cui-llama.rn 1.1.2 → 1.1.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/cpp/common.cpp CHANGED
@@ -62,14 +62,6 @@ char const *LLAMA_BUILD_TARGET = "unknown";
62
62
  #pragma warning(disable: 4244 4267) // possible loss of data
63
63
  #endif
64
64
 
65
- #if (defined(LM_GGML_USE_CUDA) || defined(LM_GGML_USE_SYCL))
66
- #define LM_GGML_USE_CUDA_SYCL
67
- #endif
68
-
69
- #if (defined(LM_GGML_USE_CUDA) || defined(LM_GGML_USE_SYCL)) || defined(LM_GGML_USE_VULKAN)
70
- #define LM_GGML_USE_CUDA_SYCL_VULKAN
71
- #endif
72
-
73
65
  #if defined(LLAMA_USE_CURL)
74
66
  #ifdef __linux__
75
67
  #include <linux/limits.h>
@@ -83,41 +75,6 @@ char const *LLAMA_BUILD_TARGET = "unknown";
83
75
 
84
76
  using json = nlohmann::ordered_json;
85
77
 
86
- //
87
- // Environment variable utils
88
- //
89
-
90
- template<typename T>
91
- static typename std::enable_if<std::is_same<T, std::string>::value, void>::type
92
- get_env(std::string name, T & target) {
93
- char * value = std::getenv(name.c_str());
94
- target = value ? std::string(value) : target;
95
- }
96
-
97
- template<typename T>
98
- static typename std::enable_if<!std::is_same<T, bool>::value && std::is_integral<T>::value, void>::type
99
- get_env(std::string name, T & target) {
100
- char * value = std::getenv(name.c_str());
101
- target = value ? std::stoi(value) : target;
102
- }
103
-
104
- template<typename T>
105
- static typename std::enable_if<std::is_floating_point<T>::value, void>::type
106
- get_env(std::string name, T & target) {
107
- char * value = std::getenv(name.c_str());
108
- target = value ? std::stof(value) : target;
109
- }
110
-
111
- template<typename T>
112
- static typename std::enable_if<std::is_same<T, bool>::value, void>::type
113
- get_env(std::string name, T & target) {
114
- char * value = std::getenv(name.c_str());
115
- if (value) {
116
- std::string val(value);
117
- target = val == "1" || val == "true";
118
- }
119
- }
120
-
121
78
  //
122
79
  // CPU utils
123
80
  //
@@ -257,1564 +214,165 @@ int32_t cpu_get_num_math() {
257
214
  return cpu_get_num_physical_cores();
258
215
  }
259
216
 
260
- //
261
- // CLI argument parsing
262
- //
263
-
264
- void gpt_params_handle_model_default(gpt_params & params) {
265
- if (!params.hf_repo.empty()) {
266
- // short-hand to avoid specifying --hf-file -> default it to --model
267
- if (params.hf_file.empty()) {
268
- if (params.model.empty()) {
269
- throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
270
- }
271
- params.hf_file = params.model;
272
- } else if (params.model.empty()) {
273
- params.model = fs_get_cache_file(string_split(params.hf_file, '/').back());
274
- }
275
- } else if (!params.model_url.empty()) {
276
- if (params.model.empty()) {
277
- auto f = string_split(params.model_url, '#').front();
278
- f = string_split(f, '?').front();
279
- params.model = fs_get_cache_file(string_split(f, '/').back());
280
- }
281
- } else if (params.model.empty()) {
282
- params.model = DEFAULT_MODEL_PATH;
283
- }
284
- }
285
-
286
- bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
287
- bool invalid_param = false;
288
- std::string arg;
289
- const std::string arg_prefix = "--";
290
- llama_sampling_params & sparams = params.sparams;
291
-
292
- for (int i = 1; i < argc; i++) {
293
- arg = argv[i];
294
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
295
- std::replace(arg.begin(), arg.end(), '_', '-');
296
- }
297
- if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
298
- throw std::invalid_argument("error: unknown argument: " + arg);
299
- }
300
- if (invalid_param) {
301
- throw std::invalid_argument("error: invalid parameter for argument: " + arg);
302
- }
303
- }
304
-
305
- if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
306
- throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
307
- }
217
+ // Helper for setting process priority
308
218
 
