cui-llama.rn 1.4.0 → 1.4.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (73) hide show
  1. package/android/src/main/jni.cpp +9 -9
  2. package/cpp/common.cpp +163 -60
  3. package/cpp/common.h +43 -12
  4. package/cpp/ggml-alloc.c +1042 -1037
  5. package/cpp/ggml-backend-impl.h +255 -256
  6. package/cpp/ggml-backend-reg.cpp +582 -582
  7. package/cpp/ggml-backend.cpp +2002 -2002
  8. package/cpp/ggml-backend.h +354 -352
  9. package/cpp/ggml-common.h +1853 -1853
  10. package/cpp/ggml-cpp.h +39 -39
  11. package/cpp/ggml-cpu-aarch64.cpp +4247 -4247
  12. package/cpp/ggml-cpu-aarch64.h +8 -8
  13. package/cpp/ggml-cpu-impl.h +386 -386
  14. package/cpp/ggml-cpu-quants.c +10920 -10839
  15. package/cpp/ggml-cpu-traits.cpp +36 -36
  16. package/cpp/ggml-cpu-traits.h +38 -38
  17. package/cpp/ggml-cpu.c +329 -60
  18. package/cpp/ggml-cpu.cpp +10 -2
  19. package/cpp/ggml-cpu.h +135 -135
  20. package/cpp/ggml-impl.h +567 -567
  21. package/cpp/ggml-metal-impl.h +17 -17
  22. package/cpp/ggml-metal.m +4884 -4884
  23. package/cpp/ggml-quants.c +5238 -5238
  24. package/cpp/ggml-threading.h +14 -14
  25. package/cpp/ggml.c +6514 -6448
  26. package/cpp/ggml.h +2194 -2163
  27. package/cpp/gguf.cpp +1329 -1325
  28. package/cpp/gguf.h +202 -202
  29. package/cpp/json-schema-to-grammar.cpp +1045 -1045
  30. package/cpp/json-schema-to-grammar.h +8 -8
  31. package/cpp/json.hpp +24766 -24766
  32. package/cpp/llama-adapter.cpp +347 -346
  33. package/cpp/llama-adapter.h +74 -73
  34. package/cpp/llama-arch.cpp +1487 -1434
  35. package/cpp/llama-arch.h +400 -395
  36. package/cpp/llama-batch.cpp +368 -368
  37. package/cpp/llama-batch.h +88 -88
  38. package/cpp/llama-chat.cpp +578 -567
  39. package/cpp/llama-chat.h +52 -51
  40. package/cpp/llama-context.cpp +1775 -1771
  41. package/cpp/llama-context.h +128 -128
  42. package/cpp/llama-cparams.cpp +1 -1
  43. package/cpp/llama-cparams.h +37 -37
  44. package/cpp/llama-cpp.h +30 -30
  45. package/cpp/llama-grammar.cpp +1139 -1139
  46. package/cpp/llama-grammar.h +143 -143
  47. package/cpp/llama-hparams.cpp +71 -71
  48. package/cpp/llama-hparams.h +139 -140
  49. package/cpp/llama-impl.cpp +167 -167
  50. package/cpp/llama-impl.h +61 -61
  51. package/cpp/llama-kv-cache.cpp +718 -718
  52. package/cpp/llama-kv-cache.h +218 -218
  53. package/cpp/llama-mmap.cpp +2 -1
  54. package/cpp/llama-mmap.h +67 -67
  55. package/cpp/llama-model-loader.cpp +1124 -1011
  56. package/cpp/llama-model-loader.h +167 -158
  57. package/cpp/llama-model.cpp +3997 -2202
  58. package/cpp/llama-model.h +370 -391
  59. package/cpp/llama-sampling.cpp +2408 -2406
  60. package/cpp/llama-sampling.h +32 -48
  61. package/cpp/llama-vocab.cpp +3247 -1982
  62. package/cpp/llama-vocab.h +125 -182
  63. package/cpp/llama.cpp +416 -2886
  64. package/cpp/llama.h +1323 -1285
  65. package/cpp/log.cpp +401 -401
  66. package/cpp/log.h +121 -121
  67. package/cpp/rn-llama.hpp +18 -12
  68. package/cpp/sampling.cpp +505 -500
  69. package/cpp/sgemm.cpp +2597 -2597
  70. package/cpp/speculative.cpp +277 -274
  71. package/cpp/speculative.h +28 -28
  72. package/cpp/unicode.cpp +2 -3
  73. package/package.json +1 -1
package/cpp/ggml-alloc.c CHANGED
@@ -1,1037 +1,1042 @@
1
- #include "ggml-alloc.h"
2
- #include "ggml-backend-impl.h"
3
- #include "ggml.h"
4
- #include "ggml-impl.h"
5
- #include <assert.h>
6
- #include <limits.h>
7
- #include <stdarg.h>
8
- #include <stdio.h>
9
- #include <stdlib.h>
10
- #include <string.h>
11
-
12
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
13
- #define MAX_FREE_BLOCKS 256
14
-
15
- //#define LM_GGML_ALLOCATOR_DEBUG
16
-
17
- //#define AT_PRINTF(...) LM_GGML_LOG_DEBUG(__VA_ARGS__)
18
- #define AT_PRINTF(...)
19
-
20
-
21
- static bool lm_ggml_is_view(const struct lm_ggml_tensor * t) {
22
- return t->view_src != NULL;
23
- }
24
-
25
- static bool lm_ggml_are_same_layout(const struct lm_ggml_tensor * a, const struct lm_ggml_tensor * b) {
26
- if (a->type != b->type) {
27
- return false;
28
- }
29
- for (int i = 0; i < LM_GGML_MAX_DIMS; i++) {
30
- if (a->ne[i] != b->ne[i]) {
31
- return false;
32
- }
33
- if (a->nb[i] != b->nb[i]) {
34
- return false;
35
- }
36
- }
37
- return true;
38
- }
39
-
40
- static bool lm_ggml_op_can_inplace(enum lm_ggml_op op) {
41
- switch (op) {
42
- case LM_GGML_OP_SCALE:
43
- case LM_GGML_OP_DIAG_MASK_ZERO:
44
- case LM_GGML_OP_DIAG_MASK_INF:
45
- case LM_GGML_OP_ADD:
46
- case LM_GGML_OP_ADD1:
47
- case LM_GGML_OP_SUB:
48
- case LM_GGML_OP_MUL:
49
- case LM_GGML_OP_DIV:
50
- case LM_GGML_OP_SQR:
51
- case LM_GGML_OP_SQRT:
52
- case LM_GGML_OP_LOG:
53
- case LM_GGML_OP_UNARY:
54
- case LM_GGML_OP_ROPE:
55
- case LM_GGML_OP_RMS_NORM:
56
- case LM_GGML_OP_SOFT_MAX:
57
- return true;
58
-
59
- default:
60
- return false;
61
- }
62
- }
63
-
64
- static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
65
- assert(alignment && !(alignment & (alignment - 1))); // power of 2
66
- size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
67
- return offset + align;
68
- }
69
-
70
- // tallocr
71
-
72
- struct lm_ggml_tallocr lm_ggml_tallocr_new(lm_ggml_backend_buffer_t buffer) {
73
- void * base = lm_ggml_backend_buffer_get_base(buffer);
74
- size_t align = lm_ggml_backend_buffer_get_alignment(buffer);
75
-
76
- assert(align && !(align & (align - 1))); // power of 2
77
-
78
- struct lm_ggml_tallocr talloc = (struct lm_ggml_tallocr) {
79
- /*.buffer = */ buffer,
80
- /*.base = */ base,
81
- /*.alignment = */ align,
82
- /*.offset = */ aligned_offset(base, 0, align),
83
- };
84
- return talloc;
85
- }
86
-
87
- void lm_ggml_tallocr_alloc(struct lm_ggml_tallocr * talloc, struct lm_ggml_tensor * tensor) {
88
- size_t size = lm_ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
89
- size = LM_GGML_PAD(size, talloc->alignment);
90
-
91
- if (talloc->offset + size > lm_ggml_backend_buffer_get_size(talloc->buffer)) {
92
- LM_GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n",
93
- __func__, tensor->name, size, lm_ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset);
94
- LM_GGML_ABORT("not enough space in the buffer");
95
- }
96
-
97
- void * addr = (char *)lm_ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset;
98
- talloc->offset += size;
99
-
100
- assert(((uintptr_t)addr % talloc->alignment) == 0);
101
-
102
- lm_ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
103
- }
104
-
105
- // dynamic tensor allocator
106
-
107
- struct free_block {
108
- size_t offset;
109
- size_t size;
110
- };
111
-
112
- struct lm_ggml_dyn_tallocr {
113
- size_t alignment;
114
- int n_free_blocks;
115
- struct free_block free_blocks[MAX_FREE_BLOCKS];
116
- size_t max_size;
117
-
118
- #ifdef LM_GGML_ALLOCATOR_DEBUG
119
- struct {
120
- const struct lm_ggml_tensor * tensor;
121
- size_t offset;
122
- } allocated_tensors[1024];
123
- #endif
124
- };
125
-
126
- #ifdef LM_GGML_ALLOCATOR_DEBUG
127
- static void add_allocated_tensor(struct lm_ggml_dyn_tallocr * alloc, size_t offset, const struct lm_ggml_tensor * tensor) {
128
- for (int i = 0; i < 1024; i++) {
129
- if (alloc->allocated_tensors[i].tensor == NULL) {
130
- alloc->allocated_tensors[i].tensor = tensor;
131
- alloc->allocated_tensors[i].offset = offset;
132
- return;
133
- }
134
- }
135
- LM_GGML_ABORT("out of allocated_tensors");
136
- }
137
- static void remove_allocated_tensor(struct lm_ggml_dyn_tallocr * alloc, size_t offset, const struct lm_ggml_tensor * tensor) {
138
- for (int i = 0; i < 1024; i++) {
139
- if (alloc->allocated_tensors[i].offset == offset) {
140
- alloc->allocated_tensors[i].tensor = NULL;
141
- return;
142
- }
143
- }
144
- LM_GGML_ABORT("tried to free tensor %s not found\n", tensor->name);
145
- }
146
- #endif
147
-
148
- static size_t lm_ggml_dyn_tallocr_alloc(struct lm_ggml_dyn_tallocr * alloc, size_t size, const struct lm_ggml_tensor * tensor) {
149
- size = aligned_offset(NULL, size, alloc->alignment);
150
-
151
- AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
152
-
153
- size_t max_avail = 0;
154
-
155
- // find the best fitting free block besides the last block
156
- int best_fit_block = -1;
157
- size_t best_fit_size = SIZE_MAX;
158
- for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
159
- struct free_block * block = &alloc->free_blocks[i];
160
- max_avail = MAX(max_avail, block->size);
161
- if (block->size >= size && block->size <= best_fit_size) {
162
- best_fit_block = i;
163
- best_fit_size = block->size;
164
- }
165
- }
166
-
167
- if (best_fit_block == -1) {
168
- // the last block is our last resort
169
- struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
170
- max_avail = MAX(max_avail, block->size);
171
- if (block->size >= size) {
172
- best_fit_block = alloc->n_free_blocks - 1;
173
- } else {
174
- // this should never happen
175
- LM_GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
176
- __func__, size, max_avail);
177
- LM_GGML_ABORT("not enough space in the buffer");
178
- }
179
- }
180
-
181
- struct free_block * block = &alloc->free_blocks[best_fit_block];
182
- size_t offset = block->offset;
183
- block->offset = offset + size;
184
- block->size -= size;
185
- if (block->size == 0) {
186
- // remove block if empty
187
- alloc->n_free_blocks--;
188
- for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
189
- alloc->free_blocks[j] = alloc->free_blocks[j+1];
190
- }
191
- }
192
-
193
- AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
194
-
195
- #ifdef LM_GGML_ALLOCATOR_DEBUG
196
- add_allocated_tensor(alloc, offset, tensor);
197
- size_t cur_max = offset + size;
198
- if (cur_max > alloc->max_size) {
199
- // sort allocated_tensors by offset
200
- for (int i = 0; i < 1024; i++) {
201
- for (int j = i + 1; j < 1024; j++) {
202
- if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
203
- const struct lm_ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
204
- size_t tmp_offset = alloc->allocated_tensors[i].offset;
205
- alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
206
- alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
207
