cui-llama.rn 1.2.6 → 1.3.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +3 -2
- package/android/src/main/CMakeLists.txt +20 -5
- package/android/src/main/java/com/rnllama/LlamaContext.java +115 -27
- package/android/src/main/java/com/rnllama/RNLlama.java +40 -7
- package/android/src/main/jni.cpp +222 -34
- package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +9 -4
- package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +9 -4
- package/cpp/common.cpp +1682 -2114
- package/cpp/common.h +600 -613
- package/cpp/ggml-aarch64.c +129 -3478
- package/cpp/ggml-aarch64.h +19 -39
- package/cpp/ggml-alloc.c +1040 -1040
- package/cpp/ggml-alloc.h +76 -76
- package/cpp/ggml-backend-impl.h +216 -216
- package/cpp/ggml-backend-reg.cpp +195 -0
- package/cpp/ggml-backend.cpp +1997 -2661
- package/cpp/ggml-backend.h +328 -314
- package/cpp/ggml-common.h +1853 -1853
- package/cpp/ggml-cpp.h +38 -38
- package/cpp/ggml-cpu-aarch64.c +3560 -0
- package/cpp/ggml-cpu-aarch64.h +30 -0
- package/cpp/ggml-cpu-impl.h +371 -614
- package/cpp/ggml-cpu-quants.c +10822 -0
- package/cpp/ggml-cpu-quants.h +63 -0
- package/cpp/ggml-cpu.c +13975 -13720
- package/cpp/ggml-cpu.cpp +663 -0
- package/cpp/ggml-cpu.h +177 -150
- package/cpp/ggml-impl.h +550 -296
- package/cpp/ggml-metal.h +66 -66
- package/cpp/ggml-metal.m +4294 -3933
- package/cpp/ggml-quants.c +5247 -15739
- package/cpp/ggml-quants.h +100 -147
- package/cpp/ggml-threading.cpp +12 -0
- package/cpp/ggml-threading.h +12 -0
- package/cpp/ggml.c +8180 -8390
- package/cpp/ggml.h +2411 -2441
- package/cpp/llama-grammar.cpp +1138 -1138
- package/cpp/llama-grammar.h +144 -144
- package/cpp/llama-impl.h +181 -181
- package/cpp/llama-sampling.cpp +2348 -2345
- package/cpp/llama-sampling.h +48 -48
- package/cpp/llama-vocab.cpp +1984 -1984
- package/cpp/llama-vocab.h +170 -170
- package/cpp/llama.cpp +22132 -22046
- package/cpp/llama.h +1253 -1255
- package/cpp/log.cpp +401 -401
- package/cpp/log.h +121 -121
- package/cpp/rn-llama.hpp +83 -19
- package/cpp/sampling.cpp +466 -466
- package/cpp/sgemm.cpp +1884 -1276
- package/ios/RNLlama.mm +43 -20
- package/ios/RNLlamaContext.h +9 -3
- package/ios/RNLlamaContext.mm +133 -33
- package/jest/mock.js +0 -1
- package/lib/commonjs/NativeRNLlama.js.map +1 -1
- package/lib/commonjs/index.js +52 -15
- package/lib/commonjs/index.js.map +1 -1
- package/lib/module/NativeRNLlama.js.map +1 -1
- package/lib/module/index.js +51 -15
- package/lib/module/index.js.map +1 -1
- package/lib/typescript/NativeRNLlama.d.ts +29 -5
- package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
- package/lib/typescript/index.d.ts +12 -5
- package/lib/typescript/index.d.ts.map +1 -1
- package/package.json +1 -1
- package/src/NativeRNLlama.ts +41 -6
- package/src/index.ts +82 -27
- package/cpp/json-schema-to-grammar.cpp +0 -1045
- package/cpp/json-schema-to-grammar.h +0 -8
- package/cpp/json.hpp +0 -24766
package/cpp/common.h
CHANGED
@@ -1,613 +1,600 @@
|
|
1
|
-
// Various helper functions and utilities
|
2
|
-
|
3
|
-
#pragma once
|
4
|
-
|
5
|
-
#include "llama.h"
|
6
|
-
|
7
|
-
#include <string>
|
8
|
-
#include <vector>
|
9
|
-
#include <sstream>
|
10
|
-
|
11
|
-
#ifdef _WIN32
|
12
|
-
#define DIRECTORY_SEPARATOR '\\'
|
13
|
-
#else
|
14
|
-
#define DIRECTORY_SEPARATOR '/'
|
15
|
-
#endif // _WIN32
|
16
|
-
|
17
|
-
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
|
18
|
-
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
|
19
|
-
|
20
|
-
#define print_build_info() do { \
|
21
|
-
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
|
22
|
-
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
|
23
|
-
} while(0)
|
24
|
-
|
25
|
-
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
26
|
-
|
27
|
-
struct common_lora_adapter_info {
|
28
|
-
std::string path;
|
29
|
-
float scale;
|
30
|
-
};
|
31
|
-
|
32
|
-
struct common_lora_adapter_container : common_lora_adapter_info {
|
33
|
-
struct llama_lora_adapter * adapter;
|
34
|
-
};
|
35
|
-
|
36
|
-
// build info
|
37
|
-
extern int LLAMA_BUILD_NUMBER;
|
38
|
-
extern char const * LLAMA_COMMIT;
|
39
|
-
extern char const * LLAMA_COMPILER;
|
40
|
-
extern char const * LLAMA_BUILD_TARGET;
|
41
|
-
|
42
|
-
struct common_control_vector_load_info;
|
43
|
-
|
44
|
-
#define print_build_info() do { \
|
45
|
-
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
|
46
|
-
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
|
47
|
-
} while(0)
|
48
|
-
|
49
|
-
// build info
|
50
|
-
extern int LLAMA_BUILD_NUMBER;
|
51
|
-
extern char const *LLAMA_COMMIT;
|
52
|
-
extern char const *LLAMA_COMPILER;
|
53
|
-
extern char const *LLAMA_BUILD_TARGET;
|
54
|
-
|
55
|
-
//
|
56
|
-
// CPU utils
|
57
|
-
//
|
58
|
-
|
59
|
-
struct cpu_params {
|
60
|
-
int n_threads = -1;
|
61
|
-
bool cpumask[LM_GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
|
62
|
-
bool mask_valid = false; // Default: any CPU
|
63
|
-
enum lm_ggml_sched_priority priority = LM_GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
|
64
|
-
bool strict_cpu = false; // Use strict CPU placement
|
65
|
-
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
|
66
|
-
};
|
67
|
-
|
68
|
-
int32_t cpu_get_num_physical_cores();
|
69
|
-
int32_t cpu_get_num_math();
|
70
|
-
|
71
|
-
