cui-llama.rn 1.2.6 → 1.3.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. package/README.md +3 -2
  2. package/android/src/main/CMakeLists.txt +20 -5
  3. package/android/src/main/java/com/rnllama/LlamaContext.java +115 -27
  4. package/android/src/main/java/com/rnllama/RNLlama.java +40 -7
  5. package/android/src/main/jni.cpp +222 -34
  6. package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +9 -4
  7. package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +9 -4
  8. package/cpp/common.cpp +1682 -2114
  9. package/cpp/common.h +600 -613
  10. package/cpp/ggml-aarch64.c +129 -3478
  11. package/cpp/ggml-aarch64.h +19 -39
  12. package/cpp/ggml-alloc.c +1040 -1040
  13. package/cpp/ggml-alloc.h +76 -76
  14. package/cpp/ggml-backend-impl.h +216 -216
  15. package/cpp/ggml-backend-reg.cpp +195 -0
  16. package/cpp/ggml-backend.cpp +1997 -2661
  17. package/cpp/ggml-backend.h +328 -314
  18. package/cpp/ggml-common.h +1853 -1853
  19. package/cpp/ggml-cpp.h +38 -38
  20. package/cpp/ggml-cpu-aarch64.c +3560 -0
  21. package/cpp/ggml-cpu-aarch64.h +30 -0
  22. package/cpp/ggml-cpu-impl.h +371 -614
  23. package/cpp/ggml-cpu-quants.c +10822 -0
  24. package/cpp/ggml-cpu-quants.h +63 -0
  25. package/cpp/ggml-cpu.c +13975 -13720
  26. package/cpp/ggml-cpu.cpp +663 -0
  27. package/cpp/ggml-cpu.h +177 -150
  28. package/cpp/ggml-impl.h +550 -296
  29. package/cpp/ggml-metal.h +66 -66
  30. package/cpp/ggml-metal.m +4294 -3933
  31. package/cpp/ggml-quants.c +5247 -15739
  32. package/cpp/ggml-quants.h +100 -147
  33. package/cpp/ggml-threading.cpp +12 -0
  34. package/cpp/ggml-threading.h +12 -0
  35. package/cpp/ggml.c +8180 -8390
  36. package/cpp/ggml.h +2411 -2441
  37. package/cpp/llama-grammar.cpp +1138 -1138
  38. package/cpp/llama-grammar.h +144 -144
  39. package/cpp/llama-impl.h +181 -181
  40. package/cpp/llama-sampling.cpp +2348 -2345
  41. package/cpp/llama-sampling.h +48 -48
  42. package/cpp/llama-vocab.cpp +1984 -1984
  43. package/cpp/llama-vocab.h +170 -170
  44. package/cpp/llama.cpp +22132 -22046
  45. package/cpp/llama.h +1253 -1255
  46. package/cpp/log.cpp +401 -401
  47. package/cpp/log.h +121 -121
  48. package/cpp/rn-llama.hpp +83 -19
  49. package/cpp/sampling.cpp +466 -466
  50. package/cpp/sgemm.cpp +1884 -1276
  51. package/ios/RNLlama.mm +43 -20
  52. package/ios/RNLlamaContext.h +9 -3
  53. package/ios/RNLlamaContext.mm +133 -33
  54. package/jest/mock.js +0 -1
  55. package/lib/commonjs/NativeRNLlama.js.map +1 -1
  56. package/lib/commonjs/index.js +52 -15
  57. package/lib/commonjs/index.js.map +1 -1
  58. package/lib/module/NativeRNLlama.js.map +1 -1
  59. package/lib/module/index.js +51 -15
  60. package/lib/module/index.js.map +1 -1
  61. package/lib/typescript/NativeRNLlama.d.ts +29 -5
  62. package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
  63. package/lib/typescript/index.d.ts +12 -5
  64. package/lib/typescript/index.d.ts.map +1 -1
  65. package/package.json +1 -1
  66. package/src/NativeRNLlama.ts +41 -6
  67. package/src/index.ts +82 -27
  68. package/cpp/json-schema-to-grammar.cpp +0 -1045
  69. package/cpp/json-schema-to-grammar.h +0 -8
  70. package/cpp/json.hpp +0 -24766
@@ -1,314 +1,328 @@
1
- #pragma once
2
-
3
- #include "ggml.h"
4
- #include "ggml-alloc.h"
5
-
6
- #ifdef __cplusplus
7
- extern "C" {
8
- #endif
9
-
10
- typedef struct lm_ggml_backend_buffer_type * lm_ggml_backend_buffer_type_t;
11
- typedef struct lm_ggml_backend_buffer * lm_ggml_backend_buffer_t;
12
- typedef struct lm_ggml_backend_event * lm_ggml_backend_event_t;
13
- typedef struct lm_ggml_backend * lm_ggml_backend_t;
14
- typedef void * lm_ggml_backend_graph_plan_t;
15
- typedef struct lm_ggml_backend_reg * lm_ggml_backend_reg_t;
16
- typedef struct lm_ggml_backend_device * lm_ggml_backend_dev_t;
17
-
18
-
19
- //
20
- // Backend buffer type
21
- //
22
-
23
- LM_GGML_API const char * lm_ggml_backend_buft_name (lm_ggml_backend_buffer_type_t buft);
24
- LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_buft_alloc_buffer (lm_ggml_backend_buffer_type_t buft, size_t size);
25
- LM_GGML_API size_t lm_ggml_backend_buft_get_alignment (lm_ggml_backend_buffer_type_t buft);
26
- LM_GGML_API size_t lm_ggml_backend_buft_get_max_size (lm_ggml_backend_buffer_type_t buft);
27
- LM_GGML_API size_t lm_ggml_backend_buft_get_alloc_size(lm_ggml_backend_buffer_type_t buft, struct lm_ggml_tensor * tensor);
28
- LM_GGML_API bool lm_ggml_backend_buft_is_host (lm_ggml_backend_buffer_type_t buft);
29
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_buft_get_device (lm_ggml_backend_buffer_type_t buft);
30
-
31
- //
32
- // Backend buffer
33
- //
34
-
35
- enum lm_ggml_backend_buffer_usage {
36
- LM_GGML_BACKEND_BUFFER_USAGE_ANY = 0,
37
- LM_GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
38
- LM_GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
39
- };
40
-
41