- alloc->allocated_tensors[j].tensor = tmp_tensor;
208
- alloc->allocated_tensors[j].offset = tmp_offset;
209
- }
210
- }
211
- }
212
- LM_GGML_LOG_DEBUG("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
213
- for (int i = 0; i < 1024; i++) {
214
- if (alloc->allocated_tensors[i].tensor) {
215
- LM_GGML_LOG_DEBUG("%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
216
- alloc->allocated_tensors[i].offset,
217
- alloc->allocated_tensors[i].offset + lm_ggml_nbytes(alloc->allocated_tensors[i].tensor),
218
- lm_ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
219
- }
220
- }
221
- LM_GGML_LOG_DEBUG("\n");
222
- }
223
- #endif
224
-
225
- alloc->max_size = MAX(alloc->max_size, offset + size);
226
-
227
- return offset;
228
-
229
- LM_GGML_UNUSED(tensor);
230
- }
231
-
232
- // this is a very naive implementation, but for our case the number of free blocks should be very small
233
- static void lm_ggml_dyn_tallocr_free_tensor(struct lm_ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct lm_ggml_tensor * tensor) {
234
- size = aligned_offset(NULL, size, alloc->alignment);
235
-
236
- AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
237
-
238
- #ifdef LM_GGML_ALLOCATOR_DEBUG
239
- remove_allocated_tensor(alloc, offset, tensor);
240
- #endif
241
-
242
- // see if we can merge with an existing block
243
- for (int i = 0; i < alloc->n_free_blocks; i++) {
244
- struct free_block * block = &alloc->free_blocks[i];
245
- // check if ptr is at the end of the block
246
- if (block->offset + block->size == offset) {
247
- block->size += size;
248
- // check if we can merge with the next block
249
- if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
250
- block->size += alloc->free_blocks[i+1].size;
251
- alloc->n_free_blocks--;
252
- for (int j = i+1; j < alloc->n_free_blocks; j++) {
253
- alloc->free_blocks[j] = alloc->free_blocks[j+1];
254
- }
255
- }
256
- return;
257
- }
258
- // check if ptr is at the beginning of the block
259
- if (offset + size == block->offset) {
260
- block->offset = offset;
261
- block->size += size;
262
- // check if we can merge with the previous block
263
- if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
264
- alloc->free_blocks[i-1].size += block->size;
265
- alloc->n_free_blocks--;
266
- for (int j = i; j < alloc->n_free_blocks; j++) {
267
- alloc->free_blocks[j] = alloc->free_blocks[j+1];
268
- }
269
- }
270
- return;
271
- }
272
- }
273
- // otherwise, add a new block
274
- LM_GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
275
- // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
276
- int insert_pos = 0;
277
- while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
278
- insert_pos++;
279
- }
280
- // shift all blocks from insert_pos onward to make room for the new block
281
- for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
282
- alloc->free_blocks[i] = alloc->free_blocks[i-1];
283
- }
284
- // insert the new block
285
- alloc->free_blocks[insert_pos].offset = offset;
286
- alloc->free_blocks[insert_pos].size = size;
287
- alloc->n_free_blocks++;
288
-
289
- LM_GGML_UNUSED(tensor);
290
- }
291
-
292
- static void lm_ggml_dyn_tallocr_reset(struct lm_ggml_dyn_tallocr * alloc) {
293
- alloc->n_free_blocks = 1;
294
- alloc->free_blocks[0].offset = 0;
295
- alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
296
- alloc->max_size = 0;
297
-
298
- #ifdef LM_GGML_ALLOCATOR_DEBUG
299
- for (int i = 0; i < 1024; i++) {
300
- alloc->allocated_tensors[i].tensor = NULL;
301
- }
302
- #endif
303
- }
304
-
305
- static struct lm_ggml_dyn_tallocr * lm_ggml_dyn_tallocr_new(size_t alignment) {
306
- struct lm_ggml_dyn_tallocr * alloc = (struct lm_ggml_dyn_tallocr *)malloc(sizeof(struct lm_ggml_dyn_tallocr));
307
-
308
- *alloc = (struct lm_ggml_dyn_tallocr) {
309
- /*.alignment = */ alignment,
310
- /*.n_free_blocks = */ 0,
311
- /*.free_blocks = */ {{0}},
312
- /*.max_size = */ 0,
313
- #ifdef LM_GGML_ALLOCATOR_DEBUG
314
- /*.allocated_tensors = */ {{0}},
315
- #endif
316
- };
317
-
318
- lm_ggml_dyn_tallocr_reset(alloc);
319
-
320
- return alloc;
321
- }
322
-
323
- static void lm_ggml_dyn_tallocr_free(struct lm_ggml_dyn_tallocr * alloc) {
324
- free(alloc);
325
- }
326
-
327
- static size_t lm_ggml_dyn_tallocr_max_size(struct lm_ggml_dyn_tallocr * alloc) {
328
- return alloc->max_size;
329
- }
330
-
331
-
332
- /////////////////////////////////////
333
-
334
- // graph allocator
335
-
336
- struct hash_node {
337
- int n_children;
338
- int n_views;
339
- int buffer_id;
340
- size_t offset; // offset within the buffer
341
- bool allocated;
342
- };
343
-
344
- struct tensor_alloc {
345
- int buffer_id;
346
- size_t offset;
347
- size_t size_max; // 0 = pre-allocated, unused, or view
348
- };
349
-
350
- struct leaf_alloc {
351
- struct tensor_alloc leaf;
352
- };
353
-
354
- struct node_alloc {
355
- struct tensor_alloc dst;
356
- struct tensor_alloc src[LM_GGML_MAX_SRC];
357
- };
358
-
359
- struct lm_ggml_gallocr {
360
- lm_ggml_backend_buffer_type_t * bufts; // [n_buffers]
361
- lm_ggml_backend_buffer_t * buffers; // [n_buffers]
362
- struct lm_ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
363
- int n_buffers;
364
-
365
- struct lm_ggml_hash_set hash_set;
366
- struct hash_node * hash_values; // [hash_set.size]
367
-
368
- struct node_alloc * node_allocs; // [n_nodes]
369
- int n_nodes;
370
-
371
- struct leaf_alloc * leaf_allocs; // [n_leafs]
372
- int n_leafs;
373
- };
374
-
375
- lm_ggml_gallocr_t lm_ggml_gallocr_new_n(lm_ggml_backend_buffer_type_t * bufts, int n_bufs) {
376
- lm_ggml_gallocr_t galloc = (lm_ggml_gallocr_t)calloc(1, sizeof(struct lm_ggml_gallocr));
377
- LM_GGML_ASSERT(galloc != NULL);
378
-
379
- galloc->bufts = calloc(n_bufs, sizeof(lm_ggml_backend_buffer_type_t));
380
- LM_GGML_ASSERT(galloc->bufts != NULL);
381
-
382
- galloc->buffers = calloc(n_bufs, sizeof(lm_ggml_backend_buffer_t));
383
- LM_GGML_ASSERT(galloc->buffers != NULL);
384
-
385
- galloc->buf_tallocs = calloc(n_bufs, sizeof(struct lm_ggml_dyn_tallocr *));
386
- LM_GGML_ASSERT(galloc->buf_tallocs != NULL);
387
-
388
- for (int i = 0; i < n_bufs; i++) {
389
- galloc->bufts[i] = bufts[i];
390
- galloc->buffers[i] = NULL;
391
-
392
- // check if the same buffer type is used multiple times and reuse the same allocator
393
- for (int j = 0; j < i; j++) {
394
- if (bufts[i] == bufts[j]) {
395
- galloc->buf_tallocs[i] = galloc->buf_tallocs[j];
396
- break;
397
- }
398
- }
399
-
400
- if (galloc->buf_tallocs[i] == NULL) {
401
- size_t alignment = lm_ggml_backend_buft_get_alignment(bufts[i]);
402
- galloc->buf_tallocs[i] = lm_ggml_dyn_tallocr_new(alignment);
403
- }
404
- }
405
- galloc->n_buffers = n_bufs;
406
-
407
- return galloc;
408
- }
409
-
410
- lm_ggml_gallocr_t lm_ggml_gallocr_new(lm_ggml_backend_buffer_type_t buft) {
411
- return lm_ggml_gallocr_new_n(&buft, 1);
412
- }
413
-
414
- void lm_ggml_gallocr_free(lm_ggml_gallocr_t galloc) {
415
- if (galloc == NULL) {
416
- return;
417
- }
418
-
419
- for (int i = 0; i < galloc->n_buffers; i++) {
420
- if (galloc->buffers != NULL) {
421
- // skip if already freed
422
- bool freed = false;
423
- for (int j = 0; j < i; j++) {
424
- if (galloc->buffers[j] == galloc->buffers[i]) {
425
- freed = true;
426
- break;
427
- }
428
- }
429
- if (!freed) {
430
- lm_ggml_backend_buffer_free(galloc->buffers[i]);
431
- }
432
- }
433
- if (galloc->buf_tallocs != NULL) {
434
- // skip if already freed
435
- bool freed = false;
436
- for (int j = 0; j < i; j++) {
437
- if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
438
- freed = true;
439
- break;
440
- }
441
- }
442
- if (!freed) {
443
- lm_ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
444
- }
445
- }
446
- }
447
-
448
- lm_ggml_hash_set_free(&galloc->hash_set);
449
- free(galloc->hash_values);
450
- free(galloc->bufts);
451
- free(galloc->buffers);
452
- free(galloc->buf_tallocs);
453
- free(galloc->node_allocs);
454
- free(galloc->leaf_allocs);
455
- free(galloc);
456
- }
457
-
458
- typedef struct lm_ggml_gallocr * lm_ggml_gallocr_t;
459
-
460
- static struct hash_node * lm_ggml_gallocr_hash_get(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * t) {
461
- size_t i = lm_ggml_hash_find_or_insert(&galloc->hash_set, t);
462
- return &galloc->hash_values[i];
463
- }
464
-
465
- static bool lm_ggml_gallocr_is_own(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * t) {
466
- return lm_ggml_gallocr_hash_get(galloc, t)->allocated;
467
- }
468
-
469
- static bool lm_ggml_gallocr_is_allocated(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * t) {
470
- return t->data != NULL || lm_ggml_gallocr_hash_get(galloc, t)->allocated;
471
- }
472
-
473
- static void lm_ggml_gallocr_allocate_node(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * node, int buffer_id) {
474
- LM_GGML_ASSERT(buffer_id >= 0);
475
- struct hash_node * hn = lm_ggml_gallocr_hash_get(galloc, node);
476
-
477
- if (!lm_ggml_gallocr_is_allocated(galloc, node) && !lm_ggml_is_view(node)) {
478
- hn->allocated = true;
479
- assert(hn->offset == 0);
480
-
481
- // try to reuse a parent's buffer (inplace)
482
- if (lm_ggml_op_can_inplace(node->op)) {
483
- for (int i = 0; i < LM_GGML_MAX_SRC; i++) {
484
- struct lm_ggml_tensor * parent = node->src[i];
485
- if (parent == NULL) {
486
- continue;
487
- }
488
-
489
- // if the node's data is external, then we cannot re-use it
490
- if (!lm_ggml_gallocr_is_own(galloc, parent)) {
491
- AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
492
- continue;
493
- }
494
-
495
- // outputs cannot be reused
496
- if (parent->flags & LM_GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & LM_GGML_TENSOR_FLAG_OUTPUT)) {
497
- AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name);
498
- continue;
499
- }
500
-
501
- if (!lm_ggml_are_same_layout(node, parent)) {
502
- AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name);
503
- continue;
504
- }
505
-
506
- struct hash_node * p_hn = lm_ggml_gallocr_hash_get(galloc, parent);
507
- if (p_hn->n_children == 1 && p_hn->n_views == 0) {
508
- if (lm_ggml_is_view(parent)) {
509