//
|
72
|
-
// Common params
|
73
|
-
//
|
74
|
-
|
75
|
-
enum llama_example {
|
76
|
-
LLAMA_EXAMPLE_COMMON,
|
77
|
-
LLAMA_EXAMPLE_SPECULATIVE,
|
78
|
-
LLAMA_EXAMPLE_MAIN,
|
79
|
-
LLAMA_EXAMPLE_INFILL,
|
80
|
-
LLAMA_EXAMPLE_EMBEDDING,
|
81
|
-
LLAMA_EXAMPLE_PERPLEXITY,
|
82
|
-
LLAMA_EXAMPLE_RETRIEVAL,
|
83
|
-
LLAMA_EXAMPLE_PASSKEY,
|
84
|
-
LLAMA_EXAMPLE_IMATRIX,
|
85
|
-
LLAMA_EXAMPLE_BENCH,
|
86
|
-
LLAMA_EXAMPLE_SERVER,
|
87
|
-
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
|
88
|
-
LLAMA_EXAMPLE_EXPORT_LORA,
|
89
|
-
LLAMA_EXAMPLE_LLAVA,
|
90
|
-
LLAMA_EXAMPLE_LOOKUP,
|
91
|
-
LLAMA_EXAMPLE_PARALLEL,
|
92
|
-
|
93
|
-
LLAMA_EXAMPLE_COUNT,
|
94
|
-
};
|
95
|
-
|
96
|
-
enum common_sampler_type {
|
97
|
-
COMMON_SAMPLER_TYPE_NONE = 0,
|
98
|
-
COMMON_SAMPLER_TYPE_DRY = 1,
|
99
|
-
COMMON_SAMPLER_TYPE_TOP_K = 2,
|
100
|
-
COMMON_SAMPLER_TYPE_TOP_P = 3,
|
101
|
-
COMMON_SAMPLER_TYPE_MIN_P = 4,
|
102
|
-
//COMMON_SAMPLER_TYPE_TFS_Z = 5,
|
103
|
-
COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
|
104
|
-
COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
|
105
|
-
COMMON_SAMPLER_TYPE_XTC = 8,
|
106
|
-
COMMON_SAMPLER_TYPE_INFILL = 9,
|
107
|
-
};
|
108
|
-
|
109
|
-
// dimensionality reduction methods, used by cvector-generator
|
110
|
-
enum dimre_method {
|
111
|
-
DIMRE_METHOD_PCA,
|
112
|
-
DIMRE_METHOD_MEAN,
|
113
|
-
};
|
114
|
-
|
115
|
-
// sampler parameters
|
116
|
-
struct common_sampler_params {
|
117
|
-
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
118
|
-
|
119
|
-
int32_t n_prev = 64; // number of previous tokens to remember
|
120
|
-
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
121
|
-
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
122
|
-
int32_t top_k = 40; // <= 0 to use vocab size
|
123
|
-
float top_p = 0.95f; // 1.0 = disabled
|
124
|
-
float min_p = 0.05f; // 0.0 = disabled
|
125
|
-
float xtc_probability = 0.00f; // 0.0 = disabled
|
126
|
-
float xtc_threshold = 0.10f; // > 0.5 disables XTC
|
127
|
-
float typ_p = 1.00f; // typical_p, 1.0 = disabled
|
128
|
-
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
129
|
-
float dynatemp_range = 0.00f; // 0.0 = disabled
|
130
|
-
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
131
|
-
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
132
|
-
float penalty_repeat = 1.00f; // 1.0 = disabled
|
133
|
-
float penalty_freq = 0.00f; // 0.0 = disabled
|
134
|
-
float penalty_present = 0.00f; // 0.0 = disabled
|
135
|
-
float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
|
136
|
-
float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
|
137
|
-
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
|
138
|
-
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
|
139
|
-
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
140
|
-
float mirostat_tau = 5.00f; // target entropy
|
141
|
-
float mirostat_eta = 0.10f; // learning rate
|
142
|
-
bool penalize_nl = false; // consider newlines as a repeatable token
|
143
|
-
bool ignore_eos = false;
|
144
|
-
bool no_perf = false; // disable performance metrics
|
145
|
-
|
146
|
-
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
|
147
|
-
|
148
|
-
|
149
|
-
std::vector<enum common_sampler_type> samplers = {
|
150
|
-
COMMON_SAMPLER_TYPE_DRY,
|
151
|
-
COMMON_SAMPLER_TYPE_TOP_K,
|
152
|
-
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
153
|
-
COMMON_SAMPLER_TYPE_TOP_P,
|
154
|
-
COMMON_SAMPLER_TYPE_MIN_P,
|
155
|
-
COMMON_SAMPLER_TYPE_XTC,
|
156
|
-
COMMON_SAMPLER_TYPE_TEMPERATURE,
|
157
|
-
};
|
158
|
-
|
159
|
-
std::string grammar; // optional BNF-like grammar to constrain sampling
|
160
|
-
|
161
|
-
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
162
|
-
|
163
|
-
// print the parameters into a string
|
164
|
-
std::string print() const;
|
165
|
-
};
|
166
|
-
|
167
|
-
struct common_params {
|
168
|
-
|
169
|
-
void * progress_callback_user_data = nullptr;
|
170
|
-
llama_progress_callback progress_callback = nullptr;
|
171
|
-
bool vocab_only = false;
|
172
|
-
int32_t n_predict = -1; // new tokens to predict
|
173
|
-
int32_t n_ctx = 4096; // context size
|
174
|
-
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
175
|
-
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
176
|
-
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
177
|
-
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
178
|
-
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
179
|
-
int32_t n_parallel = 1; // number of parallel sequences to decode
|
180
|
-
int32_t n_sequences = 1; // number of sequences to decode
|
181
|
-
float p_split = 0.1f; // speculative decoding split probability
|
182
|
-
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
183
|
-
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
184
|
-
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
185
|
-
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
186
|
-
int32_t grp_attn_n = 1; // group-attention factor
|
187
|
-
int32_t grp_attn_w = 512; // group-attention width
|
188
|
-
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
189
|
-
float rope_freq_base = 0.0f; // RoPE base frequency
|
190
|
-
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
191
|
-
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