- LM_GGML_API const char * lm_ggml_backend_buffer_name (lm_ggml_backend_buffer_t buffer);
42
- LM_GGML_API void lm_ggml_backend_buffer_free (lm_ggml_backend_buffer_t buffer);
43
- LM_GGML_API void * lm_ggml_backend_buffer_get_base (lm_ggml_backend_buffer_t buffer);
44
- LM_GGML_API size_t lm_ggml_backend_buffer_get_size (lm_ggml_backend_buffer_t buffer);
45
- LM_GGML_API void lm_ggml_backend_buffer_init_tensor (lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor);
46
- LM_GGML_API size_t lm_ggml_backend_buffer_get_alignment (lm_ggml_backend_buffer_t buffer);
47
- LM_GGML_API size_t lm_ggml_backend_buffer_get_max_size (lm_ggml_backend_buffer_t buffer);
48
- LM_GGML_API size_t lm_ggml_backend_buffer_get_alloc_size(lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor);
49
- LM_GGML_API void lm_ggml_backend_buffer_clear (lm_ggml_backend_buffer_t buffer, uint8_t value);
50
- LM_GGML_API bool lm_ggml_backend_buffer_is_host (lm_ggml_backend_buffer_t buffer);
51
- LM_GGML_API void lm_ggml_backend_buffer_set_usage (lm_ggml_backend_buffer_t buffer, enum lm_ggml_backend_buffer_usage usage);
52
- LM_GGML_API enum lm_ggml_backend_buffer_usage lm_ggml_backend_buffer_get_usage (lm_ggml_backend_buffer_t buffer);
53
- LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_buffer_get_type (lm_ggml_backend_buffer_t buffer);
54
- LM_GGML_API void lm_ggml_backend_buffer_reset (lm_ggml_backend_buffer_t buffer);
55
-
56
- // tensor copy between different backends
57
- LM_GGML_API void lm_ggml_backend_tensor_copy(struct lm_ggml_tensor * src, struct lm_ggml_tensor * dst);
58
-
59
- //
60
- // Backend (stream)
61
- //
62
-
63
- LM_GGML_API lm_ggml_guid_t lm_ggml_backend_guid(lm_ggml_backend_t backend);
64
- LM_GGML_API const char * lm_ggml_backend_name(lm_ggml_backend_t backend);
65
- LM_GGML_API void lm_ggml_backend_free(lm_ggml_backend_t backend);
66
-
67
- LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_get_default_buffer_type(lm_ggml_backend_t backend);
68
- LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_alloc_buffer(lm_ggml_backend_t backend, size_t size);
69
- LM_GGML_API size_t lm_ggml_backend_get_alignment(lm_ggml_backend_t backend);
70
- LM_GGML_API size_t lm_ggml_backend_get_max_size(lm_ggml_backend_t backend);
71
-
72
- LM_GGML_API void lm_ggml_backend_tensor_set_async(lm_ggml_backend_t backend, struct lm_ggml_tensor * tensor, const void * data, size_t offset, size_t size);
73
- LM_GGML_API void lm_ggml_backend_tensor_get_async(lm_ggml_backend_t backend, const struct lm_ggml_tensor * tensor, void * data, size_t offset, size_t size);
74
-
75
- // "offset" refers to the offset of the tensor data for setting/getting data
76
- LM_GGML_API void lm_ggml_backend_tensor_set( struct lm_ggml_tensor * tensor, const void * data, size_t offset, size_t size);
77
- LM_GGML_API void lm_ggml_backend_tensor_get(const struct lm_ggml_tensor * tensor, void * data, size_t offset, size_t size);
78
- LM_GGML_API void lm_ggml_backend_tensor_memset( struct lm_ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
79
-
80
- LM_GGML_API void lm_ggml_backend_synchronize(lm_ggml_backend_t backend);
81
-
82
- LM_GGML_API lm_ggml_backend_graph_plan_t lm_ggml_backend_graph_plan_create(lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
83
- LM_GGML_API void lm_ggml_backend_graph_plan_free (lm_ggml_backend_t backend, lm_ggml_backend_graph_plan_t plan);
84
-
85
- LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_plan_compute (lm_ggml_backend_t backend, lm_ggml_backend_graph_plan_t plan);
86
- LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_compute (lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
87
- LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_compute_async(lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
88
-
89
- // NOTE: will be removed, use device version instead
90
- LM_GGML_API bool lm_ggml_backend_supports_op(lm_ggml_backend_t backend, const struct lm_ggml_tensor * op);
91
- LM_GGML_API bool lm_ggml_backend_supports_buft(lm_ggml_backend_t backend, lm_ggml_backend_buffer_type_t buft);
92
- LM_GGML_API bool lm_ggml_backend_offload_op(lm_ggml_backend_t backend, const struct lm_ggml_tensor * op);
93
-
94
- // asynchronous copy
95
- // the copy is performed after all the currently queued operations in backend_src
96
- // backend_dst will wait for the copy to complete before performing other operations
97
- // automatic fallback to sync copy if async is not supported
98
- LM_GGML_API void lm_ggml_backend_tensor_copy_async(lm_ggml_backend_t backend_src, lm_ggml_backend_t backend_dst, struct lm_ggml_tensor * src, struct lm_ggml_tensor * dst);
99
-
100
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_get_device(lm_ggml_backend_t backend);
101
-
102
- //
103
- // Events
104
- //
105
-
106
- LM_GGML_API lm_ggml_backend_event_t lm_ggml_backend_event_new(lm_ggml_backend_dev_t device);
107
- LM_GGML_API void lm_ggml_backend_event_free(lm_ggml_backend_event_t event);