- struct lm_ggml_tensor * view_src = parent->view_src;
510
- struct hash_node * view_src_hn = lm_ggml_gallocr_hash_get(galloc, view_src);
511
- if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
512
- AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
513
- assert(view_src_hn->offset == p_hn->offset);
514
- hn->buffer_id = p_hn->buffer_id;
515
- hn->offset = p_hn->offset;
516
- p_hn->allocated = false; // avoid freeing the parent
517
- view_src_hn->allocated = false;
518
- return;
519
- }
520
- } else {
521
- AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
522
- hn->buffer_id = p_hn->buffer_id;
523
- hn->offset = p_hn->offset;
524
- p_hn->allocated = false; // avoid freeing the parent
525
- return;
526
- }
527
- }
528
- }
529
- }
530
- // allocate tensor from the buffer
531
- struct lm_ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
532
- lm_ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
533
- size_t size = lm_ggml_backend_buft_get_alloc_size(buft, node);
534
- size_t offset = lm_ggml_dyn_tallocr_alloc(alloc, size, node);
535
- hn->buffer_id = buffer_id;
536
- hn->offset = offset;
537
- }
538
- }
539
-
540
- static void lm_ggml_gallocr_free_node(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * node) {
541
- // graph outputs are never freed
542
- if (node->flags & LM_GGML_TENSOR_FLAG_OUTPUT) {
543
- AT_PRINTF("not freeing output %s\n", node->name);
544
- return;
545
- }
546
-
547
- struct hash_node * hn = lm_ggml_gallocr_hash_get(galloc, node);
548
- size_t offset = hn->offset;
549
- int buffer_id = hn->buffer_id;
550
- struct lm_ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
551
- lm_ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
552
- size_t size = lm_ggml_backend_buft_get_alloc_size(buft, node);
553
- lm_ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
554
- hn->allocated = false;
555
- }
556
-
557
- static int get_node_buffer_id(const int * node_buffer_ids, int i) {
558
- return node_buffer_ids ? node_buffer_ids[i] : 0;
559
- }
560
-
561
- static void lm_ggml_gallocr_alloc_graph_impl(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
562
- // clear hash tables
563
- lm_ggml_hash_set_reset(&galloc->hash_set);
564
- memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
565
-
566
- // allocate leafs
567
- // these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
568
- for (int i = 0; i < graph->n_leafs; i++) {
569
- struct lm_ggml_tensor * leaf = graph->leafs[i];
570
- lm_ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i));
571
- }
572
-
573
- // count number of children and views
574
- // allocate other graph inputs and leafs first to avoid overwriting them
575
- for (int i = 0; i < graph->n_nodes; i++) {
576
- struct lm_ggml_tensor * node = graph->nodes[i];
577
-
578
- // TODO: better way to add external dependencies
579
- // LM_GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
580
- // control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
581
- // itself is never used and should not be considered a dependency
582
- if (lm_ggml_is_view(node) && node->op != LM_GGML_OP_NONE) {
583
- struct lm_ggml_tensor * view_src = node->view_src;
584
- lm_ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
585
- }
586
-
587
- if (node->flags & LM_GGML_TENSOR_FLAG_INPUT) {
588
- lm_ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
589
- }
590
-
591
- for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
592
- struct lm_ggml_tensor * src = node->src[j];
593
- if (src == NULL) {
594
- continue;
595
- }
596
-
597
- lm_ggml_gallocr_hash_get(galloc, src)->n_children += 1;
598
-
599
- // allocate explicit inputs
600
- if (src->flags & LM_GGML_TENSOR_FLAG_INPUT) {
601
- lm_ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
602
- }
603
- }
604
- }
605
-
606
- // allocate tensors
607
- for (int i = 0; i < graph->n_nodes; i++) {
608
- struct lm_ggml_tensor * node = graph->nodes[i];
609
- int buffer_id = get_node_buffer_id(node_buffer_ids, i);
610
-
611
- // allocate parents (only leafs need to be allocated at this point)
612
- for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
613
- struct lm_ggml_tensor * parent = node->src[j];
614
- if (parent == NULL) {
615
- continue;
616
- }
617
- lm_ggml_gallocr_allocate_node(galloc, parent, buffer_id);
618
- }
619
-
620
- // allocate node
621
- lm_ggml_gallocr_allocate_node(galloc, node, buffer_id);
622
-
623
- AT_PRINTF("exec: %s (%s) <= ", lm_ggml_op_desc(node), node->name);
624
- for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
625
- struct lm_ggml_tensor * parent = node->src[j];
626
- if (parent == NULL) {
627
- continue;
628
- }
629
- AT_PRINTF("%s", parent->name);
630
- if (j < LM_GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
631
- AT_PRINTF(", ");
632
- }
633
- }
634
- AT_PRINTF("\n");
635
-
636
- // update parents
637
- for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
638
- struct lm_ggml_tensor * parent = node->src[j];
639
- if (parent == NULL) {
640
- continue;
641
- }
642
- struct hash_node * p_hn = lm_ggml_gallocr_hash_get(galloc, parent);
643
- p_hn->n_children -= 1;
644
-
645
- AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n",
646
- parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated);
647
-
648
- if (p_hn->n_children == 0 && p_hn->n_views == 0) {
649
- if (lm_ggml_is_view(parent)) {
650
- struct lm_ggml_tensor * view_src = parent->view_src;
651
- struct hash_node * view_src_hn = lm_ggml_gallocr_hash_get(galloc, view_src);
652
- view_src_hn->n_views -= 1;
653
- AT_PRINTF("view_src %s: %d children, %d views\n",
654
- view_src->name, view_src_hn->n_children, view_src_hn->n_views);
655
- if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) {
656
- lm_ggml_gallocr_free_node(galloc, view_src);
657
- }
658
- }
659
- else if (p_hn->allocated) {
660
- lm_ggml_gallocr_free_node(galloc, parent);
661
- }
662
- }
663
- AT_PRINTF("\n");
664
- }
665
- }
666
- }
667
-
668
- bool lm_ggml_gallocr_reserve_n(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
669
- size_t min_hash_size = graph->n_nodes + graph->n_leafs;
670
- // add 25% margin to avoid hash collisions
671
- min_hash_size += min_hash_size / 4;
672
-
673
- // initialize hash table
674
- if (galloc->hash_set.size < min_hash_size) {
675
- lm_ggml_hash_set_free(&galloc->hash_set);
676
- galloc->hash_set = lm_ggml_hash_set_new(min_hash_size);
677
- LM_GGML_ASSERT(galloc->hash_set.keys != NULL);
678
-
679
- free(galloc->hash_values);
680
- galloc->hash_values = malloc(sizeof(struct hash_node) * galloc->hash_set.size);
681
- LM_GGML_ASSERT(galloc->hash_values != NULL);
682
- }
683
-
684
- // reset allocators
685
- for (int i = 0; i < galloc->n_buffers; i++) {
686
- lm_ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]);
687
- }
688
-
689
- // allocate in hash table
690
- lm_ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids);
691
-
692
- // set the node_allocs from the hash table
693
- if (galloc->n_nodes < graph->n_nodes) {
694
- free(galloc->node_allocs);
695
- galloc->node_allocs = calloc(graph->n_nodes, sizeof(struct node_alloc));
696
- LM_GGML_ASSERT(galloc->node_allocs != NULL);
697
- }
698
- galloc->n_nodes = graph->n_nodes;
699
- for (int i = 0; i < graph->n_nodes; i++) {
700
- struct lm_ggml_tensor * node = graph->nodes[i];
701
- struct node_alloc * node_alloc = &galloc->node_allocs[i];
702
- if (node->view_src || node->data) {
703
- node_alloc->dst.buffer_id = -1;
704
- node_alloc->dst.offset = SIZE_MAX;
705
- node_alloc->dst.size_max = 0;
706
- } else {
707
- struct hash_node * hn = lm_ggml_gallocr_hash_get(galloc, node);
708
- node_alloc->dst.buffer_id = hn->buffer_id;
709
- node_alloc->dst.offset = hn->offset;
710
- node_alloc->dst.size_max = lm_ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
711
- }
712
- for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
713
- struct lm_ggml_tensor * src = node->src[j];
714
- if (!src || src->view_src || src->data) {
715
- node_alloc->src[j].buffer_id = -1;
716
- node_alloc->src[j].offset = SIZE_MAX;
717
- node_alloc->src[j].size_max = 0;
718
- } else {
719
- struct hash_node * hn = lm_ggml_gallocr_hash_get(galloc, src);
720
- node_alloc->src[j].buffer_id = hn->buffer_id;
721
- node_alloc->src[j].offset = hn->offset;
722
- node_alloc->src[j].size_max = lm_ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
723
- }
724
- }
725
- }
726
- if (galloc->n_leafs < graph->n_leafs) {
727
- free(galloc->leaf_allocs);
728
- galloc->leaf_allocs = calloc(graph->n_leafs, sizeof(galloc->leaf_allocs[0]));
729
- LM_GGML_ASSERT(galloc->leaf_allocs != NULL);
730
- }
731
- galloc->n_leafs = graph->n_leafs;
732
- for (int i = 0; i < graph->n_leafs; i++) {
733
- struct lm_ggml_tensor * leaf = graph->leafs[i];
734
- struct hash_node * hn = lm_ggml_gallocr_hash_get(galloc, leaf);
735
- if (leaf->view_src || leaf->data) {
736
- galloc->leaf_allocs[i].leaf.buffer_id = -1;
737
- galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
738
- galloc->leaf_allocs[i].leaf.size_max = 0;
739
- } else {
740
- galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id;
741
- galloc->leaf_allocs[i].leaf.offset = hn->offset;
742
- galloc->leaf_allocs[i].leaf.size_max = lm_ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
743
- }
744
- }
745
-
746
- // reallocate buffers if needed
747
- for (int i = 0; i < galloc->n_buffers; i++) {
748
- // if the buffer type is used multiple times, we reuse the same buffer
749
- for (int j = 0; j < i; j++) {
750
- if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
751
- galloc->buffers[i] = galloc->buffers[j];
752
- break;
753
- }
754
- }
755
-
756
- size_t cur_size = galloc->buffers[i] ? lm_ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
757
- size_t new_size = lm_ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
758
-
759
- // even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
760
- if (new_size > cur_size || galloc->buffers[i] == NULL) {
761
- #ifndef NDEBUG
762
- LM_GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, lm_ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
763
- #endif
