cui-llama.rn 1.3.5 → 1.3.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/android/src/main/CMakeLists.txt +14 -8
- package/android/src/main/jni.cpp +38 -37
- package/cpp/common.cpp +43 -26
- package/cpp/common.h +18 -11
- package/cpp/ggml-backend-reg.cpp +5 -0
- package/cpp/ggml-backend.cpp +5 -2
- package/cpp/ggml-cpp.h +1 -0
- package/cpp/ggml-cpu-aarch64.cpp +6 -1
- package/cpp/ggml-cpu-quants.c +5 -1
- package/cpp/ggml-impl.h +11 -16
- package/cpp/ggml-metal.m +2 -2
- package/cpp/ggml.c +0 -1276
- package/cpp/ggml.h +0 -140
- package/cpp/gguf.cpp +1325 -0
- package/cpp/gguf.h +202 -0
- package/cpp/llama-adapter.cpp +346 -0
- package/cpp/llama-adapter.h +73 -0
- package/cpp/llama-arch.cpp +1434 -0
- package/cpp/llama-arch.h +395 -0
- package/cpp/llama-batch.cpp +368 -0
- package/cpp/llama-batch.h +88 -0
- package/cpp/llama-chat.cpp +567 -0
- package/cpp/llama-chat.h +51 -0
- package/cpp/llama-context.cpp +1771 -0
- package/cpp/llama-context.h +128 -0
- package/cpp/llama-cparams.cpp +1 -0
- package/cpp/llama-cparams.h +37 -0
- package/cpp/llama-cpp.h +30 -0
- package/cpp/llama-grammar.cpp +1 -0
- package/cpp/llama-grammar.h +3 -1
- package/cpp/llama-hparams.cpp +71 -0
- package/cpp/llama-hparams.h +140 -0
- package/cpp/llama-impl.cpp +167 -0
- package/cpp/llama-impl.h +16 -136
- package/cpp/llama-kv-cache.cpp +718 -0
- package/cpp/llama-kv-cache.h +218 -0
- package/cpp/llama-mmap.cpp +589 -0
- package/cpp/llama-mmap.h +67 -0
- package/cpp/llama-model-loader.cpp +1011 -0
- package/cpp/llama-model-loader.h +158 -0
- package/cpp/llama-model.cpp +2202 -0
- package/cpp/llama-model.h +391 -0
- package/cpp/llama-sampling.cpp +117 -4
- package/cpp/llama-vocab.cpp +21 -28
- package/cpp/llama-vocab.h +13 -1
- package/cpp/llama.cpp +8437 -19421
- package/cpp/llama.cpp.rej +23 -0
- package/cpp/llama.h +31 -6
- package/cpp/rn-llama.hpp +39 -37
- package/cpp/sgemm.cpp +776 -70
- package/cpp/unicode.cpp +6 -0
- package/package.json +1 -1
@@ -0,0 +1,391 @@
|
|
1
|
+
#pragma once
|
2
|
+
|
3
|
+
#include "llama.h"
|
4
|
+
#include "llama-arch.h"
|
5
|
+
#include "llama-hparams.h"
|
6
|
+
#include "llama-vocab.h"
|
7
|
+
#include "llama-mmap.h"
|
8
|
+
|
9
|
+
#include "ggml-cpp.h"
|
10
|
+
|
11
|
+
#include <vector>
|
12
|
+
|
13
|
+
// available models
|
14
|
+
// TODO: this enum does not follow the enum naming convention
|
15
|
+
enum llm_type {
|
16
|
+
MODEL_UNKNOWN,
|
17
|
+
MODEL_14M,
|
18
|
+
MODEL_17M,
|
19
|
+
MODEL_22M,
|
20
|
+
MODEL_33M,
|
21
|
+
MODEL_60M,
|
22
|
+
MODEL_70M,
|
23
|
+
MODEL_80M,
|
24
|
+
MODEL_109M,
|
25
|
+
MODEL_137M,
|
26
|
+
MODEL_160M,
|
27
|
+
MODEL_220M,
|
28
|
+
MODEL_250M,
|
29
|
+
MODEL_270M,
|
30
|
+
MODEL_335M,
|
31
|
+
MODEL_410M,
|
32
|
+
MODEL_450M,
|
33
|
+
MODEL_770M,
|
34
|
+
MODEL_780M,
|
35
|
+
MODEL_0_5B,
|
36
|
+
MODEL_1B,
|
37
|
+
MODEL_1_3B,
|
38
|
+
MODEL_1_4B,
|
39
|
+
MODEL_1_5B,
|
40
|
+
MODEL_1_6B,
|
41
|
+
MODEL_2B,
|
42
|
+
MODEL_2_8B,
|
43
|
+
MODEL_3B,
|
44
|
+
MODEL_4B,
|
45
|
+
MODEL_6B,
|
46
|
+
MODEL_6_9B,
|
47
|
+
MODEL_7B,
|
48
|
+
MODEL_8B,
|
49
|
+
MODEL_9B,
|
50
|
+
MODEL_11B,
|
51
|
+
MODEL_12B,
|
52
|
+
MODEL_13B,
|
53
|
+
MODEL_14B,
|
54
|
+
MODEL_15B,
|
55
|
+
MODEL_16B,
|
56
|
+
MODEL_20B,
|
57
|
+
MODEL_30B,
|
58
|
+
MODEL_32B,
|
59
|
+
MODEL_34B,
|
60
|
+
MODEL_35B,
|
61
|
+
MODEL_40B,
|
62
|
+
MODEL_65B,
|
63
|
+
MODEL_70B,
|
64
|
+
MODEL_236B,
|
65
|
+
MODEL_314B,
|
66
|
+
MODEL_671B,
|
67
|
+
MODEL_SMALL,
|
68
|
+
MODEL_MEDIUM,
|
69
|
+
