cui-llama.rn 1.3.5 → 1.3.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/android/src/main/CMakeLists.txt +14 -8
- package/android/src/main/jni.cpp +38 -37
- package/cpp/common.cpp +43 -26
- package/cpp/common.h +18 -11
- package/cpp/ggml-backend-reg.cpp +5 -0
- package/cpp/ggml-backend.cpp +5 -2
- package/cpp/ggml-cpp.h +1 -0
- package/cpp/ggml-cpu-aarch64.cpp +6 -1
- package/cpp/ggml-cpu-quants.c +5 -1
- package/cpp/ggml-impl.h +11 -16
- package/cpp/ggml-metal.m +2 -2
- package/cpp/ggml.c +0 -1276
- package/cpp/ggml.h +0 -140
- package/cpp/gguf.cpp +1325 -0
- package/cpp/gguf.h +202 -0
- package/cpp/llama-adapter.cpp +346 -0
- package/cpp/llama-adapter.h +73 -0
- package/cpp/llama-arch.cpp +1434 -0
- package/cpp/llama-arch.h +395 -0
- package/cpp/llama-batch.cpp +368 -0
- package/cpp/llama-batch.h +88 -0
- package/cpp/llama-chat.cpp +567 -0
- package/cpp/llama-chat.h +51 -0
- package/cpp/llama-context.cpp +1771 -0
- package/cpp/llama-context.h +128 -0
- package/cpp/llama-cparams.cpp +1 -0
- package/cpp/llama-cparams.h +37 -0
- package/cpp/llama-cpp.h +30 -0
- package/cpp/llama-grammar.cpp +1 -0
- package/cpp/llama-grammar.h +3 -1
- package/cpp/llama-hparams.cpp +71 -0
- package/cpp/llama-hparams.h +140 -0
- package/cpp/llama-impl.cpp +167 -0
- package/cpp/llama-impl.h +16 -136
- package/cpp/llama-kv-cache.cpp +718 -0
- package/cpp/llama-kv-cache.h +218 -0
- package/cpp/llama-mmap.cpp +589 -0
- package/cpp/llama-mmap.h +67 -0
- package/cpp/llama-model-loader.cpp +1011 -0
- package/cpp/llama-model-loader.h +158 -0
- package/cpp/llama-model.cpp +2202 -0
- package/cpp/llama-model.h +391 -0
- package/cpp/llama-sampling.cpp +117 -4
- package/cpp/llama-vocab.cpp +21 -28
- package/cpp/llama-vocab.h +13 -1
- package/cpp/llama.cpp +8437 -19421
- package/cpp/llama.cpp.rej +23 -0
- package/cpp/llama.h +31 -6
- package/cpp/rn-llama.hpp +39 -37
- package/cpp/sgemm.cpp +776 -70
- package/cpp/unicode.cpp +6 -0
- package/package.json +1 -1
@@ -0,0 +1,718 @@
|
|
1
|
+
#include "llama-kv-cache.h"
|
2
|
+
|
3
|
+
#include "llama-impl.h"
|
4
|
+
#include "llama-batch.h"
|
5
|
+
#include "llama-cparams.h"
|
6
|
+
#include "llama-model.h"
|
7
|
+
|
8
|
+
#include <algorithm>
|
9
|
+
#include <limits>
|
10
|
+
#include <map>
|
11
|
+
|
12
|
+
static const llama_kv_cache_slot_info llama_kv_cache_slot_info_failed{false};
|
13
|
+
|
14
|
+
uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
|
15
|
+
// the FA kernels require padding to avoid extra runtime boundary checks
|
16
|
+
return cparams.flash_attn ? 256u : 32u;
|
17
|
+
}
|
18
|
+
|
19
|
+
bool llama_kv_cache_init(
|
20
|
+
struct llama_kv_cache & cache,
|
21
|
+
const llama_model & model,
|
22
|
+
const llama_cparams & cparams,
|
23
|
+
lm_ggml_type type_k,
|
24
|
+
lm_ggml_type type_v,
|
25
|
+
uint32_t kv_size,
|
26
|
+
bool offload) {
|
27
|
+
const struct llama_hparams & hparams = model.hparams;
|
28
|
+
|
29
|
+
const int32_t n_layer = hparams.n_layer;
|
30
|
+
|
31
|
+
cache.has_shift = false;
|
32
|
+
|
33
|
+
cache.recurrent = llama_model_is_recurrent(&model);
|
34
|
+
cache.v_trans = !cache.recurrent && !cparams.flash_attn;
|
35
|
+
cache.can_shift = !cache.recurrent && model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
36
|
+
|
37
|
+
LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n",
|
38
|
+
__func__, kv_size, offload, lm_ggml_type_name(type_k), lm_ggml_type_name(type_v), n_layer, cache.can_shift);
|