764
-
765
- lm_ggml_backend_buffer_free(galloc->buffers[i]);
766
- galloc->buffers[i] = lm_ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
767
- if (galloc->buffers[i] == NULL) {
768
- LM_GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, lm_ggml_backend_buft_name(galloc->bufts[i]), new_size);
769
- return false;
770
- }
771
- lm_ggml_backend_buffer_set_usage(galloc->buffers[i], LM_GGML_BACKEND_BUFFER_USAGE_COMPUTE);
772
- }
773
- }
774
-
775
- return true;
776
- }
777
-
778
- bool lm_ggml_gallocr_reserve(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph *graph) {
779
- return lm_ggml_gallocr_reserve_n(galloc, graph, NULL, NULL);
780
- }
781
-
782
- static void lm_ggml_gallocr_init_tensor(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) {
783
- int buffer_id = tensor_alloc->buffer_id;
784
- assert(tensor->data || tensor->view_src || lm_ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
785
-
786
- if (tensor->view_src != NULL) {
787
- if (tensor->buffer == NULL) {
788
- assert(tensor_alloc->offset == SIZE_MAX);
789
- if (tensor->view_src->buffer == NULL) {
790
- // this tensor was allocated without ggml-backend
791
- return;
792
- }
793
- lm_ggml_backend_view_init(tensor);
794
- }
795
- } else {
796
- if (tensor->data == NULL) {
797
- assert(tensor_alloc->offset != SIZE_MAX);
798
- assert(lm_ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
799
- void * base = lm_ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
800
- void * addr = (char *)base + tensor_alloc->offset;
801
- lm_ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
802
- } else {
803
- if (tensor->buffer == NULL) {
804
- // this tensor was allocated without ggml-backend
805
- return;
806
- }
807
- }
808
- }
809
- }
810
-
811
- static bool lm_ggml_gallocr_node_needs_realloc(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * node, struct tensor_alloc * talloc) {
812
- size_t node_size = 0;
813
- if (!node->data && !node->view_src) {
814
- LM_GGML_ASSERT(talloc->buffer_id >= 0); // prevent segfault when misusing the API
815
- node_size = lm_ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
816
- }
817
- return talloc->size_max >= node_size;
818
- }
819
-
820
- static bool lm_ggml_gallocr_needs_realloc(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph * graph) {
821
- if (galloc->n_nodes != graph->n_nodes) {
822
- #ifndef NDEBUG
823
- LM_GGML_LOG_DEBUG("%s: graph has different number of nodes\n", __func__);
824
- #endif
825
- return true;
826
- }
827
-
828
- if (galloc->n_leafs != graph->n_leafs) {
829
- #ifndef NDEBUG
830
- LM_GGML_LOG_DEBUG("%s: graph has different number of leafs\n", __func__);
831
- #endif
832
- return true;
833
- }
834
-
835
- for (int i = 0; i < graph->n_nodes; i++) {
836
- struct lm_ggml_tensor * node = graph->nodes[i];
837
- struct node_alloc * node_alloc = &galloc->node_allocs[i];
838
-
839
- if (!lm_ggml_gallocr_node_needs_realloc(galloc, node, &node_alloc->dst)) {
840
- #ifndef NDEBUG
841
- LM_GGML_LOG_DEBUG("%s: node %s is not valid\n", __func__, node->name);
842
- #endif
843
- return true;
844
- }
845
-
846
- for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
847
- struct lm_ggml_tensor * src = node->src[j];
848
- if (src == NULL) {
849
- continue;
850
- }
851
- if (!lm_ggml_gallocr_node_needs_realloc(galloc, src, &node_alloc->src[j])) {
852
- #ifndef NDEBUG
853
- LM_GGML_LOG_DEBUG("%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name);
854
- #endif
855
- return true;
856
- }
857
- }
858
- }
859
-
860
- return false;
861
- }
862
-
863
- bool lm_ggml_gallocr_alloc_graph(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph * graph) {
864
- if (lm_ggml_gallocr_needs_realloc(galloc, graph)) {
865
- if (galloc->n_buffers == 1) {
866
- #ifndef NDEBUG
867
- LM_GGML_LOG_DEBUG("%s: reallocating buffers automatically\n", __func__);
868
- #endif
869
- if (!lm_ggml_gallocr_reserve(galloc, graph)) {
870
- return false;
871
- }
872
- } else {
873
- #ifndef NDEBUG
874
- LM_GGML_LOG_DEBUG("%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__);
875
- #endif
876
- return false;
877
- }
878
- }
879
-
880
- // reset buffers
881
- for (int i = 0; i < galloc->n_buffers; i++) {
882
- if (galloc->buffers[i] != NULL) {
883
- lm_ggml_backend_buffer_reset(galloc->buffers[i]);
884
- }
885
- }
886
-
887
- // allocate the graph tensors from the previous assignments
888
- // leafs
889
- for (int i = 0; i < graph->n_leafs; i++) {
890
- struct lm_ggml_tensor * leaf = graph->leafs[i];
891
- struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i];
892
- lm_ggml_gallocr_init_tensor(galloc, leaf, &leaf_alloc->leaf);
893
- }
894
- // nodes
895
- for (int i = 0; i < graph->n_nodes; i++) {
896
- struct lm_ggml_tensor * node = graph->nodes[i];
897
- struct node_alloc * node_alloc = &galloc->node_allocs[i];
898
- for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
899
- struct lm_ggml_tensor * src = node->src[j];
900
- if (src == NULL) {
901
- continue;
902
- }
903
- lm_ggml_gallocr_init_tensor(galloc, src, &node_alloc->src[j]);
904
- }
905
- lm_ggml_gallocr_init_tensor(galloc, node, &node_alloc->dst);
906
- }
907
-
908
- return true;
909
- }
910
-
911
- size_t lm_ggml_gallocr_get_buffer_size(lm_ggml_gallocr_t galloc, int buffer_id) {
912
- LM_GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
913
-
914
- if (galloc->buffers[buffer_id] == NULL) {
915
- return 0;
916
- }
917
-
918
- for (int i = 0; i < buffer_id; i++) {
919
- if (galloc->buffers[i] == galloc->buffers[buffer_id]) {
920
- // this buffer is the same as a previous one due to the same buffer type being used multiple times
921
- // only return the buffer size the first time it appears to avoid double counting
922
- return 0;
923
- }
924
- }
925
-
926
- return lm_ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
927
- }
928
-
929
- // utils
930
-
931
- static bool alloc_tensor_range(struct lm_ggml_context * ctx,
932
- struct lm_ggml_tensor * first, struct lm_ggml_tensor * last,
933
- lm_ggml_backend_buffer_type_t buft, size_t size,
934
- lm_ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
935
- lm_ggml_backend_buffer_t buffer = lm_ggml_backend_buft_alloc_buffer(buft, size);
936
- if (buffer == NULL) {
937
- #ifndef NDEBUG
938
- LM_GGML_LOG_DEBUG("%s: failed to allocate %s buffer of size %zu\n", __func__, lm_ggml_backend_buft_name(buft), size);
939
- #endif
940
- for (size_t i = 0; i < *n_buffers; i++) {
941
- lm_ggml_backend_buffer_free((*buffers)[i]);
942
- }
943
- free(*buffers);
944
- return false;
945
- }
946
-
947
- struct lm_ggml_tallocr tallocr = lm_ggml_tallocr_new(buffer);
948
-
949
- for (struct lm_ggml_tensor * t = first; t != last; t = lm_ggml_get_next_tensor(ctx, t)) {
950
- if (t->data == NULL) {
951
- if (t->view_src == NULL) {
952
- lm_ggml_tallocr_alloc(&tallocr, t);
953
- } else if (t->buffer == NULL) {
954
- lm_ggml_backend_view_init(t);
955
- }
956
- } else {
957
- if (t->view_src != NULL && t->buffer == NULL) {
958
- // view of a pre-allocated tensor
959
- lm_ggml_backend_view_init(t);
960
- }
961
- }
962
- }
963
-
964
- *buffers = realloc(*buffers, sizeof(lm_ggml_backend_buffer_t) * (*n_buffers + 1));
965
- (*buffers)[(*n_buffers)++] = buffer;
966
-
967
- return true;
968
- }
969
-
970
- lm_ggml_backend_buffer_t lm_ggml_backend_alloc_ctx_tensors_from_buft(struct lm_ggml_context * ctx, lm_ggml_backend_buffer_type_t buft) {
971
- LM_GGML_ASSERT(lm_ggml_get_no_alloc(ctx) == true);
972
-
973
- size_t alignment = lm_ggml_backend_buft_get_alignment(buft);
974
- size_t max_size = lm_ggml_backend_buft_get_max_size(buft);
975
-
976
- lm_ggml_backend_buffer_t * buffers = NULL;
977
- size_t n_buffers = 0;
978
-
979
- size_t cur_buf_size = 0;
980
- struct lm_ggml_tensor * first = lm_ggml_get_first_tensor(ctx);
981
- for (struct lm_ggml_tensor * t = first; t != NULL; t = lm_ggml_get_next_tensor(ctx, t)) {
982
- size_t this_size = 0;
983
- if (t->data == NULL && t->view_src == NULL) {
984
- this_size = LM_GGML_PAD(lm_ggml_backend_buft_get_alloc_size(buft, t), alignment);
985
- }
986
-
987
- if (this_size > max_size) {
988
- LM_GGML_LOG_ERROR("%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
989
- __func__, t->name,
990
- lm_ggml_backend_buft_name(buft),
991
- this_size, max_size);
992
- for (size_t i = 0; i < n_buffers; i++) {
993
- lm_ggml_backend_buffer_free(buffers[i]);
994
- }
995
- free(buffers);
996
- return NULL;
997
- }
998
-
999
- if ((cur_buf_size + this_size) > max_size) {
1000
- // allocate tensors in the current buffer
1001
- if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
1002
- return NULL;
1003
- }
1004
- first = t;
1005
- cur_buf_size = this_size;
1006
- } else {
1007
- cur_buf_size += this_size;
1008
- }
1009
- }
1010
-
1011
- // allocate remaining tensors
1012
- if (cur_buf_size > 0) {
1013
- if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) {
1014
- return NULL;
1015
- }
1016
- }
1017
-
1018
- if (n_buffers == 0) {
1019
- #ifndef NDEBUG
1020
- LM_GGML_LOG_DEBUG("%s: all tensors in the context are already allocated\n", __func__);
1021
- #endif
1022
- return NULL;
1023
- }
1024
-
1025
- lm_ggml_backend_buffer_t buffer;
1026
- if (n_buffers == 1) {
1027
- buffer = buffers[0];
1028
- } else {
1029
- buffer = lm_ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers);
1030
- }
1031
- free(buffers);
1032
- return buffer;
1033
- }
1034
-
1035
- lm_ggml_backend_buffer_t lm_ggml_backend_alloc_ctx_tensors(struct lm_ggml_context * ctx, lm_ggml_backend_t backend) {
1036
- return lm_ggml_backend_alloc_ctx_tensors_from_buft(ctx, lm_ggml_backend_get_default_buffer_type(backend));
1037
- }
1
+ #include "ggml-alloc.h"
2
+ #include "ggml-backend-impl.h"
3
+ #include "ggml.h"
4
+ #include "ggml-impl.h"
5
+ #include <assert.h>
6
+ #include <limits.h>
7
+ #include <stdarg.h>
8
+ #include <stdio.h>
9
+ #include <stdlib.h>
10
+ #include <string.h>
11
+
12
+ #define MAX(a, b) ((a) > (b) ? (a) : (b))
13
+ #define MAX_FREE_BLOCKS 256
14
+
15
+ //#define LM_GGML_ALLOCATOR_DEBUG
16
+
17
+ //#define AT_PRINTF(...) LM_GGML_LOG_DEBUG(__VA_ARGS__)
18
+ #define AT_PRINTF(...)