108
- LM_GGML_API void lm_ggml_backend_event_record(lm_ggml_backend_event_t event, lm_ggml_backend_t backend);
109
- LM_GGML_API void lm_ggml_backend_event_synchronize(lm_ggml_backend_event_t event);
110
- LM_GGML_API void lm_ggml_backend_event_wait(lm_ggml_backend_t backend, lm_ggml_backend_event_t event);
111
-
112
- //
113
- // Backend device
114
- //
115
-
116
- enum lm_ggml_backend_dev_type {
117
- // CPU device using system memory
118
- LM_GGML_BACKEND_DEVICE_TYPE_CPU,
119
- // GPU device using dedicated memory
120
- LM_GGML_BACKEND_DEVICE_TYPE_GPU,
121
- // accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
122
- LM_GGML_BACKEND_DEVICE_TYPE_ACCEL
123
- };
124
-
125
- // functionality supported by the device
126
- struct lm_ggml_backend_dev_caps {
127
- // asynchronous operations
128
- bool async;
129
- // pinned host buffer
130
- bool host_buffer;
131
- // creating buffers from host ptr
132
- bool buffer_from_host_ptr;
133
- // event synchronization
134
- bool events;
135
- };
136
-
137
- // all the device properties
138
- struct lm_ggml_backend_dev_props {
139
- const char * name;
140
- const char * description;
141
- size_t memory_free;
142
- size_t memory_total;
143
- enum lm_ggml_backend_dev_type type;
144
- struct lm_ggml_backend_dev_caps caps;
145
- };
146
-
147
- LM_GGML_API const char * lm_ggml_backend_dev_name(lm_ggml_backend_dev_t device);
148
- LM_GGML_API const char * lm_ggml_backend_dev_description(lm_ggml_backend_dev_t device);
149
- LM_GGML_API void lm_ggml_backend_dev_memory(lm_ggml_backend_dev_t device, size_t * free, size_t * total);
150
- LM_GGML_API enum lm_ggml_backend_dev_type lm_ggml_backend_dev_type(lm_ggml_backend_dev_t device);
151
- LM_GGML_API void lm_ggml_backend_dev_get_props(lm_ggml_backend_dev_t device, struct lm_ggml_backend_dev_props * props);
152
- LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_dev_backend_reg(lm_ggml_backend_dev_t device);
153
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_dev_init(lm_ggml_backend_dev_t device, const char * params);
154
- LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_dev_buffer_type(lm_ggml_backend_dev_t device);
155
- LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_dev_host_buffer_type(lm_ggml_backend_dev_t device);
156
- LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_dev_buffer_from_host_ptr(lm_ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
157
-
158
- LM_GGML_API bool lm_ggml_backend_dev_supports_op(lm_ggml_backend_dev_t device, const struct lm_ggml_tensor * op);
159
- LM_GGML_API bool lm_ggml_backend_dev_supports_buft(lm_ggml_backend_dev_t device, lm_ggml_backend_buffer_type_t buft);
160
- LM_GGML_API bool lm_ggml_backend_dev_offload_op(lm_ggml_backend_dev_t device, const struct lm_ggml_tensor * op);
161
-
162
- //
163
- // Backend (reg)
164
- //
165
-
166
- LM_GGML_API const char * lm_ggml_backend_reg_name(lm_ggml_backend_reg_t reg);
167
- LM_GGML_API size_t lm_ggml_backend_reg_dev_count(lm_ggml_backend_reg_t reg);
168
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_reg_dev_get(lm_ggml_backend_reg_t reg, size_t index);
169
- LM_GGML_API void * lm_ggml_backend_reg_get_proc_address(lm_ggml_backend_reg_t reg, const char * name);
170
-
171
- // Common functions that may be obtained using lm_ggml_backend_reg_get_proc_address
172
-
173
- // Split buffer type for tensor parallelism
174
- typedef lm_ggml_backend_buffer_type_t (*lm_ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
175
- // Set the number of threads for the backend
176
- typedef void (*lm_ggml_backend_set_n_threads_t)(lm_ggml_backend_t backend, int n_threads);
177
- // Get additional buffer types provided by the device (returns a NULL-terminated array)
178
- typedef lm_ggml_backend_buffer_type_t * (*lm_ggml_backend_dev_get_extra_bufts_t)(lm_ggml_backend_dev_t device);
179
-
180
- //
181
- // Backend registry
182
- //
183
-
184
- // Backend (reg) enumeration
185
- LM_GGML_API size_t lm_ggml_backend_reg_count(void);
186
- LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_reg_get(size_t index);
187
- LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_reg_by_name(const char * name);
188
-
189
- // Device enumeration
190
- LM_GGML_API size_t lm_ggml_backend_dev_count(void);
191
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_get(size_t index);
192
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_by_name(const char * name);
193
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_by_type(enum lm_ggml_backend_dev_type type);
194
-
195
- // Direct backend (stream) initialization
196
- // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_name(name), params)
197
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_by_name(const char * name, const char * params);
198
- // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_type(type), params)
199
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_by_type(enum lm_ggml_backend_dev_type type, const char * params);