39
|
+
|
40
|
+
cache.head = 0;
|
41
|
+
cache.size = kv_size;
|
42
|
+
cache.used = 0;
|
43
|
+
|
44
|
+
cache.type_k = type_k;
|
45
|
+
cache.type_v = type_v;
|
46
|
+
|
47
|
+
cache.cells.clear();
|
48
|
+
cache.cells.resize(kv_size);
|
49
|
+
|
50
|
+
// create a context for each buffer type
|
51
|
+
std::map<lm_ggml_backend_buffer_type_t, lm_ggml_context *> ctx_map;
|
52
|
+
auto ctx_for_buft = [&](lm_ggml_backend_buffer_type_t buft) -> lm_ggml_context * {
|
53
|
+
auto it = ctx_map.find(buft);
|
54
|
+
if (it == ctx_map.end()) {
|
55
|
+
struct lm_ggml_init_params params = {
|
56
|
+
/*.mem_size =*/ size_t(2u*n_layer*lm_ggml_tensor_overhead()),
|
57
|
+
/*.mem_buffer =*/ NULL,
|
58
|
+
/*.no_alloc =*/ true,
|
59
|
+
};
|
60
|
+
lm_ggml_context * ctx = lm_ggml_init(params);
|
61
|
+
if (!ctx) {
|
62
|
+
return nullptr;
|
63
|
+
}
|
64
|
+
ctx_map[buft] = ctx;
|
65
|
+
cache.ctxs.emplace_back(ctx);
|
66
|
+
return ctx;
|
67
|
+
}
|
68
|
+
return it->second;
|
69
|
+
};
|
70
|
+
|
71
|
+
cache.k_l.reserve(n_layer);
|
72
|
+
cache.v_l.reserve(n_layer);
|
73
|
+
|
74
|
+
for (int i = 0; i < n_layer; i++) {
|
75
|
+
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
76
|
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
77
|
+
|
78
|
+
LLAMA_LOG_DEBUG("%s: layer %d: n_embd_k_gqa = %d, n_embd_v_gqa = %d\n", __func__, i, n_embd_k_gqa, n_embd_v_gqa);
|
79
|
+
|
80
|
+
lm_ggml_backend_buffer_type_t buft;
|
81
|
+
if (offload) {
|
82
|
+
auto * dev = model.dev_layer.at(i).dev;
|
83
|
+
buft = lm_ggml_backend_dev_buffer_type(dev);
|
84
|
+
} else {
|
85
|
+
buft = lm_ggml_backend_cpu_buffer_type();
|
86
|
+
}
|
87
|
+
lm_ggml_context * ctx = ctx_for_buft(buft);
|
88
|
+
|
89
|
+
if (!ctx) {
|
90
|
+
LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
|
91
|
+
return false;
|
92
|
+
}
|
93
|
+
|
94
|
+
lm_ggml_tensor * k = lm_ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
95
|
+
lm_ggml_tensor * v = lm_ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
96
|
+
lm_ggml_format_name(k, "cache_k_l%d", i);
|
97
|
+
lm_ggml_format_name(v, "cache_v_l%d", i);
|
98
|
+
cache.k_l.push_back(k);
|
99
|
+
cache.v_l.push_back(v);
|
100
|
+
}
|
101
|
+
|
102
|
+
// allocate tensors and initialize the buffers to avoid NaNs in the padding
|
103
|
+
for (auto it : ctx_map) {
|
104
|
+
auto * buft = it.first;
|
105
|
+
auto * ctx = it.second;
|
106
|
+
|
107
|
+
lm_ggml_backend_buffer_t buf = lm_ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
108
|
+
if (!buf) {
|
109
|
+
LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
|
110
|
+
return false;
|
111
|
+
}
|
112
|
+
lm_ggml_backend_buffer_clear(buf, 0);
|
113
|
+
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, lm_ggml_backend_buffer_name(buf), lm_ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
114
|
+
cache.bufs.emplace_back(buf);
|
115
|
+
}
|
116
|
+
|
117
|
+
return true;
|
118
|
+
}
|
119
|
+
|
120
|
+
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
121
|
+
struct llama_kv_cache & cache,
|
122
|
+
const struct llama_ubatch & ubatch) {
|
123
|
+
const uint32_t n_tokens = ubatch.n_tokens;
|
124
|
+
const uint32_t n_seqs = ubatch.n_seqs;
|
125
|
+
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
|
126
|
+
|
127
|
+
if (cache.recurrent) {
|
128
|
+
// For recurrent state architectures (like Mamba or RWKV),
|
129
|
+
// each cache cell can store the state for a whole sequence.
