced Binary Tree: Perfectly balanced binary trees are typically used in specific scenarios such as complete binary heaps in heap sort or certain types of Huffman trees. However, they are not suitable for dynamic operations requiring frequent insertions and deletions, as these operations often necessitate full tree reconstruction.
|
|
211
|
-
* AVL Tree: AVL trees are well-suited for scenarios involving frequent searching, insertion, and deletion operations. Through rotation adjustments, AVL trees maintain their balance, ensuring average and worst-case time complexity of O(log n).
|
|
212
|
-
*/
|
|
199
|
+
lesserOrGreaterTraverse<C extends BTNCallback<N>>(callback?: C, lesserOrGreater?: CP, targetNode?: BTNKey | N | undefined, iterationType?: IterationType): ReturnType<C>[];
|
|
213
200
|
/**
|
|
214
|
-
* Time Complexity: O(n) -
|
|
215
|
-
* Space Complexity: O(n) -
|
|
201
|
+
* Time Complexity: O(log n) - Average case for a balanced tree. O(n) - Visiting each node once when identifier is not node's key.
|
|
202
|
+
* Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
|
|
216
203
|
*/
|
|
217
204
|
/**
|
|
218
205
|
* Time Complexity: O(n) - Building a balanced tree from a sorted array.
|
|
@@ -225,10 +212,19 @@ export declare class BST<V = any, N extends BSTNode<V, N> = BSTNode<V, BSTNodeNe
|
|
|
225
212
|
* values:
|
|
226
213
|
* @returns The function `perfectlyBalance` returns a boolean value.
|
|
227
214
|
*/
|
|
228
|
-
perfectlyBalance(iterationType?: IterationType
|
|
215
|
+
perfectlyBalance(iterationType?: IterationType): boolean;
|
|
229
216
|
/**
|
|
230
|
-
*
|
|
231
|
-
*
|
|
217
|
+
* Balancing Adjustment:
|
|
218
|
+
* Perfectly Balanced Binary Tree: Since the balance of a perfectly balanced binary tree is already fixed, no additional balancing adjustment is needed. Any insertion or deletion operation will disrupt the perfect balance, often requiring a complete reconstruction of the tree.
|
|
219
|
+
* AVL Tree: After insertion or deletion operations, an AVL tree performs rotation adjustments based on the balance factor of nodes to restore the tree's balance. These rotations can be left rotations, right rotations, left-right rotations, or right-left rotations, performed as needed.
|
|
220
|
+
*
|
|
221
|
+
* Use Cases and Efficiency:
|
|
222
|
+
* Perfectly Balanced Binary Tree: Perfectly balanced binary trees are typically used in specific scenarios such as complete binary heaps in heap sort or certain types of Huffman trees. However, they are not suitable for dynamic operations requiring frequent insertions and deletions, as these operations often necessitate full tree reconstruction.
|
|
223
|
+
* AVL Tree: AVL trees are well-suited for scenarios involving frequent searching, insertion, and deletion operations. Through rotation adjustments, AVL trees maintain their balance, ensuring average and worst-case time complexity of O(log n).
|
|
224
|
+
*/
|
|
225
|
+
/**
|
|
226
|
+
* Time Complexity: O(n) - Building a balanced tree from a sorted array.
|
|
227
|
+
* Space Complexity: O(n) - Additional space is required for the sorted array.
|
|
232
228
|
*/
|
|
233
229
|
/**
|
|
234
230
|
* Time Complexity: O(n) - Visiting each node once.
|
|
@@ -239,7 +235,12 @@ export declare class BST<V = any, N extends BSTNode<V, N> = BSTNode<V, BSTNodeNe
|
|
|
239
235
|
* to check if the AVL tree is balanced. It can have two possible values:
|
|
240
236
|
* @returns a boolean value.
|
|
241
237
|
*/
|
|
242
|
-
isAVLBalanced(iterationType?: IterationType
|
|
238
|
+
isAVLBalanced(iterationType?: IterationType): boolean;
|
|
239
|
+
/**
|
|
240
|
+
* Time Complexity: O(n) - Visiting each node once.
|
|
241
|
+
* Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
|
|
242
|
+
*/
|
|
243
|
+
init(elements: IterableEntriesOrKeys<V>): void;
|
|
243
244
|
protected _setRoot(v: N | undefined): void;
|
|
244
245
|
/**
|
|
245
246
|
* The function compares two values using a comparator function and returns whether the first value
|
|
@@ -51,15 +51,18 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
51
51
|
* @param {BSTOptions} [options] - An optional object that contains additional configuration options
|
|
52
52
|
* for the binary search tree.
|
|
53
53
|
*/
|
|
54
|
-
constructor(options) {
|
|
55
|
-
super(options);
|
|
54
|
+
constructor(elements, options) {
|
|
55
|
+
super([], options);
|
|
56
|
+
this.comparator = (a, b) => a - b;
|
|
56
57
|
if (options) {
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
58
|
+
const { comparator } = options;
|
|
59
|
+
if (comparator) {
|
|
60
|
+
this.comparator = comparator;
|
|
61
|
+
}
|
|
61
62
|
}
|
|
62
63
|
this._root = undefined;
|
|
64
|
+
if (elements)
|
|
65
|
+
this.init(elements);
|
|
63
66
|
}
|
|
64
67
|
/**
|
|
65
68
|
* Get the root node of the binary tree.
|
|
@@ -79,12 +82,8 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
79
82
|
return new BSTNode(key, value);
|
|
80
83
|
}
|
|
81
84
|
createTree(options) {
|
|
82
|
-
return new BST(Object.assign(
|
|
85
|
+
return new BST([], Object.assign({ iterationType: this.iterationType, comparator: this.comparator }, options));
|
|
83
86
|
}
|
|
84
|
-
/**
|
|
85
|
-
* Time Complexity: O(log n) - Average case for a balanced tree. In the worst case (unbalanced tree), it can be O(n).
|
|
86
|
-
* Space Complexity: O(1) - Constant space is used.
|
|
87
|
-
*/
|
|
88
87
|
/**
|
|
89
88
|
* Time Complexity: O(log n) - Average case for a balanced tree. In the worst case (unbalanced tree), it can be O(n).
|
|
90
89
|
* Space Complexity: O(1) - Constant space is used.
|
|
@@ -175,8 +174,8 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
175
174
|
return inserted;
|
|
176
175
|
}
|
|
177
176
|
/**
|
|
178
|
-
* Time Complexity: O(
|
|
179
|
-
* Space Complexity: O(
|
|
177
|
+
* Time Complexity: O(log n) - Average case for a balanced tree. In the worst case (unbalanced tree), it can be O(n).
|
|
178
|
+
* Space Complexity: O(1) - Constant space is used.
|
|
180
179
|
*/
|
|
181
180
|
/**
|
|
182
181
|
* Time Complexity: O(n log n) - Adding each element individually in a balanced tree.
|
|
@@ -198,7 +197,7 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
198
197
|
* current instance of the binary search tree
|
|
199
198
|
* @returns The function `addMany` returns an array of nodes (`N`) or `undefined` values.
|
|
200
199
|
*/
|
|
201
|
-
addMany(keysOrNodes, data, isBalanceAdd = true, iterationType = this.
|
|
200
|
+
addMany(keysOrNodes, data, isBalanceAdd = true, iterationType = this.iterationType) {
|
|
202
201
|
// TODO this addMany function is inefficient, it should be optimized
|
|
203
202
|
function hasNoUndefined(arr) {
|
|
204
203
|
return arr.indexOf(undefined) === -1;
|
|
@@ -268,8 +267,8 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
268
267
|
return inserted;
|
|
269
268
|
}
|
|
270
269
|
/**
|
|
271
|
-
* Time Complexity: O(log n) -
|
|
272
|
-
* Space Complexity: O(
|
|
270
|
+
* Time Complexity: O(n log n) - Adding each element individually in a balanced tree.
|
|
271
|
+
* Space Complexity: O(n) - Additional space is required for the sorted array.
|
|
273
272
|
*/
|
|
274
273
|
/**
|
|
275
274
|
* Time Complexity: O(log n) - Average case for a balanced tree.
|
|
@@ -286,7 +285,7 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
286
285
|
* the key of the leftmost node if the comparison result is greater than, and the key of the
|
|
287
286
|
* rightmost node otherwise. If no node is found, it returns 0.
|
|
288
287
|
*/
|
|
289
|
-
lastKey(beginRoot = this.root, iterationType = this.
|
|
288
|
+
lastKey(beginRoot = this.root, iterationType = this.iterationType) {
|
|
290
289
|
var _a, _b, _c, _d, _e, _f;
|
|
291
290
|
if (this._compare(0, 1) === types_1.CP.lt)
|
|
292
291
|
return (_b = (_a = this.getRightMost(beginRoot, iterationType)) === null || _a === void 0 ? void 0 : _a.key) !== null && _b !== void 0 ? _b : 0;
|
|
@@ -297,7 +296,7 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
297
296
|
}
|
|
298
297
|
/**
|
|
299
298
|
* Time Complexity: O(log n) - Average case for a balanced tree.
|
|
300
|
-
* Space Complexity: O(
|
|
299
|
+
* Space Complexity: O(1) - Constant space is used.
|
|
301
300
|
*/
|
|
302
301
|
/**
|
|
303
302
|
* Time Complexity: O(log n) - Average case for a balanced tree.
|
|
@@ -344,6 +343,10 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
344
343
|
}
|
|
345
344
|
}
|
|
346
345
|
}
|
|
346
|
+
/**
|
|
347
|
+
* Time Complexity: O(log n) - Average case for a balanced tree.
|
|
348
|
+
* Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
|
|
349
|
+
*/
|
|
347
350
|
/**
|
|
348
351
|
* The function `ensureNotKey` returns the node corresponding to the given key if it is a node key,
|
|
349
352
|
* otherwise it returns the key itself.
|
|
@@ -356,10 +359,6 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
356
359
|
ensureNotKey(key, iterationType = types_1.IterationType.ITERATIVE) {
|
|
357
360
|
return this.isNodeKey(key) ? this.getNodeByKey(key, iterationType) : key;
|
|
358
361
|
}
|
|
359
|
-
/**
|
|
360
|
-
* Time Complexity: O(log n) - Average case for a balanced tree. O(n) - Visiting each node once when identifier is not node's key.
|
|
361
|
-
* Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
|
|
362
|
-
*/
|
|
363
362
|
/**
|
|
364
363
|
* Time Complexity: O(log n) - Average case for a balanced tree. O(n) - Visiting each node once when identifier is not node's key.