MODEL_LARGE,
|
70
|
+
MODEL_XL,
|
71
|
+
MODEL_A1_7B,
|
72
|
+
MODEL_A2_7B,
|
73
|
+
MODEL_8x7B,
|
74
|
+
MODEL_8x22B,
|
75
|
+
MODEL_16x12B,
|
76
|
+
MODEL_10B_128x3_66B,
|
77
|
+
MODEL_57B_A14B,
|
78
|
+
MODEL_27B,
|
79
|
+
};
|
80
|
+
|
81
|
+
struct llama_layer_posnet {
|
82
|
+
// resnet
|
83
|
+
struct lm_ggml_tensor * norm1 = nullptr;
|
84
|
+
struct lm_ggml_tensor * norm1_b = nullptr;
|
85
|
+
|
86
|
+
struct lm_ggml_tensor * conv1 = nullptr;
|
87
|
+
struct lm_ggml_tensor * conv1_b = nullptr;
|
88
|
+
|
89
|
+
struct lm_ggml_tensor * norm2 = nullptr;
|
90
|
+
struct lm_ggml_tensor * norm2_b = nullptr;
|
91
|
+
|
92
|
+
struct lm_ggml_tensor * conv2 = nullptr;
|
93
|
+
struct lm_ggml_tensor * conv2_b = nullptr;
|
94
|
+
|
95
|
+
// attention
|
96
|
+
struct lm_ggml_tensor * attn_norm = nullptr;
|
97
|
+
struct lm_ggml_tensor * attn_norm_b = nullptr;
|
98
|
+
|
99
|
+
struct lm_ggml_tensor * attn_q = nullptr;
|
100
|
+
struct lm_ggml_tensor * attn_q_b = nullptr;
|
101
|
+
|
102
|
+
struct lm_ggml_tensor * attn_k = nullptr;
|
103
|
+
struct lm_ggml_tensor * attn_k_b = nullptr;
|
104
|
+
|
105
|
+
struct lm_ggml_tensor * attn_v = nullptr;
|
106
|
+
struct lm_ggml_tensor * attn_v_b = nullptr;
|
107
|
+
|
108
|
+
struct lm_ggml_tensor * attn_o = nullptr;
|
109
|
+
struct lm_ggml_tensor * attn_o_b = nullptr;
|
110
|
+
|
111
|
+
// normalize
|
112
|
+
struct lm_ggml_tensor * norm = nullptr;
|
113
|
+
struct lm_ggml_tensor * norm_b = nullptr;
|
114
|
+
};
|
115
|
+
|
116
|
+
struct llama_layer_convnext {
|
117
|
+
struct lm_ggml_tensor * dw = nullptr;
|
118
|
+
struct lm_ggml_tensor * dw_b = nullptr;
|
119
|
+
|
120
|
+
struct lm_ggml_tensor * norm = nullptr;
|
121
|
+
struct lm_ggml_tensor * norm_b = nullptr;
|
122
|
+
|
123
|
+
struct lm_ggml_tensor * pw1 = nullptr;
|
124
|
+
struct lm_ggml_tensor * pw1_b = nullptr;
|
125
|
+
|
126
|
+
struct lm_ggml_tensor * pw2 = nullptr;
|
127
|
+
struct lm_ggml_tensor * pw2_b = nullptr;
|
128
|
+
|
129
|
+
struct lm_ggml_tensor * gamma = nullptr;
|
130
|
+
};
|
131
|
+
|
132
|
+
struct llama_layer {
|
133
|
+
// normalization
|
134
|
+
struct lm_ggml_tensor * attn_norm = nullptr;
|
135
|
+
struct lm_ggml_tensor * attn_norm_b = nullptr;
|
136
|
+
struct lm_ggml_tensor * attn_norm_2 = nullptr;
|
137
|
+
struct lm_ggml_tensor * attn_norm_2_b = nullptr;
|
138
|
+
struct lm_ggml_tensor * attn_q_norm = nullptr;
|
139
|
+
struct lm_ggml_tensor * attn_q_norm_b = nullptr;
|
140
|
+
struct lm_ggml_tensor * attn_k_norm = nullptr;
|
141
|
+
struct lm_ggml_tensor * attn_k_norm_b = nullptr;
|
142
|
+
struct lm_ggml_tensor * attn_out_norm = nullptr;
|
143
|
+
struct lm_ggml_tensor * attn_out_norm_b = nullptr;
|
144
|
+
struct lm_ggml_tensor * attn_q_a_norm = nullptr;
|
145
|
+
struct lm_ggml_tensor * attn_kv_a_norm = nullptr;
|
146
|
+
struct lm_ggml_tensor * attn_sub_norm = nullptr;
|
147
|
+
struct lm_ggml_tensor * attn_post_norm = nullptr;
|
148
|
+
struct lm_ggml_tensor * ffn_sub_norm = nullptr;
|
149
|
+
struct lm_ggml_tensor * attn_norm_cross = nullptr;
|
150
|
+
struct lm_ggml_tensor * attn_norm_enc = nullptr;
|
151
|
+
|
152
|
+
// attention
|
153
|
+
struct lm_ggml_tensor * wq = nullptr;
|
154
|
+
struct lm_ggml_tensor * wk = nullptr;
|
155
|
+
struct lm_ggml_tensor * wv = nullptr;
|
156
|
+
struct lm_ggml_tensor * wo = nullptr;
|
157
|
+
struct lm_ggml_tensor * wqkv = nullptr;
|
158
|
+
struct lm_ggml_tensor * wq_a = nullptr;
|
159
|
+
struct lm_ggml_tensor * wq_b = nullptr;