192
|
-
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
193
|
-
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
194
|
-
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
195
|
-
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
196
|
-
float defrag_thold =
|
197
|
-
|
198
|
-
struct cpu_params cpuparams;
|
199
|
-
struct cpu_params cpuparams_batch;
|
200
|
-
struct cpu_params draft_cpuparams;
|
201
|
-
struct cpu_params draft_cpuparams_batch;
|
202
|
-
|
203
|
-
lm_ggml_backend_sched_eval_callback cb_eval = nullptr;
|
204
|
-
void * cb_eval_user_data = nullptr;
|
205
|
-
|
206
|
-
lm_ggml_numa_strategy numa = LM_GGML_NUMA_STRATEGY_DISABLED;
|
207
|
-
|
208
|
-
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
209
|
-
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
210
|
-
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
211
|
-
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
212
|
-
|
213
|
-
struct common_sampler_params sparams;
|
214
|
-
|
215
|
-
std::string model = ""; // model path // NOLINT
|
216
|
-
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
217
|
-
std::string model_alias = "unknown"; // model alias // NOLINT
|
218
|
-
std::string model_url = ""; // model url to download // NOLINT
|
219
|
-
std::string hf_token = ""; // HF token // NOLINT
|
220
|
-
std::string hf_repo = ""; // HF repo // NOLINT
|
221
|
-
std::string hf_file = ""; // HF file // NOLINT
|
222
|
-
std::string prompt = ""; // NOLINT
|
223
|
-
std::string prompt_file = ""; // store the external prompt file name // NOLINT
|
224
|
-
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
|
225
|
-
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
|
226
|
-
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
|
227
|
-
std::string
|
228
|
-
std::string
|
229
|
-
std::string
|
230
|
-
std::string
|
231
|
-
|
232
|
-
|
233
|
-
std::vector<std::string>
|
234
|
-
std::vector<
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
int32_t
|
243
|
-
int32_t
|
244
|
-
|
245
|
-
|
246
|
-
int32_t
|
247
|
-
|
248
|
-
//
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
bool
|
262
|
-
bool
|
263
|
-
bool
|
264
|
-
bool
|
265
|
-
bool
|
266
|
-
bool
|
267
|
-
bool
|
268
|
-
|
269
|
-
|
270
|
-
bool
|
271
|
-
bool
|
272
|
-
bool
|
273
|
-
bool
|
274
|
-
bool
|
275
|
-
bool
|
276
|
-
|
277
|
-
|
278
|
-
bool
|
279
|
-
bool
|
280
|
-
bool
|
281
|
-
bool
|
282
|
-
bool
|
283
|
-
bool
|
284
|
-
bool
|
285
|
-
bool
|
286
|
-
bool
|
287
|
-
|
288
|
-
|
289
|
-
std::string
|
290
|
-
|
291
|
-
|
292
|
-
// multimodal
|
293
|
-
std::string
|
294
|
-
|
295
|
-
|
296
|
-
// embedding
|
297
|
-
|
298
|
-
|
299
|
-
std::string
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
// server
|
304
|
-
int32_t
|
305
|
-
int32_t
|
306
|
-
int32_t
|
307
|
-
int32_t
|
308
|
-
|
309
|
-
|
310
|
-
std::string
|
311
|
-
std::string
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
std::string
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
bool
|
322
|
-
bool
|
323
|
-
bool
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
std::vector<int32_t>
|
336
|
-
std::vector<int32_t>
|
337
|
-
|
338
|
-
|
339
|
-
//
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
|
346
|
-
//
|
347
|
-
int32_t
|
348
|
-
|
349
|
-
|
350
|
-
// imatrix
|
351
|
-
|
352
|
-
|
353
|
-
int32_t
|
354
|
-
int32_t
|
355
|
-
|
356
|
-
|
357
|
-
bool
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
int
|
362
|
-
|
363
|
-
|
364
|
-
std::string
|
365
|
-
std::string
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
|
376
|
-
//
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
bool
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
//
|
388
|
-
//
|
389
|
-
|
390
|
-
|
391
|
-
#ifdef
|
392
|
-
#
|
393
|
-
#
|
394
|
-
#
|
395
|
-
#
|
396
|
-
#
|
397
|
-
#
|
398
|
-
#
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
std::string
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
std::
|
413
|
-
std::
|
414
|
-
std::
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
size_t
|
429
|
-
|
430
|
-
|
431
|
-
|
432
|
-
|
433
|
-
|
434
|
-
|
435
|
-
|
436
|
-
parts
|
437
|
-
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
std::string string_from(
|
444
|
-
std::string string_from(const std::vector<
|
445
|
-
std::string string_from(const struct llama_context * ctx, const
|
446
|
-
|
447
|
-
|
448
|
-
//
|
449
|
-
//
|
450
|
-
|
451
|
-
|
452
|
-
bool
|
453
|
-
|
454
|
-
|
455
|
-
std::string
|
456
|
-
|
457
|
-
|
458
|
-
//
|
459
|
-
//
|
460
|
-
|
461
|
-
|
462
|
-
struct
|
463
|
-
struct
|
464
|
-
|
465
|
-
|
466
|
-
|
467
|
-
|
468
|
-
|
469
|
-
|
470
|
-
struct
|
471
|
-
struct
|
472
|
-
|
473
|
-
|
474
|
-
struct llama_model *
|
475
|
-
|
476
|
-
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-
|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
//
|
492
|
-
//
|
493
|
-
|
494
|
-
|
495
|
-
//
|
496
|
-
|
497
|
-
|
498
|
-
|
499
|
-
|
500
|
-
bool
|
501
|
-
|
502
|
-
|
503
|
-
|
504
|
-
|
505
|
-
|
506
|
-
bool
|
507
|
-
|
508
|
-
|
509
|
-
//
|
510
|
-
|
511
|
-
|
512
|
-
|
513
|
-
|
514
|
-
|
515
|
-
|
516
|
-
//
|
517
|
-
//
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
|
522
|
-
|
523
|
-
|
524
|
-
//
|
525
|
-
//
|