200
- // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_type(GPU) OR lm_ggml_backend_dev_by_type(CPU), NULL)
201
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_best(void);
202
-
203
- //
204
- // Backend scheduler
205
- //
206
-
207
- // The backend scheduler allows for multiple backend devices to be used together
208
- // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
209
- // The backends are selected based on:
210
- // - the backend that supports the operation
211
- // - the location of the pre-allocated tensors (e.g. the weights)
212
- /*
213
- Example usage:
214
-
215
- // operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
216
- // preferrably to run on the same backend as the buffer
217
- lm_ggml_backend_buffer_set_usage(buf_weights, LM_GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
218
-
219
- sched = lm_ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, LM_GGML_DEFAULT_GRAPH_SIZE, false);
220
-
221
- // initialize buffers from a max size graph (optional)
222
- reserve_graph = build_graph(sched, max_batch_size);
223
-
224
- // manually assign nodes to a backend (optional, should not be needed in most cases)
225
- struct lm_ggml_tensor * node = lm_ggml_mul_mat(ctx, ...);
226
- lm_ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
227
-
228
- lm_ggml_backend_sched_reserve(sched, reserve_graph);
229
-
230
- // compute
231
- graph = build_graph(sched);
232
- lm_ggml_backend_sched_graph_compute(sched, graph);
233
-
234
- // if there are graph inputs:
235
- lm_ggml_backend_sched_reset(sched);
236
- lm_ggml_backend_sched_alloc_graph(sched, graph);
237
- lm_ggml_backend_tensor_set(input_tensor, ...);
238
- lm_ggml_backend_sched_graph_compute(sched, graph);
239
- }
240
- */
241
-
242
- typedef struct lm_ggml_backend_sched * lm_ggml_backend_sched_t;
243
-
244
- // Evaluation callback for each node in the graph (set with lm_ggml_backend_sched_set_eval_callback)
245
- // when ask == true, the scheduler wants to know if the user wants to observe this node
246
- // this allows the scheduler to batch nodes together in order to evaluate them in a single call
247
- //
248
- // when ask == false, the scheduler is passing the node tensor to the user for observation
249
- // if the user returns false, the scheduler will cancel the graph compute
250
- //
251
- typedef bool (*lm_ggml_backend_sched_eval_callback)(struct lm_ggml_tensor * t, bool ask, void * user_data);
252
-
253
- // Initialize a backend scheduler
254
- LM_GGML_API lm_ggml_backend_sched_t lm_ggml_backend_sched_new(lm_ggml_backend_t * backends, lm_ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
255
- LM_GGML_API void lm_ggml_backend_sched_free(lm_ggml_backend_sched_t sched);
256
-
257
- // Initialize backend buffers from a measure graph
258
- LM_GGML_API bool lm_ggml_backend_sched_reserve(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * measure_graph); // returns success
259
-
260
- LM_GGML_API int lm_ggml_backend_sched_get_n_backends(lm_ggml_backend_sched_t sched);
261
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_sched_get_backend(lm_ggml_backend_sched_t sched, int i);
262
-
263
- // Get the number of splits of the last graph
264
- LM_GGML_API int lm_ggml_backend_sched_get_n_splits(lm_ggml_backend_sched_t sched);
265
- LM_GGML_API int lm_ggml_backend_sched_get_n_copies(lm_ggml_backend_sched_t sched);
266
-
267
- LM_GGML_API size_t lm_ggml_backend_sched_get_buffer_size(lm_ggml_backend_sched_t sched, lm_ggml_backend_t backend);
268
-
269
- LM_GGML_API void lm_ggml_backend_sched_set_tensor_backend(lm_ggml_backend_sched_t sched, struct lm_ggml_tensor * node, lm_ggml_backend_t backend);
270
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_sched_get_tensor_backend(lm_ggml_backend_sched_t sched, struct lm_ggml_tensor * node);
271
-
272
- // Allocate and compute graph on the backend scheduler
273
- LM_GGML_API bool lm_ggml_backend_sched_alloc_graph(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph); // returns success
274
- LM_GGML_API enum lm_ggml_status lm_ggml_backend_sched_graph_compute(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph);
275
- LM_GGML_API enum lm_ggml_status lm_ggml_backend_sched_graph_compute_async(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph);
276
- LM_GGML_API void lm_ggml_backend_sched_synchronize(lm_ggml_backend_sched_t sched);
277
-
278
- // Reset all assignments and allocators - must be called before changing the node backends
279
- LM_GGML_API void lm_ggml_backend_sched_reset(lm_ggml_backend_sched_t sched);
280
-
281
- // Set a callback to be called for each resulting node during graph compute
282
- LM_GGML_API void lm_ggml_backend_sched_set_eval_callback(lm_ggml_backend_sched_t sched, lm_ggml_backend_sched_eval_callback callback, void * user_data);
283
-
284
- //
285
- // Utils
286
- //
287
-
288
- struct lm_ggml_backend_graph_copy {