|
130
|
+
// A slot should be always be contiguous.
|
131
|
+
|
132
|
+
// can only process batches with an equal number of new tokens in each sequence
|
133
|
+
LM_GGML_ASSERT(ubatch.equal_seqs);
|
134
|
+
|
135
|
+
int32_t min = cache.size - 1;
|
136
|
+
int32_t max = 0;
|
137
|
+
|
138
|
+
// everything should fit if all seq_ids are smaller than the max
|
139
|
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
140
|
+
const uint32_t n_seq_id = ubatch.n_seq_id[s];
|
141
|
+
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
142
|
+
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
143
|
+
|
144
|
+
if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
|
145
|
+
// too big seq_id
|
146
|
+
// TODO: would it be possible to resize the cache instead?
|
147
|
+
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
|
148
|
+
return llama_kv_cache_slot_info_failed;
|
149
|
+
}
|
150
|
+
if (j > 0) {
|
151
|
+
llama_kv_cell & seq = cache.cells[seq_id];
|
152
|
+
if (seq.tail >= 0) {
|
153
|
+
llama_kv_cell & cell = cache.cells[seq.tail];
|
154
|
+
// clear cells from seq_ids that become shared
|
155
|
+
// (should not normally happen, but let's handle it anyway)
|
156
|
+
cell.seq_id.erase(seq_id);
|
157
|
+
seq.tail = -1;
|
158
|
+
if (cell.seq_id.empty()) {
|
159
|
+
cell.pos = -1;
|
160
|
+
cell.src = -1;
|
161
|
+
cache.used -= 1;
|
162
|
+
}
|
163
|
+
}
|
164
|
+
}
|
165
|
+
}
|
166
|
+
}
|
167
|
+
|
168
|
+
#ifndef NDEBUG
|
169
|
+
{
|
170
|
+
std::vector<int32_t> tails_verif;
|
171
|
+
tails_verif.assign(cache.size, -1);
|
172
|
+
for (uint32_t i = 0; i < cache.size; ++i) {
|
173
|
+
llama_kv_cell & cell = cache.cells[i];
|
174
|
+
for (llama_seq_id seq_id : cell.seq_id) {
|
175
|
+
if (tails_verif[seq_id] != -1) {
|
176
|
+
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
|
177
|
+
}
|
178
|
+
tails_verif[seq_id] = i;
|
179
|
+
}
|
180
|
+
}
|
181
|
+
for (uint32_t i = 0; i < cache.size; ++i) {
|
182
|
+
if (tails_verif[i] != cache.cells[i].tail) {
|
183
|
+
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cache.cells[i].tail, tails_verif[i]);
|
184
|
+
}
|
185
|
+
}
|
186
|
+
}
|
187
|
+
#endif
|
188
|
+
|
189
|
+
// find next empty cell
|
190
|
+
uint32_t next_empty_cell = cache.head;
|
191
|
+
|
192
|
+
for (uint32_t i = 0; i < cache.size; ++i) {
|
193
|
+
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
|
194
|
+
llama_kv_cell & cell = cache.cells[next_empty_cell];
|
195
|
+
if (cell.is_empty()) { break; }
|
196
|
+
next_empty_cell += 1;
|
197
|
+
}
|
198
|
+
|
199
|
+
// find usable cell range
|
200
|
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
201
|
+
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
202
|
+
llama_kv_cell & seq_meta = cache.cells[seq_id];
|
203
|
+
bool has_cell = false;
|
204
|
+
if (seq_meta.tail >= 0) {
|
205
|
+
llama_kv_cell & cell = cache.cells[seq_meta.tail];
|
206
|
+
LM_GGML_ASSERT(cell.has_seq_id(seq_id));
|
207
|
+
// does this seq_id "own" the cell?