309
- gpt_params_handle_model_default(params);
219
+ #if defined(_WIN32)
310
220
 
311
- if (params.hf_token.empty()) {
312
- get_env("HF_TOKEN", params.hf_token);
221
+ bool set_process_priority(enum lm_ggml_sched_priority prio) {
222
+ if (prio == LM_GGML_SCHED_PRIO_NORMAL) {
223
+ return true;
313
224
  }
314
225
 
315
- if (params.escape) {
316
- string_process_escapes(params.prompt);
317
- string_process_escapes(params.input_prefix);
318
- string_process_escapes(params.input_suffix);
319
- string_process_escapes(sparams.cfg_negative_prompt);
320
- for (auto & antiprompt : params.antiprompt) {
321
- string_process_escapes(antiprompt);
322
- }
226
+ DWORD p = NORMAL_PRIORITY_CLASS;
227
+ switch (prio) {
228
+ case LM_GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
229
+ case LM_GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
230
+ case LM_GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
231
+ case LM_GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS; break;
323
232
  }
324
233
 
325
- if (!params.kv_overrides.empty()) {
326
- params.kv_overrides.emplace_back();
327
- params.kv_overrides.back().key[0] = 0;
234
+ if (!SetPriorityClass(GetCurrentProcess(), p)) {
235
+ fprintf(stderr, "warn: failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
236
+ return false;
328
237
  }
329
238
 
330
239
  return true;
331
240
  }
332
241
 
333
- void gpt_params_parse_from_env(gpt_params & params) {
334
- // we only care about server-related params for now
335
- get_env("LLAMA_ARG_MODEL", params.model);
336
- get_env("LLAMA_ARG_MODEL_URL", params.model_url);
337
- get_env("LLAMA_ARG_MODEL_ALIAS", params.model_alias);
338
- get_env("LLAMA_ARG_HF_REPO", params.hf_repo);
339
- get_env("LLAMA_ARG_HF_FILE", params.hf_file);
340
- get_env("LLAMA_ARG_THREADS", params.n_threads);
341
- get_env("LLAMA_ARG_CTX_SIZE", params.n_ctx);
342
- get_env("LLAMA_ARG_N_PARALLEL", params.n_parallel);
343
- get_env("LLAMA_ARG_BATCH", params.n_batch);
344
- get_env("LLAMA_ARG_UBATCH", params.n_ubatch);
345
- get_env("LLAMA_ARG_N_GPU_LAYERS", params.n_gpu_layers);
346
- get_env("LLAMA_ARG_THREADS_HTTP", params.n_threads_http);
347
- get_env("LLAMA_ARG_CHAT_TEMPLATE", params.chat_template);
348
- get_env("LLAMA_ARG_N_PREDICT", params.n_predict);
349
- get_env("LLAMA_ARG_ENDPOINT_METRICS", params.endpoint_metrics);
350
- get_env("LLAMA_ARG_ENDPOINT_SLOTS", params.endpoint_slots);
351
- get_env("LLAMA_ARG_EMBEDDINGS", params.embedding);
352
- get_env("LLAMA_ARG_FLASH_ATTN", params.flash_attn);
353
- get_env("LLAMA_ARG_DEFRAG_THOLD", params.defrag_thold);
354
- get_env("LLAMA_ARG_CONT_BATCHING", params.cont_batching);
355
- get_env("LLAMA_ARG_HOST", params.hostname);
356
- get_env("LLAMA_ARG_PORT", params.port);
357
- }
242
+ #else // MacOS and POSIX
243
+ #include <sys/types.h>
244
+ #include <sys/resource.h>
358
245
 
359
- bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
360
- const auto params_org = params; // the example can modify the default params
246
+ bool set_process_priority(enum lm_ggml_sched_priority prio) {
247
+ if (prio == LM_GGML_SCHED_PRIO_NORMAL) {
248
+ return true;
249
+ }
361
250
 