|
160
|
+
struct lm_ggml_tensor * wkv_a_mqa = nullptr;
|
161
|
+
struct lm_ggml_tensor * wkv_b = nullptr;
|
162
|
+
struct lm_ggml_tensor * wq_cross = nullptr;
|
163
|
+
struct lm_ggml_tensor * wk_cross = nullptr;
|
164
|
+
struct lm_ggml_tensor * wv_cross = nullptr;
|
165
|
+
struct lm_ggml_tensor * wo_cross = nullptr;
|
166
|
+
struct lm_ggml_tensor * wq_enc = nullptr;
|
167
|
+
struct lm_ggml_tensor * wk_enc = nullptr;
|
168
|
+
struct lm_ggml_tensor * wv_enc = nullptr;
|
169
|
+
struct lm_ggml_tensor * wo_enc = nullptr;
|
170
|
+
|
171
|
+
// attention bias
|
172
|
+
struct lm_ggml_tensor * bq = nullptr;
|
173
|
+
struct lm_ggml_tensor * bk = nullptr;
|
174
|
+
struct lm_ggml_tensor * bv = nullptr;
|
175
|
+
struct lm_ggml_tensor * bo = nullptr;
|
176
|
+
struct lm_ggml_tensor * bqkv = nullptr;
|
177
|
+
|
178
|
+
// relative position bias
|
179
|
+
struct lm_ggml_tensor * attn_rel_b = nullptr;
|
180
|
+
struct lm_ggml_tensor * attn_rel_b_enc = nullptr;
|
181
|
+
struct lm_ggml_tensor * attn_rel_b_cross = nullptr;
|
182
|
+
|
183
|
+
// normalization
|
184
|
+
struct lm_ggml_tensor * ffn_norm = nullptr;
|
185
|
+
struct lm_ggml_tensor * ffn_norm_b = nullptr;
|
186
|
+
struct lm_ggml_tensor * ffn_post_norm = nullptr;
|
187
|
+
struct lm_ggml_tensor * layer_out_norm = nullptr;
|
188
|
+
struct lm_ggml_tensor * layer_out_norm_b = nullptr;
|
189
|
+
struct lm_ggml_tensor * ffn_norm_exps = nullptr;
|
190
|
+
struct lm_ggml_tensor * ffn_norm_enc = nullptr;
|
191
|
+
|
192
|
+
// ff
|
193
|
+
struct lm_ggml_tensor * ffn_gate = nullptr; // w1
|
194
|
+
struct lm_ggml_tensor * ffn_down = nullptr; // w2
|
195
|
+
struct lm_ggml_tensor * ffn_up = nullptr; // w3
|
196
|
+
struct lm_ggml_tensor * ffn_gate_enc = nullptr;
|
197
|
+
struct lm_ggml_tensor * ffn_down_enc = nullptr;
|
198
|
+
struct lm_ggml_tensor * ffn_up_enc = nullptr;
|
199
|
+
|
200
|
+
// ff MoE
|
201
|
+
struct lm_ggml_tensor * ffn_gate_inp = nullptr;
|
202
|
+
struct lm_ggml_tensor * ffn_gate_exps = nullptr;
|
203
|
+
struct lm_ggml_tensor * ffn_down_exps = nullptr;
|
204
|
+
struct lm_ggml_tensor * ffn_up_exps = nullptr;
|
205
|
+
|
206
|
+
// ff shared expert (shexp)
|
207
|
+
struct lm_ggml_tensor * ffn_gate_inp_shexp = nullptr;
|
208
|
+
struct lm_ggml_tensor * ffn_gate_shexp = nullptr;
|
209
|
+
struct lm_ggml_tensor * ffn_down_shexp = nullptr;
|
210
|
+
struct lm_ggml_tensor * ffn_up_shexp = nullptr;
|
211
|
+
|
212
|
+
// ff bias
|
213
|
+
struct lm_ggml_tensor * ffn_gate_b = nullptr;
|
214
|
+
struct lm_ggml_tensor * ffn_down_b = nullptr; // b2
|
215
|
+
struct lm_ggml_tensor * ffn_up_b = nullptr; // b3
|
216
|
+
struct lm_ggml_tensor * ffn_act = nullptr;
|
217
|
+
struct lm_ggml_tensor * ffn_exp_probs_b = nullptr;
|
218
|
+
|
219
|
+
// mamba proj
|
220
|
+
struct lm_ggml_tensor * ssm_in = nullptr;
|
221
|
+
struct lm_ggml_tensor * ssm_x = nullptr;
|
222
|
+
struct lm_ggml_tensor * ssm_dt = nullptr;
|
223
|
+
struct lm_ggml_tensor * ssm_out = nullptr;
|
224
|
+
|
225
|
+
// mamba
|
226
|
+
struct lm_ggml_tensor * ssm_conv1d = nullptr;
|
227
|
+
struct lm_ggml_tensor * ssm_a = nullptr;
|
228
|
+
struct lm_ggml_tensor * ssm_d = nullptr;
|
229
|
+
|
230
|
+
// mamba bias
|
231
|
+
struct lm_ggml_tensor * ssm_conv1d_b = nullptr;
|
232
|
+
struct lm_ggml_tensor * ssm_dt_b = nullptr;
|
233
|
+
|
234
|
+
// rwkv
|
235
|
+
struct lm_ggml_tensor * time_mix_w1 = nullptr;
|
236
|
+
struct lm_ggml_tensor * time_mix_w2 = nullptr;
|
237
|
+