|
|
365
364
|
* Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
|
|
@@ -383,7 +382,7 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
383
382
|
* performed on the binary tree. It can have two possible values:
|
|
384
383
|
* @returns The method returns an array of nodes (`N[]`).
|
|
385
384
|
*/
|
|
386
|
-
getNodes(identifier, callback = this._defaultOneParamCallback, onlyOne = false, beginRoot = this.root, iterationType = this.
|
|
385
|
+
getNodes(identifier, callback = this._defaultOneParamCallback, onlyOne = false, beginRoot = this.root, iterationType = this.iterationType) {
|
|
387
386
|
beginRoot = this.ensureNotKey(beginRoot);
|
|
388
387
|
if (!beginRoot)
|
|
389
388
|
return [];
|
|
@@ -464,7 +463,7 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
464
463
|
* @returns The function `lesserOrGreaterTraverse` returns an array of values of type
|
|
465
464
|
* `ReturnType<C>`, which is the return type of the callback function passed as an argument.
|
|
466
465
|
*/
|
|
467
|
-
lesserOrGreaterTraverse(callback = this._defaultOneParamCallback, lesserOrGreater = types_1.CP.lt, targetNode = this.root, iterationType = this.
|
|
466
|
+
lesserOrGreaterTraverse(callback = this._defaultOneParamCallback, lesserOrGreater = types_1.CP.lt, targetNode = this.root, iterationType = this.iterationType) {
|
|
468
467
|
targetNode = this.ensureNotKey(targetNode);
|
|
469
468
|
const ans = [];
|
|
470
469
|
if (!targetNode)
|
|
@@ -505,17 +504,8 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
505
504
|
}
|
|
506
505
|
}
|
|
507
506
|
/**
|
|
508
|
-
*
|
|
509
|
-
*
|
|
510
|
-
* AVL Tree: After insertion or deletion operations, an AVL tree performs rotation adjustments based on the balance factor of nodes to restore the tree's balance. These rotations can be left rotations, right rotations, left-right rotations, or right-left rotations, performed as needed.
|
|
511
|
-
*
|
|
512
|
-
* Use Cases and Efficiency:
|
|
513
|
-
* Perfectly Balanced Binary Tree: Perfectly balanced binary trees are typically used in specific scenarios such as complete binary heaps in heap sort or certain types of Huffman trees. However, they are not suitable for dynamic operations requiring frequent insertions and deletions, as these operations often necessitate full tree reconstruction.
|
|
514
|
-
* AVL Tree: AVL trees are well-suited for scenarios involving frequent searching, insertion, and deletion operations. Through rotation adjustments, AVL trees maintain their balance, ensuring average and worst-case time complexity of O(log n).
|
|
515
|
-
*/
|
|
516
|
-
/**
|
|
517
|
-
* Time Complexity: O(n) - Building a balanced tree from a sorted array.
|
|
518
|
-
* Space Complexity: O(n) - Additional space is required for the sorted array.
|
|
507
|
+
* Time Complexity: O(log n) - Average case for a balanced tree. O(n) - Visiting each node once when identifier is not node's key.
|
|
508
|
+
* Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
|
|
519
509
|
*/
|
|
520
510
|
/**
|
|
521
511
|
* Time Complexity: O(n) - Building a balanced tree from a sorted array.
|
|
@@ -528,7 +518,7 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
528
518
|
* values:
|
|
529
519
|
* @returns The function `perfectlyBalance` returns a boolean value.
|
|
530
520
|
*/
|
|
531
|
-
perfectlyBalance(iterationType = this.
|
|
521
|
+
perfectlyBalance(iterationType = this.iterationType) {
|
|
532
522
|
const sorted = this.dfs(node => node, 'in'), n = sorted.length;
|
|
533
523
|
this.clear();
|
|
534
524
|
if (sorted.length < 1)
|
|
@@ -566,8 +556,17 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
566
556
|
}
|
|
567
557
|
}
|
|
568
558
|
/**
|
|
569
|
-
*
|
|
570
|
-
*
|
|
559
|
+
* Balancing Adjustment:
|
|
560
|
+
* Perfectly Balanced Binary Tree: Since the balance of a perfectly balanced binary tree is already fixed, no additional balancing adjustment is needed. Any insertion or deletion operation will disrupt the perfect balance, often requiring a complete reconstruction of the tree.
|
|
561
|
+
* AVL Tree: After insertion or deletion operations, an AVL tree performs rotation adjustments based on the balance factor of nodes to restore the tree's balance. These rotations can be left rotations, right rotations, left-right rotations, or right-left rotations, performed as needed.
|
|
562
|
+
*
|
|
563
|
+
* Use Cases and Efficiency:
|
|
564
|
+
* Perfectly Balanced Binary Tree: Perfectly balanced binary trees are typically used in specific scenarios such as complete binary heaps in heap sort or certain types of Huffman trees. However, they are not suitable for dynamic operations requiring frequent insertions and deletions, as these operations often necessitate full tree reconstruction.
|
|
565
|
+
* AVL Tree: AVL trees are well-suited for scenarios involving frequent searching, insertion, and deletion operations. Through rotation adjustments, AVL trees maintain their balance, ensuring average and worst-case time complexity of O(log n).
|
|
566
|
+
*/
|
|
567
|
+
/**
|
|
568
|
+
* Time Complexity: O(n) - Building a balanced tree from a sorted array.
|
|
569
|
+
* Space Complexity: O(n) - Additional space is required for the sorted array.
|
|
571
570
|
*/
|
|
572
571
|
/**
|
|
573
572
|
* Time Complexity: O(n) - Visiting each node once.
|
|
@@ -578,7 +577,7 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
578
577
|
* to check if the AVL tree is balanced. It can have two possible values:
|
|
579
578
|
* @returns a boolean value.
|
|
580
579
|
*/
|
|
581
|
-
isAVLBalanced(iterationType = this.
|
|
580
|
+
isAVLBalanced(iterationType = this.iterationType) {
|
|
582
581
|
var _a, _b;
|
|
583
582
|
if (!this.root)
|
|
584
583
|
return true;
|
|
@@ -624,6 +623,23 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
624
623
|
}
|
|
625
624
|
return balanced;
|
|
626
625
|
}
|
|
626
|
+
/**
|
|
627
|
+
* Time Complexity: O(n) - Visiting each node once.
|
|
628
|
+
* Space Complexity: O(log n) - Space for the recursive call stack in the worst case.
|
|
629
|
+
*/
|
|
630
|
+
init(elements) {
|
|
631
|
+
if (elements) {
|
|
632
|
+
for (const entryOrKey of elements) {
|
|
633
|
+
if (Array.isArray(entryOrKey)) {
|
|
634
|
+
const [key, value] = entryOrKey;
|
|
635
|
+
this.add(key, value);
|
|
636
|
+
}
|
|
637
|
+
else {
|
|
638
|
+
this.add(entryOrKey);
|
|
639
|
+
}
|
|
640
|
+
}
|
|
641
|
+
}
|
|
642
|
+
}
|
|
627
643
|
_setRoot(v) {
|
|
628
644
|
if (v) {
|
|
629
645
|
v.parent = undefined;
|
|
@@ -639,7 +655,7 @@ class BST extends binary_tree_1.BinaryTree {
|
|
|
639
655
|
* than), CP.lt (less than), or CP.eq (equal).
|
|
640
656
|
*/
|
|
641
657
|
_compare(a, b) {
|
|
642
|
-
const compared = this.