526
|
-
|
527
|
-
|
528
|
-
|
529
|
-
|
530
|
-
std::string
|
531
|
-
|
532
|
-
|
533
|
-
|
534
|
-
|
535
|
-
|
536
|
-
|
537
|
-
//
|
538
|
-
// If the
|
539
|
-
|
540
|
-
std::string
|
541
|
-
const std::
|
542
|
-
|
543
|
-
|
544
|
-
|
545
|
-
|
546
|
-
std::string
|
547
|
-
const std::
|
548
|
-
const
|
549
|
-
|
550
|
-
|
551
|
-
|
552
|
-
|
553
|
-
std::string
|
554
|
-
|
555
|
-
|
556
|
-
//
|
557
|
-
//
|
558
|
-
|
559
|
-
|
560
|
-
|
561
|
-
|
562
|
-
|
563
|
-
|
564
|
-
|
565
|
-
|
566
|
-
//
|
567
|
-
//
|
568
|
-
|
569
|
-
|
570
|
-
|
571
|
-
|
572
|
-
|
573
|
-
|
574
|
-
//
|
575
|
-
//
|
576
|
-
|
577
|
-
|
578
|
-
|
579
|
-
|
580
|
-
|
581
|
-
|
582
|
-
|
583
|
-
|
584
|
-
|
585
|
-
|
586
|
-
|
587
|
-
|
588
|
-
|
589
|
-
|
590
|
-
|
591
|
-
//
|
592
|
-
|
593
|
-
|
594
|
-
|
595
|
-
//
|
596
|
-
//
|
597
|
-
|
598
|
-
|
599
|
-
static const char * const
|
600
|
-
static const char * const
|
601
|
-
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
602
|
-
|
603
|
-
//
|
604
|
-
// YAML utils
|
605
|
-
//
|
606
|
-
|
607
|
-
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
|
608
|
-
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
|
609
|
-
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
610
|
-
|
611
|
-
void yaml_dump_non_result_info(
|
612
|
-
FILE * stream, const common_params & params, const llama_context * lctx,
|
613
|
-
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
1
|
+
// Various helper functions and utilities
|
2
|
+
|
3
|
+
#pragma once
|
4
|
+
|
5
|
+
#include "llama.h"
|
6
|
+
|
7
|
+
#include <string>
|
8
|
+
#include <vector>
|
9
|
+
#include <sstream>
|
10
|
+
|
11
|
+
#ifdef _WIN32
|
12
|
+
#define DIRECTORY_SEPARATOR '\\'
|
13
|
+
#else
|
14
|
+
#define DIRECTORY_SEPARATOR '/'
|
15
|
+
#endif // _WIN32
|
16
|
+
|
17
|
+
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
|
18
|
+
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
|
19
|
+
|
20
|
+
#define print_build_info() do { \
|
21
|
+
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
|
22
|
+
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
|
23
|
+
} while(0)
|
24
|
+
|
25
|
+
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
26
|
+
|
27
|
+
struct common_lora_adapter_info {
|
28
|
+
std::string path;
|
29
|
+
float scale;
|
30
|
+
};
|
31
|
+
|
32
|
+
struct common_lora_adapter_container : common_lora_adapter_info {
|
33
|
+
struct llama_lora_adapter * adapter;
|
34
|
+
};
|
35
|
+
|
36
|
+
// build info
|
37
|
+
extern int LLAMA_BUILD_NUMBER;
|
38
|
+
extern char const * LLAMA_COMMIT;
|
39
|
+
extern char const * LLAMA_COMPILER;
|
40
|
+
extern char const * LLAMA_BUILD_TARGET;
|
41
|
+
|
42
|
+
struct common_control_vector_load_info;
|
43
|
+
|
44
|
+
#define print_build_info() do { \
|
45
|
+
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
|
46
|
+
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
|
47
|
+
} while(0)
|
48
|
+
|
49
|
+
// build info
|
50
|
+
extern int LLAMA_BUILD_NUMBER;
|
51
|
+
extern char const *LLAMA_COMMIT;
|
52
|
+
extern char const *LLAMA_COMPILER;
|
53
|
+
extern char const *LLAMA_BUILD_TARGET;
|
54
|
+
|
55
|
+
//
|
56
|
+
// CPU utils
|
57
|
+
//
|
58
|
+
|
59
|
+
struct cpu_params {
|
60
|
+
int n_threads = -1;
|
61
|
+
bool cpumask[LM_GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
|
62
|
+
bool mask_valid = false; // Default: any CPU
|
63
|
+
enum lm_ggml_sched_priority priority = LM_GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
|
64
|
+
bool strict_cpu = false; // Use strict CPU placement
|
65
|
+
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
|
66
|
+
};
|
67
|
+
|
68
|
+
int32_t cpu_get_num_physical_cores();
|
69
|
+
int32_t cpu_get_num_math();
|
70
|
+
|
71
|
+
//
|
72
|
+
// Common params
|
73
|
+
//
|
74
|
+
|
75
|
+
enum llama_example {
|
76
|
+
LLAMA_EXAMPLE_COMMON,
|
77
|
+
LLAMA_EXAMPLE_SPECULATIVE,
|
78
|
+
LLAMA_EXAMPLE_MAIN,
|
79
|
+
LLAMA_EXAMPLE_INFILL,
|
80
|
+
LLAMA_EXAMPLE_EMBEDDING,
|
81
|
+
LLAMA_EXAMPLE_PERPLEXITY,
|
82
|
+
LLAMA_EXAMPLE_RETRIEVAL,
|
83
|
+
LLAMA_EXAMPLE_PASSKEY,
|
84
|
+
LLAMA_EXAMPLE_IMATRIX,
|
85
|
+
LLAMA_EXAMPLE_BENCH,
|
86
|
+
LLAMA_EXAMPLE_SERVER,
|
87
|
+
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
|
88
|
+
LLAMA_EXAMPLE_EXPORT_LORA,
|
89
|
+
LLAMA_EXAMPLE_LLAVA,
|
90
|
+
LLAMA_EXAMPLE_LOOKUP,
|
91
|
+
LLAMA_EXAMPLE_PARALLEL,
|
92
|
+
|
93
|
+
LLAMA_EXAMPLE_COUNT,
|
94
|
+
};
|
95
|
+
|
96
|
+
enum common_sampler_type {
|
97
|
+
COMMON_SAMPLER_TYPE_NONE = 0,
|
98
|
+
COMMON_SAMPLER_TYPE_DRY = 1,
|
99
|
+
COMMON_SAMPLER_TYPE_TOP_K = 2,
|
100
|
+
COMMON_SAMPLER_TYPE_TOP_P = 3,
|
101
|
+
COMMON_SAMPLER_TYPE_MIN_P = 4,
|
102
|
+
//COMMON_SAMPLER_TYPE_TFS_Z = 5,
|
103
|
+
COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
|
104
|
+
COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
|
105
|
+
COMMON_SAMPLER_TYPE_XTC = 8,
|
106
|
+
COMMON_SAMPLER_TYPE_INFILL = 9,
|
107
|
+
};
|
108
|
+
|
109
|
+
// dimensionality reduction methods, used by cvector-generator
|
110
|
+
enum dimre_method {
|
111
|
+
DIMRE_METHOD_PCA,
|
112
|
+
DIMRE_METHOD_MEAN,
|
113
|
+
};
|
114
|
+
|
115
|
+
// sampler parameters
|
116
|
+
struct common_sampler_params {
|
117
|
+
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
118