362
- try {
363
- if (!gpt_params_parse_ex(argc, argv, params) || params.usage) {
364
- params = params_org;
365
- params.usage = true;
366
- return false;
367
- }
368
- } catch (const std::invalid_argument & ex) {
369
- fprintf(stderr, "%s\n", ex.what());
370
- params = params_org;
371
- return false;
251
+ int p = 0;
252
+ switch (prio) {
253
+ case LM_GGML_SCHED_PRIO_NORMAL: p = 0; break;
254
+ case LM_GGML_SCHED_PRIO_MEDIUM: p = -5; break;
255
+ case LM_GGML_SCHED_PRIO_HIGH: p = -10; break;
256
+ case LM_GGML_SCHED_PRIO_REALTIME: p = -20; break;
372
257
  }
373
258
 
259
+ if (!setpriority(PRIO_PROCESS, 0, p)) {
260
+ fprintf(stderr, "warn: failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
261
+ return false;
262
+ }
374
263
  return true;
375
264
  }
376
265
 
377
- #define CHECK_ARG if (++i >= argc) { invalid_param = true; return true; }
266
+ #endif
378
267
 
379
- bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
380
- const char split_delim = ',';
268
+ //
269
+ // CLI argument parsing
270
+ //
381
271
 
382
- llama_sampling_params & sparams = params.sparams;
383
272
 
384
- if (arg == "-s" || arg == "--seed") {
385
- CHECK_ARG
386
- // TODO: this is temporary, in the future the sampling state will be moved fully to llama_sampling_context.
387
- params.seed = std::stoul(argv[i]);
388
- sparams.seed = std::stoul(argv[i]);
389
- return true;
390
- }
391
- if (arg == "-t" || arg == "--threads") {
392
- CHECK_ARG
393
- params.n_threads = std::stoi(argv[i]);
394
- if (params.n_threads <= 0) {
395
- params.n_threads = std::thread::hardware_concurrency();
396
- }
397
- return true;
398
- }
399
- if (arg == "-tb" || arg == "--threads-batch") {
400
- CHECK_ARG
401
- params.n_threads_batch = std::stoi(argv[i]);
402
- if (params.n_threads_batch <= 0) {
403
- params.n_threads_batch = std::thread::hardware_concurrency();
404
- }
405
- return true;
406
- }
407
- if (arg == "-td" || arg == "--threads-draft") {
408
- CHECK_ARG
409
- params.n_threads_draft = std::stoi(argv[i]);
410
- if (params.n_threads_draft <= 0) {
411
- params.n_threads_draft = std::thread::hardware_concurrency();
412
- }
413
- return true;
414
- }
415
- if (arg == "-tbd" || arg == "--threads-batch-draft") {
416
- CHECK_ARG
417
- params.n_threads_batch_draft = std::stoi(argv[i]);
418
- if (params.n_threads_batch_draft <= 0) {
419
- params.n_threads_batch_draft = std::thread::hardware_concurrency();
420
- }
421
- return true;
422
- }
423
- if (arg == "-p" || arg == "--prompt") {
424
- CHECK_ARG
425
- params.prompt = argv[i];
426
- return true;
427
- }
428
- if (arg == "-e" || arg == "--escape") {
429
- params.escape = true;
430
- return true;
431
- }
432
- if (arg == "--no-escape") {
433
- params.escape = false;
434
- return true;
435
- }
436
- if (arg == "--prompt-cache") {
437
- CHECK_ARG
438
- params.path_prompt_cache = argv[i];
439
- return true;
440
- }
441
- if (arg == "--prompt-cache-all") {
442
- params.prompt_cache_all = true;
443
- return true;
444
- }
445
- if (arg == "--prompt-cache-ro") {
446
- params.prompt_cache_ro = true;
447
- return true;
448
- }
449
- if (arg == "-bf" || arg == "--binary-file") {
450
- CHECK_ARG
451
- std::ifstream file(argv[i], std::ios::binary);
452
- if (!file) {
453
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
454
- invalid_param = true;
455
- return true;
456
- }
457
- // store the external file name in params
458
- params.prompt_file = argv[i];
459
- std::ostringstream ss;
460
- ss << file.rdbuf();
461
- params.prompt = ss.str();
462
- fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