|
208
|
+
if (cell.seq_id.size() == 1) { has_cell = true; }
|
209
|
+
}
|
210
|
+
if (!has_cell) {
|
211
|
+
llama_kv_cell & empty_cell = cache.cells[next_empty_cell];
|
212
|
+
LM_GGML_ASSERT(empty_cell.is_empty());
|
213
|
+
// copy old tail into the empty cell
|
214
|
+
if (seq_meta.tail >= 0) {
|
215
|
+
llama_kv_cell & orig_cell = cache.cells[seq_meta.tail];
|
216
|
+
empty_cell.pos = orig_cell.pos;
|
217
|
+
empty_cell.src = orig_cell.src;
|
218
|
+
orig_cell.seq_id.erase(seq_id);
|
219
|
+
empty_cell.seq_id.insert(seq_id); // will be overwritten
|
220
|
+
}
|
221
|
+
seq_meta.tail = next_empty_cell;
|
222
|
+
// find next empty cell
|
223
|
+
if (s + 1 < n_seqs) {
|
224
|
+
next_empty_cell += 1;
|
225
|
+
for (uint32_t i = 0; i < cache.size; ++i) {
|
226
|
+
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
|
227
|
+
llama_kv_cell & cell = cache.cells[next_empty_cell];
|
228
|
+
if (cell.is_empty()) { break; }
|
229
|
+
next_empty_cell += 1;
|
230
|
+
}
|
231
|
+
}
|
232
|
+
}
|
233
|
+
if (min > seq_meta.tail) { min = seq_meta.tail; }
|
234
|
+
if (max < seq_meta.tail) { max = seq_meta.tail; }
|
235
|
+
}
|
236
|
+
|
237
|
+
// gather and re-order
|
238
|
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
239
|
+
int32_t dst_id = s + min;
|
240
|
+
int32_t src_id = cache.cells[ubatch.seq_id[s][0]].tail;
|
241
|
+
if (dst_id != src_id) {
|
242
|
+
llama_kv_cell & dst_cell = cache.cells[dst_id];
|
243
|
+
llama_kv_cell & src_cell = cache.cells[src_id];
|
244
|
+
|
245
|
+
std::swap(dst_cell.pos, src_cell.pos);
|
246
|
+
std::swap(dst_cell.src, src_cell.src);
|
247
|
+
std::swap(dst_cell.seq_id, src_cell.seq_id);
|
248
|
+
|
249
|
+
// swap tails (assuming they NEVER overlap)
|
250
|
+
for (const llama_seq_id seq_id : src_cell.seq_id) {
|
251
|
+
cache.cells[seq_id].tail = src_id;
|
252
|
+
}
|
253
|
+
for (const llama_seq_id seq_id : dst_cell.seq_id) {
|
254
|
+
cache.cells[seq_id].tail = dst_id;
|
255
|
+
}
|
256
|
+
}
|
257
|
+
}
|
258
|
+
|
259
|
+
// update the pos of the used seqs
|
260
|
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
261
|
+
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
262
|
+
int32_t cell_id = s + min;
|
263
|
+
llama_kv_cell & cell = cache.cells[cell_id];
|
264
|
+
|
265
|
+
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
|
266
|
+
// What should happen when the pos backtracks or skips a value?
|
267
|
+
// Clearing the state mid-batch would require special-casing which isn't done.
|
268
|
+
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
|
269
|
+
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
|
270
|
+
}
|
271
|
+
cell.pos = last_pos;
|
272
|
+
cell.seq_id.clear();
|
273
|
+
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
|
274
|
+
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
275
|
+
cell.seq_id.insert(seq_id);
|
276
|
+
cache.cells[seq_id].tail = cell_id;
|
277
|
+
}
|
278
|
+
}
|
279
|
+
|
280
|
+
// allow getting the range of used cells, from head to head + n
|
281
|
+
cache.head = min;
|
282
|
+
cache.n = max - min + 1;
|
283
|
+
cache.used = std::count_if(cache.cells.begin(), cache.cells.end(),
|
284
|
+
[](const llama_kv_cell& cell){ return !cell.is_empty(); });
|
285
|
+
|
286
|
+
// sanity check
|
287
|
+
return llama_kv_cache_slot_info(cache.n >= n_seqs);
|
288
|
+
}
|
289
|
+
// otherwise, one cell per token.