|
+
|
119
|
+
int32_t n_prev = 64; // number of previous tokens to remember
|
120
|
+
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
121
|
+
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
122
|
+
int32_t top_k = 40; // <= 0 to use vocab size
|
123
|
+
float top_p = 0.95f; // 1.0 = disabled
|
124
|
+
float min_p = 0.05f; // 0.0 = disabled
|
125
|
+
float xtc_probability = 0.00f; // 0.0 = disabled
|
126
|
+
float xtc_threshold = 0.10f; // > 0.5 disables XTC
|
127
|
+
float typ_p = 1.00f; // typical_p, 1.0 = disabled
|
128
|
+
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
129
|
+
float dynatemp_range = 0.00f; // 0.0 = disabled
|
130
|
+
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
131
|
+
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
132
|
+
float penalty_repeat = 1.00f; // 1.0 = disabled
|
133
|
+
float penalty_freq = 0.00f; // 0.0 = disabled
|
134
|
+
float penalty_present = 0.00f; // 0.0 = disabled
|
135
|
+
float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
|
136
|
+
float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
|
137
|
+
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
|
138
|
+
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
|
139
|
+
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
140
|
+
float mirostat_tau = 5.00f; // target entropy
|
141
|
+
float mirostat_eta = 0.10f; // learning rate
|
142
|
+
bool penalize_nl = false; // consider newlines as a repeatable token
|
143
|
+
bool ignore_eos = false;
|
144
|
+
bool no_perf = false; // disable performance metrics
|
145
|
+
|
146
|
+
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
|
147
|
+
|
148
|
+
|
149
|
+
std::vector<enum common_sampler_type> samplers = {
|
150
|
+
COMMON_SAMPLER_TYPE_DRY,
|
151
|
+
COMMON_SAMPLER_TYPE_TOP_K,
|
152
|
+
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
153
|
+
COMMON_SAMPLER_TYPE_TOP_P,
|
154
|
+
COMMON_SAMPLER_TYPE_MIN_P,
|
155
|
+
COMMON_SAMPLER_TYPE_XTC,
|
156
|
+
COMMON_SAMPLER_TYPE_TEMPERATURE,
|
157
|
+
};
|
158
|
+
|
159
|
+
std::string grammar; // optional BNF-like grammar to constrain sampling
|
160
|
+
|
161
|
+
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
162
|
+
|
163
|
+
// print the parameters into a string
|
164
|
+
std::string print() const;
|
165
|
+
};
|
166
|
+
|
167
|
+
struct common_params {
|
168
|
+
|
169
|
+
void * progress_callback_user_data = nullptr;
|
170
|
+
llama_progress_callback progress_callback = nullptr;
|
171
|
+
bool vocab_only = false;
|
172
|
+
int32_t n_predict = -1; // new tokens to predict
|
173
|
+
int32_t n_ctx = 4096; // context size
|
174
|
+
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
175
|
+
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
176
|
+
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
177
|
+
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
178
|
+
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
179
|
+
int32_t n_parallel = 1; // number of parallel sequences to decode
|
180
|
+
int32_t n_sequences = 1; // number of sequences to decode
|
181
|
+
float p_split = 0.1f; // speculative decoding split probability
|
182
|
+
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
183
|
+
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
184
|
+
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
185
|
+
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
186
|
+
int32_t grp_attn_n = 1; // group-attention factor
|
187
|
+
int32_t grp_attn_w = 512; // group-attention width
|
188
|
+
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
189
|
+
float rope_freq_base = 0.0f; // RoPE base frequency
|
190
|
+
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
191
|
+
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
192
|
+
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
193
|
+
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
194
|
+
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
195
|
+
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
196
|
+
float defrag_thold = 0.1f; // KV cache defragmentation threshold
|
197
|
+
|
198
|
+
struct cpu_params cpuparams;
|
199
|
+
struct cpu_params cpuparams_batch;
|
200
|
+
struct cpu_params draft_cpuparams;
|
201
|
+
struct cpu_params draft_cpuparams_batch;
|
202
|
+
|
203
|
+
lm_ggml_backend_sched_eval_callback cb_eval = nullptr;
|
204
|
+
void * cb_eval_user_data = nullptr;
|
205
|
+
|
206
|
+
lm_ggml_numa_strategy numa = LM_GGML_NUMA_STRATEGY_DISABLED;
|
207
|
+
|
208
|
+
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
209
|
+
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
210
|
+
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
211
|
+
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
212
|
+
|
213
|
+
struct common_sampler_params sparams;
|
214
|
+
|
215
|
+
std::string model = ""; // model path // NOLINT
|
216
|
+
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
217
|
+
std::string model_alias = "unknown"; // model alias // NOLINT
|
218
|
+
std::string model_url = ""; // model url to download // NOLINT
|
219
|
+
std::string hf_token = ""; // HF token // NOLINT
|
220
|
+
std::string hf_repo = ""; // HF repo // NOLINT
|
221
|
+
std::string hf_file = ""; // HF file // NOLINT
|
222
|
+