|
|
658
|
+
const compared = this.comparator(a, b);
|
|
643
659
|
if (compared > 0)
|
|
644
660
|
return types_1.CP.gt;
|
|
645
661
|
else if (compared < 0)
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"bst.js","sourceRoot":"","sources":["../../../../src/data-structures/binary-tree/bst.ts"],"names":[],"mappings":";;;AAQA,uCAAgD;AAChD,+CAA2D;AAE3D,oCAAiC;AAEjC,MAAa,OAA6D,SAAQ,4BAAoB;IAGpG,YAAY,GAAW,EAAE,KAAS;QAChC,KAAK,CAAC,GAAG,EAAE,KAAK,CAAC,CAAC;QAClB,IAAI,CAAC,MAAM,GAAG,SAAS,CAAC;QACxB,IAAI,CAAC,KAAK,GAAG,SAAS,CAAC;QACvB,IAAI,CAAC,MAAM,GAAG,SAAS,CAAC;IAC1B,CAAC;IAID;;OAEG;IACH,IAAa,IAAI;QACf,OAAO,IAAI,CAAC,KAAK,CAAC;IACpB,CAAC;IAED;;;OAGG;IACH,IAAa,IAAI,CAAC,CAAgB;QAChC,IAAI,CAAC,EAAE;YACL,CAAC,CAAC,MAAM,GAAG,IAAoB,CAAC;SACjC;QACD,IAAI,CAAC,KAAK,GAAG,CAAC,CAAC;IACjB,CAAC;IAID;;OAEG;IACH,IAAa,KAAK;QAChB,OAAO,IAAI,CAAC,MAAM,CAAC;IACrB,CAAC;IAED;;;OAGG;IACH,IAAa,KAAK,CAAC,CAAgB;QACjC,IAAI,CAAC,EAAE;YACL,CAAC,CAAC,MAAM,GAAG,IAAoB,CAAC;SACjC;QACD,IAAI,CAAC,MAAM,GAAG,CAAC,CAAC;IAClB,CAAC;CACF;AAjDD,0BAiDC;AAED,MAAa,GACX,SAAQ,wBAAsB;IAK9B;;;;OAIG;IACH,YAAY,OAAoB;QAC9B,KAAK,CAAC,OAAO,CAAC,CAAC;QACf,IAAI,OAAO,EAAE;YACX,IAAI,CAAC,OAAO,mBAAK,aAAa,EAAE,qBAAa,CAAC,SAAS,EAAE,UAAU,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,GAAG,CAAC,IAAK,OAAO,CAAE,CAAA;SACnG;aAAM;YACL,IAAI,CAAC,OAAO,GAAG,EAAE,aAAa,EAAE,qBAAa,CAAC,SAAS,EAAE,UAAU,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC;SACxF;QACD,IAAI,CAAC,KAAK,GAAG,SAAS,CAAC;IACzB,CAAC;IAID;;OAEG;IACH,IAAa,IAAI;QACf,OAAO,IAAI,CAAC,KAAK,CAAC;IACpB,CAAC;IAED;;;;;;;OAOG;IACM,UAAU,CAAC,GAAW,EAAE,KAAS;QACxC,OAAO,IAAI,OAAO,CAAO,GAAG,EAAE,KAAK,CAAM,CAAC;IAC5C,CAAC;IAEQ,UAAU,CAAC,OAAoB;QACtC,OAAO,IAAI,GAAG,iCAAkB,IAAI,CAAC,OAAO,GAAK,OAAO,EAAW,CAAC;IACtE,CAAC;IAED;;;OAGG;IAEH;;;;;;;;;;;OAWG;IACM,GAAG,CAAC,SAAwC,EAAE,KAAS;QAC9D,IAAI,SAAS,KAAK,IAAI;YAAE,OAAO,SAAS,CAAC;QACzC,mCAAmC;QACnC,IAAI,QAAuB,CAAC;QAC5B,IAAI,OAAsB,CAAC;QAC3B,IAAI,SAAS,YAAY,OAAO,EAAE;YAChC,OAAO,GAAG,SAAS,CAAC;SACrB;aAAM,IAAI,IAAI,CAAC,SAAS,CAAC,SAAS,CAAC,EAAE;YACpC,OAAO,GAAG,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,KAAK,CAAC,CAAC;SAC7C;aAAM;YACL,OAAO,GAAG,SAAS,CAAC;SACrB;QACD,IAAI,IAAI,CAAC,IAAI,KAAK,SAAS,EAAE;YAC3B,IAAI,CAAC,QAAQ,CAAC,OAAO,CAAC,CAAC;YACvB,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC;YAC3B,QAAQ,GAAG,IAAI,CAAC,IAAI,CAAC;SACtB;aAAM;YACL,IAAI,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC;YACpB,IAAI,UAAU,GAAG,IAAI,CAAC;YACtB,OAAO,UAAU,EAAE;gBACjB,IAAI,GAAG,KAAK,SAAS,IAAI,OAAO,KAAK,SAAS,EAAE;oBAC9C,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,OAAO,CAAC,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE,EAAE;wBACjD,IAAI,OAAO,EAAE;4BACX,GAAG,CAAC,KAAK,GAAG,OAAO,CAAC,KAAK,CAAC;yBAC3B;wBACD,8BAA8B;wBAC9B,UAAU,GAAG,KAAK,CAAC;wBACnB,QAAQ,GAAG,GAAG,CAAC;qBAChB;yBAAM,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,OAAO,CAAC,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE,EAAE;wBACxD,4BAA4B;wBAC5B,IAAI,GAAG,CAAC,IAAI,KAAK,SAAS,EAAE;4BAC1B,IAAI,OAAO,EAAE;gCACX,OAAO,CAAC,MAAM,GAAG,GAAG,CAAC;6BACtB;4BACD,qCAAqC;4BACrC,GAAG,CAAC,IAAI,GAAG,OAAO,CAAC;4BACnB,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC;4BAC3B,UAAU,GAAG,KAAK,CAAC;4BACnB,QAAQ,GAAG,GAAG,CAAC,IAAI,CAAC;yBACrB;6BAAM;4BACL,uCAAuC;4BACvC,IAAI,GAAG,CAAC,IAAI;gCAAE,GAAG,GAAG,GAAG,CAAC,IAAI,CAAC;yBAC9B;qBACF;yBAAM,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,OAAO,CAAC,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE,EAAE;wBACxD,6BAA6B;wBAC7B,IAAI,GAAG,CAAC,KAAK,KAAK,SAAS,EAAE;4BAC3B,IAAI,OAAO,EAAE;gCACX,OAAO,CAAC,MAAM,GAAG,GAAG,CAAC;6BACtB;4BACD,sCAAsC;4BACtC,GAAG,CAAC,KAAK,GAAG,OAAO,CAAC;4BACpB,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC;4BAC3B,UAAU,GAAG,KAAK,CAAC;4BACnB,QAAQ,GAAG,GAAG,CAAC,KAAK,CAAC;yBACtB;6BAAM;4BACL,uCAAuC;4BACvC,IAAI,GAAG,CAAC,KAAK;gCAAE,GAAG,GAAG,GAAG,CAAC,KAAK,CAAC;yBAChC;qBACF;iBACF;qBAAM;oBACL,UAAU,GAAG,KAAK,CAAC;iBACpB;aACF;SACF;QACD,OAAO,QAAQ,CAAC;IAClB,CAAC;IAED;;;OAGG;IAEH;;;;;;;;;;;;;;;;;;;OAmBG;IACM,OAAO,CACd,WAAuC,EACvC,IAAwB,EACxB,YAAY,GAAG,IAAI,EACnB,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,aAAa;QAE1C,oEAAoE;QACpE,SAAS,cAAc,CAAC,GAA+B;YACrD,OAAO,GAAG,CAAC,OAAO,CAAC,SAAS,CAAC,KAAK,CAAC,CAAC,CAAC;QACvC,CAAC;QAED,IAAI,CAAC,YAAY,IAAI,CAAC,cAAc,CAAC,WAAW,CAAC,EAAE;YACjD,OAAO,KAAK,CAAC,OAAO,CAAC,WAAW,EAAE,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,aAAD,CAAC,cAAD,CAAC,GAAI,SAAS,CAAC,CAAC;SAClE;QAED,MAAM,QAAQ,GAAsB,EAAE,CAAC;QACvC,MAAM,WAAW,GAAsB,WAAW,CAAC,GAAG,CACpD,CAAC,KAAiB,EAAE,KAAK,EAAE,EAAE,CAAC,CAAC,KAAK,EAAE,IAAI,aAAJ,IAAI,uBAAJ,IAAI,CAAG,KAAK,CAAC,CAAoB,CACxE,CAAC;QAEF,IAAI,MAAM,GAAG,EAAE,CAAC;QAEhB,SAAS,uBAAuB,CAAC,GAAsB;YACrD,KAAK,MAAM,CAAC,SAAS,CAAC,IAAI,GAAG;gBAAE,IAAI,SAAS,YAAY,OAAO;oBAAE,OAAO,IAAI,CAAC;YAC7E,OAAO,KAAK,CAAC;QACf,CAAC;QAED,MAAM,2BAA2B,GAAG,CAAC,GAAsB,EAAwB,EAAE;YACnF,KAAK,MAAM,CAAC,SAAS,CAAC,IAAI,GAAG;gBAAE,IAAI,IAAI,CAAC,SAAS,CAAC,SAAS,CAAC;oBAAE,OAAO,IAAI,CAAC;YAC1E,OAAO,KAAK,CAAC;QACf,CAAC,CAAC;QAEF,IAAI,iBAAiB,GAA+B,EAAE,EACpD,UAAU,GAAkC,EAAE,CAAC;QAEjD,IAAI,uBAAuB,CAAC,WAAW,CAAC,EAAE;YACxC,MAAM,GAAG,WAAW,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;SAC1D;aAAM,IAAI,2BAA2B,CAAC,WAAW,CAAC,EAAE;YACnD,MAAM,GAAG,WAAW,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;SAClD;aAAM;YACL,MAAM,IAAI,KAAK,CAAC,2BAA2B,CAAC,CAAC;SAC9C;QACD,iBAAiB,GAAG,MAAM,CAAC,GAAG,CAAC,CAAC,CAAC,SAAS,CAAC,EAAE,EAAE,CAAC,SAAS,CAAC,CAAC;QAC3D,UAAU,GAAG,MAAM,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,CAAC;QAC9C,MAAM,IAAI,GAAG,CAAC,GAA+B,EAAE,IAAwB,EAAE,EAAE;YACzE,IAAI,GAAG,CAAC,MAAM,KAAK,CAAC;gBAAE,OAAO;YAE7B,MAAM,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,MAAM,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;YAC7C,MAAM,OAAO,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,IAAI,aAAJ,IAAI,uBAAJ,IAAI,CAAG,GAAG,CAAC,CAAC,CAAC;YAChD,QAAQ,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACvB,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,IAAI,aAAJ,IAAI,uBAAJ,IAAI,CAAE,KAAK,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;YAC7C,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE,IAAI,aAAJ,IAAI,uBAAJ,IAAI,CAAE,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC;QACjD,CAAC,CAAC;QACF,MAAM,QAAQ,GAAG,GAAG,EAAE;YACpB,MAAM,CAAC,GAAG,MAAM,CAAC,MAAM,CAAC;YACxB,MAAM,KAAK,GAAuB,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC/C,OAAO,KAAK,CAAC,MAAM,GAAG,CAAC,EAAE;gBACvB,MAAM,MAAM,GAAG,KAAK,CAAC,GAAG,EAAE,CAAC;gBAC3B,IAAI,MAAM,EAAE;oBACV,MAAM,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,MAAM,CAAC;oBACtB,IAAI,CAAC,IAAI,CAAC,EAAE;wBACV,MAAM,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;wBACtC,MAAM,OAAO,GAAG,IAAI,CAAC,GAAG,CAAC,iBAAiB,CAAC,CAAC,CAAC,EAAE,UAAU,aAAV,UAAU,uBAAV,UAAU,CAAG,CAAC,CAAC,CAAC,CAAC;wBAChE,QAAQ,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;wBACvB,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;wBACvB,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;qBACxB;iBACF;aACF;QACH,CAAC,CAAC;QACF,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,IAAI,CAAC,iBAAiB,EAAE,UAAU,CAAC,CAAC;SACrC;aAAM;YACL,QAAQ,EAAE,CAAC;SACZ;QAED,OAAO,QAAQ,CAAC;IAClB,CAAC;IAED;;;OAGG;IAEH;;;;;;;;;;;;;;OAcG;IACH,OAAO,CAAC,YAAoC,IAAI,CAAC,IAAI,EAAE,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,aAAa;;QAC/F,IAAI,IAAI,CAAC,QAAQ,CAAC,CAAC,EAAE,CAAC,CAAC,KAAK,UAAE,CAAC,EAAE;YAAE,OAAO,MAAA,