463
- return true;
464
- }
465
- if (arg == "-f" || arg == "--file") {
466
- CHECK_ARG
467
- std::ifstream file(argv[i]);
468
- if (!file) {
469
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
470
- invalid_param = true;
471
- return true;
472
- }
473
- // store the external file name in params
474
- params.prompt_file = argv[i];
475
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
476
- if (!params.prompt.empty() && params.prompt.back() == '\n') {
477
- params.prompt.pop_back();
478
- }
479
- return true;
480
- }
481
- if (arg == "--in-file") {
482
- CHECK_ARG
483
- std::ifstream file(argv[i]);
484
- if (!file) {
485
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
486
- invalid_param = true;
487
- return true;
488
- }
489
- params.in_files.push_back(argv[i]);
490
- return true;
491
- }
492
- if (arg == "-n" || arg == "--predict" || arg == "--n-predict") {
493
- CHECK_ARG
494
- params.n_predict = std::stoi(argv[i]);
495
- return true;
496
- }
497
- if (arg == "--top-k") {
498
- CHECK_ARG
499
- sparams.top_k = std::stoi(argv[i]);
500
- return true;
501
- }
502
- if (arg == "-c" || arg == "--ctx-size") {
503
- CHECK_ARG
504
- params.n_ctx = std::stoi(argv[i]);
505
- return true;
506
- }
507
- if (arg == "--grp-attn-n" || arg == "-gan") {
508
- CHECK_ARG
509
- params.grp_attn_n = std::stoi(argv[i]);
510
- return true;
511
- }
512
- if (arg == "--grp-attn-w" || arg == "-gaw") {
513
- CHECK_ARG
514
- params.grp_attn_w = std::stoi(argv[i]);
515
- return true;
516
- }
517
- if (arg == "--rope-freq-base") {
518
- CHECK_ARG
519
- params.rope_freq_base = std::stof(argv[i]);
520
- return true;
521
- }
522
- if (arg == "--rope-freq-scale") {
523
- CHECK_ARG
524
- params.rope_freq_scale = std::stof(argv[i]);
525
- return true;
526
- }
527
- if (arg == "--rope-scaling") {
528
- CHECK_ARG
529
- std::string value(argv[i]);
530
- /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
531
- else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
532
- else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
533
- else { invalid_param = true; }
534
- return true;
535
- }
536
- if (arg == "--rope-scale") {
537
- CHECK_ARG
538
- params.rope_freq_scale = 1.0f / std::stof(argv[i]);
539
- return true;
540
- }
541
- if (arg == "--yarn-orig-ctx") {
542
- CHECK_ARG
543
- params.yarn_orig_ctx = std::stoi(argv[i]);
544
- return true;
545
- }
546
- if (arg == "--yarn-ext-factor") {
547
- CHECK_ARG
548
- params.yarn_ext_factor = std::stof(argv[i]);
549
- return true;
550
- }
551
- if (arg == "--yarn-attn-factor") {
552
- CHECK_ARG
553
- params.yarn_attn_factor = std::stof(argv[i]);
554
- return true;
555
- }
556
- if (arg == "--yarn-beta-fast") {
557
- CHECK_ARG
558
- params.yarn_beta_fast = std::stof(argv[i]);
559
- return true;
560
- }
561
- if (arg == "--yarn-beta-slow") {
562
- CHECK_ARG
563
- params.yarn_beta_slow = std::stof(argv[i]);
564
- return true;
565
- }
566
- if (arg == "--pooling") {
567
- CHECK_ARG
568
- std::string value(argv[i]);
569
- /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
570
- else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
571
- else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
572
- else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
573
- else { invalid_param = true; }
574
- return true;
575
- }
576
- if (arg == "--attention") {
577
- CHECK_ARG
578
- std::string value(argv[i]);
579
- /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
580
- else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
581