std::string prompt = ""; // NOLINT
|
223
|
+
std::string prompt_file = ""; // store the external prompt file name // NOLINT
|
224
|
+
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
|
225
|
+
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
|
226
|
+
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
|
227
|
+
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
|
228
|
+
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
229
|
+
std::string logits_file = ""; // file for saving *all* logits // NOLINT
|
230
|
+
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
|
231
|
+
|
232
|
+
std::vector<std::string> in_files; // all input files
|
233
|
+
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
234
|
+
std::vector<llama_model_kv_override> kv_overrides;
|
235
|
+
|
236
|
+
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
|
237
|
+
std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
238
|
+
|
239
|
+
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
|
240
|
+
|
241
|
+
int32_t verbosity = 0;
|
242
|
+
int32_t control_vector_layer_start = -1; // layer range for control vector
|
243
|
+
int32_t control_vector_layer_end = -1; // layer range for control vector
|
244
|
+
|
245
|
+
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
246
|
+
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
247
|
+
// (which is more convenient to use for plotting)
|
248
|
+
//
|
249
|
+
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
250
|
+
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
251
|
+
|
252
|
+
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
|
253
|
+
size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
|
254
|
+
|
255
|
+
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
|
256
|
+
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
|
257
|
+
|
258
|
+
bool kl_divergence = false; // compute KL divergence
|
259
|
+
|
260
|
+
bool usage = false; // print usage
|
261
|
+
bool use_color = false; // use color to distinguish generations and inputs
|
262
|
+
bool special = false; // enable special token output
|
263
|
+
bool interactive = false; // interactive mode
|
264
|
+
bool interactive_first = false; // wait for user input immediately
|
265
|
+
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
|
266
|
+
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
267
|
+
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
268
|
+
|
269
|
+
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
|
270
|
+
bool multiline_input = false; // reverse the usage of `\`
|
271
|
+
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
272
|
+
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
273
|
+
bool flash_attn = false; // flash attention
|
274
|
+
bool no_perf = false; // disable performance metrics
|
275
|
+
bool ctx_shift = true; // context shift on inifinite text generation
|
276
|
+
|
277
|
+
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
278
|
+
bool logits_all = false; // return logits for all tokens in the batch
|
279
|
+
bool use_mmap = true; // use mmap for faster loads
|
280
|
+
bool use_mlock = false; // use mlock to keep model in memory
|
281
|
+
bool verbose_prompt = false; // print prompt tokens before generation
|
282
|
+
bool display_prompt = true; // print prompt before generation
|
283
|
+
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
284
|
+
bool no_kv_offload = false; // disable KV offloading
|
285
|
+
bool warmup = true; // warmup run
|
286
|
+
bool check_tensors = false; // validate tensor data
|
287
|
+
|
288
|
+
std::string cache_type_k = "f16"; // KV cache data type for the K
|
289
|
+
std::string cache_type_v = "f16"; // KV cache data type for the V
|
290
|
+
|
291
|
+
// multimodal models (see examples/llava)
|
292
|
+
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
293
|
+
std::vector<std::string> image; // path to image file(s)
|
294
|
+
|
295
|
+
// embedding
|
296
|
+
bool embedding = false; // get only sentence embedding
|
297
|
+
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
298
|
+
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
299
|
+
std::string embd_sep = "\n"; // separator of embeddings
|
300
|
+
bool reranking = false; // enable reranking support on server
|
301
|
+
|
302
|
+
// server params
|
303
|
+
int32_t port = 8080; // server listens on this network port
|
304
|
+
int32_t timeout_read = 600; // http read timeout in seconds
|
305
|
+
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
306
|
+
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
307
|
+
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
|
308
|
+
|
309
|
+
std::string hostname = "127.0.0.1";
|
310
|
+
std::string public_path = ""; // NOLINT
|
311
|
+
std::string chat_template = ""; // NOLINT
|
312
|
+
bool enable_chat_template = true;
|
313
|
+
|
314
|
+
std::vector<std::string> api_keys;
|
315
|
+
|
316
|
+
std::string ssl_file_key = ""; // NOLINT
|
317
|
+
std::string ssl_file_cert = ""; // NOLINT
|
318
|
+
|
319
|
+
// "advanced" endpoints are disabled by default for better security
|
320
|
+
bool webui = true;
|
321
|
+
bool endpoint_slots = false;
|
322
|
+
bool endpoint_props = false; // only control POST requests, not GET
|
323
|
+
bool endpoint_metrics = false;
|