MAAA,IAAI,CAAC,YAAY,CAAC,SAAS,EAAE,aAAa,CAAC,0CAAE,GAAG,mCAAI,CAAC,CAAC;aAC3F,IAAI,IAAI,CAAC,QAAQ,CAAC,CAAC,EAAE,CAAC,CAAC,KAAK,UAAE,CAAC,EAAE;YAAE,OAAO,MAAA,MAAA,IAAI,CAAC,WAAW,CAAC,SAAS,EAAE,aAAa,CAAC,0CAAE,GAAG,mCAAI,CAAC,CAAC;;YAC/F,OAAO,MAAA,MAAA,IAAI,CAAC,YAAY,CAAC,SAAS,EAAE,aAAa,CAAC,0CAAE,GAAG,mCAAI,CAAC,CAAC;IACpE,CAAC;IAED;;;OAGG;IAEH;;;;;;;;;;;;;OAaG;IACM,YAAY,CAAC,GAAW,EAAE,aAAa,GAAG,qBAAa,CAAC,SAAS;QACxE,IAAI,CAAC,IAAI,CAAC,IAAI;YAAE,OAAO,SAAS,CAAC;QACjC,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,MAAM,IAAI,GAAG,CAAC,GAAM,EAAiB,EAAE;gBACrC,IAAI,GAAG,CAAC,GAAG,KAAK,GAAG;oBAAE,OAAO,GAAG,CAAC;gBAChC,IAAI,CAAC,GAAG,CAAC,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK;oBAAE,OAAO;gBAEpC,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE,IAAI,GAAG,CAAC,IAAI;oBAAE,OAAO,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;gBAC7E,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE,IAAI,GAAG,CAAC,KAAK;oBAAE,OAAO,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;YACjF,CAAC,CAAC;YAEF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;SACxB;aAAM;YACL,MAAM,KAAK,GAAG,IAAI,aAAK,CAAI,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;YACxC,OAAO,KAAK,CAAC,IAAI,GAAG,CAAC,EAAE;gBACrB,MAAM,GAAG,GAAG,KAAK,CAAC,KAAK,EAAE,CAAC;gBAC1B,IAAI,GAAG,EAAE;oBACP,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE;wBAAE,OAAO,GAAG,CAAC;oBACtD,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE;wBAAE,GAAG,CAAC,IAAI,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;oBAC5E,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE;wBAAE,GAAG,CAAC,KAAK,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;iBAC/E;aACF;SACF;IACH,CAAC;IAED;;;;;;;;OAQG;IACM,YAAY,CAAC,GAA2B,EAAE,aAAa,GAAG,qBAAa,CAAC,SAAS;QACxF,OAAO,IAAI,CAAC,SAAS,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,YAAY,CAAC,GAAG,EAAE,aAAa,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;IAC3E,CAAC;IAED;;;OAGG;IAEH;;;;;;;;;;;;;;;;;;;;;;OAsBG;IACM,QAAQ,CACf,UAAqC,EACrC,WAAc,IAAI,CAAC,wBAA6B,EAChD,OAAO,GAAG,KAAK,EACf,YAAoC,IAAI,CAAC,IAAI,EAC7C,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,aAAa;QAE1C,SAAS,GAAG,IAAI,CAAC,YAAY,CAAC,SAAS,CAAC,CAAC;QACzC,IAAI,CAAC,SAAS;YAAE,OAAO,EAAE,CAAC;QAC1B,MAAM,GAAG,GAAQ,EAAE,CAAC;QAEpB,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,MAAM,SAAS,GAAG,CAAC,GAAM,EAAE,EAAE;gBAC3B,MAAM,cAAc,GAAG,QAAQ,CAAC,GAAG,CAAC,CAAC;gBACrC,IAAI,cAAc,KAAK,UAAU,EAAE;oBACjC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;oBACd,IAAI,OAAO;wBAAE,OAAO;iBACrB;gBAED,IAAI,CAAC,GAAG,CAAC,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK;oBAAE,OAAO;gBACpC,qBAAqB;gBACrB,IAAI,QAAQ,KAAK,IAAI,CAAC,wBAAwB,EAAE;oBAC9C,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,UAAoB,CAAC,KAAK,UAAE,CAAC,EAAE;wBAAE,GAAG,CAAC,IAAI,IAAI,SAAS,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;oBAC5F,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,UAAoB,CAAC,KAAK,UAAE,CAAC,EAAE;wBAAE,GAAG,CAAC,KAAK,IAAI,SAAS,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;iBAC/F;qBAAM;oBACL,GAAG,CAAC,IAAI,IAAI,SAAS,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;oBAChC,GAAG,CAAC,KAAK,IAAI,SAAS,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;iBACnC;YACH,CAAC,CAAC;YAEF,SAAS,CAAC,SAAS,CAAC,CAAC;SACtB;aAAM;YACL,MAAM,KAAK,GAAG,IAAI,aAAK,CAAI,CAAC,SAAS,CAAC,CAAC,CAAC;YACxC,OAAO,KAAK,CAAC,IAAI,GAAG,CAAC,EAAE;gBACrB,MAAM,GAAG,GAAG,KAAK,CAAC,KAAK,EAAE,CAAC;gBAC1B,IAAI,GAAG,EAAE;oBACP,MAAM,cAAc,GAAG,QAAQ,CAAC,GAAG,CAAC,CAAC;oBACrC,IAAI,cAAc,KAAK,UAAU,EAAE;wBACjC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;wBACd,IAAI,OAAO;4BAAE,OAAO,GAAG,CAAC;qBACzB;oBACD,qBAAqB;oBACrB,IAAI,QAAQ,KAAK,IAAI,CAAC,wBAAwB,EAAE;wBAC9C,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,UAAoB,CAAC,KAAK,UAAE,CAAC,EAAE;4BAAE,GAAG,CAAC,IAAI,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;wBAC7F,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,UAAoB,CAAC,KAAK,UAAE,CAAC,EAAE;4BAAE,GAAG,CAAC,KAAK,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;qBAChG;yBAAM;wBACL,GAAG,CAAC,IAAI,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;wBACjC,GAAG,CAAC,KAAK,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;qBACpC;iBACF;aACF;SACF;QAED,OAAO,GAAG,CAAC;IACb,CAAC;IAED;;;OAGG;IAEH;;;;;;;;;;;;;;;;;;;;OAoBG;IACH,uBAAuB,CACrB,WAAc,IAAI,CAAC,wBAA6B,EAChD,kBAAsB,UAAE,CAAC,EAAE,EAC3B,aAAqC,IAAI,CAAC,IAAI,EAC9C,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,aAAa;QAE1C,UAAU,GAAG,IAAI,CAAC,YAAY,CAAC,UAAU,CAAC,CAAC;QAC3C,MAAM,GAAG,GAAiC,EAAE,CAAC;QAC7C,IAAI,CAAC,UAAU;YAAE,OAAO,GAAG,CAAC;QAC5B,IAAI,CAAC,IAAI,CAAC,IAAI;YAAE,OAAO,GAAG,CAAC;QAE3B,MAAM,SAAS,GAAG,UAAU,CAAC,GAAG,CAAC;QAEjC,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,MAAM,SAAS,GAAG,CAAC,GAAM,EAAE,EAAE;gBAC3B,MAAM,QAAQ,GAAG,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,SAAS,CAAC,CAAC;gBACnD,IAAI,QAAQ,KAAK,eAAe;oBAAE,GAAG,CAAC,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,CAAC;gBAE1D,IAAI,CAAC,GAAG,CAAC,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK;oBAAE,OAAO;gBACpC,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,EAAE,SAAS,CAAC,KAAK,eAAe;oBAAE,SAAS,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;gBAChG,IAAI,GAAG,CAAC,KAAK,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,EAAE,SAAS,CAAC,KAAK,eAAe;oBAAE,SAAS,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;YACrG,CAAC,CAAC;YAEF,SAAS,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;YACrB,OAAO,GAAG,CAAC;SACZ;aAAM;YACL,MAAM,KAAK,GAAG,IAAI,aAAK,CAAI,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;YACxC,OAAO,KAAK,CAAC,IAAI,GAAG,CAAC,EAAE;gBACrB,MAAM,GAAG,GAAG,KAAK,CAAC,KAAK,EAAE,CAAC;gBAC1B,IAAI,GAAG,EAAE;oBACP,MAAM,QAAQ,GAAG,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,SAAS,CAAC,CAAC;oBACnD,IAAI,QAAQ,KAAK,eAAe;wBAAE,GAAG,CAAC,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,CAAC;oBAE1D,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,EAAE,SAAS,CAAC,KAAK,eAAe;wBAAE,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;oBACjG,IAAI,GAAG,CAAC,KAAK,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,EAAE,SAAS,CAAC,KAAK,eAAe;wBAAE,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;iBACrG;aACF;YACD,OAAO,GAAG,CAAC;SACZ;IACH,CAAC;IAED;;;;;;;;OAQG;IAEH;;;OAGG;IAEH;;;;;;;;;;OAUG;IACH,gBAAgB,CAAC,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,aAAa;QACzD,MAAM,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,IAAI,EAAE,IAAI,CAAC,EACzC,CAAC,GAAG,MAAM,CAAC,MAAM,CAAC;QACpB,IAAI,CAAC,KAAK,EAAE,CAAC;QAEb,IAAI,MAAM,CAAC,MAAM,GAAG,CAAC;YAAE,OAAO,KAAK,CAAC;QACpC,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,MAAM,eAAe,GAAG,CAAC,CAAS,EAAE,CAAS,EAAE,EAAE;gBAC/C,IAAI,CAAC,GAAG,CAAC;oBAAE,OAAO;gBAClB,MAAM,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;gBACtC,MAAM,OAAO,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;gBAC1B,IAAI,CAAC,GAAG,CAAC,OAAO,CAAC,GAAG,EAAE,OAAO,CAAC,KAAK,CAAC,CAAC;gBACrC,eAAe,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;gBAC1B,eAAe,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;YAC5B,CAAC,CAAC;YAEF,eAAe,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;YAC1B,OAAO,IAAI,CAAC;SACb;aAAM;YACL,MAAM,KAAK,GAAuB,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC/C,OAAO,KAAK,CAAC,MAAM,GAAG,CAAC,EAAE;gBACvB,MAAM,MAAM,GAAG,KAAK,CAAC,GAAG,EAAE,CAAC;gBAC3B,IAAI,MAAM,EAAE;oBACV,MAAM,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,MAAM,CAAC;oBACtB,IAAI,CAAC,IAAI,CAAC,EAAE;wBACV,MAAM,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;wBACtC,MAAM,OAAO,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;wBAC1B,QAAQ,CAAC;wBACT,IAAI,CAAC,GAAG,CAAC,OAAO,CAAC,GAAG,EAAE,OAAO,CAAC,KAAK,CAAC,CAAC;wBACrC,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;wBACvB,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;qBACxB;iBACF;aACF;YACD,OAAO,IAAI,CAAC;SACb;IACH,CAAC;IAED;;;OAGG;IAEH;;;;;;;;OAQG;IACH,aAAa,CAAC,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,aAAa;;QACtD,IAAI,CAAC,IAAI,CAAC,IAAI;YAAE,OAAO,IAAI,CAAC;QAE5B,IAAI,QAAQ,GAAG,IAAI,CAAC;QAEpB,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,MAAM,OAAO,GAAG,CAAC,GAAkB,EAAU,EAAE;gBAC7C,IAAI,CAAC,GAAG;oBAAE,OAAO,CAAC,CAAC;gBACnB,MAAM,UAAU,GAAG,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAClC,WAAW,GAAG,OAAO,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;gBACnC,IAAI,IAAI,CAAC,GAAG,CAAC,UAAU,GAAG,WAAW,CAAC,GAAG,CAAC;oBAAE,QAAQ,GAAG,KAAK,CAAC;gBAC7D,OAAO,IAAI,CAAC,GAAG,CAAC,UAAU,EAAE,WAAW,CAAC,GAAG,CAAC,CAAC;YAC/C,CAAC,CAAC;YACF,OAAO,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;SACpB;aAAM;YACL,MAAM,KAAK,GAAQ,EAAE,CAAC;YACtB,IAAI,IAAI,GAAkB,IAAI,CAAC,IAAI,EACjC,IAAI,GAAkB,SAAS,CAAC;YAClC,MAAM,MAAM,GAAmB,IAAI,GAAG,EAAE,CAAC;YAEzC,OAAO,KAAK,CAAC,MAAM,GAAG,CAAC,IAAI,IAAI,EAAE;gBAC/B,IAAI,IAAI,EAAE;oBACR,KAAK,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;oBACjB,IAAI,GAAG,IAAI,CAAC,IAAI,CAAC;iBAClB;qBAAM;oBACL,IAAI,GAAG,KAAK,CAAC,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;oBAC/B,IAAI,CAAC,IAAI,CAAC,KAAK,IAAI,IAAI,KAAK,IAAI,CAAC,KAAK,EAAE;wBACtC,IAAI,GAAG,KAAK,CAAC,GAAG,EAAE,CAAC;wBACnB,IAAI,IAAI,EAAE;4BACR,MAAM,IAAI,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,MAAA,MAAM,CAAC,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,mCAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;4BAC1D,MAAM,KAAK,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,MAAA,MAAM,CAAC,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,mCAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;4BAC7D,IAAI,IAAI,CAAC,GAAG,CAAC,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC;gCAAE,OAAO,KAAK,CAAC;4BAC7C,MAAM,CAAC,GAAG,CAAC,IAAI,EAAE,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC,CAAC;4BAC5C,IAAI,GAAG,IAAI,CAAC;4BACZ,IAAI,GAAG,SAAS,CAAC;yBAClB;qBACF;;wBAAM,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC;iBAC1B;aACF;SACF;QAED,OAAO,QAAQ,CAAC;IAClB,CAAC;IAES,QAAQ,CAAC,CAAgB;QACjC,IAAI,CAAC,EAAE;YACL,CAAC,CAAC,MAAM,GAAG,SAAS,CAAC;SACtB;QACD,IAAI,CAAC,KAAK,GAAG,CAAC,CAAC;IACjB,CAAC;IAED;;;;;;;OAOG;IACO,QAAQ,CAAC,CAAS,EAAE,CAAS;QACrC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,UAAW,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAChD,IAAI,QAAQ,GAAG,CAAC;YAAE,OAAO,UAAE,CAAC,EAAE,CAAC;aAC1B,IAAI,QAAQ,GAAG,CAAC;YAAE,OAAO,UAAE,CAAC,EAAE,CAAC;;YAC/B,OAAO,UAAE,CAAC,EAAE,CAAC;IACpB,CAAC;CACF;AAnmBD,kBAmmBC"}
|
|
1
|
+
{"version":3,"file":"bst.js","sourceRoot":"","sources":["../../../../src/data-structures/binary-tree/bst.ts"],"names":[],"mappings":";;;AAQA,uCAAuE;AACvE,+CAA2D;AAE3D,oCAAiC;AAEjC,MAAa,OAA6D,SAAQ,4BAAoB;IAGpG,YAAY,GAAW,EAAE,KAAS;QAChC,KAAK,CAAC,GAAG,EAAE,KAAK,CAAC,CAAC;QAClB,IAAI,CAAC,MAAM,GAAG,SAAS,CAAC;QACxB,IAAI,CAAC,KAAK,GAAG,SAAS,CAAC;QACvB,IAAI,CAAC,MAAM,GAAG,SAAS,CAAC;IAC1B,CAAC;IAID;;OAEG;IACH,IAAa,IAAI;QACf,OAAO,IAAI,CAAC,KAAK,CAAC;IACpB,CAAC;IAED;;;OAGG;IACH,IAAa,IAAI,CAAC,CAAgB;QAChC,IAAI,CAAC,EAAE;YACL,CAAC,CAAC,MAAM,GAAG,IAAoB,CAAC;SACjC;QACD,IAAI,CAAC,KAAK,GAAG,CAAC,CAAC;IACjB,CAAC;IAID;;OAEG;IACH,IAAa,KAAK;QAChB,OAAO,IAAI,CAAC,MAAM,CAAC;IACrB,CAAC;IAED;;;OAGG;IACH,IAAa,KAAK,CAAC,CAAgB;QACjC,IAAI,CAAC,EAAE;YACL,CAAC,CAAC,MAAM,GAAG,IAAoB,CAAC;SACjC;QACD,IAAI,CAAC,MAAM,GAAG,CAAC,CAAC;IAClB,CAAC;CACF;AAjDD,0BAiDC;AAED,MAAa,GACX,SAAQ,wBAAsB;IAG9B;;;;OAIG;IACH,YAAY,QAAmC,EAAE,OAA6B;QAC5E,KAAK,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC;QAsBrB,eAAU,GAAuB,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,GAAG,CAAC,CAAA;QApB9C,IAAI,OAAO,EAAE;YACX,MAAM,EAAE,UAAU,EAAE,GAAG,OAAO,CAAC;YAC/B,IAAI,UAAU,EAAE;gBACd,IAAI,CAAC,UAAU,GAAG,UAAU,CAAC;aAC9B;SACF;QAED,IAAI,CAAC,KAAK,GAAG,SAAS,CAAC;QACvB,IAAI,QAAQ;YAAE,IAAI,CAAC,IAAI,CAAC,QAAQ,CAAC,CAAC;IACpC,CAAC;IAID;;OAEG;IACH,IAAa,IAAI;QACf,OAAO,IAAI,CAAC,KAAK,CAAC;IACpB,CAAC;IAID;;;;;;;OAOG;IACM,UAAU,CAAC,GAAW,EAAE,KAAS;QACxC,OAAO,IAAI,OAAO,CAAO,GAAG,EAAE,KAAK,CAAM,CAAC;IAC5C,CAAC;IAEQ,UAAU,CAAC,OAA6B;QAC/C,OAAO,IAAI,GAAG,CAAa,EAAE,kBAC3B,aAAa,EAAE,IAAI,CAAC,aAAa,EACjC,UAAU,EAAE,IAAI,CAAC,UAAU,IAAK,OAAO,EAC/B,CAAC;IACb,CAAC;IAED;;;;;;;;;;;OAWG;IACM,GAAG,CAAC,SAAwC,EAAE,KAAS;QAC9D,IAAI,SAAS,KAAK,IAAI;YAAE,OAAO,SAAS,CAAC;QACzC,mCAAmC;QACnC,IAAI,QAAuB,CAAC;QAC5B,IAAI,OAAsB,CAAC;QAC3B,IAAI,SAAS,YAAY,OAAO,EAAE;YAChC,OAAO,GAAG,SAAS,CAAC;SACrB;aAAM,IAAI,IAAI,CAAC,SAAS,CAAC,SAAS,CAAC,EAAE;YACpC,OAAO,GAAG,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,KAAK,CAAC,CAAC;SAC7C;aAAM;YACL,OAAO,GAAG,SAAS,CAAC;SACrB;QACD,IAAI,IAAI,CAAC,IAAI,KAAK,SAAS,EAAE;YAC3B,IAAI,CAAC,QAAQ,CAAC,OAAO,CAAC,CAAC;YACvB,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC;YAC3B,QAAQ,GAAG,IAAI,CAAC,IAAI,CAAC;SACtB;aAAM;YACL,IAAI,GAAG,GAAG,IAAI,CAAC,IAAI,CAAC;YACpB,IAAI,UAAU,GAAG,IAAI,CAAC;YACtB,OAAO,UAAU,EAAE;gBACjB,IAAI,GAAG,KAAK,SAAS,IAAI,OAAO,KAAK,SAAS,EAAE;oBAC9C,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,OAAO,CAAC,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE,EAAE;wBACjD,IAAI,OAAO,EAAE;4BACX,GAAG,CAAC,KAAK,GAAG,OAAO,CAAC,KAAK,CAAC;yBAC3B;wBACD,8BAA8B;wBAC9B,UAAU,GAAG,KAAK,CAAC;wBACnB,QAAQ,GAAG,GAAG,CAAC;qBAChB;yBAAM,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,OAAO,CAAC,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE,EAAE;wBACxD,4BAA4B;wBAC5B,IAAI,GAAG,CAAC,IAAI,KAAK,SAAS,EAAE;4BAC1B,IAAI,OAAO,EAAE;gCACX,OAAO,CAAC,MAAM,GAAG,GAAG,CAAC;6BACtB;4BACD,qCAAqC;4BACrC,GAAG,CAAC,IAAI,GAAG,OAAO,CAAC;4BACnB,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC;4BAC3B,UAAU,GAAG,KAAK,CAAC;4BACnB,QAAQ,GAAG,GAAG,CAAC,IAAI,CAAC;yBACrB;6BAAM;4BACL,uCAAuC;4BACvC,IAAI,GAAG,CAAC,IAAI;gCAAE,GAAG,GAAG,GAAG,CAAC,IAAI,CAAC;yBAC9B;qBACF;yBAAM,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,OAAO,CAAC,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE,EAAE;wBACxD,6BAA6B;wBAC7B,IAAI,GAAG,CAAC,KAAK,KAAK,SAAS,EAAE;4BAC3B,IAAI,OAAO,EAAE;gCACX,OAAO,CAAC,MAAM,GAAG,GAAG,CAAC;6BACtB;4BACD,sCAAsC;4BACtC,GAAG,CAAC,KAAK,GAAG,OAAO,CAAC;4BACpB,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC;4BAC3B,UAAU,GAAG,KAAK,CAAC;4BACnB,QAAQ,GAAG,GAAG,CAAC,KAAK,CAAC;yBACtB;6BAAM;4BACL,uCAAuC;4BACvC,IAAI,GAAG,CAAC,KAAK;gCAAE,GAAG,GAAG,GAAG,CAAC,KAAK,CAAC;yBAChC;qBACF;iBACF;qBAAM;oBACL,UAAU,GAAG,KAAK,CAAC;iBACpB;aACF;SACF;QACD,OAAO,QAAQ,CAAC;IAClB,CAAC;IAED;;;OAGG;IAEH;;;;;;;;;;;;;;;;;;;OAmBG;IACM,OAAO,CACd,WAAuC,EACvC,IAAwB,EACxB,YAAY,GAAG,IAAI,EACnB,aAAa,GAAG,IAAI,CAAC,aAAa;QAElC,oEAAoE;QACpE,SAAS,cAAc,CAAC,GAA+B;YACrD,OAAO,GAAG,CAAC,OAAO,CAAC,SAAS,CAAC,KAAK,CAAC,CAAC,CAAC;QACvC,CAAC;QAED,IAAI,CAAC,YAAY,IAAI,CAAC,cAAc,CAAC,WAAW,CAAC,EAAE;YACjD,OAAO,KAAK,CAAC,OAAO,CAAC,WAAW,EAAE,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,aAAD,CAAC,cAAD,CAAC,GAAI,SAAS,CAAC,CAAC;SAClE;QAED,MAAM,QAAQ,GAAsB,EAAE,CAAC;QACvC,MAAM,WAAW,GAAsB,WAAW,CAAC,GAAG,CACpD,CAAC,KAAiB,EAAE,KAAK,EAAE,EAAE,CAAC,CAAC