|
290
|
+
|
291
|
+
if (n_tokens > cache.size) {
|
292
|
+
LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
|
293
|
+
return llama_kv_cache_slot_info_failed;
|
294
|
+
}
|
295
|
+
|
296
|
+
uint32_t n_tested = 0;
|
297
|
+
|
298
|
+
while (true) {
|
299
|
+
if (cache.head + n_tokens > cache.size) {
|
300
|
+
n_tested += cache.size - cache.head;
|
301
|
+
cache.head = 0;
|
302
|
+
continue;
|
303
|
+
}
|
304
|
+
|
305
|
+
bool found = true;
|
306
|
+
for (uint32_t i = 0; i < n_tokens; i++) {
|
307
|
+
if (cache.cells[cache.head + i].pos >= 0) {
|
308
|
+
found = false;
|
309
|
+
cache.head += i + 1;
|
310
|
+
n_tested += i + 1;
|
311
|
+
break;
|
312
|
+
}
|
313
|
+
}
|
314
|
+
|
315
|
+
if (found) {
|
316
|
+
break;
|
317
|
+
}
|
318
|
+
|
319
|
+
if (n_tested >= cache.size) {
|
320
|
+
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
|
321
|
+
return llama_kv_cache_slot_info_failed;
|
322
|
+
}
|
323
|
+
}
|
324
|
+
|
325
|
+
for (uint32_t s = 0; s < n_seqs; s++) {
|
326
|
+
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
|
327
|
+
uint32_t k = s*n_seq_tokens + i;
|
328
|
+
cache.cells[cache.head + k].pos = ubatch.pos[k];
|
329
|
+
|
330
|
+
for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) {
|
331
|
+
cache.cells[cache.head + k].seq_id.insert(ubatch.seq_id[s][j]);
|
332
|
+
}
|
333
|
+
}
|
334
|
+
}
|
335
|
+
|
336
|
+
cache.used += n_tokens;
|
337
|
+
|
338
|
+
return llama_kv_cache_slot_info(cache.head, cache.head + n_tokens);
|
339
|
+
}
|
340
|
+
|
341
|
+
uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
|
342
|
+
for (uint32_t i = cache.size; i > 0; --i) {
|
343
|
+
const llama_kv_cell & cell = cache.cells[i - 1];
|
344
|
+
|
345
|
+
if (cell.pos >= 0 && !cell.is_empty()) {
|
346
|
+
return i;
|
347
|
+
}
|
348
|
+
}
|
349
|
+
|
350
|
+
return 0;
|
351
|
+
}
|
352
|
+
|
353
|
+
void llama_kv_cache_clear(struct llama_kv_cache & cache) {
|
354
|
+
for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
|
355
|
+
cache.cells[i].pos = -1;
|
356
|
+
cache.cells[i].seq_id.clear();
|
357
|
+
cache.cells[i].src = -1;
|
358
|
+
cache.cells[i].tail = -1;
|
359
|
+
}
|
360
|
+
cache.head = 0;
|
361
|
+
cache.used = 0;
|
362
|
+
|
363
|
+
for (auto & buf : cache.bufs) {
|
364
|
+
lm_ggml_backend_buffer_clear(buf.get(), 0);
|
365
|
+
}
|
366
|
+
}
|
367
|
+
|
368
|
+
bool llama_kv_cache_seq_rm(
|
369
|
+
struct llama_kv_cache & cache,
|
370
|
+
llama_seq_id seq_id,
|
371
|
+
llama_pos p0,
|
372
|
+
llama_pos p1) {
|
373
|
+
uint32_t new_head = cache.size;
|
374
|
+
|
375
|
+
if (p0 < 0) p0 = 0;
|
376
|
+
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
377
|
+
|
378
|
+
// models like Mamba or RWKV can't have a state partially erased
|
379
|
+
if (cache.recurrent) {
|
380
|
+
if (seq_id >= (int64_t) cache.size) {
|
381
|
+
// could be fatal
|
382
|
+
return false;
|
383
|
+
}
|
384
|
+
if (0 <= seq_id) {
|
385
|
+
int32_t & tail_id = cache.cells[seq_id].tail;
|
386
|
+
if (tail_id >= 0) {
|
387
|
+
const llama_kv_cell & cell = cache.cells[tail_id];
|
388
|
+
// partial intersection is invalid
|
389
|
+
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
|
390
|
+
return false;
|
391
|
+
}
|
392
|
+
// invalidate tails which will be cleared
|
393
|
+
if (p0 <= cell.pos && cell.pos < p1) {
|
394
|
+
tail_id = -1;
|
395
|
+
}
|
396
|
+
}
|
397
|
+
} else {
|
398
|
+
// seq_id is negative, then the range should include everything or nothing
|
399
|
+
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
|
400
|
+
return false;
|
401
|
+
}
|
402
|
+
}
|
403
|
+
}
|
404
|
+
|
405
|
+
for (uint32_t i = 0; i < cache.size; ++i) {
|
406
|
+
if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
407
|
+
if (seq_id < 0) {
|
408
|
+
cache.cells[i].seq_id.clear();
|
409
|
+
} else if (cache.cells[i].has_seq_id(seq_id)) {
|
410
|
+
cache.cells[i].seq_id.erase(seq_id);
|
411
|
+
} else {
|
412
|
+
continue;
|
413
|
+
}
|
414
|
+
if (cache.cells[i].is_empty()) {
|
415
|
+
// keep count of the number of used cells
|
416
|
+
if (cache.cells[i].pos >= 0) cache.used--;
|
417
|
+
|
418
|
+
cache.cells[i].pos = -1;
|
419
|
+
cache.cells[i].src = -1;
|
420
|
+
if (new_head == cache.size) new_head = i;
|
421
|
+
}
|
422
|
+
}
|
423
|
+
}
|
424
|
+
|
425
|
+
// If we freed up a slot, set head to it so searching can start there.