324
|
+
|
325
|
+
bool log_json = false;
|
326
|
+
|
327
|
+
std::string slot_save_path;
|
328
|
+
|
329
|
+
float slot_prompt_similarity = 0.5f;
|
330
|
+
|
331
|
+
// batched-bench params
|
332
|
+
bool is_pp_shared = false;
|
333
|
+
|
334
|
+
std::vector<int32_t> n_pp;
|
335
|
+
std::vector<int32_t> n_tg;
|
336
|
+
std::vector<int32_t> n_pl;
|
337
|
+
|
338
|
+
// retrieval params
|
339
|
+
std::vector<std::string> context_files; // context files to embed
|
340
|
+
|
341
|
+
int32_t chunk_size = 64; // chunk size for context embedding
|
342
|
+
|
343
|
+
std::string chunk_separator = "\n"; // chunk separator for context embedding
|
344
|
+
|
345
|
+
// passkey params
|
346
|
+
int32_t n_junk = 250; // number of times to repeat the junk text
|
347
|
+
int32_t i_pos = -1; // position of the passkey in the junk text
|
348
|
+
|
349
|
+
// imatrix params
|
350
|
+
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
|
351
|
+
|
352
|
+
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
|
353
|
+
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
|
354
|
+
int32_t i_chunk = 0; // start processing from this chunk
|
355
|
+
|
356
|
+
bool process_output = false; // collect data for the output tensor
|
357
|
+
bool compute_ppl = true; // whether to compute perplexity
|
358
|
+
|
359
|
+
// cvector-generator params
|
360
|
+
int n_pca_batch = 100;
|
361
|
+
int n_pca_iterations = 1000;
|
362
|
+
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
363
|
+
std::string cvector_outfile = "control_vector.gguf";
|
364
|
+
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
365
|
+
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
366
|
+
|
367
|
+
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
368
|
+
|
369
|
+
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
370
|
+
|
371
|
+
// batched-bench params
|
372
|
+
bool batched_bench_output_jsonl = false;
|
373
|
+
};
|
374
|
+
|
375
|
+
// call once at the start of a program if it uses libcommon
|
376
|
+
// initializes the logging system and prints info about the build
|
377
|
+
void common_init();
|
378
|
+
|
379
|
+
std::string common_params_get_system_info(const common_params & params);
|
380
|
+
|
381
|
+
bool parse_cpu_range(const std::string & range, bool(&boolmask)[LM_GGML_MAX_N_THREADS]);
|
382
|
+
bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[LM_GGML_MAX_N_THREADS]);
|
383
|
+
void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
|
384
|
+
bool set_process_priority(enum lm_ggml_sched_priority prio);
|
385
|
+
|
386
|
+
//
|
387
|
+
// String utils
|
388
|
+
//
|
389
|
+
|
390
|
+
#ifdef __GNUC__
|
391
|
+
#ifdef __MINGW32__
|
392
|
+
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
393
|
+
#else
|
394
|
+
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
395
|
+
#endif
|
396
|
+
#else
|
397
|
+
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
|
398
|
+
#endif
|
399
|
+
|
400
|
+
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
|
401
|
+
std::string string_format(const char * fmt, ...);
|
402
|
+
|
403
|
+
std::string string_strip(const std::string & str);
|
404
|
+
std::string string_get_sortable_timestamp();
|
405
|
+
|
406
|
+
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
|
407
|
+
|
408
|
+
template<class T>
|
409
|
+
static std::vector<T> string_split(const std::string & str, char delim) {
|
410
|
+
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
|
411
|
+
std::vector<T> values;
|
412
|
+
std::istringstream str_stream(str);
|
413
|
+
std::string token;
|
414
|
+
while (std::getline(str_stream, token, delim)) {
|
415
|
+
T value;
|
416
|
+
std::istringstream token_stream(token);
|
417
|
+
token_stream >> value;
|
418
|
+
values.push_back(value);
|
419
|
+
}
|
420
|
+
return values;
|
421
|
+
}
|
422
|
+
|
423
|
+
template<>
|
424
|
+
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
|
425
|
+
{
|
426
|
+
std::vector<std::string> parts;
|
427
|
+
size_t begin_pos = 0;
|
428
|
+
size_t separator_pos = input.find(separator);
|
429
|
+
while (separator_pos != std::string::npos) {
|
430
|
+
std::string part = input.substr(begin_pos, separator_pos - begin_pos);
|
431
|
+
parts.emplace_back(part);
|
432
|
+
begin_pos = separator_pos + 1;
|
433
|
+
separator_pos = input.find(separator, begin_pos);
|
434
|
+
}
|
435
|
+
parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
|
436
|
+
return parts;
|
437
|
+
}
|
438
|
+
|
439
|
+
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
440
|
+
void string_process_escapes(std::string & input);
|
441
|
+
|
442
|
+
std::string string_from(bool value);
|
443
|
+
std::string string_from(const std::vector<int> & values);
|
444
|
+
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
|
445
|
+
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
|
446
|
+
|
447
|
+
//
|
448
|
+
// Filesystem utils
|
449
|
+
//
|
450
|
+
|
451
|
+
bool fs_validate_filename(const std::string & filename);
|
452
|
+
bool fs_create_directory_with_parents(const std::string & path);
|
453
|
+
|
454
|
+
std::string fs_get_cache_directory();
|
455
|
+
std::string fs_get_cache_file(const std::string & filename);
|
456
|
+
|
457
|
+
//
|
458
|
+
// Model utils
|
459
|
+
//
|
460
|
+
|
461
|
+
struct common_init_result {
|
462
|