,KAAK,EAAE,IAAI,aAAJ,IAAI,uBAAJ,IAAI,CAAG,KAAK,CAAC,CAAoB,CACxE,CAAC;QAEF,IAAI,MAAM,GAAG,EAAE,CAAC;QAEhB,SAAS,uBAAuB,CAAC,GAAsB;YACrD,KAAK,MAAM,CAAC,SAAS,CAAC,IAAI,GAAG;gBAAE,IAAI,SAAS,YAAY,OAAO;oBAAE,OAAO,IAAI,CAAC;YAC7E,OAAO,KAAK,CAAC;QACf,CAAC;QAED,MAAM,2BAA2B,GAAG,CAAC,GAAsB,EAAwB,EAAE;YACnF,KAAK,MAAM,CAAC,SAAS,CAAC,IAAI,GAAG;gBAAE,IAAI,IAAI,CAAC,SAAS,CAAC,SAAS,CAAC;oBAAE,OAAO,IAAI,CAAC;YAC1E,OAAO,KAAK,CAAC;QACf,CAAC,CAAC;QAEF,IAAI,iBAAiB,GAA+B,EAAE,EACpD,UAAU,GAAkC,EAAE,CAAC;QAEjD,IAAI,uBAAuB,CAAC,WAAW,CAAC,EAAE;YACxC,MAAM,GAAG,WAAW,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;SAC1D;aAAM,IAAI,2BAA2B,CAAC,WAAW,CAAC,EAAE;YACnD,MAAM,GAAG,WAAW,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;SAClD;aAAM;YACL,MAAM,IAAI,KAAK,CAAC,2BAA2B,CAAC,CAAC;SAC9C;QACD,iBAAiB,GAAG,MAAM,CAAC,GAAG,CAAC,CAAC,CAAC,SAAS,CAAC,EAAE,EAAE,CAAC,SAAS,CAAC,CAAC;QAC3D,UAAU,GAAG,MAAM,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,CAAC;QAC9C,MAAM,IAAI,GAAG,CAAC,GAA+B,EAAE,IAAwB,EAAE,EAAE;YACzE,IAAI,GAAG,CAAC,MAAM,KAAK,CAAC;gBAAE,OAAO;YAE7B,MAAM,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,MAAM,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;YAC7C,MAAM,OAAO,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,IAAI,aAAJ,IAAI,uBAAJ,IAAI,CAAG,GAAG,CAAC,CAAC,CAAC;YAChD,QAAQ,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACvB,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,IAAI,aAAJ,IAAI,uBAAJ,IAAI,CAAE,KAAK,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC;YAC7C,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE,IAAI,aAAJ,IAAI,uBAAJ,IAAI,CAAE,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC;QACjD,CAAC,CAAC;QACF,MAAM,QAAQ,GAAG,GAAG,EAAE;YACpB,MAAM,CAAC,GAAG,MAAM,CAAC,MAAM,CAAC;YACxB,MAAM,KAAK,GAAuB,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC/C,OAAO,KAAK,CAAC,MAAM,GAAG,CAAC,EAAE;gBACvB,MAAM,MAAM,GAAG,KAAK,CAAC,GAAG,EAAE,CAAC;gBAC3B,IAAI,MAAM,EAAE;oBACV,MAAM,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,MAAM,CAAC;oBACtB,IAAI,CAAC,IAAI,CAAC,EAAE;wBACV,MAAM,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;wBACtC,MAAM,OAAO,GAAG,IAAI,CAAC,GAAG,CAAC,iBAAiB,CAAC,CAAC,CAAC,EAAE,UAAU,aAAV,UAAU,uBAAV,UAAU,CAAG,CAAC,CAAC,CAAC,CAAC;wBAChE,QAAQ,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;wBACvB,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;wBACvB,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;qBACxB;iBACF;aACF;QACH,CAAC,CAAC;QACF,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,IAAI,CAAC,iBAAiB,EAAE,UAAU,CAAC,CAAC;SACrC;aAAM;YACL,QAAQ,EAAE,CAAC;SACZ;QAED,OAAO,QAAQ,CAAC;IAClB,CAAC;IAED;;;OAGG;IAEH;;;;;;;;;;;;;;OAcG;IACH,OAAO,CAAC,YAAoC,IAAI,CAAC,IAAI,EAAE,aAAa,GAAG,IAAI,CAAC,aAAa;;QACvF,IAAI,IAAI,CAAC,QAAQ,CAAC,CAAC,EAAE,CAAC,CAAC,KAAK,UAAE,CAAC,EAAE;YAAE,OAAO,MAAA,MAAA,IAAI,CAAC,YAAY,CAAC,SAAS,EAAE,aAAa,CAAC,0CAAE,GAAG,mCAAI,CAAC,CAAC;aAC3F,IAAI,IAAI,CAAC,QAAQ,CAAC,CAAC,EAAE,CAAC,CAAC,KAAK,UAAE,CAAC,EAAE;YAAE,OAAO,MAAA,MAAA,IAAI,CAAC,WAAW,CAAC,SAAS,EAAE,aAAa,CAAC,0CAAE,GAAG,mCAAI,CAAC,CAAC;;YAC/F,OAAO,MAAA,MAAA,IAAI,CAAC,YAAY,CAAC,SAAS,EAAE,aAAa,CAAC,0CAAE,GAAG,mCAAI,CAAC,CAAC;IACpE,CAAC;IAED;;;OAGG;IAEH;;;;;;;;;;;;;OAaG;IACM,YAAY,CAAC,GAAW,EAAE,aAAa,GAAG,qBAAa,CAAC,SAAS;QACxE,IAAI,CAAC,IAAI,CAAC,IAAI;YAAE,OAAO,SAAS,CAAC;QACjC,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,MAAM,IAAI,GAAG,CAAC,GAAM,EAAiB,EAAE;gBACrC,IAAI,GAAG,CAAC,GAAG,KAAK,GAAG;oBAAE,OAAO,GAAG,CAAC;gBAChC,IAAI,CAAC,GAAG,CAAC,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK;oBAAE,OAAO;gBAEpC,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE,IAAI,GAAG,CAAC,IAAI;oBAAE,OAAO,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;gBAC7E,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE,IAAI,GAAG,CAAC,KAAK;oBAAE,OAAO,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;YACjF,CAAC,CAAC;YAEF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;SACxB;aAAM;YACL,MAAM,KAAK,GAAG,IAAI,aAAK,CAAI,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;YACxC,OAAO,KAAK,CAAC,IAAI,GAAG,CAAC,EAAE;gBACrB,MAAM,GAAG,GAAG,KAAK,CAAC,KAAK,EAAE,CAAC;gBAC1B,IAAI,GAAG,EAAE;oBACP,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE;wBAAE,OAAO,GAAG,CAAC;oBACtD,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE;wBAAE,GAAG,CAAC,IAAI,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;oBAC5E,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,KAAK,UAAE,CAAC,EAAE;wBAAE,GAAG,CAAC,KAAK,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;iBAC/E;aACF;SACF;IACH,CAAC;IAED;;;OAGG;IAEH;;;;;;;;OAQG;IACM,YAAY,CAAC,GAA2B,EAAE,aAAa,GAAG,qBAAa,CAAC,SAAS;QACxF,OAAO,IAAI,CAAC,SAAS,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,YAAY,CAAC,GAAG,EAAE,aAAa,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;IAC3E,CAAC;IAED;;;;;;;;;;;;;;;;;;;;;;OAsBG;IACM,QAAQ,CACf,UAAqC,EACrC,WAAc,IAAI,CAAC,wBAA6B,EAChD,OAAO,GAAG,KAAK,EACf,YAAoC,IAAI,CAAC,IAAI,EAC7C,aAAa,GAAG,IAAI,CAAC,aAAa;QAElC,SAAS,GAAG,IAAI,CAAC,YAAY,CAAC,SAAS,CAAC,CAAC;QACzC,IAAI,CAAC,SAAS;YAAE,OAAO,EAAE,CAAC;QAC1B,MAAM,GAAG,GAAQ,EAAE,CAAC;QAEpB,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,MAAM,SAAS,GAAG,CAAC,GAAM,EAAE,EAAE;gBAC3B,MAAM,cAAc,GAAG,QAAQ,CAAC,GAAG,CAAC,CAAC;gBACrC,IAAI,cAAc,KAAK,UAAU,EAAE;oBACjC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;oBACd,IAAI,OAAO;wBAAE,OAAO;iBACrB;gBAED,IAAI,CAAC,GAAG,CAAC,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK;oBAAE,OAAO;gBACpC,qBAAqB;gBACrB,IAAI,QAAQ,KAAK,IAAI,CAAC,wBAAwB,EAAE;oBAC9C,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,UAAoB,CAAC,KAAK,UAAE,CAAC,EAAE;wBAAE,GAAG,CAAC,IAAI,IAAI,SAAS,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;oBAC5F,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,UAAoB,CAAC,KAAK,UAAE,CAAC,EAAE;wBAAE,GAAG,CAAC,KAAK,IAAI,SAAS,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;iBAC/F;qBAAM;oBACL,GAAG,CAAC,IAAI,IAAI,SAAS,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;oBAChC,GAAG,CAAC,KAAK,IAAI,SAAS,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;iBACnC;YACH,CAAC,CAAC;YAEF,SAAS,CAAC,SAAS,CAAC,CAAC;SACtB;aAAM;YACL,MAAM,KAAK,GAAG,IAAI,aAAK,CAAI,CAAC,SAAS,CAAC,CAAC,CAAC;YACxC,OAAO,KAAK,CAAC,IAAI,GAAG,CAAC,EAAE;gBACrB,MAAM,GAAG,GAAG,KAAK,CAAC,KAAK,EAAE,CAAC;gBAC1B,IAAI,GAAG,EAAE;oBACP,MAAM,cAAc,GAAG,QAAQ,CAAC,GAAG,CAAC,CAAC;oBACrC,IAAI,cAAc,KAAK,UAAU,EAAE;wBACjC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;wBACd,IAAI,OAAO;4BAAE,OAAO,GAAG,CAAC;qBACzB;oBACD,qBAAqB;oBACrB,IAAI,QAAQ,KAAK,IAAI,CAAC,wBAAwB,EAAE;wBAC9C,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,UAAoB,CAAC,KAAK,UAAE,CAAC,EAAE;4BAAE,GAAG,CAAC,IAAI,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;wBAC7F,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,UAAoB,CAAC,KAAK,UAAE,CAAC,EAAE;4BAAE,GAAG,CAAC,KAAK,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;qBAChG;yBAAM;wBACL,GAAG,CAAC,IAAI,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;wBACjC,GAAG,CAAC,KAAK,IAAI,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;qBACpC;iBACF;aACF;SACF;QAED,OAAO,GAAG,CAAC;IACb,CAAC;IAED;;;OAGG;IAEH;;;;;;;;;;;;;;;;;;;;OAoBG;IACH,uBAAuB,CACrB,WAAc,IAAI,CAAC,wBAA6B,EAChD,kBAAsB,UAAE,CAAC,EAAE,EAC3B,aAAqC,IAAI,CAAC,IAAI,EAC9C,aAAa,GAAG,IAAI,CAAC,aAAa;QAElC,UAAU,GAAG,IAAI,CAAC,YAAY,CAAC,UAAU,CAAC,CAAC;QAC3C,MAAM,GAAG,GAAiC,EAAE,CAAC;QAC7C,IAAI,CAAC,UAAU;YAAE,OAAO,GAAG,CAAC;QAC5B,IAAI,CAAC,IAAI,CAAC,IAAI