- else { invalid_param = true; }
582
- return true;
583
- }
584
- if (arg == "--defrag-thold" || arg == "-dt") {
585
- CHECK_ARG
586
- params.defrag_thold = std::stof(argv[i]);
587
- return true;
588
- }
589
- if (arg == "--samplers") {
590
- CHECK_ARG
591
- const auto sampler_names = string_split(argv[i], ';');
592
- sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, true);
593
- return true;
594
- }
595
- if (arg == "--sampling-seq") {
596
- CHECK_ARG
597
- sparams.samplers_sequence = llama_sampling_types_from_chars(argv[i]);
598
- return true;
599
- }
600
- if (arg == "--top-p") {
601
- CHECK_ARG
602
- sparams.top_p = std::stof(argv[i]);
603
- return true;
604
- }
605
- if (arg == "--min-p") {
606
- CHECK_ARG
607
- sparams.min_p = std::stof(argv[i]);
608
- return true;
609
- }
610
- if (arg == "--temp") {
611
- CHECK_ARG
612
- sparams.temp = std::stof(argv[i]);
613
- sparams.temp = std::max(sparams.temp, 0.0f);
614
- return true;
615
- }
616
- if (arg == "--tfs") {
617
- CHECK_ARG
618
- sparams.tfs_z = std::stof(argv[i]);
619
- return true;
620
- }
621
- if (arg == "--typical") {
622
- CHECK_ARG
623
- sparams.typical_p = std::stof(argv[i]);
624
- return true;
625
- }
626
- if (arg == "--repeat-last-n") {
627
- CHECK_ARG
628
- sparams.penalty_last_n = std::stoi(argv[i]);
629
- sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
630
- return true;
631
- }
632
- if (arg == "--repeat-penalty") {
633
- CHECK_ARG
634
- sparams.penalty_repeat = std::stof(argv[i]);
635
- return true;
636
- }
637
- if (arg == "--frequency-penalty") {
638
- CHECK_ARG
639
- sparams.penalty_freq = std::stof(argv[i]);
640
- return true;
641
- }
642
- if (arg == "--presence-penalty") {
643
- CHECK_ARG
644
- sparams.penalty_present = std::stof(argv[i]);
645
- return true;
646
- }
647
- if (arg == "--dynatemp-range") {
648
- CHECK_ARG
649
- sparams.dynatemp_range = std::stof(argv[i]);
650
- return true;
651
- }
652
- if (arg == "--dynatemp-exp") {
653
- CHECK_ARG
654
- sparams.dynatemp_exponent = std::stof(argv[i]);
655
- return true;
656
- }
657
- if (arg == "--mirostat") {
658
- CHECK_ARG
659
- sparams.mirostat = std::stoi(argv[i]);
660
- return true;
661
- }
662
- if (arg == "--mirostat-lr") {
663
- CHECK_ARG
664
- sparams.mirostat_eta = std::stof(argv[i]);
665
- return true;
666
- }
667
- if (arg == "--mirostat-ent") {
668
- CHECK_ARG
669
- sparams.mirostat_tau = std::stof(argv[i]);
670
- return true;
671
- }
672
- if (arg == "--cfg-negative-prompt") {
673
- CHECK_ARG
674
- sparams.cfg_negative_prompt = argv[i];
675
- return true;
676
- }
677
- if (arg == "--cfg-negative-prompt-file") {
678
- CHECK_ARG
679
- std::ifstream file(argv[i]);
680
- if (!file) {
681
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
682
- invalid_param = true;
683
- return true;
684
- }
685
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
686
- if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
687
- sparams.cfg_negative_prompt.pop_back();
688
- }
689
- return true;
690
- }
691
- if (arg == "--cfg-scale") {
692
- CHECK_ARG
693
- sparams.cfg_scale = std::stof(argv[i]);
694
- return true;
695
- }
696
- if (arg == "-b" || arg == "--batch-size") {
697
- CHECK_ARG
698
- params.n_batch = std::stoi(argv[i]);
699
- return true;
700
- }
701
- if (arg == "-ub" || arg == "--ubatch-size") {
702
- CHECK_ARG
703
- params.n_ubatch = std::stoi(argv[i]);
704
- return true;
705
- }
706
- if (arg == "--keep") {
707
- CHECK_ARG
708
- params.n_keep = std::stoi(argv[i]);
709
- return true;
710
- }
711
- if (arg == "--draft") {
712
- CHECK_ARG
713