19
+
20
+
21
+ static bool lm_ggml_is_view(const struct lm_ggml_tensor * t) {
22
+ return t->view_src != NULL;
23
+ }
24
+
25
+ static bool lm_ggml_are_same_layout(const struct lm_ggml_tensor * a, const struct lm_ggml_tensor * b) {
26
+ if (a->type != b->type) {
27
+ return false;
28
+ }
29
+ for (int i = 0; i < LM_GGML_MAX_DIMS; i++) {
30
+ if (a->ne[i] != b->ne[i]) {
31
+ return false;
32
+ }
33
+ if (a->nb[i] != b->nb[i]) {
34
+ return false;
35
+ }
36
+ }
37
+ return true;
38
+ }
39
+
40
+ // ops that return true for this function must not use restrict pointers for their backend implementations
41
+ static bool lm_ggml_op_can_inplace(enum lm_ggml_op op) {
42
+ switch (op) {
43
+ case LM_GGML_OP_SCALE:
44
+ case LM_GGML_OP_DIAG_MASK_ZERO:
45
+ case LM_GGML_OP_DIAG_MASK_INF:
46
+ case LM_GGML_OP_ADD:
47
+ case LM_GGML_OP_ADD1:
48
+ case LM_GGML_OP_SUB:
49
+ case LM_GGML_OP_MUL:
50
+ case LM_GGML_OP_DIV:
51
+ case LM_GGML_OP_SQR:
52
+ case LM_GGML_OP_SQRT:
53
+ case LM_GGML_OP_LOG:
54
+ case LM_GGML_OP_UNARY:
55
+ case LM_GGML_OP_ROPE:
56
+ case LM_GGML_OP_ROPE_BACK:
57
+ case LM_GGML_OP_SILU_BACK:
58
+ case LM_GGML_OP_RMS_NORM:
59
+ case LM_GGML_OP_RMS_NORM_BACK:
60
+ case LM_GGML_OP_SOFT_MAX:
61
+ case LM_GGML_OP_SOFT_MAX_BACK:
62
+ return true;
63
+
64
+ default:
65
+ return false;
66
+ }
67
+ }
68
+
69
+ static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
70
+ assert(alignment && !(alignment & (alignment - 1))); // power of 2
71
+ size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
72
+ return offset + align;
73
+ }
74
+
75
+ // tallocr
76
+
77
+ struct lm_ggml_tallocr lm_ggml_tallocr_new(lm_ggml_backend_buffer_t buffer) {
78
+ void * base = lm_ggml_backend_buffer_get_base(buffer);
79
+ size_t align = lm_ggml_backend_buffer_get_alignment(buffer);
80
+
81
+ assert(align && !(align & (align - 1))); // power of 2
82
+
83
+ struct lm_ggml_tallocr talloc = (struct lm_ggml_tallocr) {
84
+ /*.buffer = */ buffer,
85
+ /*.base = */ base,
86
+ /*.alignment = */ align,
87
+ /*.offset = */ aligned_offset(base, 0, align),
88
+ };
89
+ return talloc;
90
+ }
91
+
92
+ void lm_ggml_tallocr_alloc(struct lm_ggml_tallocr * talloc, struct lm_ggml_tensor * tensor) {
93
+ size_t size = lm_ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
94
+ size = LM_GGML_PAD(size, talloc->alignment);
95
+
96
+ if (talloc->offset + size > lm_ggml_backend_buffer_get_size(talloc->buffer)) {
97
+ LM_GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n",
98
+ __func__, tensor->name, size, lm_ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset);
99
+ LM_GGML_ABORT("not enough space in the buffer");
100
+ }
101
+
102
+ void * addr = (char *)lm_ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset;
103
+ talloc->offset += size;
104
+
105
+ assert(((uintptr_t)addr % talloc->alignment) == 0);
106
+
107
+ lm_ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
108
+ }
109
+
110
+ // dynamic tensor allocator
111
+
112
+ struct free_block {
113
+ size_t offset;
114
+ size_t size;
115
+ };
116
+
117
+ struct lm_ggml_dyn_tallocr {
118
+ size_t alignment;
119
+ int n_free_blocks;
120
+ struct free_block free_blocks[MAX_FREE_BLOCKS];
121
+ size_t max_size;
122
+
123
+ #ifdef LM_GGML_ALLOCATOR_DEBUG
124
+ struct {
125
+ const struct lm_ggml_tensor * tensor;
126
+ size_t offset;
127
+ } allocated_tensors[1024];
128
+ #endif
129
+ };
130
+
131
+ #ifdef LM_GGML_ALLOCATOR_DEBUG
132
+ static void add_allocated_tensor(struct lm_ggml_dyn_tallocr * alloc, size_t offset, const struct lm_ggml_tensor * tensor) {
133
+ for (int i = 0; i < 1024; i++) {
134
+ if (alloc->allocated_tensors[i].tensor == NULL) {
135
+ alloc->allocated_tensors[i].tensor = tensor;
136
+ alloc->allocated_tensors[i].offset = offset;
137
+ return;
138
+ }
139
+ }
140
+ LM_GGML_ABORT("out of allocated_tensors");
141
+ }
142
+ static void remove_allocated_tensor(struct lm_ggml_dyn_tallocr * alloc, size_t offset, const struct lm_ggml_tensor * tensor) {
143
+ for (int i = 0; i < 1024; i++) {
144
+ if (alloc->allocated_tensors[i].offset == offset) {
145
+ alloc->allocated_tensors[i].tensor = NULL;
146
+ return;
147
+ }
148
+ }
149
+ LM_GGML_ABORT("tried to free tensor %s not found\n", tensor->name);
150
+ }
151
+ #endif
152
+
153
+ static size_t lm_ggml_dyn_tallocr_alloc(struct lm_ggml_dyn_tallocr * alloc, size_t size, const struct lm_ggml_tensor * tensor) {
154
+ size = aligned_offset(NULL, size, alloc->alignment);
155
+
156
+ AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
157
+
158
+ size_t max_avail = 0;
159
+
160
+ // find the best fitting free block besides the last block
161
+ int best_fit_block = -1;
162
+ size_t best_fit_size = SIZE_MAX;
163
+ for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
164
+ struct free_block * block = &alloc->free_blocks[i];
165
+ max_avail = MAX(max_avail, block->size);
166
+ if (block->size >= size && block->size <= best_fit_size) {
167
+ best_fit_block = i;
168
+ best_fit_size = block->size;
169
+ }
170
+ }
171
+
172
+ if (best_fit_block == -1) {
173
+ // the last block is our last resort
174
+ struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
175
+ max_avail = MAX(max_avail, block->size);
176
+ if (block->size >= size) {
177
+ best_fit_block = alloc->n_free_blocks - 1;
178
+ } else {
179
+ // this should never happen
180
+ LM_GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
181
+ __func__, size, max_avail);
182
+ LM_GGML_ABORT("not enough space in the buffer");
183
+ }
184
+ }
185
+
186
+ struct free_block * block = &alloc->free_blocks[best_fit_block];
187
+ size_t offset = block->offset;
188
+ block->offset = offset + size;
189
+ block->size -= size;
190
+ if (block->size == 0) {
191
+ // remove block if empty
192
+ alloc->n_free_blocks--;
193
+ for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
194
+ alloc->free_blocks[j] = alloc->free_blocks[j+1];
195
+ }
196
+ }
197
+
198
+ AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
199
+
200
+ #ifdef LM_GGML_ALLOCATOR_DEBUG
201
+ add_allocated_tensor(alloc, offset, tensor);
202
+ size_t cur_max = offset + size;
203
+ if (cur_max > alloc->max_size) {
204
+ // sort allocated_tensors by offset
205
+ for (int i = 0; i < 1024; i++) {
206
+ for (int j = i + 1; j < 1024; j++) {
207
+ if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
208
+ const struct lm_ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
209
+ size_t tmp_offset = alloc->allocated_tensors[i].offset;
210
+ alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
211
+ alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
212
+ alloc->allocated_tensors[j].tensor = tmp_tensor;
213
+ alloc->allocated_tensors[j].offset = tmp_offset;
214
+ }
215
+ }
216
+ }
217
+ LM_GGML_LOG_DEBUG("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
218
+ for (int i = 0; i < 1024; i++) {
219
+ if (alloc->allocated_tensors[i].tensor) {
220
+ LM_GGML_LOG_DEBUG("%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
221
+ alloc->allocated_tensors[i].offset,
222
+ alloc->allocated_tensors[i].offset + lm_ggml_nbytes(alloc->allocated_tensors[i].tensor),
223
+ lm_ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
224
+ }
225
+ }
226
+ LM_GGML_LOG_DEBUG("\n");
227
+ }
228
+ #endif
229
+
230
+ alloc->max_size = MAX(alloc->max_size, offset + size);
231
+
232
+ return offset;
233
+
234
+ LM_GGML_UNUSED(tensor);
235
+ }
236
+
237
+ // this is a very naive implementation, but for our case the number of free blocks should be very small
238
+ static void lm_ggml_dyn_tallocr_free_tensor(struct lm_ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct lm_ggml_tensor * tensor) {
239
+ size = aligned_offset(NULL, size, alloc->alignment);
240
+
241
+ AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
242
+
243
+ #ifdef LM_GGML_ALLOCATOR_DEBUG
244
+ remove_allocated_tensor(alloc, offset, tensor);
245
+ #endif
246
+
247
+ // see if we can merge with an existing block
248
+ for (int i = 0; i < alloc->n_free_blocks; i++) {
249
+ struct free_block * block = &alloc->free_blocks[i];
250
+ // check if ptr is at the end of the block
251
+ if (block->offset + block->size == offset) {
252
+ block->size += size;
253
+ // check if we can merge with the next block
254
+ if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
255
+ block->size += alloc->free_blocks[i+1].size;
256
+ alloc->n_free_blocks--;
257
+ for (int j = i+1; j < alloc->n_free_blocks; j++) {
258
+ alloc->free_blocks[j] = alloc->free_blocks[j+1];
259
+ }
260
+ }
261
+ return;
262
+ }
263
+ // check if ptr is at the beginning of the block
264
+ if (offset + size == block->offset) {
265
+ block->offset = offset;
266
+ block->size += size;
267
+ // check if we can merge with the previous block
268
+ if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
269
+ alloc->free_blocks[i-1].size += block->size;
270
+ alloc->n_free_blocks--;
271
+ for (int j = i; j < alloc->n_free_blocks; j++) {
272
+ alloc->free_blocks[j] = alloc->free_blocks[j+1];
273
+ }
274
+ }
275
+ return;
276
+ }
277
+ }
278
+ // otherwise, add a new block
279
+ LM_GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