;YAAE,OAAO,GAAG,CAAC;QAE3B,MAAM,SAAS,GAAG,UAAU,CAAC,GAAG,CAAC;QAEjC,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,MAAM,SAAS,GAAG,CAAC,GAAM,EAAE,EAAE;gBAC3B,MAAM,QAAQ,GAAG,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,SAAS,CAAC,CAAC;gBACnD,IAAI,QAAQ,KAAK,eAAe;oBAAE,GAAG,CAAC,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,CAAC;gBAE1D,IAAI,CAAC,GAAG,CAAC,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK;oBAAE,OAAO;gBACpC,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,EAAE,SAAS,CAAC,KAAK,eAAe;oBAAE,SAAS,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;gBAChG,IAAI,GAAG,CAAC,KAAK,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,EAAE,SAAS,CAAC,KAAK,eAAe;oBAAE,SAAS,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;YACrG,CAAC,CAAC;YAEF,SAAS,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;YACrB,OAAO,GAAG,CAAC;SACZ;aAAM;YACL,MAAM,KAAK,GAAG,IAAI,aAAK,CAAI,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;YACxC,OAAO,KAAK,CAAC,IAAI,GAAG,CAAC,EAAE;gBACrB,MAAM,GAAG,GAAG,KAAK,CAAC,KAAK,EAAE,CAAC;gBAC1B,IAAI,GAAG,EAAE;oBACP,MAAM,QAAQ,GAAG,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,GAAG,EAAE,SAAS,CAAC,CAAC;oBACnD,IAAI,QAAQ,KAAK,eAAe;wBAAE,GAAG,CAAC,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,CAAC,CAAC;oBAE1D,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,EAAE,SAAS,CAAC,KAAK,eAAe;wBAAE,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;oBACjG,IAAI,GAAG,CAAC,KAAK,IAAI,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,EAAE,SAAS,CAAC,KAAK,eAAe;wBAAE,KAAK,CAAC,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;iBACrG;aACF;YACD,OAAO,GAAG,CAAC;SACZ;IACH,CAAC;IAED;;;OAGG;IAEH;;;;;;;;;;OAUG;IACH,gBAAgB,CAAC,aAAa,GAAG,IAAI,CAAC,aAAa;QACjD,MAAM,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,IAAI,EAAE,IAAI,CAAC,EACzC,CAAC,GAAG,MAAM,CAAC,MAAM,CAAC;QACpB,IAAI,CAAC,KAAK,EAAE,CAAC;QAEb,IAAI,MAAM,CAAC,MAAM,GAAG,CAAC;YAAE,OAAO,KAAK,CAAC;QACpC,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,MAAM,eAAe,GAAG,CAAC,CAAS,EAAE,CAAS,EAAE,EAAE;gBAC/C,IAAI,CAAC,GAAG,CAAC;oBAAE,OAAO;gBAClB,MAAM,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;gBACtC,MAAM,OAAO,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;gBAC1B,IAAI,CAAC,GAAG,CAAC,OAAO,CAAC,GAAG,EAAE,OAAO,CAAC,KAAK,CAAC,CAAC;gBACrC,eAAe,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;gBAC1B,eAAe,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;YAC5B,CAAC,CAAC;YAEF,eAAe,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;YAC1B,OAAO,IAAI,CAAC;SACb;aAAM;YACL,MAAM,KAAK,GAAuB,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC/C,OAAO,KAAK,CAAC,MAAM,GAAG,CAAC,EAAE;gBACvB,MAAM,MAAM,GAAG,KAAK,CAAC,GAAG,EAAE,CAAC;gBAC3B,IAAI,MAAM,EAAE;oBACV,MAAM,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,MAAM,CAAC;oBACtB,IAAI,CAAC,IAAI,CAAC,EAAE;wBACV,MAAM,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;wBACtC,MAAM,OAAO,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;wBAC1B,QAAQ,CAAC;wBACT,IAAI,CAAC,GAAG,CAAC,OAAO,CAAC,GAAG,EAAE,OAAO,CAAC,KAAK,CAAC,CAAC;wBACrC,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;wBACvB,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;qBACxB;iBACF;aACF;YACD,OAAO,IAAI,CAAC;SACb;IACH,CAAC;IAED;;;;;;;;OAQG;IAEH;;;OAGG;IAEH;;;;;;;;OAQG;IACH,aAAa,CAAC,aAAa,GAAG,IAAI,CAAC,aAAa;;QAC9C,IAAI,CAAC,IAAI,CAAC,IAAI;YAAE,OAAO,IAAI,CAAC;QAE5B,IAAI,QAAQ,GAAG,IAAI,CAAC;QAEpB,IAAI,aAAa,KAAK,qBAAa,CAAC,SAAS,EAAE;YAC7C,MAAM,OAAO,GAAG,CAAC,GAAkB,EAAU,EAAE;gBAC7C,IAAI,CAAC,GAAG;oBAAE,OAAO,CAAC,CAAC;gBACnB,MAAM,UAAU,GAAG,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,EAClC,WAAW,GAAG,OAAO,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;gBACnC,IAAI,IAAI,CAAC,GAAG,CAAC,UAAU,GAAG,WAAW,CAAC,GAAG,CAAC;oBAAE,QAAQ,GAAG,KAAK,CAAC;gBAC7D,OAAO,IAAI,CAAC,GAAG,CAAC,UAAU,EAAE,WAAW,CAAC,GAAG,CAAC,CAAC;YAC/C,CAAC,CAAC;YACF,OAAO,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;SACpB;aAAM;YACL,MAAM,KAAK,GAAQ,EAAE,CAAC;YACtB,IAAI,IAAI,GAAkB,IAAI,CAAC,IAAI,EACjC,IAAI,GAAkB,SAAS,CAAC;YAClC,MAAM,MAAM,GAAmB,IAAI,GAAG,EAAE,CAAC;YAEzC,OAAO,KAAK,CAAC,MAAM,GAAG,CAAC,IAAI,IAAI,EAAE;gBAC/B,IAAI,IAAI,EAAE;oBACR,KAAK,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;oBACjB,IAAI,GAAG,IAAI,CAAC,IAAI,CAAC;iBAClB;qBAAM;oBACL,IAAI,GAAG,KAAK,CAAC,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;oBAC/B,IAAI,CAAC,IAAI,CAAC,KAAK,IAAI,IAAI,KAAK,IAAI,CAAC,KAAK,EAAE;wBACtC,IAAI,GAAG,KAAK,CAAC,GAAG,EAAE,CAAC;wBACnB,IAAI,IAAI,EAAE;4BACR,MAAM,IAAI,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,MAAA,MAAM,CAAC,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,mCAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;4BAC1D,MAAM,KAAK,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,MAAA,MAAM,CAAC,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,mCAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;4BAC7D,IAAI,IAAI,CAAC,GAAG,CAAC,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC;gCAAE,OAAO,KAAK,CAAC;4BAC7C,MAAM,CAAC,GAAG,CAAC,IAAI,EAAE,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC,CAAC;4BAC5C,IAAI,GAAG,IAAI,CAAC;4BACZ,IAAI,GAAG,SAAS,CAAC;yBAClB;qBACF;;wBAAM,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC;iBAC1B;aACF;SACF;QAED,OAAO,QAAQ,CAAC;IAClB,CAAC;IAED;;;OAGG;IAEH,IAAI,CAAC,QAAkC;QACrC,IAAI,QAAQ,EAAE;YACZ,KAAK,MAAM,UAAU,IAAI,QAAQ,EAAE;gBACjC,IAAI,KAAK,CAAC,OAAO,CAAC,UAAU,CAAC,EAAE;oBAC7B,MAAM,CAAC,GAAG,EAAE,KAAK,CAAC,GAAG,UAAU,CAAC;oBAChC,IAAI,CAAC,GAAG,CAAC,GAAG,EAAE,KAAK,CAAC,CAAC;iBACtB;qBAAM;oBACL,IAAI,CAAC,GAAG,CAAC,UAAU,CAAC,CAAC;iBACtB;aACF;SACF;IACH,CAAC;IAES,QAAQ,CAAC,CAAgB;QACjC,IAAI,CAAC,EAAE;YACL,CAAC,CAAC,MAAM,GAAG,SAAS,CAAC;SACtB;QACD,IAAI,CAAC,KAAK,GAAG,CAAC,CAAC;IACjB,CAAC;IAED;;;;;;;OAOG;IACO,QAAQ,CAAC,CAAS,EAAE,CAAS;QACrC,MAAM,QAAQ,GAAG,IAAI,CAAC,UAAU,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QACvC,IAAI,QAAQ,GAAG,CAAC;YAAE,OAAO,UAAE,CAAC,EAAE,CAAC;aAC1B,IAAI,QAAQ,GAAG,CAAC;YAAE,OAAO,UAAE,CAAC,EAAE,CAAC;;YAC/B,OAAO,UAAE,CAAC,EAAE,CAAC;IACpB,CAAC;CACF;AAvnBD,kBAunBC"}
|
|
@@ -5,7 +5,7 @@
|
|
|
5
5
|
* @copyright Copyright (c) 2022 Tyler Zeng <zrwusa@gmail.com>
|
|
6
6
|
* @license MIT License
|
|
7
7
|
*/
|
|
8
|
-
import { BiTreeDeleteResult, BTNCallback, BTNKey, IterationType, RBTNColor, RBTreeOptions, RedBlackTreeNested, RedBlackTreeNodeNested } from '../../types';
|
|
8
|
+
import { BiTreeDeleteResult, BTNCallback, BTNKey, IterableEntriesOrKeys, IterationType, RBTNColor, RBTreeOptions, RedBlackTreeNested, RedBlackTreeNodeNested } from '../../types';
|
|
9
9
|
import { BST, BSTNode } from './bst';
|
|
10
10
|
import { IBinaryTree } from '../../interfaces';
|
|
11
11
|
export declare class RedBlackTreeNode<V = any, N extends RedBlackTreeNode<V, N> = RedBlackTreeNodeNested<V>> extends BSTNode<V, N> {
|
|
@@ -21,23 +21,18 @@ export declare class RedBlackTreeNode<V = any, N extends RedBlackTreeNode<V, N>
|
|
|
21
21
|
*/
|
|
22
22
|
export declare class RedBlackTree<V = any, N extends RedBlackTreeNode<V, N> = RedBlackTreeNode<V, RedBlackTreeNodeNested<V>>, TREE extends RedBlackTree<V, N, TREE> = RedBlackTree<V, N, RedBlackTreeNested<V, N>>> extends BST<V, N, TREE> implements IBinaryTree<V, N, TREE> {
|
|
23
23
|
Sentinel: N;
|
|
24
|
-
options: RBTreeOptions;
|
|
25
24
|
/**
|
|
26
25
|
* The constructor function initializes a Red-Black Tree with an optional set of options.