- params.n_draft = std::stoi(argv[i]);
714
- return true;
715
- }
716
- if (arg == "--chunks") {
717
- CHECK_ARG
718
- params.n_chunks = std::stoi(argv[i]);
719
- return true;
720
- }
721
- if (arg == "-np" || arg == "--parallel") {
722
- CHECK_ARG
723
- params.n_parallel = std::stoi(argv[i]);
724
- return true;
725
- }
726
- if (arg == "-ns" || arg == "--sequences") {
727
- CHECK_ARG
728
- params.n_sequences = std::stoi(argv[i]);
729
- return true;
730
- }
731
- if (arg == "--p-split" || arg == "-ps") {
732
- CHECK_ARG
733
- params.p_split = std::stof(argv[i]);
734
- return true;
735
- }
736
- if (arg == "-m" || arg == "--model") {
737
- CHECK_ARG
738
- params.model = argv[i];
739
- return true;
740
- }
741
- if (arg == "-md" || arg == "--model-draft") {
742
- CHECK_ARG
743
- params.model_draft = argv[i];
744
- return true;
745
- }
746
- if (arg == "-a" || arg == "--alias") {
747
- CHECK_ARG
748
- params.model_alias = argv[i];
749
- return true;
750
- }
751
- if (arg == "-mu" || arg == "--model-url") {
752
- CHECK_ARG
753
- params.model_url = argv[i];
754
- return true;
755
- }
756
- if (arg == "-hft" || arg == "--hf-token") {
757
- if (++i >= argc) {
758
- invalid_param = true;
759
- return true;
760
- }
761
- params.hf_token = argv[i];
762
- return true;
763
- }
764
- if (arg == "-hfr" || arg == "--hf-repo") {
765
- CHECK_ARG
766
- params.hf_repo = argv[i];
767
- return true;
768
- }
769
- if (arg == "-hff" || arg == "--hf-file") {
770
- CHECK_ARG
771
- params.hf_file = argv[i];
772
- return true;
773
- }
774
- if (arg == "--lora") {
775
- CHECK_ARG
776
- params.lora_adapters.push_back({
777
- std::string(argv[i]),
778
- 1.0,
779
- });
780
- return true;
781
- }
782
- if (arg == "--lora-scaled") {
783
- CHECK_ARG
784
- std::string lora_adapter = argv[i];
785
- CHECK_ARG
786
- params.lora_adapters.push_back({
787
- lora_adapter,
788
- std::stof(argv[i]),
789
- });
790
- return true;
791
- }
792
- if (arg == "--lora-init-without-apply") {
793
- params.lora_init_without_apply = true;
794
- return true;
795
- }
796
- if (arg == "--control-vector") {
797
- CHECK_ARG
798
- params.control_vectors.push_back({ 1.0f, argv[i], });
799
- return true;
800
- }
801
- if (arg == "--control-vector-scaled") {
802
- CHECK_ARG
803
- const char* fname = argv[i];
804
- CHECK_ARG
805
- params.control_vectors.push_back({ std::stof(argv[i]), fname, });
806
- return true;
807
- }
808
- if (arg == "--control-vector-layer-range") {
809
- CHECK_ARG
810
- params.control_vector_layer_start = std::stoi(argv[i]);
811
- CHECK_ARG
812
- params.control_vector_layer_end = std::stoi(argv[i]);
813
- return true;
814
- }
815
- if (arg == "--mmproj") {
816
- CHECK_ARG
817
- params.mmproj = argv[i];
818
- return true;
819
- }
820
- if (arg == "--image") {
821
- CHECK_ARG
822
- params.image.emplace_back(argv[i]);
823
- return true;
824
- }
825
- if (arg == "-i" || arg == "--interactive") {
826
- params.interactive = true;
827
- return true;
828
- }
829
- if (arg == "-sp" || arg == "--special") {
830
- params.special = true;
831
- return true;
832
- }
833
- if (arg == "--embedding" || arg == "--embeddings") {
834
- params.embedding = true;
835
- return true;
836
- }
837
- if (arg == "--embd-normalize") {
838
- CHECK_ARG
839
- params.embd_normalize = std::stoi(argv[i]);
840
- return true;
841
- }
842
- if (arg == "--embd-output-format") {
843
- CHECK_ARG
844
- params.embd_out = argv[i];
845
- return true;
846
- }
847
- if (arg == "--embd-separator") {
848
- CHECK_ARG
849
- params.embd_sep = argv[i];
850
- return true;
851
- }
852