+
struct llama_model * model = nullptr;
|
463
|
+
struct llama_context * context = nullptr;
|
464
|
+
std::vector<common_lora_adapter_container> lora_adapters;
|
465
|
+
};
|
466
|
+
|
467
|
+
struct common_init_result common_init_from_params(common_params & params);
|
468
|
+
|
469
|
+
struct llama_model_params common_model_params_to_llama (const common_params & params);
|
470
|
+
struct llama_context_params common_context_params_to_llama(const common_params & params);
|
471
|
+
struct lm_ggml_threadpool_params lm_ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
472
|
+
|
473
|
+
struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
474
|
+
struct llama_model * common_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
475
|
+
|
476
|
+
// clear LoRA adapters from context, then apply new list of adapters
|
477
|
+
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
|
478
|
+
|
479
|
+
// Batch utils
|
480
|
+
|
481
|
+
void common_batch_clear(struct llama_batch & batch);
|
482
|
+
|
483
|
+
void common_batch_add(
|
484
|
+
struct llama_batch & batch,
|
485
|
+
llama_token id,
|
486
|
+
llama_pos pos,
|
487
|
+
const std::vector<llama_seq_id> & seq_ids,
|
488
|
+
bool logits);
|
489
|
+
|
490
|
+
//
|
491
|
+
// Vocab utils
|
492
|
+
//
|
493
|
+
|
494
|
+
// tokenizes a string into a vector of tokens
|
495
|
+
// should work similar to Python's `tokenizer.encode`
|
496
|
+
std::vector<llama_token> common_tokenize(
|
497
|
+
const struct llama_context * ctx,
|
498
|
+
const std::string & text,
|
499
|
+
bool add_special,
|
500
|
+
bool parse_special = false);
|
501
|
+
|
502
|
+
std::vector<llama_token> common_tokenize(
|
503
|
+
const struct llama_model * model,
|
504
|
+
const std::string & text,
|
505
|
+
bool add_special,
|
506
|
+
bool parse_special = false);
|
507
|
+
|
508
|
+
// tokenizes a token into a piece, optionally renders special/control tokens
|
509
|
+
// should work similar to Python's `tokenizer.id_to_piece`
|
510
|
+
std::string common_token_to_piece(
|
511
|
+
const struct llama_context * ctx,
|
512
|
+
llama_token token,
|
513
|
+
bool special = true);
|
514
|
+
|
515
|
+
// detokenizes a vector of tokens into a string
|
516
|
+
// should work similar to Python's `tokenizer.decode`
|
517
|
+
// optionally renders special/control tokens
|
518
|
+
std::string common_detokenize(
|
519
|
+
llama_context * ctx,
|
520
|
+
const std::vector<llama_token> & tokens,
|
521
|
+
bool special = true);
|
522
|
+
|
523
|
+
//
|
524
|
+
// Chat template utils
|
525
|
+
//
|
526
|
+
|
527
|
+
// same with llama_chat_message, but uses std::string
|
528
|
+
struct common_chat_msg {
|
529
|
+
std::string role;
|
530
|
+
std::string content;
|
531
|
+
};
|
532
|
+
|
533
|
+
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
534
|
+
bool common_chat_verify_template(const std::string & tmpl);
|
535
|
+
|
536
|
+
// CPP wrapper for llama_chat_apply_template
|
537
|
+
// If the built-in template is not supported, we default to chatml
|
538
|
+
// If the custom "tmpl" is not supported, we throw an error
|
539
|
+
std::string common_chat_apply_template(const struct llama_model * model,
|
540
|
+
const std::string & tmpl,
|
541
|
+
const std::vector<common_chat_msg> & chat,
|
542
|
+
bool add_ass);
|
543
|
+
|
544
|
+
// Format single message, while taking into account the position of that message in chat history
|
545
|
+
std::string common_chat_format_single(const struct llama_model * model,
|
546
|
+
const std::string & tmpl,
|
547
|
+
const std::vector<common_chat_msg> & past_msg,
|
548
|
+
const common_chat_msg & new_msg,
|
549
|
+
bool add_ass);
|
550
|
+
|
551
|
+
// Returns an example of formatted chat
|
552
|
+
std::string common_chat_format_example(const struct llama_model * model,
|
553
|
+
const std::string & tmpl);
|
554
|
+
|
555
|
+
//
|
556
|
+
// KV cache utils
|
557
|
+
//
|
558
|
+
|
559
|
+
// Dump the KV cache view with the number of sequences per cell.
|
560
|
+
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
561
|
+
|
562
|
+
// Dump the KV cache view showing individual sequences in each cell (long output).
|
563
|
+
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
564
|
+
|
565
|
+
//
|
566
|
+
// Embedding utils
|
567
|
+
//
|
568
|
+
|
569
|
+
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
570
|
+
|
571
|
+
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
572
|
+
|
573
|
+
//
|
574
|
+
// Control vector utils
|
575
|
+
//
|
576
|
+
|
577
|
+
struct common_control_vector_data {
|
578
|
+
int n_embd;
|
579
|
+
|
580
|
+
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
581
|
+
std::vector<float> data;
|
582
|
+
};
|
583
|
+
|
584
|
+
struct common_control_vector_load_info {
|
585
|
+
float strength;
|
586
|
+
|
587
|
+
std::string fname;
|
588
|
+
};
|
589
|
+
|
590
|
+
// Load control vectors, scale each by strength, and add them together.
|
591
|
+
// On error, returns {-1, empty}
|
592
|
+
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
|
593
|
+
|
594
|
+
//
|
595
|
+
// Split utils
|
596
|
+
//
|
597
|
+
|
598
|
+
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
599
|
+
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
600
|
+
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|