289
- lm_ggml_backend_buffer_t buffer;
290
- struct lm_ggml_context * ctx_allocated;
291
- struct lm_ggml_context * ctx_unallocated;
292
- struct lm_ggml_cgraph * graph;
293
- };
294
-
295
- // Copy a graph to a different backend
296
- LM_GGML_API struct lm_ggml_backend_graph_copy lm_ggml_backend_graph_copy(lm_ggml_backend_t backend, struct lm_ggml_cgraph * graph);
297
- LM_GGML_API void lm_ggml_backend_graph_copy_free(struct lm_ggml_backend_graph_copy copy);
298
-
299
- typedef bool (*lm_ggml_backend_eval_callback)(int node_index, struct lm_ggml_tensor * t1, struct lm_ggml_tensor * t2, void * user_data);
300
-
301
- // Compare the output of two backends
302
- LM_GGML_API bool lm_ggml_backend_compare_graph_backend(lm_ggml_backend_t backend1, lm_ggml_backend_t backend2, struct lm_ggml_cgraph * graph, lm_ggml_backend_eval_callback callback, void * user_data);
303
-
304
- // Tensor initialization
305
- LM_GGML_API void lm_ggml_backend_tensor_alloc(lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor, void * addr);
306
- LM_GGML_API void lm_ggml_backend_view_init(struct lm_ggml_tensor * tensor);
307
-
308
- // CPU buffer types are always available
309
- LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
310
- LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_cpu_buffer_type(void);
311
-
312
- #ifdef __cplusplus
313
- }
314
- #endif
1
+ #pragma once
2
+
3
+ #include "ggml.h"
4
+ #include "ggml-alloc.h"
5
+
6
+ #ifdef LM_GGML_BACKEND_SHARED
7
+ # if defined(_WIN32) && !defined(__MINGW32__)
8
+ # ifdef LM_GGML_BACKEND_BUILD
9
+ # define LM_GGML_BACKEND_API __declspec(dllexport) extern
10
+ # else
11
+ # define LM_GGML_BACKEND_API __declspec(dllimport) extern
12
+ # endif
13
+ # else
14
+ # define LM_GGML_BACKEND_API __attribute__ ((visibility ("default"))) extern
15
+ # endif
16
+ #else
17
+ # define LM_GGML_BACKEND_API extern
18
+ #endif
19
+
20
+ #ifdef __cplusplus
21
+ extern "C" {
22
+ #endif
23
+
24
+ typedef struct lm_ggml_backend_buffer_type * lm_ggml_backend_buffer_type_t;
25
+ typedef struct lm_ggml_backend_buffer * lm_ggml_backend_buffer_t;
26
+ typedef struct lm_ggml_backend_event * lm_ggml_backend_event_t;
27
+ typedef struct lm_ggml_backend * lm_ggml_backend_t;
28
+ typedef void * lm_ggml_backend_graph_plan_t;
29
+ typedef struct lm_ggml_backend_reg * lm_ggml_backend_reg_t;
30
+ typedef struct lm_ggml_backend_device * lm_ggml_backend_dev_t;
31
+
32
+
33
+ //
34
+ // Backend buffer type
35
+ //
36
+
37
+ LM_GGML_API const char * lm_ggml_backend_buft_name (lm_ggml_backend_buffer_type_t buft);
38
+ LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_buft_alloc_buffer (lm_ggml_backend_buffer_type_t buft, size_t size);
39
+ LM_GGML_API size_t lm_ggml_backend_buft_get_alignment (lm_ggml_backend_buffer_type_t buft);
40
+ LM_GGML_API size_t lm_ggml_backend_buft_get_max_size (lm_ggml_backend_buffer_type_t buft);
41
+ LM_GGML_API size_t lm_ggml_backend_buft_get_alloc_size(lm_ggml_backend_buffer_type_t buft, struct lm_ggml_tensor * tensor);
42
+ LM_GGML_API bool lm_ggml_backend_buft_is_host (lm_ggml_backend_buffer_type_t buft);
43
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_buft_get_device (lm_ggml_backend_buffer_type_t buft);
44
+
45
+ //
46
+ // Backend buffer
47
+ //
48
+
49
+ enum lm_ggml_backend_buffer_usage {
50
+ LM_GGML_BACKEND_BUFFER_USAGE_ANY = 0,
51
+ LM_GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
52
+ LM_GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
53
+ };
54
+
55
+ LM_GGML_API const char * lm_ggml_backend_buffer_name (lm_ggml_backend_buffer_t buffer);
56
+ LM_GGML_API void lm_ggml_backend_buffer_free (lm_ggml_backend_buffer_t buffer);
57
+ LM_GGML_API void * lm_ggml_backend_buffer_get_base (lm_ggml_backend_buffer_t buffer);
58
+ LM_GGML_API size_t lm_ggml_backend_buffer_get_size (lm_ggml_backend_buffer_t buffer);
59
+ LM_GGML_API void lm_ggml_backend_buffer_init_tensor (lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor);
60
+ LM_GGML_API size_t lm_ggml_backend_buffer_get_alignment (lm_ggml_backend_buffer_t buffer);
61
+ LM_GGML_API size_t lm_ggml_backend_buffer_get_max_size (lm_ggml_backend_buffer_t buffer);
62
+ LM_GGML_API size_t lm_ggml_backend_buffer_get_alloc_size(lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor);
63
+ LM_GGML_API void lm_ggml_backend_buffer_clear (lm_ggml_backend_buffer_t buffer, uint8_t value);
64
+ LM_GGML_API bool lm_ggml_backend_buffer_is_host (lm_ggml_backend_buffer_t buffer);
65
+ LM_GGML_API void lm_ggml_backend_buffer_set_usage (lm_ggml_backend_buffer_t buffer, enum lm_ggml_backend_buffer_usage usage);
66
+ LM_GGML_API enum lm_ggml_backend_buffer_usage lm_ggml_backend_buffer_get_usage (lm_ggml_backend_buffer_t buffer);
67
+ LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_buffer_get_type (lm_ggml_backend_buffer_t buffer);
68
+ LM_GGML_API void lm_ggml_backend_buffer_reset (lm_ggml_backend_buffer_t buffer);
69
+