struct lm_ggml_tensor * time_mix_lerp_x = nullptr;
|
238
|
+
struct lm_ggml_tensor * time_mix_lerp_w = nullptr;
|
239
|
+
struct lm_ggml_tensor * time_mix_lerp_k = nullptr;
|
240
|
+
struct lm_ggml_tensor * time_mix_lerp_v = nullptr;
|
241
|
+
struct lm_ggml_tensor * time_mix_lerp_r = nullptr;
|
242
|
+
struct lm_ggml_tensor * time_mix_lerp_g = nullptr;
|
243
|
+
|
244
|
+
struct lm_ggml_tensor * time_mix_first = nullptr;
|
245
|
+
struct lm_ggml_tensor * time_mix_decay = nullptr;
|
246
|
+
struct lm_ggml_tensor * time_mix_decay_w1 = nullptr;
|
247
|
+
struct lm_ggml_tensor * time_mix_decay_w2 = nullptr;
|
248
|
+
struct lm_ggml_tensor * time_mix_key = nullptr;
|
249
|
+
struct lm_ggml_tensor * time_mix_value = nullptr;
|
250
|
+
struct lm_ggml_tensor * time_mix_receptance = nullptr;
|
251
|
+
struct lm_ggml_tensor * time_mix_gate = nullptr;
|
252
|
+
|
253
|
+
struct lm_ggml_tensor * time_mix_ln = nullptr;
|
254
|
+
struct lm_ggml_tensor * time_mix_ln_b = nullptr;
|
255
|
+
struct lm_ggml_tensor * time_mix_output = nullptr;
|
256
|
+
|
257
|
+
struct lm_ggml_tensor * channel_mix_lerp_k = nullptr;
|
258
|
+
struct lm_ggml_tensor * channel_mix_lerp_r = nullptr;
|
259
|
+
|
260
|
+
struct lm_ggml_tensor * channel_mix_key = nullptr;
|
261
|
+
struct lm_ggml_tensor * channel_mix_receptance = nullptr;
|
262
|
+
struct lm_ggml_tensor * channel_mix_value = nullptr;
|
263
|
+
|
264
|
+
// long rope factors
|
265
|
+
struct lm_ggml_tensor * rope_long = nullptr;
|
266
|
+
struct lm_ggml_tensor * rope_short = nullptr;
|
267
|
+
struct lm_ggml_tensor * rope_freqs = nullptr;
|
268
|
+
|
269
|
+
// bitnet scale
|
270
|
+
struct lm_ggml_tensor * wq_scale = nullptr;
|
271
|
+
struct lm_ggml_tensor * wk_scale = nullptr;
|
272
|
+
struct lm_ggml_tensor * wv_scale = nullptr;
|
273
|
+
struct lm_ggml_tensor * wo_scale = nullptr;
|
274
|
+
struct lm_ggml_tensor * ffn_gate_scale = nullptr;
|
275
|
+
struct lm_ggml_tensor * ffn_up_scale = nullptr;
|
276
|
+
struct lm_ggml_tensor * ffn_down_scale = nullptr;
|
277
|
+
|
278
|
+
struct llama_layer_posnet posnet;
|
279
|
+
|
280
|
+
struct llama_layer_convnext convnext;
|
281
|
+
};
|
282
|
+
|
283
|
+
struct llama_model {
|
284
|
+
llm_type type = MODEL_UNKNOWN;
|
285
|
+
llm_arch arch = LLM_ARCH_UNKNOWN;
|
286
|
+
|
287
|
+
llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
|
288
|
+
|
289
|
+
std::string name = "n/a";
|
290
|
+
|
291
|
+
llama_hparams hparams = {};
|
292
|
+
llama_vocab vocab;
|
293
|
+
|
294
|
+
struct lm_ggml_tensor * tok_embd = nullptr;
|
295
|
+
struct lm_ggml_tensor * type_embd = nullptr;
|
296
|
+
struct lm_ggml_tensor * pos_embd = nullptr;
|
297
|
+
struct lm_ggml_tensor * tok_norm = nullptr;
|
298
|
+
struct lm_ggml_tensor * tok_norm_b = nullptr;
|
299
|
+
|
300
|
+
struct lm_ggml_tensor * output_norm = nullptr;
|
301
|
+
struct lm_ggml_tensor * output_norm_b = nullptr;
|
302
|
+
struct lm_ggml_tensor * output = nullptr;
|
303
|
+
struct lm_ggml_tensor * output_b = nullptr;
|
304
|
+
struct lm_ggml_tensor * output_norm_enc = nullptr;
|
305
|
+
|
306
|
+
// classifier
|
307
|
+
struct lm_ggml_tensor * cls = nullptr;
|
308
|
+
struct lm_ggml_tensor * cls_b = nullptr;
|
309
|
+
struct lm_ggml_tensor * cls_out = nullptr;
|
310
|
+
struct lm_ggml_tensor * cls_out_b = nullptr;
|
311
|
+
|
312
|
+
struct lm_ggml_tensor * conv1d = nullptr;
|
313
|
+
struct lm_ggml_tensor * conv1d_b = nullptr;
|
314
|
+
|
315
|
+
std::vector<llama_layer> layers;
|
316
|
+
|
317
|
+