|
|
27
26
|
* @param {RBTreeOptions} [options] - The `options` parameter is an optional object that can be
|
|
28
27
|
* passed to the constructor. It is used to configure the RBTree object with specific options.
|
|
29
28
|
*/
|
|
30
|
-
constructor(options?: RBTreeOptions);
|
|
29
|
+
constructor(elements?: IterableEntriesOrKeys<V>, options?: Partial<RBTreeOptions>);
|
|
31
30
|
protected _root: N;
|
|
32
31
|
get root(): N;
|
|
33
32
|
protected _size: number;
|
|
34
33
|
get size(): number;
|
|
35
34
|
createNode(key: BTNKey, value?: V, color?: RBTNColor): N;
|
|
36
35
|
createTree(options?: RBTreeOptions): TREE;
|
|
37
|
-
/**
|
|
38
|
-
* Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
|
|
39
|
-
* Space Complexity: O(1)
|
|
40
|
-
*/
|
|
41
36
|
/**
|
|
42
37
|
* Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
|
|
43
38
|
* Space Complexity: O(1)
|
|
@@ -70,6 +65,10 @@ export declare class RedBlackTree<V = any, N extends RedBlackTreeNode<V, N> = Re
|
|
|
70
65
|
* @returns an array of `BiTreeDeleteResult<N>`.
|
|
71
66
|
*/
|
|
72
67
|
delete<C extends BTNCallback<N>>(identifier: ReturnType<C> | null | undefined, callback?: C): BiTreeDeleteResult<N>[];
|
|
68
|
+
/**
|
|
69
|
+
* Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
|
|
70
|
+
* Space Complexity: O(1)
|
|
71
|
+
*/
|
|
73
72
|
isRealNode(node: N | undefined): node is N;
|
|
74
73
|
getNode<C extends BTNCallback<N, BTNKey>>(identifier: BTNKey, callback?: C, beginRoot?: N | undefined, iterationType?: IterationType): N | undefined;
|
|
75
74
|
getNode<C extends BTNCallback<N, N>>(identifier: N | undefined, callback?: C, beginRoot?: N | undefined, iterationType?: IterationType): N | undefined;
|
|
@@ -101,7 +100,12 @@ export declare class RedBlackTree<V = any, N extends RedBlackTreeNode<V, N> = Re
|
|
|
101
100
|
* @returns the predecessor of the given RedBlackTreeNode 'x'.
|
|
102
101
|
*/
|
|
103
102
|
getPredecessor(x: N): N;
|
|
103
|
+
/**
|
|
104
|
+
* Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
|
|
105
|
+
* Space Complexity: O(1)
|
|
106
|
+
*/
|
|
104
107
|
clear(): void;
|
|
108
|
+
init(elements: IterableEntriesOrKeys<V>): void;
|
|
105
109
|
protected _setRoot(v: N): void;
|
|
106
110
|
/**
|
|
107
111
|
* Time Complexity: O(1)
|
|
@@ -31,17 +31,13 @@ class RedBlackTree extends bst_1.BST {
|
|
|
31
31
|
* @param {RBTreeOptions} [options] - The `options` parameter is an optional object that can be
|
|
32
32
|
* passed to the constructor. It is used to configure the RBTree object with specific options.
|
|
33
33
|
*/
|
|
34
|
-
constructor(options) {
|
|
35
|
-
super(options);
|
|
34
|
+
constructor(elements, options) {
|
|
35
|
+
super([], options);
|
|
36
36
|
this.Sentinel = new RedBlackTreeNode(NaN);
|
|
37
37
|
this._size = 0;
|
|
38
|
-
if (options) {
|
|
39
|
-
this.options = Object.assign({ iterationType: types_1.IterationType.ITERATIVE, comparator: (a, b) => a - b }, options);
|
|
40
|
-
}
|
|
41
|
-
else {
|
|
42
|
-
this.options = { iterationType: types_1.IterationType.ITERATIVE, comparator: (a, b) => a - b };
|
|
43
|
-
}
|
|
44
38
|
this._root = this.Sentinel;
|
|
39
|
+
if (elements)
|
|
40
|
+
this.init(elements);
|
|
45
41
|
}
|
|
46
42
|
get root() {
|
|
47
43
|
return this._root;
|
|
@@ -53,12 +49,8 @@ class RedBlackTree extends bst_1.BST {
|
|
|
53
49
|
return new RedBlackTreeNode(key, value, color);
|
|
54
50
|
}
|
|
55
51
|
createTree(options) {
|
|
56
|
-
return new RedBlackTree(Object.assign(
|
|
52
|
+
return new RedBlackTree([], Object.assign({ iterationType: this.iterationType, comparator: this.comparator }, options));
|
|
57
53
|
}
|
|
58
|
-
/**
|
|
59
|
-
* Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
|
|
60
|
-
* Space Complexity: O(1)
|
|
61
|
-
*/
|
|
62
54
|
/**
|
|
63
55
|
* Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
|
|
64
56
|
* Space Complexity: O(1)
|
|
@@ -204,13 +196,13 @@ class RedBlackTree extends bst_1.BST {
|
|
|
204
196
|
// TODO
|
|
205
197
|
return ans;
|
|
206
198
|
}
|
|
207
|
-
isRealNode(node) {
|
|
208
|
-
return node !== this.Sentinel && node !== undefined;
|
|
209
|
-
}
|
|
210
199
|
/**
|
|
211
200
|
* Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
|
|
212
201
|
* Space Complexity: O(1)
|
|
213
202
|
*/
|
|
203
|
+
isRealNode(node) {
|
|
204
|
+
return node !== this.Sentinel && node !== undefined;
|
|
205
|
+
}
|
|
214
206
|
/**
|
|
215
207
|
* Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
|
|
216
208
|
* Space Complexity: O(1)
|
|
@@ -232,7 +224,7 @@ class RedBlackTree extends bst_1.BST {
|
|
|
232
224
|
* `getNodes` method, which is called within the `getNode` method.
|
|
233
225
|
* @returns a value of type `N`, `null`, or `undefined`.
|
|
234
226
|
*/
|
|
235
|
-
getNode(identifier, callback = this._defaultOneParamCallback, beginRoot = this.root, iterationType = this.
|
|
227
|
+
getNode(identifier, callback = this._defaultOneParamCallback, beginRoot = this.root, iterationType = this.iterationType) {
|
|
236
228
|
var _a;
|
|
237
229
|
if (identifier instanceof binary_tree_1.BinaryTreeNode)
|
|
238
230
|
callback = (node => node);
|
|
@@ -287,10 +279,27 @@ class RedBlackTree extends bst_1.BST {
|
|
|
287
279
|
}
|
|
288
280
|
return y;
|
|
289
281
|
}
|
|
282
|
+
/**
|
|
283
|
+
* Time Complexity: O(log n) on average (where n is the number of nodes in the tree)
|
|
284
|
+
* Space Complexity: O(1)
|
|
285
|
+
*/
|
|
290
286
|
clear() {
|
|
291
287
|
this._root = this.Sentinel;
|
|
292
288
|
this._size = 0;
|
|
293
289
|
}
|
|
290
|
+
init(elements) {
|
|
291
|
+
if (elements) {
|
|
292
|
+
for (const entryOrKey of elements) {
|
|
293
|
+
if (Array.isArray(entryOrKey)) {
|
|
294
|
+
const [key, value] = entryOrKey;
|
|
295
|
+
this.add(key, value);
|
|
296
|
+
}
|
|
297
|
+
else {
|
|
298
|
+
this.add(entryOrKey);
|
|
299
|
+
}
|
|
300
|
+
}
|
|
301
|
+
}
|
|
302
|
+
}
|
|
294
303
|
_setRoot(v) {
|
|
295
304
|
if (v) {
|
|
296
305
|
v.parent = undefined;
|