70
+ // tensor copy between different backends
71
+ LM_GGML_API void lm_ggml_backend_tensor_copy(struct lm_ggml_tensor * src, struct lm_ggml_tensor * dst);
72
+
73
+ //
74
+ // Backend (stream)
75
+ //
76
+
77
+ LM_GGML_API lm_ggml_guid_t lm_ggml_backend_guid(lm_ggml_backend_t backend);
78
+ LM_GGML_API const char * lm_ggml_backend_name(lm_ggml_backend_t backend);
79
+ LM_GGML_API void lm_ggml_backend_free(lm_ggml_backend_t backend);
80
+
81
+ LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_get_default_buffer_type(lm_ggml_backend_t backend);
82
+ LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_alloc_buffer(lm_ggml_backend_t backend, size_t size);
83
+ LM_GGML_API size_t lm_ggml_backend_get_alignment(lm_ggml_backend_t backend);
84
+ LM_GGML_API size_t lm_ggml_backend_get_max_size(lm_ggml_backend_t backend);
85
+
86
+ LM_GGML_API void lm_ggml_backend_tensor_set_async(lm_ggml_backend_t backend, struct lm_ggml_tensor * tensor, const void * data, size_t offset, size_t size);
87
+ LM_GGML_API void lm_ggml_backend_tensor_get_async(lm_ggml_backend_t backend, const struct lm_ggml_tensor * tensor, void * data, size_t offset, size_t size);
88
+
89
+ // "offset" refers to the offset of the tensor data for setting/getting data
90
+ LM_GGML_API void lm_ggml_backend_tensor_set( struct lm_ggml_tensor * tensor, const void * data, size_t offset, size_t size);
91
+ LM_GGML_API void lm_ggml_backend_tensor_get(const struct lm_ggml_tensor * tensor, void * data, size_t offset, size_t size);
92
+ LM_GGML_API void lm_ggml_backend_tensor_memset( struct lm_ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
93
+
94
+ LM_GGML_API void lm_ggml_backend_synchronize(lm_ggml_backend_t backend);
95
+
96
+ LM_GGML_API lm_ggml_backend_graph_plan_t lm_ggml_backend_graph_plan_create(lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
97
+ LM_GGML_API void lm_ggml_backend_graph_plan_free (lm_ggml_backend_t backend, lm_ggml_backend_graph_plan_t plan);
98
+
99
+ LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_plan_compute (lm_ggml_backend_t backend, lm_ggml_backend_graph_plan_t plan);
100
+ LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_compute (lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
101
+ LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_compute_async(lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
102
+
103
+ // NOTE: will be removed, use device version instead
104
+ LM_GGML_API bool lm_ggml_backend_supports_op(lm_ggml_backend_t backend, const struct lm_ggml_tensor * op);
105
+ LM_GGML_API bool lm_ggml_backend_supports_buft(lm_ggml_backend_t backend, lm_ggml_backend_buffer_type_t buft);
106
+ LM_GGML_API bool lm_ggml_backend_offload_op(lm_ggml_backend_t backend, const struct lm_ggml_tensor * op);
107
+
108
+ // asynchronous copy
109
+ // the copy is performed after all the currently queued operations in backend_src
110
+ // backend_dst will wait for the copy to complete before performing other operations
111
+ // automatic fallback to sync copy if async is not supported
112
+ LM_GGML_API void lm_ggml_backend_tensor_copy_async(lm_ggml_backend_t backend_src, lm_ggml_backend_t backend_dst, struct lm_ggml_tensor * src, struct lm_ggml_tensor * dst);
113
+
114
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_get_device(lm_ggml_backend_t backend);
115
+
116
+ //
117
+ // Events
118
+ //
119
+
120
+ LM_GGML_API lm_ggml_backend_event_t lm_ggml_backend_event_new(lm_ggml_backend_dev_t device);
121
+ LM_GGML_API void lm_ggml_backend_event_free(lm_ggml_backend_event_t event);
122
+ LM_GGML_API void lm_ggml_backend_event_record(lm_ggml_backend_event_t event, lm_ggml_backend_t backend);
123
+ LM_GGML_API void lm_ggml_backend_event_synchronize(lm_ggml_backend_event_t event);
124
+ LM_GGML_API void lm_ggml_backend_event_wait(lm_ggml_backend_t backend, lm_ggml_backend_event_t event);
125
+
126
+ //
127
+ // Backend device
128
+ //
129
+
130
+ enum lm_ggml_backend_dev_type {
131
+ // CPU device using system memory
132
+ LM_GGML_BACKEND_DEVICE_TYPE_CPU,
133
+ // GPU device using dedicated memory
134
+ LM_GGML_BACKEND_DEVICE_TYPE_GPU,
135
+ // accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
136
+ LM_GGML_BACKEND_DEVICE_TYPE_ACCEL
137
+ };
138
+
139
+ // functionality supported by the device
140
+ struct lm_ggml_backend_dev_caps {
141
+ // asynchronous operations
142
+ bool async;
143
+ // pinned host buffer
144
+ bool host_buffer;
145
+ // creating buffers from host ptr
146
+ bool buffer_from_host_ptr;
147
+ // event synchronization
148
+ bool events;
149
+ };
150
+
151
+ // all the device properties
152
+ struct lm_ggml_backend_dev_props {
153
+ const char * name;
154
+ const char * description;
155
+ size_t memory_free;
156
+ size_t memory_total;
157
+ enum lm_ggml_backend_dev_type type;
158
+ struct lm_ggml_backend_dev_caps caps;
159
+ };
160
+
161
+ LM_GGML_API const char * lm_ggml_backend_dev_name(lm_ggml_backend_dev_t device);