// gguf metadata
|
318
|
+
std::unordered_map<std::string, std::string> lm_gguf_kv;
|
319
|
+
|
320
|
+
llama_split_mode split_mode;
|
321
|
+
int main_gpu;
|
322
|
+
int n_gpu_layers;
|
323
|
+
|
324
|
+
std::vector<std::string> rpc_servers;
|
325
|
+
|
326
|
+
// list of devices used in this model
|
327
|
+
std::vector<lm_ggml_backend_dev_t> devices;
|
328
|
+
|
329
|
+
|
330
|
+
// lists of buffer types used for each layer
|
331
|
+
using buft_list_t = std::vector<std::pair<lm_ggml_backend_dev_t, lm_ggml_backend_buffer_type_t>>;
|
332
|
+
buft_list_t cpu_buft_list;
|
333
|
+
std::map<lm_ggml_backend_dev_t, buft_list_t> gpu_buft_list;
|
334
|
+
|
335
|
+
struct layer_dev {
|
336
|
+
lm_ggml_backend_dev_t dev;
|
337
|
+
buft_list_t * buft_list;
|
338
|
+
};
|
339
|
+
|
340
|
+
layer_dev dev_input = {};
|
341
|
+
layer_dev dev_output = {};
|
342
|
+
std::vector<layer_dev> dev_layer;
|
343
|
+
|
344
|
+
// contexts where the model tensors metadata is stored
|
345
|
+
std::vector<lm_ggml_context_ptr> ctxs;
|
346
|
+
|
347
|
+
// the model memory buffers for the tensor data
|
348
|
+
std::vector<lm_ggml_backend_buffer_ptr> bufs;
|
349
|
+
|
350
|
+
// model memory mapped files
|
351
|
+
llama_mmaps mappings;
|
352
|
+
|
353
|
+
// objects representing data potentially being locked in memory
|
354
|
+
llama_mlocks mlock_bufs;
|
355
|
+
llama_mlocks mlock_mmaps;
|
356
|
+
|
357
|
+
// for quantize-stats only
|
358
|
+
std::vector<std::pair<std::string, struct lm_ggml_tensor *>> tensors_by_name;
|
359
|
+
|
360
|
+
int64_t t_load_us = 0;
|
361
|
+
int64_t t_start_us = 0;
|
362
|
+
|
363
|
+
// total number of parameters in the model
|
364
|
+
uint64_t n_elements = 0;
|
365
|
+
|
366
|
+
// total size of all the tensors in the model in bytes
|
367
|
+
size_t n_bytes = 0;
|
368
|
+
};
|
369
|
+
|
370
|
+
const char * llm_type_name(llm_type type);
|
371
|
+
|
372
|
+
std::string llama_model_arch_name (const llama_model & model);
|
373
|
+
std::string llama_model_type_name (const llama_model & model);
|
374
|
+
std::string llama_model_ftype_name(const llama_model & model);
|
375
|
+
|
376
|
+
// used by llama_adapter_cvec
|
377
|
+
lm_ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
|
378
|
+
|
379
|
+
// used by llama_adapter_lora
|
380
|
+
struct lm_ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name);
|
381
|
+
|
382
|
+
size_t llama_model_max_nodes(const llama_model & model);
|
383
|
+
|
384
|
+
struct llama_model_loader;
|
385
|
+
|
386
|
+
// TODO: become llama_model methods
|
387
|
+
void llm_load_stats (llama_model_loader & ml, llama_model & model);
|
388
|
+
void llm_load_arch (llama_model_loader & ml, llama_model & model);
|
389
|
+
void llm_load_hparams (llama_model_loader & ml, llama_model & model);
|
390
|
+
void llm_load_vocab (llama_model_loader & ml, llama_model & model);
|
391
|
+
void llm_load_print_meta(llama_model_loader & ml, llama_model & model);
|
package/cpp/llama-sampling.cpp
CHANGED
@@ -1,5 +1,6 @@
|
|
1
1
|
#include "llama-sampling.h"
|
2
2
|
|
3
|
+
#include "llama-impl.h"
|
3
4
|
#include "llama-vocab.h"
|
4
5
|
#include "llama-grammar.h"
|
5
6
|
|
@@ -14,6 +15,118 @@
|
|
14
15
|
#include <numeric>
|
15
16
|
#include <random>
|
16
17
|
#include <unordered_map>
|
18
|
+
#include <stdexcept>
|
19
|
+
|
20
|
+
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
21
|
+
template<typename T>
|
22
|
+
struct ring_buffer {
|
23
|
+
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
|
24