|
426
|
+
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
|
427
|
+
|
428
|
+
return true;
|
429
|
+
}
|
430
|
+
|
431
|
+
void llama_kv_cache_seq_cp(
|
432
|
+
struct llama_kv_cache & cache,
|
433
|
+
llama_seq_id seq_id_src,
|
434
|
+
llama_seq_id seq_id_dst,
|
435
|
+
llama_pos p0,
|
436
|
+
llama_pos p1) {
|
437
|
+
if (p0 < 0) p0 = 0;
|
438
|
+
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
439
|
+
|
440
|
+
if (cache.recurrent) {
|
441
|
+
if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
|
442
|
+
llama_kv_cell & tail_src = cache.cells[seq_id_src];
|
443
|
+
llama_kv_cell & tail_dst = cache.cells[seq_id_dst];
|
444
|
+
if (tail_dst.tail >= 0) {
|
445
|
+
// clear destination seq_id if it wasn't empty
|
446
|
+
llama_kv_cell & cell_dst = cache.cells[tail_dst.tail];
|
447
|
+
|
448
|
+
cell_dst.seq_id.erase(seq_id_dst);
|
449
|
+
tail_dst.tail = -1;
|
450
|
+
if (cell_dst.seq_id.empty()) {
|
451
|
+
cell_dst.pos = -1;
|
452
|
+
cell_dst.delta = -1;
|
453
|
+
cell_dst.src = -1;
|
454
|
+
cache.used -= 1;
|
455
|
+
}
|
456
|
+
}
|
457
|
+
if (tail_src.tail >= 0) {
|
458
|
+
llama_kv_cell & cell_src = cache.cells[tail_src.tail];
|
459
|
+
|
460
|
+
cell_src.seq_id.insert(seq_id_dst);
|
461
|
+
tail_dst.tail = tail_src.tail;
|
462
|
+
}
|
463
|
+
}
|
464
|
+
|
465
|
+
return;
|
466
|
+
}
|
467
|
+
// otherwise, this is the KV cache of a Transformer-like model
|
468
|
+
|
469
|
+
cache.head = 0;
|
470
|
+
|
471
|
+
for (uint32_t i = 0; i < cache.size; ++i) {
|
472
|
+
if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
473
|
+
cache.cells[i].seq_id.insert(seq_id_dst);
|
474
|
+
}
|
475
|
+
}
|
476
|
+
}
|
477
|
+
|
478
|
+
void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
|
479
|
+
uint32_t new_head = cache.size;
|
480
|
+
|
481
|
+
for (uint32_t i = 0; i < cache.size; ++i) {
|
482
|
+
if (cache.recurrent && (llama_seq_id) i != seq_id) {
|
483
|
+
cache.cells[i].tail = -1;
|
484
|
+
}
|
485
|
+
if (!cache.cells[i].has_seq_id(seq_id)) {
|
486
|
+
if (cache.cells[i].pos >= 0) cache.used--;
|
487
|
+
cache.cells[i].pos = -1;
|
488
|
+
cache.cells[i].src = -1;
|
489
|
+
cache.cells[i].seq_id.clear();
|
490
|
+
if (new_head == cache.size) new_head = i;
|
491
|
+
} else {
|
492
|
+
cache.cells[i].seq_id.clear();
|
493
|
+
cache.cells[i].seq_id.insert(seq_id);
|
494
|
+
}
|
495
|
+
}
|
496
|
+
|
497
|
+
// If we freed up a slot, set head to it so searching can start there.
|
498
|
+
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
|
499
|
+
}
|
500
|
+
|
501
|
+
void llama_kv_cache_seq_add(
|
502
|
+
struct llama_kv_cache & cache,
|
503
|
+
llama_seq_id seq_id,
|
504
|
+
llama_pos p0,
|
505
|
+
llama_pos p1,
|
506
|
+
llama_pos delta) {
|
507
|
+
uint32_t new_head = cache.size;
|
508
|
+
|
509
|
+
if (p0 < 0) p0 = 0;
|
510
|
+
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
511
|
+
// If there is no range then return early to avoid looping over the cache.