162
+ LM_GGML_API const char * lm_ggml_backend_dev_description(lm_ggml_backend_dev_t device);
163
+ LM_GGML_API void lm_ggml_backend_dev_memory(lm_ggml_backend_dev_t device, size_t * free, size_t * total);
164
+ LM_GGML_API enum lm_ggml_backend_dev_type lm_ggml_backend_dev_type(lm_ggml_backend_dev_t device);
165
+ LM_GGML_API void lm_ggml_backend_dev_get_props(lm_ggml_backend_dev_t device, struct lm_ggml_backend_dev_props * props);
166
+ LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_dev_backend_reg(lm_ggml_backend_dev_t device);
167
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_dev_init(lm_ggml_backend_dev_t device, const char * params);
168
+ LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_dev_buffer_type(lm_ggml_backend_dev_t device);
169
+ LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_dev_host_buffer_type(lm_ggml_backend_dev_t device);
170
+ LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_dev_buffer_from_host_ptr(lm_ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
171
+
172
+ LM_GGML_API bool lm_ggml_backend_dev_supports_op(lm_ggml_backend_dev_t device, const struct lm_ggml_tensor * op);
173
+ LM_GGML_API bool lm_ggml_backend_dev_supports_buft(lm_ggml_backend_dev_t device, lm_ggml_backend_buffer_type_t buft);
174
+ LM_GGML_API bool lm_ggml_backend_dev_offload_op(lm_ggml_backend_dev_t device, const struct lm_ggml_tensor * op);
175
+
176
+ //
177
+ // Backend (reg)
178
+ //
179
+
180
+ LM_GGML_API const char * lm_ggml_backend_reg_name(lm_ggml_backend_reg_t reg);
181
+ LM_GGML_API size_t lm_ggml_backend_reg_dev_count(lm_ggml_backend_reg_t reg);
182
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_reg_dev_get(lm_ggml_backend_reg_t reg, size_t index);
183
+ LM_GGML_API void * lm_ggml_backend_reg_get_proc_address(lm_ggml_backend_reg_t reg, const char * name);
184
+
185
+ // Common functions that may be obtained using lm_ggml_backend_reg_get_proc_address
186
+
187
+ // Split buffer type for tensor parallelism
188
+ typedef lm_ggml_backend_buffer_type_t (*lm_ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
189
+ // Set the number of threads for the backend
190
+ typedef void (*lm_ggml_backend_set_n_threads_t)(lm_ggml_backend_t backend, int n_threads);
191
+ // Get additional buffer types provided by the device (returns a NULL-terminated array)
192
+ typedef lm_ggml_backend_buffer_type_t * (*lm_ggml_backend_dev_get_extra_bufts_t)(lm_ggml_backend_dev_t device);
193
+
194
+ //
195
+ // Backend registry
196
+ //
197
+
198
+ // Backend (reg) enumeration
199
+ LM_GGML_API size_t lm_ggml_backend_reg_count(void);
200
+ LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_reg_get(size_t index);
201
+ LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_reg_by_name(const char * name);
202
+
203
+ // Device enumeration
204
+ LM_GGML_API size_t lm_ggml_backend_dev_count(void);
205
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_get(size_t index);
206
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_by_name(const char * name);
207
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_by_type(enum lm_ggml_backend_dev_type type);
208
+
209
+ // Direct backend (stream) initialization
210
+ // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_name(name), params)
211
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_by_name(const char * name, const char * params);
212
+ // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_type(type), params)
213
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_by_type(enum lm_ggml_backend_dev_type type, const char * params);
214
+ // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_type(GPU) OR lm_ggml_backend_dev_by_type(CPU), NULL)
215
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_best(void);
216
+
217
+ //
218
+ // Backend scheduler
219
+ //
220
+
221
+ // The backend scheduler allows for multiple backend devices to be used together
222
+ // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
223
+ // The backends are selected based on:
224
+ // - the backend that supports the operation
225
+ // - the location of the pre-allocated tensors (e.g. the weights)
226
+ /*
227
+ Example usage:
228
+
229
+ // operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
230
+ // preferrably to run on the same backend as the buffer
231
+ lm_ggml_backend_buffer_set_usage(buf_weights, LM_GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
232
+
233
+ sched = lm_ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, LM_GGML_DEFAULT_GRAPH_SIZE, false);
234
+
235
+ // initialize buffers from a max size graph (optional)
236
+ reserve_graph = build_graph(sched, max_batch_size);
237
+
238
+ // manually assign nodes to a backend (optional, should not be needed in most cases)
239
+ struct lm_ggml_tensor * node = lm_ggml_mul_mat(ctx, ...);
240
+ lm_ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
241
+
242