|
+
|
25
|
+
T & front() {
|
26
|
+
if (sz == 0) {
|
27
|
+
throw std::runtime_error("ring buffer is empty");
|
28
|
+
}
|
29
|
+
return data[first];
|
30
|
+
}
|
31
|
+
|
32
|
+
const T & front() const {
|
33
|
+
if (sz == 0) {
|
34
|
+
throw std::runtime_error("ring buffer is empty");
|
35
|
+
}
|
36
|
+
return data[first];
|
37
|
+
}
|
38
|
+
|
39
|
+
T & back() {
|
40
|
+
if (sz == 0) {
|
41
|
+
throw std::runtime_error("ring buffer is empty");
|
42
|
+
}
|
43
|
+
return data[pos];
|
44
|
+
}
|
45
|
+
|
46
|
+
const T & back() const {
|
47
|
+
if (sz == 0) {
|
48
|
+
throw std::runtime_error("ring buffer is empty");
|
49
|
+
}
|
50
|
+
return data[pos];
|
51
|
+
}
|
52
|
+
|
53
|
+
void push_back(const T & value) {
|
54
|
+
if (capacity == 0) {
|
55
|
+
throw std::runtime_error("ring buffer: capacity is zero");
|
56
|
+
}
|
57
|
+
|
58
|
+
if (sz == capacity) {
|
59
|
+
// advance the start when buffer is full
|
60
|
+
first = (first + 1) % capacity;
|
61
|
+
} else {
|
62
|
+
sz++;
|
63
|
+
}
|
64
|
+
data[pos] = value;
|
65
|
+
pos = (pos + 1) % capacity;
|
66
|
+
}
|
67
|
+
|
68
|
+
T pop_front() {
|
69
|
+
if (sz == 0) {
|
70
|
+
throw std::runtime_error("ring buffer is empty");
|
71
|
+
}
|
72
|
+
T value = data[first];
|
73
|
+
first = (first + 1) % capacity;
|
74
|
+
sz--;
|
75
|
+
return value;
|
76
|
+
}
|
77
|
+
|
78
|
+
//T & operator[](size_t i) {
|
79
|
+
// if (i >= sz) {
|
80
|
+
// throw std::runtime_error("ring buffer: index out of bounds");
|
81
|
+
// }
|
82
|
+
// return data[(first + i) % capacity];
|
83
|
+
//}
|
84
|
+
|
85
|
+
//const T & at(size_t i) const {
|
86
|
+
// if (i >= sz) {
|
87
|
+
// throw std::runtime_error("ring buffer: index out of bounds");
|
88
|
+
// }
|
89
|
+
// return data[(first + i) % capacity];
|
90
|
+
//}
|
91
|
+
|
92
|
+
const T & rat(size_t i) const {
|
93
|
+
if (i >= sz) {
|
94
|
+
throw std::runtime_error("ring buffer: index out of bounds");
|
95
|
+
}
|
96
|
+
return data[(first + sz - i - 1) % capacity];
|
97
|
+
}
|
98
|
+
|
99
|
+
std::vector<T> to_vector() const {
|
100
|
+
std::vector<T> result;
|
101
|
+
result.reserve(sz);
|
102
|
+
for (size_t i = 0; i < sz; i++) {
|
103
|
+
result.push_back(data[(first + i) % capacity]);
|
104
|
+
}
|
105
|
+
return result;
|
106
|
+
}
|
107
|
+
|
108
|
+
void clear() {
|
109
|
+
// here only reset the status of the buffer
|
110
|
+
sz = 0;
|
111
|
+
first = 0;
|
112
|
+
pos = 0;
|
113
|
+
}
|
114
|
+
|
115
|
+
bool empty() const {
|
116
|
+
return sz == 0;
|
117
|
+
}
|
118
|
+
|
119
|
+
size_t size() const {
|
120
|
+
return sz;
|
121
|
+
}
|
122
|
+
|
123
|
+
size_t capacity = 0;
|
124
|
+
size_t sz = 0;
|
125
|
+
size_t first = 0;
|
126
|
+
size_t pos = 0;
|
127
|
+
|
128
|
+
std::vector<T> data;
|
129
|
+
};
|
17
130
|
|
18
131
|
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
|
19
132
|
// iterator for the probabilities
|
@@ -144,7 +257,7 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
|
|
144
257
|
for (int i = 0; i < (int)cur_p->size; ++i) {
|
145
258
|
const float val = cur_p->data[i].logit;
|
146
259
|
int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
|
147
|
-
ib = std::max(0, std::min(nbuckets-1, ib));
|
260
|
+
ib = std::max(0, std::min(nbuckets - 1, ib));
|
148
261
|
bucket_idx[i] = ib;
|
149
262
|
++histo[ib];
|
150
263
|
}
|
@@ -167,13 +280,13 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
|
|
167
280
|
for (int i = 0; i < (int)cur_p->size; ++i) {
|
168
281
|