|
512
|
+
if (p0 == p1) return;
|
513
|
+
|
514
|
+
if (cache.recurrent) {
|
515
|
+
// for Mamba-like or RWKV models, only the pos needs to be shifted
|
516
|
+
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
|
517
|
+
const int32_t tail_id = cache.cells[seq_id].tail;
|
518
|
+
if (tail_id >= 0) {
|
519
|
+
llama_kv_cell & cell = cache.cells[tail_id];
|
520
|
+
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
521
|
+
cell.pos += delta;
|
522
|
+
}
|
523
|
+
}
|
524
|
+
}
|
525
|
+
return;
|
526
|
+
}
|
527
|
+
|
528
|
+
for (uint32_t i = 0; i < cache.size; ++i) {
|
529
|
+
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
530
|
+
cache.has_shift = true;
|
531
|
+
cache.cells[i].pos += delta;
|
532
|
+
cache.cells[i].delta += delta;
|
533
|
+
|
534
|
+
if (cache.cells[i].pos < 0) {
|
535
|
+
if (!cache.cells[i].is_empty()) {
|
536
|
+
cache.used--;
|
537
|
+
}
|
538
|
+
cache.cells[i].pos = -1;
|
539
|
+
cache.cells[i].seq_id.clear();
|
540
|
+
if (new_head == cache.size) {
|
541
|
+
new_head = i;
|
542
|
+
}
|
543
|
+
}
|
544
|
+
}
|
545
|
+
}
|
546
|
+
|
547
|
+
// If we freed up a slot, set head to it so searching can start there.
|
548
|
+
// Otherwise we just start the next search from the beginning.
|
549
|
+
cache.head = new_head != cache.size ? new_head : 0;
|
550
|
+
}
|
551
|
+
|
552
|
+
void llama_kv_cache_seq_div(
|
553
|
+
struct llama_kv_cache & cache,
|
554
|
+
llama_seq_id seq_id,
|
555
|
+
llama_pos p0,
|
556
|
+
llama_pos p1,
|
557
|
+
int d) {
|
558
|
+
if (p0 < 0) p0 = 0;
|
559
|
+
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
560
|
+
// If there is no range then return early to avoid looping over the cache.
|
561
|
+
if (p0 == p1) return;
|
562
|
+
|
563
|
+
if (cache.recurrent) {
|
564
|
+
// for Mamba-like or RWKV models, only the pos needs to be changed
|
565
|
+
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
|
566
|
+
const int32_t tail_id = cache.cells[seq_id].tail;
|
567
|
+
if (tail_id >= 0) {
|
568
|
+
llama_kv_cell & cell = cache.cells[tail_id];
|
569
|
+
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
570
|
+
cell.pos /= d;
|
571
|
+
}
|
572
|
+
}
|
573
|
+
}
|
574
|
+
return;
|
575
|
+
}
|
576
|
+
|
577
|
+
for (uint32_t i = 0; i < cache.size; ++i) {
|
578
|
+
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
579
|
+
cache.has_shift = true;
|
580
|
+
|
581
|
+
{
|
582
|
+
llama_pos p_old = cache.cells[i].pos;
|
583
|
+
cache.cells[i].pos /= d;
|
584
|
+
cache.cells[i].delta += cache.cells[i].pos - p_old;
|
585
|
+
}
|
586
|
+
}
|
587
|
+
}
|
588
|
+
}
|
589
|
+
|
590
|
+
llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
|
591
|
+
llama_pos result = 0;
|
592
|
+
|
593
|
+
for (uint32_t i = 0; i < cache.size; ++i) {
|
594
|
+
if (cache.cells[i].has_seq_id(seq_id)) {
|
595
|
+
result = std::max(result, cache.cells[i].pos);
|
596
|
+
}
|
597
|
+
}
|
598
|
+
|
599
|
+
return result;
|
600
|
+
}
|
601
|
+
|
602
|
+
void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
|
603
|
+
if (!cache.recurrent) {
|
604
|
+
cache.do_defrag = true;
|
605
|
+
}
|
606
|
+
}
|
607
|
+
|
608
|
+
int32_t llama_get_kv_cache_token_count(const struct llama_kv_cache & kv) {
|
609
|
+
int result = 0;
|
610
|
+
|
611
|
+
for (uint32_t i = 0; i < kv.size; i++) {
|
612
|
+
result += kv.cells[i].seq_id.size();
|
613
|
+
}
|
614
|
+
|
615
|
+
return result;
|
616
|
+
}
|
617
|
+
|
618
|
+
int32_t llama_get_kv_cache_used_cells(const struct llama_kv_cache & kv) {
|
619
|
+
return kv.used;
|
620
|
+
}
|
621
|
+
|
622
|
+