280
+ // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
281
+ int insert_pos = 0;
282
+ while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
283
+ insert_pos++;
284
+ }
285
+ // shift all blocks from insert_pos onward to make room for the new block
286
+ for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
287
+ alloc->free_blocks[i] = alloc->free_blocks[i-1];
288
+ }
289
+ // insert the new block
290
+ alloc->free_blocks[insert_pos].offset = offset;
291
+ alloc->free_blocks[insert_pos].size = size;
292
+ alloc->n_free_blocks++;
293
+
294
+ LM_GGML_UNUSED(tensor);
295
+ }
296
+
297
+ static void lm_ggml_dyn_tallocr_reset(struct lm_ggml_dyn_tallocr * alloc) {
298
+ alloc->n_free_blocks = 1;
299
+ alloc->free_blocks[0].offset = 0;
300
+ alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
301
+ alloc->max_size = 0;
302
+
303
+ #ifdef LM_GGML_ALLOCATOR_DEBUG
304
+ for (int i = 0; i < 1024; i++) {
305
+ alloc->allocated_tensors[i].tensor = NULL;
306
+ }
307
+ #endif
308
+ }
309
+
310
+ static struct lm_ggml_dyn_tallocr * lm_ggml_dyn_tallocr_new(size_t alignment) {
311
+ struct lm_ggml_dyn_tallocr * alloc = (struct lm_ggml_dyn_tallocr *)malloc(sizeof(struct lm_ggml_dyn_tallocr));
312
+
313
+ *alloc = (struct lm_ggml_dyn_tallocr) {
314
+ /*.alignment = */ alignment,
315
+ /*.n_free_blocks = */ 0,
316
+ /*.free_blocks = */ {{0}},
317
+ /*.max_size = */ 0,
318
+ #ifdef LM_GGML_ALLOCATOR_DEBUG
319
+ /*.allocated_tensors = */ {{0}},
320
+ #endif
321
+ };
322
+
323
+ lm_ggml_dyn_tallocr_reset(alloc);
324
+
325
+ return alloc;
326
+ }
327
+
328
+ static void lm_ggml_dyn_tallocr_free(struct lm_ggml_dyn_tallocr * alloc) {
329
+ free(alloc);
330
+ }
331
+
332
+ static size_t lm_ggml_dyn_tallocr_max_size(struct lm_ggml_dyn_tallocr * alloc) {
333
+ return alloc->max_size;
334
+ }
335
+
336
+
337
+ /////////////////////////////////////
338
+
339
+ // graph allocator
340
+
341
+ struct hash_node {
342
+ int n_children;
343
+ int n_views;
344
+ int buffer_id;
345
+ size_t offset; // offset within the buffer
346
+ bool allocated;
347
+ };
348
+
349
+ struct tensor_alloc {
350
+ int buffer_id;
351
+ size_t offset;
352
+ size_t size_max; // 0 = pre-allocated, unused, or view
353
+ };
354
+
355
+ struct leaf_alloc {
356
+ struct tensor_alloc leaf;
357
+ };
358
+
359
+ struct node_alloc {
360
+ struct tensor_alloc dst;
361
+ struct tensor_alloc src[LM_GGML_MAX_SRC];
362
+ };
363
+
364
+ struct lm_ggml_gallocr {
365
+ lm_ggml_backend_buffer_type_t * bufts; // [n_buffers]
366
+ lm_ggml_backend_buffer_t * buffers; // [n_buffers]
367
+ struct lm_ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
368
+ int n_buffers;
369
+
370
+ struct lm_ggml_hash_set hash_set;
371
+ struct hash_node * hash_values; // [hash_set.size]
372
+
373
+ struct node_alloc * node_allocs; // [n_nodes]
374
+ int n_nodes;
375
+
376
+ struct leaf_alloc * leaf_allocs; // [n_leafs]
377
+ int n_leafs;
378
+ };
379
+
380
+ lm_ggml_gallocr_t lm_ggml_gallocr_new_n(lm_ggml_backend_buffer_type_t * bufts, int n_bufs) {
381
+ lm_ggml_gallocr_t galloc = (lm_ggml_gallocr_t)calloc(1, sizeof(struct lm_ggml_gallocr));
382
+ LM_GGML_ASSERT(galloc != NULL);
383
+
384
+ galloc->bufts = calloc(n_bufs, sizeof(lm_ggml_backend_buffer_type_t));
385
+ LM_GGML_ASSERT(galloc->bufts != NULL);
386
+
387
+ galloc->buffers = calloc(n_bufs, sizeof(lm_ggml_backend_buffer_t));
388
+ LM_GGML_ASSERT(galloc->buffers != NULL);
389
+
390
+ galloc->buf_tallocs = calloc(n_bufs, sizeof(struct lm_ggml_dyn_tallocr *));
391
+ LM_GGML_ASSERT(galloc->buf_tallocs != NULL);
392
+
393
+ for (int i = 0; i < n_bufs; i++) {
394
+ galloc->bufts[i] = bufts[i];
395
+ galloc->buffers[i] = NULL;
396
+
397
+ // check if the same buffer type is used multiple times and reuse the same allocator
398
+ for (int j = 0; j < i; j++) {
399
+ if (bufts[i] == bufts[j]) {
400
+ galloc->buf_tallocs[i] = galloc->buf_tallocs[j];
401
+ break;
402
+ }
403
+ }
404
+
405
+ if (galloc->buf_tallocs[i] == NULL) {
406
+ size_t alignment = lm_ggml_backend_buft_get_alignment(bufts[i]);
407
+ galloc->buf_tallocs[i] = lm_ggml_dyn_tallocr_new(alignment);
408
+ }
409
+ }
410
+ galloc->n_buffers = n_bufs;
411
+
412
+ return galloc;
413
+ }
414
+
415
+ lm_ggml_gallocr_t lm_ggml_gallocr_new(lm_ggml_backend_buffer_type_t buft) {
416
+ return lm_ggml_gallocr_new_n(&buft, 1);
417
+ }
418
+
419
+ void lm_ggml_gallocr_free(lm_ggml_gallocr_t galloc) {
420
+ if (galloc == NULL) {
421
+ return;
422
+ }
423
+
424
+ for (int i = 0; i < galloc->n_buffers; i++) {
425
+ if (galloc->buffers != NULL) {
426
+ // skip if already freed
427
+ bool freed = false;
428
+ for (int j = 0; j < i; j++) {
429
+ if (galloc->buffers[j] == galloc->buffers[i]) {
430
+ freed = true;
431
+ break;
432
+ }
433
+ }
434
+ if (!freed) {
435
+ lm_ggml_backend_buffer_free(galloc->buffers[i]);
436
+ }
437
+ }
438
+ if (galloc->buf_tallocs != NULL) {
439
+ // skip if already freed
440
+ bool freed = false;
441
+ for (int j = 0; j < i; j++) {
442
+ if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
443
+ freed = true;
444
+ break;
445
+ }
446
+ }
447
+ if (!freed) {
448
+ lm_ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
449
+ }
450
+ }
451
+ }
452
+
453
+ lm_ggml_hash_set_free(&galloc->hash_set);
454
+ free(galloc->hash_values);
455
+ free(galloc->bufts);
456
+ free(galloc->buffers);
457
+ free(galloc->buf_tallocs);
458
+ free(galloc->node_allocs);
459
+ free(galloc->leaf_allocs);
460
+ free(galloc);
461
+ }
462
+
463
+ typedef struct lm_ggml_gallocr * lm_ggml_gallocr_t;
464
+
465
+ static struct hash_node * lm_ggml_gallocr_hash_get(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * t) {
466
+ size_t i = lm_ggml_hash_find_or_insert(&galloc->hash_set, t);
467
+ return &galloc->hash_values[i];
468
+ }
469
+
470
+ static bool lm_ggml_gallocr_is_own(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * t) {
471
+ return lm_ggml_gallocr_hash_get(galloc, t)->allocated;
472
+ }
473
+
474
+ static bool lm_ggml_gallocr_is_allocated(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * t) {
475
+ return t->data != NULL || lm_ggml_gallocr_hash_get(galloc, t)->allocated;
476
+ }
477
+
478
+ static void lm_ggml_gallocr_allocate_node(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * node, int buffer_id) {
479
+ LM_GGML_ASSERT(buffer_id >= 0);
480
+ struct hash_node * hn = lm_ggml_gallocr_hash_get(galloc, node);
481
+
482
+ if (!lm_ggml_gallocr_is_allocated(galloc, node) && !lm_ggml_is_view(node)) {
483
+ hn->allocated = true;
484
+ assert(hn->offset == 0);
485
+
486
+ // try to reuse a parent's buffer (inplace)
487
+ if (lm_ggml_op_can_inplace(node->op)) {
488
+ for (int i = 0; i < LM_GGML_MAX_SRC; i++) {
489
+ struct lm_ggml_tensor * parent = node->src[i];
490
+ if (parent == NULL) {
491
+ continue;
492
+ }
493
+
494
+ // if the node's data is external, then we cannot re-use it
495
+ if (!lm_ggml_gallocr_is_own(galloc, parent)) {
496
+ AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
497
+ continue;
498
+ }
499
+
500
+ // outputs cannot be reused
501
+ if (parent->flags & LM_GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & LM_GGML_TENSOR_FLAG_OUTPUT)) {
502
+ AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name);
503
+ continue;
504
+ }
505
+
506
+ if (!lm_ggml_are_same_layout(node, parent)) {
507
+ AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name);
508
+ continue;
509
+ }
510
+
511
+ struct hash_node * p_hn = lm_ggml_gallocr_hash_get(galloc, parent);
512
+ if (p_hn->n_children == 1 && p_hn->n_views == 0) {
513
+ if (lm_ggml_is_view(parent)) {
514
+ struct lm_ggml_tensor * view_src = parent->view_src;
515
+ struct hash_node * view_src_hn = lm_ggml_gallocr_hash_get(galloc, view_src);
516
+ if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
517
+ AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
518
+ assert(view_src_hn->offset == p_hn->offset);
519
+ hn->buffer_id = p_hn->buffer_id;
520
+ hn->offset = p_hn->offset;
521
+ p_hn->allocated = false; // avoid freeing the parent
522
+ view_src_hn->allocated = false;
523
+ return;
524
+ }
525
+ } else {
526
+ AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
527
+ hn->buffer_id = p_hn->buffer_id;
528
+ hn->offset = p_hn->offset;
529
+ p_hn->allocated = false; // avoid freeing the parent
530
+ return;
531
+ }
532
+ }
533
+ }
534
+ }
535
+ // allocate tensor from the buffer
536
+ struct lm_ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
537
+ lm_ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
538
+ size_t size = lm_ggml_backend_buft_get_alloc_size(buft, node);
539
+ size_t offset = lm_ggml_dyn_tallocr_alloc(alloc, size, node);
540
+ hn->buffer_id = buffer_id;
541
+ hn->offset = offset;
542
+ }
543
+ }
544
+
545
+ static void lm_ggml_gallocr_free_node(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * node) {
546
+ // graph outputs are never freed
547
+ if (node->flags & LM_GGML_TENSOR_FLAG_OUTPUT) {
548
+ AT_PRINTF("not freeing output %s\n", node->name);
549
+ return;
550
+ }
551
+
552
+ struct hash_node * hn = lm_ggml_gallocr_hash_get(galloc, node);
553