int j = bucket_idx[i];
|
169
282
|
if (j >= ib) {
|
170
|
-
*bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i];
|
283
|
+
*bucket_ptrs[nbuckets - 1 - j]++ = cur_p->data[i];
|
171
284
|
}
|
172
285
|
}
|
173
286
|
|
174
287
|
ptr = tmp_tokens.data();
|
175
288
|
int ndone = 0;
|
176
|
-
for (int j = nbuckets-1; j > ib; --j) {
|
289
|
+
for (int j = nbuckets - 1; j > ib; --j) {
|
177
290
|
std::sort(ptr, ptr + histo[j], comp);
|
178
291
|
ptr += histo[j];
|
179
292
|
ndone += histo[j];
|
@@ -1720,7 +1833,7 @@ static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_dat
|
|
1720
1833
|
ctx->dry_repeat_count[last - k] = std::min(n, rep_limit);
|
1721
1834
|
if (n > 0) {
|
1722
1835
|
lt = k;
|
1723
|
-
rt = k+n-1;
|
1836
|
+
rt = k + n - 1;
|
1724
1837
|
}
|
1725
1838
|
} else {
|
1726
1839
|
// If k is inside the current Z-box, consider two cases.
|
package/cpp/llama-vocab.cpp
CHANGED
@@ -1,5 +1,7 @@
|
|
1
1
|
#include "llama-vocab.h"
|
2
2
|
|
3
|
+
#include "llama-impl.h"
|
4
|
+
|
3
5
|
#include "unicode.h"
|
4
6
|
|
5
7
|
#include <algorithm>
|
@@ -16,22 +18,6 @@
|
|
16
18
|
// helpers
|
17
19
|
//
|
18
20
|
|
19
|
-
LLAMA_ATTRIBUTE_FORMAT(1, 2)
|
20
|
-
static std::string format(const char * fmt, ...) {
|
21
|
-
va_list ap;
|
22
|
-
va_list ap2;
|
23
|
-
va_start(ap, fmt);
|
24
|
-
va_copy(ap2, ap);
|
25
|
-
int size = vsnprintf(NULL, 0, fmt, ap);
|
26
|
-
LM_GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
|
27
|
-
std::vector<char> buf(size + 1);
|
28
|
-
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
29
|
-
LM_GGML_ASSERT(size2 == size);
|
30
|
-
va_end(ap2);
|
31
|
-
va_end(ap);
|
32
|
-
return std::string(buf.data(), size);
|
33
|
-
}
|
34
|
-
|
35
21
|
struct naive_trie {
|
36
22
|
naive_trie() : has_value(false), value(0) {
|
37
23
|
}
|
@@ -396,6 +382,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
|
396
382
|
"\\p{N}+",
|
397
383
|
};
|
398
384
|
break;
|
385
|
+
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM:
|
386
|
+
regex_exprs = {
|
387
|
+
"\\p{N}{1,3}",
|
388
|
+
"[一-龥-ゟ゠-ヿ]+",
|
389
|
+
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
|
390
|
+
};
|
391
|
+
break;
|
399
392
|
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
|
400
393
|
regex_exprs = {
|
401
394
|
"[\r\n]",
|
@@ -504,7 +497,7 @@ struct llm_tokenizer_bpe_session {
|
|
504
497
|
|
505
498
|
bool append_bos(std::vector<llama_vocab::id> & output) const {
|
506
499
|
if (vocab.tokenizer_add_bos) {
|
507
|
-
LM_GGML_ASSERT(vocab.special_bos_id !=
|
500
|
+
LM_GGML_ASSERT(vocab.special_bos_id != LLAMA_TOKEN_NULL);
|
508
501
|
output.push_back(vocab.special_bos_id);
|
509
502
|
return true;
|
510
503
|
}
|
@@ -513,7 +506,7 @@ struct llm_tokenizer_bpe_session {
|
|
513
506
|
|
514
507
|
bool append_eos(std::vector<llama_vocab::id> & output) const {
|
515
508
|
if (vocab.tokenizer_add_eos) {
|
516
|
-
LM_GGML_ASSERT(vocab.special_eos_id !=
|
509
|
+
LM_GGML_ASSERT(vocab.special_eos_id != LLAMA_TOKEN_NULL);
|
517
510
|
output.push_back(vocab.special_eos_id);
|
518
511
|
return true;
|
519
512
|
}
|
@@ -1410,7 +1403,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
|
|
1410
1403
|
if (source == 0) {
|
1411
1404
|
buffer.erase_after(buffer.before_begin());
|
1412
1405
|
} else {
|
1413
|
-
buffer.erase_after(std::next(buffer.begin(), (source-1)));
|
1406
|
+
buffer.erase_after(std::next(buffer.begin(), (source - 1)));
|
1414
1407
|
}
|
1415
1408
|
|
1416
1409
|
// repeat for the right side