+ lm_ggml_backend_sched_reserve(sched, reserve_graph);
243
+
244
+ // compute
245
+ graph = build_graph(sched);
246
+ lm_ggml_backend_sched_graph_compute(sched, graph);
247
+
248
+ // if there are graph inputs:
249
+ lm_ggml_backend_sched_reset(sched);
250
+ lm_ggml_backend_sched_alloc_graph(sched, graph);
251
+ lm_ggml_backend_tensor_set(input_tensor, ...);
252
+ lm_ggml_backend_sched_graph_compute(sched, graph);
253
+ }
254
+ */
255
+
256
+ typedef struct lm_ggml_backend_sched * lm_ggml_backend_sched_t;
257
+
258
+ // Evaluation callback for each node in the graph (set with lm_ggml_backend_sched_set_eval_callback)
259
+ // when ask == true, the scheduler wants to know if the user wants to observe this node
260
+ // this allows the scheduler to batch nodes together in order to evaluate them in a single call
261
+ //
262
+ // when ask == false, the scheduler is passing the node tensor to the user for observation
263
+ // if the user returns false, the scheduler will cancel the graph compute
264
+ //
265
+ typedef bool (*lm_ggml_backend_sched_eval_callback)(struct lm_ggml_tensor * t, bool ask, void * user_data);
266
+
267
+ // Initialize a backend scheduler
268
+ LM_GGML_API lm_ggml_backend_sched_t lm_ggml_backend_sched_new(lm_ggml_backend_t * backends, lm_ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
269
+ LM_GGML_API void lm_ggml_backend_sched_free(lm_ggml_backend_sched_t sched);
270
+
271
+ // Initialize backend buffers from a measure graph
272
+ LM_GGML_API bool lm_ggml_backend_sched_reserve(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * measure_graph); // returns success
273
+
274
+ LM_GGML_API int lm_ggml_backend_sched_get_n_backends(lm_ggml_backend_sched_t sched);
275
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_sched_get_backend(lm_ggml_backend_sched_t sched, int i);
276
+
277
+ // Get the number of splits of the last graph
278
+ LM_GGML_API int lm_ggml_backend_sched_get_n_splits(lm_ggml_backend_sched_t sched);
279
+ LM_GGML_API int lm_ggml_backend_sched_get_n_copies(lm_ggml_backend_sched_t sched);
280
+
281
+ LM_GGML_API size_t lm_ggml_backend_sched_get_buffer_size(lm_ggml_backend_sched_t sched, lm_ggml_backend_t backend);
282
+
283
+ LM_GGML_API void lm_ggml_backend_sched_set_tensor_backend(lm_ggml_backend_sched_t sched, struct lm_ggml_tensor * node, lm_ggml_backend_t backend);
284
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_sched_get_tensor_backend(lm_ggml_backend_sched_t sched, struct lm_ggml_tensor * node);
285
+
286
+ // Allocate and compute graph on the backend scheduler
287
+ LM_GGML_API bool lm_ggml_backend_sched_alloc_graph(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph); // returns success
288
+ LM_GGML_API enum lm_ggml_status lm_ggml_backend_sched_graph_compute(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph);
289
+ LM_GGML_API enum lm_ggml_status lm_ggml_backend_sched_graph_compute_async(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph);
290
+ LM_GGML_API void lm_ggml_backend_sched_synchronize(lm_ggml_backend_sched_t sched);
291
+
292
+ // Reset all assignments and allocators - must be called before changing the node backends
293
+ LM_GGML_API void lm_ggml_backend_sched_reset(lm_ggml_backend_sched_t sched);
294
+
295
+ // Set a callback to be called for each resulting node during graph compute
296
+ LM_GGML_API void lm_ggml_backend_sched_set_eval_callback(lm_ggml_backend_sched_t sched, lm_ggml_backend_sched_eval_callback callback, void * user_data);
297
+
298
+ //
299
+ // Utils
300
+ //
301
+
302
+ struct lm_ggml_backend_graph_copy {
303
+ lm_ggml_backend_buffer_t buffer;
304
+ struct lm_ggml_context * ctx_allocated;
305
+ struct lm_ggml_context * ctx_unallocated;
306
+ struct lm_ggml_cgraph * graph;
307
+ };
308
+
309
+ // Copy a graph to a different backend
310
+ LM_GGML_API struct lm_ggml_backend_graph_copy lm_ggml_backend_graph_copy(lm_ggml_backend_t backend, struct lm_ggml_cgraph * graph);
311
+ LM_GGML_API void lm_ggml_backend_graph_copy_free(struct lm_ggml_backend_graph_copy copy);
312
+
313
+ typedef bool (*lm_ggml_backend_eval_callback)(int node_index, struct lm_ggml_tensor * t1, struct lm_ggml_tensor * t2, void * user_data);
314
+
315
+ // Compare the output of two backends
316
+ LM_GGML_API bool lm_ggml_backend_compare_graph_backend(lm_ggml_backend_t backend1, lm_ggml_backend_t backend2, struct lm_ggml_cgraph * graph, lm_ggml_backend_eval_callback callback, void * user_data);
317
+
318
+ // Tensor initialization
319
+ LM_GGML_API void lm_ggml_backend_tensor_alloc(lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor, void * addr);
320
+ LM_GGML_API void lm_ggml_backend_view_init(struct lm_ggml_tensor * tensor);
321
+
322
+ // CPU buffer types are always available
323
+ LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
324
+ LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_cpu_buffer_type(void);
325
+
326
+ #ifdef __cplusplus
327
+ }
328
+ #endif