bool llama_kv_cache_can_shift(const struct llama_kv_cache & kv) {
|
623
|
+
return kv.can_shift;
|
624
|
+
}
|
625
|
+
|
626
|
+
//
|
627
|
+
// kv cache view
|
628
|
+
//
|
629
|
+
|
630
|
+
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max) {
|
631
|
+
struct llama_kv_cache_view result = {
|
632
|
+
/*.n_cells = */ 0,
|
633
|
+
/*.n_seq_max = */ n_seq_max,
|
634
|
+
/*.token_count = */ 0,
|
635
|
+
/*.used_cells = */ llama_get_kv_cache_used_cells(kv),
|
636
|
+
/*.max_contiguous = */ 0,
|
637
|
+
/*.max_contiguous_idx = */ -1,
|
638
|
+
/*.cells = */ nullptr,
|
639
|
+
/*.cells_sequences = */ nullptr,
|
640
|
+
};
|
641
|
+
|
642
|
+
return result;
|
643
|
+
}
|
644
|
+
|
645
|
+
void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
|
646
|
+
if (view->cells != nullptr) {
|
647
|
+
free(view->cells);
|
648
|
+
view->cells = nullptr;
|
649
|
+
}
|
650
|
+
if (view->cells_sequences != nullptr) {
|
651
|
+
free(view->cells_sequences);
|
652
|
+
view->cells_sequences = nullptr;
|
653
|
+
}
|
654
|
+
}
|
655
|
+
|
656
|
+
void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv) {
|
657
|
+
if (uint32_t(view->n_cells) < kv.size || view->cells == nullptr) {
|
658
|
+
view->n_cells = int32_t(kv.size);
|
659
|
+
void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
|
660
|
+
LM_GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
|
661
|
+
view->cells = (struct llama_kv_cache_view_cell *)p;
|
662
|
+
p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
|
663
|
+
LM_GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
|
664
|
+
view->cells_sequences = (llama_seq_id *)p;
|
665
|
+
}
|
666
|
+
|
667
|
+
const std::vector<llama_kv_cell> & kv_cells = kv.cells;
|
668
|
+
llama_kv_cache_view_cell * c_curr = view->cells;
|
669
|
+
llama_seq_id * cs_curr = view->cells_sequences;
|
670
|
+
int32_t used_cells = 0;
|
671
|
+
int32_t token_count = 0;
|
672
|
+
int32_t curr_contig_idx = -1;
|
673
|
+
uint32_t max_contig = 0;
|
674
|
+
int32_t max_contig_idx = -1;
|
675
|
+
|
676
|
+
for (int32_t i = 0; i < int32_t(kv.size); i++, c_curr++, cs_curr += view->n_seq_max) {
|
677
|
+
const size_t curr_size = kv_cells[i].seq_id.size();
|
678
|
+
token_count += curr_size;
|
679
|
+
c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
|
680
|
+
|
681
|
+
if (curr_size > 0) {
|
682
|
+
if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
|
683
|
+
max_contig = i - curr_contig_idx;
|
684
|
+
max_contig_idx = curr_contig_idx;
|
685
|
+
}
|
686
|
+
curr_contig_idx = -1;
|
687
|
+
} else if (curr_contig_idx < 0) {
|
688
|
+
curr_contig_idx = i;
|
689
|
+
}
|
690
|
+
|
691
|
+
int seq_idx = 0;
|
692
|
+
for (const llama_seq_id it : kv_cells[i].seq_id) {
|
693
|
+
if (seq_idx >= view->n_seq_max) {
|
694
|
+
break;
|
695
|
+
}
|
696
|
+
cs_curr[seq_idx] = it;
|
697
|
+
seq_idx++;
|
698
|
+
}
|
699
|
+
if (seq_idx != 0) {
|
700
|
+
used_cells++;
|
701
|
+
}
|
702
|
+
for (; seq_idx < view->n_seq_max; seq_idx++) {
|
703
|
+
cs_curr[seq_idx] = -1;
|
704
|
+
}
|
705
|
+
}
|
706
|
+
if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
|
707
|
+
max_contig_idx = curr_contig_idx;
|
708
|
+
max_contig = kv_cells.size() - curr_contig_idx;
|
709
|
+
}
|
710
|
+
view->max_contiguous = max_contig;
|
711
|
+
view->max_contiguous_idx = max_contig_idx;
|
712
|
+
view->token_count = token_count;
|
713
|
+
view->used_cells = used_cells;
|
714
|
+
if (uint32_t(used_cells) != kv.used) {
|
715
|
+
LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
|
716
|
+
__func__, kv.used, used_cells);
|
717
|
+
}
|
718
|
+
}
|