|
@@ -1424,7 +1417,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
|
|
1424
1417
|
if (source == 0) {
|
1425
1418
|
buffer.erase_after(buffer.before_begin());
|
1426
1419
|
} else {
|
1427
|
-
buffer.erase_after(std::next(buffer.begin(), (source-1)));
|
1420
|
+
buffer.erase_after(std::next(buffer.begin(), (source - 1)));
|
1428
1421
|
}
|
1429
1422
|
break;
|
1430
1423
|
}
|
@@ -1461,7 +1454,7 @@ std::vector<llama_vocab::id> llama_tokenize_internal(
|
|
1461
1454
|
bool is_prev_special = true; // prefix with space if first token
|
1462
1455
|
|
1463
1456
|
if (add_special && vocab.tokenizer_add_bos) {
|
1464
|
-
LM_GGML_ASSERT(vocab.special_bos_id !=
|
1457
|
+
LM_GGML_ASSERT(vocab.special_bos_id != LLAMA_TOKEN_NULL);
|
1465
1458
|
output.push_back(vocab.special_bos_id);
|
1466
1459
|
is_prev_special = true;
|
1467
1460
|
}
|
@@ -1496,7 +1489,7 @@ std::vector<llama_vocab::id> llama_tokenize_internal(
|
|
1496
1489
|
}
|
1497
1490
|
|
1498
1491
|
if (add_special && vocab.tokenizer_add_eos) {
|
1499
|
-
LM_GGML_ASSERT(vocab.special_eos_id !=
|
1492
|
+
LM_GGML_ASSERT(vocab.special_eos_id != LLAMA_TOKEN_NULL);
|
1500
1493
|
output.push_back(vocab.special_eos_id);
|
1501
1494
|
}
|
1502
1495
|
} break;
|
@@ -1529,7 +1522,7 @@ std::vector<llama_vocab::id> llama_tokenize_internal(
|
|
1529
1522
|
case LLAMA_VOCAB_TYPE_WPM:
|
1530
1523
|
{
|
1531
1524
|
if (add_special) {
|
1532
|
-
LM_GGML_ASSERT(vocab.special_cls_id !=
|
1525
|
+
LM_GGML_ASSERT(vocab.special_cls_id != LLAMA_TOKEN_NULL);
|
1533
1526
|
output.push_back(vocab.special_cls_id);
|
1534
1527
|
}
|
1535
1528
|
|
@@ -1549,14 +1542,14 @@ std::vector<llama_vocab::id> llama_tokenize_internal(
|
|
1549
1542
|
}
|
1550
1543
|
|
1551
1544
|
if (add_special) {
|
1552
|
-
LM_GGML_ASSERT(vocab.special_sep_id !=
|
1545
|
+
LM_GGML_ASSERT(vocab.special_sep_id != LLAMA_TOKEN_NULL);
|
1553
1546
|
output.push_back(vocab.special_sep_id);
|
1554
1547
|
}
|
1555
1548
|
} break;
|
1556
1549
|
case LLAMA_VOCAB_TYPE_UGM:
|
1557
1550
|
{
|
1558
1551
|
if (add_special && vocab.tokenizer_add_bos) {
|
1559
|
-
LM_GGML_ASSERT(vocab.special_bos_id !=
|
1552
|
+
LM_GGML_ASSERT(vocab.special_bos_id != LLAMA_TOKEN_NULL);
|
1560
1553
|
output.push_back(vocab.special_bos_id);
|
1561
1554
|
}
|
1562
1555
|
llm_tokenizer_ugm_session session(vocab);
|
@@ -1581,7 +1574,7 @@ std::vector<llama_vocab::id> llama_tokenize_internal(
|
|
1581
1574
|
}
|
1582
1575
|
|
1583
1576
|
if (add_special && vocab.tokenizer_add_eos) {
|
1584
|
-
LM_GGML_ASSERT(vocab.special_eos_id !=
|
1577
|
+
LM_GGML_ASSERT(vocab.special_eos_id != LLAMA_TOKEN_NULL);
|
1585
1578
|
output.push_back(vocab.special_eos_id);
|
1586
1579
|
}
|
1587
1580
|
} break;
|
@@ -1649,7 +1642,7 @@ llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, lla
|
|
1649
1642
|
}
|
1650
1643
|
|
1651
1644
|
bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) {
|
1652
|
-
return token !=
|
1645
|
+
return token != LLAMA_TOKEN_NULL && vocab.special_eog_ids.count(token) > 0;
|
1653
1646
|
}
|
1654
1647
|
|
1655
1648
|
bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) {
|
@@ -1888,7 +1881,7 @@ int32_t llama_detokenize_impl(
|
|
1888
1881
|
}
|
1889
1882
|
|
1890
1883
|
if (remove_special && vocab.tokenizer_add_eos) {
|
1891
|
-
if (n_tokens > 0 && tokens[n_tokens-1] == vocab.special_eos_id) {
|
1884
|
+
if (n_tokens > 0 && tokens[n_tokens - 1] == vocab.special_eos_id) {
|
1892
1885
|
n_tokens--;
|
1893
1886
|
}
|
1894
1887
|
}
|