+ size_t offset = hn->offset;
554
+ int buffer_id = hn->buffer_id;
555
+ struct lm_ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
556
+ lm_ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
557
+ size_t size = lm_ggml_backend_buft_get_alloc_size(buft, node);
558
+ lm_ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
559
+ hn->allocated = false;
560
+ }
561
+
562
+ static int get_node_buffer_id(const int * node_buffer_ids, int i) {
563
+ return node_buffer_ids ? node_buffer_ids[i] : 0;
564
+ }
565
+
566
+ static void lm_ggml_gallocr_alloc_graph_impl(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
567
+ // clear hash tables
568
+ lm_ggml_hash_set_reset(&galloc->hash_set);
569
+ memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
570
+
571
+ // allocate leafs
572
+ // these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
573
+ for (int i = 0; i < graph->n_leafs; i++) {
574
+ struct lm_ggml_tensor * leaf = graph->leafs[i];
575
+ lm_ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i));
576
+ }
577
+
578
+ // count number of children and views
579
+ // allocate other graph inputs and leafs first to avoid overwriting them
580
+ for (int i = 0; i < graph->n_nodes; i++) {
581
+ struct lm_ggml_tensor * node = graph->nodes[i];
582
+
583
+ // TODO: better way to add external dependencies
584
+ // LM_GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
585
+ // control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
586
+ // itself is never used and should not be considered a dependency
587
+ if (lm_ggml_is_view(node) && node->op != LM_GGML_OP_NONE) {
588
+ struct lm_ggml_tensor * view_src = node->view_src;
589
+ lm_ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
590
+ }
591
+
592
+ if (node->flags & LM_GGML_TENSOR_FLAG_INPUT) {
593
+ lm_ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
594
+ }
595
+
596
+ for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
597
+ struct lm_ggml_tensor * src = node->src[j];
598
+ if (src == NULL) {
599
+ continue;
600
+ }
601
+
602
+ lm_ggml_gallocr_hash_get(galloc, src)->n_children += 1;
603
+
604
+ // allocate explicit inputs
605
+ if (src->flags & LM_GGML_TENSOR_FLAG_INPUT) {
606
+ lm_ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
607
+ }
608
+ }
609
+ }
610
+
611
+ // allocate tensors
612
+ for (int i = 0; i < graph->n_nodes; i++) {
613
+ struct lm_ggml_tensor * node = graph->nodes[i];
614
+ int buffer_id = get_node_buffer_id(node_buffer_ids, i);
615
+
616
+ // allocate parents (only leafs need to be allocated at this point)
617
+ for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
618
+ struct lm_ggml_tensor * parent = node->src[j];
619
+ if (parent == NULL) {
620
+ continue;
621
+ }
622
+ lm_ggml_gallocr_allocate_node(galloc, parent, buffer_id);
623
+ }
624
+
625
+ // allocate node
626
+ lm_ggml_gallocr_allocate_node(galloc, node, buffer_id);
627
+
628
+ AT_PRINTF("exec: %s (%s) <= ", lm_ggml_op_desc(node), node->name);
629
+ for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
630
+ struct lm_ggml_tensor * parent = node->src[j];
631
+ if (parent == NULL) {
632
+ continue;
633
+ }
634
+ AT_PRINTF("%s", parent->name);
635
+ if (j < LM_GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
636
+ AT_PRINTF(", ");
637
+ }
638
+ }
639
+ AT_PRINTF("\n");
640
+
641
+ // update parents
642
+ for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
643
+ struct lm_ggml_tensor * parent = node->src[j];
644
+ if (parent == NULL) {
645
+ continue;
646
+ }
647
+ struct hash_node * p_hn = lm_ggml_gallocr_hash_get(galloc, parent);
648
+ p_hn->n_children -= 1;
649
+
650
+ AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n",
651
+ parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated);
652
+
653
+ if (p_hn->n_children == 0 && p_hn->n_views == 0) {
654
+ if (lm_ggml_is_view(parent)) {
655
+ struct lm_ggml_tensor * view_src = parent->view_src;
656
+ struct hash_node * view_src_hn = lm_ggml_gallocr_hash_get(galloc, view_src);
657
+ view_src_hn->n_views -= 1;
658
+ AT_PRINTF("view_src %s: %d children, %d views\n",
659
+ view_src->name, view_src_hn->n_children, view_src_hn->n_views);
660
+ if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) {
661
+ lm_ggml_gallocr_free_node(galloc, view_src);
662
+ }
663
+ }
664
+ else if (p_hn->allocated) {
665
+ lm_ggml_gallocr_free_node(galloc, parent);
666
+ }
667
+ }
668
+ AT_PRINTF("\n");
669
+ }
670
+ }
671
+ }
672
+
673
+ bool lm_ggml_gallocr_reserve_n(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
674
+ size_t min_hash_size = graph->n_nodes + graph->n_leafs;
675
+ // add 25% margin to avoid hash collisions
676
+ min_hash_size += min_hash_size / 4;
677
+
678
+ // initialize hash table
679
+ if (galloc->hash_set.size < min_hash_size) {
680
+ lm_ggml_hash_set_free(&galloc->hash_set);
681
+ galloc->hash_set = lm_ggml_hash_set_new(min_hash_size);
682
+ LM_GGML_ASSERT(galloc->hash_set.keys != NULL);
683
+
684
+ free(galloc->hash_values);
685
+ galloc->hash_values = malloc(sizeof(struct hash_node) * galloc->hash_set.size);
686
+ LM_GGML_ASSERT(galloc->hash_values != NULL);
687
+ }
688
+
689
+ // reset allocators
690
+ for (int i = 0; i < galloc->n_buffers; i++) {
691
+ lm_ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]);
692
+ }
693
+
694
+ // allocate in hash table
695
+ lm_ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids);
696
+
697
+ // set the node_allocs from the hash table
698
+ if (galloc->n_nodes < graph->n_nodes) {
699
+ free(galloc->node_allocs);
700
+ galloc->node_allocs = calloc(graph->n_nodes, sizeof(struct node_alloc));
701
+ LM_GGML_ASSERT(galloc->node_allocs != NULL);
702
+ }
703
+ galloc->n_nodes = graph->n_nodes;
704
+ for (int i = 0; i < graph->n_nodes; i++) {
705
+ struct lm_ggml_tensor * node = graph->nodes[i];
706
+ struct node_alloc * node_alloc = &galloc->node_allocs[i];
707
+ if (node->view_src || node->data) {
708
+ node_alloc->dst.buffer_id = -1;
709
+ node_alloc->dst.offset = SIZE_MAX;
710
+ node_alloc->dst.size_max = 0;
711
+ } else {
712
+ struct hash_node * hn = lm_ggml_gallocr_hash_get(galloc, node);
713
+ node_alloc->dst.buffer_id = hn->buffer_id;
714
+ node_alloc->dst.offset = hn->offset;
715
+ node_alloc->dst.size_max = lm_ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
716
+ }
717
+ for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
718
+ struct lm_ggml_tensor * src = node->src[j];
719
+ if (!src || src->view_src || src->data) {
720
+ node_alloc->src[j].buffer_id = -1;
721
+ node_alloc->src[j].offset = SIZE_MAX;
722
+ node_alloc->src[j].size_max = 0;
723
+ } else {
724
+ struct hash_node * hn = lm_ggml_gallocr_hash_get(galloc, src);
725
+ node_alloc->src[j].buffer_id = hn->buffer_id;
726
+ node_alloc->src[j].offset = hn->offset;
727
+ node_alloc->src[j].size_max = lm_ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
728
+ }
729
+ }
730
+ }
731
+ if (galloc->n_leafs < graph->n_leafs) {
732
+ free(galloc->leaf_allocs);
733
+ galloc->leaf_allocs = calloc(graph->n_leafs, sizeof(galloc->leaf_allocs[0]));
734
+ LM_GGML_ASSERT(galloc->leaf_allocs != NULL);
735
+ }
736
+ galloc->n_leafs = graph->n_leafs;
737
+ for (int i = 0; i < graph->n_leafs; i++) {
738
+ struct lm_ggml_tensor * leaf = graph->leafs[i];
739
+ struct hash_node * hn = lm_ggml_gallocr_hash_get(galloc, leaf);
740
+ if (leaf->view_src || leaf->data) {
741
+ galloc->leaf_allocs[i].leaf.buffer_id = -1;
742
+ galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
743
+ galloc->leaf_allocs[i].leaf.size_max = 0;
744
+ } else {
745
+ galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id;
746
+ galloc->leaf_allocs[i].leaf.offset = hn->offset;
747
+ galloc->leaf_allocs[i].leaf.size_max = lm_ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
748
+ }
749
+ }
750
+
751
+ // reallocate buffers if needed
752
+ for (int i = 0; i < galloc->n_buffers; i++) {
753
+ // if the buffer type is used multiple times, we reuse the same buffer
754
+ for (int j = 0; j < i; j++) {
755
+ if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
756
+ galloc->buffers[i] = galloc->buffers[j];
757
+ break;
758
+ }
759
+ }
760
+
761
+ size_t cur_size = galloc->buffers[i] ? lm_ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
762
+ size_t new_size = lm_ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
763
+
764
+ // even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
765
+ if (new_size > cur_size || galloc->buffers[i] == NULL) {
766
+ #ifndef NDEBUG
767
+ LM_GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, lm_ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
768
+ #endif
769
+
770
+ lm_ggml_backend_buffer_free(galloc->buffers[i]);
771
+ galloc->buffers[i] = lm_ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
772
+ if (galloc->buffers[i] == NULL) {
773
+ LM_GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, lm_ggml_backend_buft_name(galloc->bufts[i]), new_size);
774
+ return false;
775
+ }
776
+ lm_ggml_backend_buffer_set_usage(galloc->buffers[i], LM_GGML_BACKEND_BUFFER_USAGE_COMPUTE);
777
+ }
778
+ }
779
+
780
+ return true;
781
+ }
782
+
783
+ bool lm_ggml_gallocr_reserve(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph *graph) {
784
+ return lm_ggml_gallocr_reserve_n(galloc, graph, NULL, NULL);
785
+ }
786
+
787
+ static void lm_ggml_gallocr_init_tensor(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) {
788
+ int buffer_id = tensor_alloc->buffer_id;
789
+ assert(tensor->data || tensor->view_src || lm_ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
790
+
791
+ if (tensor->view_src != NULL) {
792
+ if (tensor->buffer == NULL) {
793
+ assert(tensor_alloc->offset == SIZE_MAX);
794
+ if (tensor->view_src->buffer == NULL) {
795
+ // this tensor was allocated without ggml-backend
796
+ return;
797
+ }
798
+ lm_ggml_backend_view_init(tensor);
799
+ }
800
+ } else {
801
+ if (tensor->data == NULL) {
802
+ assert(tensor_alloc->offset != SIZE_MAX);
803
+ assert(lm_ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
804
+ void * base = lm_ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
805
+ void * addr = (char *)base + tensor_alloc->offset;
806
+ lm_ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
807
+ } else {
808
+ if (tensor->buffer == NULL) {
809
+ // this tensor was allocated without ggml-backend
810
+ return;
811
+ }
812
+ }
813
+ }
814
+ }
815
+
816
+ static bool lm_ggml_gallocr_node_needs_realloc(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * node, struct tensor_alloc * talloc) {
817
+ size_t node_size = 0;
818
+ if (!node->data && !node->view_src) {
819
+ LM_GGML_ASSERT(talloc->buffer_id >= 0); // prevent segfault when misusing the API
820
+ node_size = lm_ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
821
+ }
822
+ return talloc->size_max >= node_size;
823
+ }
824
+
825
+ static bool lm_ggml_gallocr_needs_realloc(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph * graph) {
826
+ if (galloc->n_nodes != graph->n_nodes) {
827
+ #ifndef NDEBUG
828
+ LM_GGML_LOG_DEBUG("%s: graph has different number of nodes\n", __func__);
829
+ #endif
830
+ return true;
831
+ }
832
+
833
+ if (galloc->n_leafs != graph->n_leafs) {
834
+ #ifndef NDEBUG
835
+ LM_GGML_LOG_DEBUG("%s: graph has different number of leafs\n", __func__);
836
+ #endif
837
+ return true;
838
+ }
839
+
840
+ for (int i = 0; i < graph->n_nodes; i++) {
841
+ struct lm_ggml_tensor * node = graph->nodes[i];
842
+ struct node_alloc * node_alloc = &galloc->node_allocs[i];
843
+
844
+ if (!lm_ggml_gallocr_node_needs_realloc(galloc, node, &node_alloc->dst)) {
845
+ #ifndef NDEBUG
846
+ LM_GGML_LOG_DEBUG("%s: node %s is not valid\n", __func__, node->name);
847
+ #endif
848
+ return true;
849
+ }
850
+
851
+ for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
852
+ struct lm_ggml_tensor * src = node->src[j];
853
+ if (src == NULL) {
854
+ continue;
855
+ }
856
+ if (!lm_ggml_gallocr_node_needs_realloc(galloc, src, &node_alloc->src[j])) {
857
+ #ifndef NDEBUG
858
+ LM_GGML_LOG_DEBUG("%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name);
859
+ #endif
860
+ return true;
861
+ }
862
+ }
863
+ }
864
+
865
+ return false;
866
+ }
867
+
868
+ bool lm_ggml_gallocr_alloc_graph(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph * graph) {
869
+ if (lm_ggml_gallocr_needs_realloc(galloc, graph)) {
870
+ if (galloc->n_buffers == 1) {
871
+ #ifndef NDEBUG
872
+ LM_GGML_LOG_DEBUG("%s: reallocating buffers automatically\n", __func__);
873
+ #endif
874
+ if (!lm_ggml_gallocr_reserve(galloc, graph)) {
875
+ return false;
876
+ }
877
+ } else {
878
+ #ifndef NDEBUG
879
+ LM_GGML_LOG_DEBUG("%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__);
880
+ #endif
881
+ return false;
882
+ }
883
+ }
884
+
885
+ // reset buffers
886
+ for (int i = 0; i < galloc->n_buffers; i++) {
887
+ if (galloc->buffers[i] != NULL) {
888
+ lm_ggml_backend_buffer_reset(galloc->buffers[i]);
889
+ }
890
+ }
891
+
892
+ // allocate the graph tensors from the previous assignments
893
+ // leafs
894
+ for (int i = 0; i < graph->n_leafs; i++) {
895
+ struct lm_ggml_tensor * leaf = graph->leafs[i];
896
+ struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i];
897
+ lm_ggml_gallocr_init_tensor(galloc, leaf, &leaf_alloc->leaf);
898
+ }
899
+ // nodes
900
+ for (int i = 0; i < graph->n_nodes; i++) {
901
+ struct lm_ggml_tensor * node = graph->nodes[i];
902
+ struct node_alloc * node_alloc = &galloc->node_allocs[i];
903
+ for (int j = 0; j < LM_GGML_MAX_SRC; j++) {
904
+ struct lm_ggml_tensor * src = node->src[j];
905
+ if (src == NULL) {
906
+ continue;
907
+ }
908
+ lm_ggml_gallocr_init_tensor(galloc, src, &node_alloc->src[j]);
909
+ }
910
+ lm_ggml_gallocr_init_tensor(galloc, node, &node_alloc->dst);
911
+ }
912
+
913
+ return true;
914
+ }
915
+
916
+ size_t lm_ggml_gallocr_get_buffer_size(lm_ggml_gallocr_t galloc, int buffer_id) {
917
+ LM_GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
918
+
919
+ if (galloc->buffers[buffer_id] == NULL) {
920
+ return 0;
921
+ }
922
+
923
+ for (int i = 0; i < buffer_id; i++) {
924
+ if (galloc->buffers[i] == galloc->buffers[buffer_id]) {
925
+ // this buffer is the same as a previous one due to the same buffer type being used multiple times
926
+ // only return the buffer size the first time it appears to avoid double counting
927
+ return 0;
928
+ }
929
+ }
930
+
931
+ return lm_ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
932
+ }
933
+
934
+ // utils
935
+
936
+ static bool alloc_tensor_range(struct lm_ggml_context * ctx,
937
+ struct lm_ggml_tensor * first, struct lm_ggml_tensor * last,
938
+ lm_ggml_backend_buffer_type_t buft, size_t size,
939
+ lm_ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
940
+ lm_ggml_backend_buffer_t buffer = lm_ggml_backend_buft_alloc_buffer(buft, size);
941
+ if (buffer == NULL) {
942
+ #ifndef NDEBUG
943
+ LM_GGML_LOG_DEBUG("%s: failed to allocate %s buffer of size %zu\n", __func__, lm_ggml_backend_buft_name(buft), size);
944
+ #endif
945
+ for (size_t i = 0; i < *n_buffers; i++) {
946
+ lm_ggml_backend_buffer_free((*buffers)[i]);
947
+ }
948
+ free(*buffers);
949
+ return false;
950
+ }
951
+
952
+ struct lm_ggml_tallocr tallocr = lm_ggml_tallocr_new(buffer);
953
+
954
+ for (struct lm_ggml_tensor * t = first; t != last; t = lm_ggml_get_next_tensor(ctx, t)) {
955
+ if (t->data == NULL) {
956
+ if (t->view_src == NULL) {
957
+ lm_ggml_tallocr_alloc(&tallocr, t);
958
+ } else if (t->buffer == NULL) {
959
+ lm_ggml_backend_view_init(t);
960
+ }
961
+ } else {
962
+ if (t->view_src != NULL && t->buffer == NULL) {
963
+ // view of a pre-allocated tensor
964
+ lm_ggml_backend_view_init(t);
965
+ }
966
+ }
967
+ }
968
+
969
+ *buffers = realloc(*buffers, sizeof(lm_ggml_backend_buffer_t) * (*n_buffers + 1));
970
+ (*buffers)[(*n_buffers)++] = buffer;
971
+
972
+ return true;
973
+ }
974
+
975
+ lm_ggml_backend_buffer_t lm_ggml_backend_alloc_ctx_tensors_from_buft(struct lm_ggml_context * ctx, lm_ggml_backend_buffer_type_t buft) {
976
+ LM_GGML_ASSERT(lm_ggml_get_no_alloc(ctx) == true);
977
+
978
+ size_t alignment = lm_ggml_backend_buft_get_alignment(buft);
979
+ size_t max_size = lm_ggml_backend_buft_get_max_size(buft);
980
+
981
+ lm_ggml_backend_buffer_t * buffers = NULL;
982
+ size_t n_buffers = 0;
983
+
984
+ size_t cur_buf_size = 0;
985
+ struct lm_ggml_tensor * first = lm_ggml_get_first_tensor(ctx);
986
+ for (struct lm_ggml_tensor * t = first; t != NULL; t = lm_ggml_get_next_tensor(ctx, t)) {
987
+ size_t this_size = 0;
988
+ if (t->data == NULL && t->view_src == NULL) {
989
+ this_size = LM_GGML_PAD(lm_ggml_backend_buft_get_alloc_size(buft, t), alignment);
990
+ }
991
+
992
+ if (this_size > max_size) {
993
+ LM_GGML_LOG_ERROR("%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
994
+ __func__, t->name,
995
+ lm_ggml_backend_buft_name(buft),
996
+ this_size, max_size);
997
+ for (size_t i = 0; i < n_buffers; i++) {
998
+ lm_ggml_backend_buffer_free(buffers[i]);
999
+ }
1000
+ free(buffers);
1001
+ return NULL;
1002
+ }
1003
+
1004
+ if ((cur_buf_size + this_size) > max_size) {
1005
+ // allocate tensors in the current buffer
1006
+ if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
1007
+ return NULL;
1008
+ }
1009
+ first = t;
1010
+ cur_buf_size = this_size;
1011
+ } else {
1012
+ cur_buf_size += this_size;
1013
+ }
1014
+ }
1015
+
1016
+ // allocate remaining tensors
1017
+ if (cur_buf_size > 0) {
1018
+ if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) {
1019
+ return NULL;
1020
+ }
1021
+ }
1022
+
1023
+ if (n_buffers == 0) {
1024
+ #ifndef NDEBUG
1025
+ LM_GGML_LOG_DEBUG("%s: all tensors in the context are already allocated\n", __func__);
1026
+ #endif
1027
+ return NULL;
1028
+ }
1029
+
1030
+ lm_ggml_backend_buffer_t buffer;
1031
+ if (n_buffers == 1) {
1032
+ buffer = buffers[0];
1033
+ } else {
1034
+ buffer = lm_ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers);
1035
+ }
1036
+ free(buffers);
1037
+ return buffer;
1038
+ }
1039
+
1040
+ lm_ggml_backend_buffer_t lm_ggml_backend_alloc_ctx_tensors(struct lm_ggml_context * ctx, lm_ggml_backend_t backend) {
1041
+ return lm_ggml_backend_alloc_ctx_tensors_from_buft(ctx, lm_ggml_backend_get_default_buffer_type(backend));
1042
+ }