- if (arg == "-if" || arg == "--interactive-first") {
853
- params.interactive_first = true;
854
- return true;
855
- }
856
- if (arg == "-cnv" || arg == "--conversation") {
857
- params.conversation = true;
858
- return true;
859
- }
860
- if (arg == "--infill") {
861
- params.infill = true;
862
- return true;
863
- }
864
- if (arg == "-dkvc" || arg == "--dump-kv-cache") {
865
- params.dump_kv_cache = true;
866
- return true;
867
- }
868
- if (arg == "-nkvo" || arg == "--no-kv-offload") {
869
- params.no_kv_offload = true;
870
- return true;
871
- }
872
- if (arg == "-ctk" || arg == "--cache-type-k") {
873
- params.cache_type_k = argv[++i];
874
- return true;
875
- }
876
- if (arg == "-ctv" || arg == "--cache-type-v") {
877
- params.cache_type_v = argv[++i];
878
- return true;
879
- }
880
- if (arg == "-mli" || arg == "--multiline-input") {
881
- params.multiline_input = true;
882
- return true;
883
- }
884
- if (arg == "--simple-io") {
885
- params.simple_io = true;
886
- return true;
887
- }
888
- if (arg == "-cb" || arg == "--cont-batching") {
889
- params.cont_batching = true;
890
- return true;
891
- }
892
- if (arg == "-nocb" || arg == "--no-cont-batching") {
893
- params.cont_batching = false;
894
- return true;
895
- }
896
- if (arg == "-fa" || arg == "--flash-attn") {
897
- params.flash_attn = true;
898
- return true;
899
- }
900
- if (arg == "-co" || arg == "--color") {
901
- params.use_color = true;
902
- return true;
903
- }
904
- if (arg == "--mlock") {
905
- params.use_mlock = true;
906
- return true;
907
- }
908
- if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
909
- CHECK_ARG
910
- params.n_gpu_layers = std::stoi(argv[i]);
911
- if (!llama_supports_gpu_offload()) {
912
- fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n");
913
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
914
- }
915
- return true;
916
- }
917
- if (arg == "-ngld" || arg == "--gpu-layers-draft" || arg == "--n-gpu-layers-draft") {
918
- CHECK_ARG
919
- params.n_gpu_layers_draft = std::stoi(argv[i]);
920
- if (!llama_supports_gpu_offload()) {
921
- fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
922
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
923
- }
924
- return true;
925
- }
926
- if (arg == "--main-gpu" || arg == "-mg") {
927
- CHECK_ARG
928
- params.main_gpu = std::stoi(argv[i]);
929
- #ifndef LM_GGML_USE_CUDA_SYCL_VULKAN
930
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the main GPU has no effect.\n");
931
- #endif // LM_GGML_USE_CUDA_SYCL_VULKAN
932
- return true;
933
- }
934
- if (arg == "--split-mode" || arg == "-sm") {
935
- CHECK_ARG
936
- std::string arg_next = argv[i];
937
- if (arg_next == "none") {
938
- params.split_mode = LLAMA_SPLIT_MODE_NONE;
939
- }
940
- else if (arg_next == "layer") {
941
- params.split_mode = LLAMA_SPLIT_MODE_LAYER;
942
- }
943
- else if (arg_next == "row") {
944
- #ifdef LM_GGML_USE_SYCL
945
- fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
946
- exit(1);
947
- #endif // LM_GGML_USE_SYCL
948
- params.split_mode = LLAMA_SPLIT_MODE_ROW;
949
- }
950
- else {
951
- invalid_param = true;
952
- return true;
953
- }
954
- #ifndef LM_GGML_USE_CUDA_SYCL_VULKAN
955
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the split mode has no effect.\n");
956
- #endif // LM_GGML_USE_CUDA_SYCL_VULKAN
957
- return true;
958
- }
959
- if (arg == "--tensor-split" || arg == "-ts") {
960
- CHECK_ARG
961
- std::string arg_next = argv[i];
273
+ void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
274
+ int32_t n_set = 0;
962
275
 
963
- // split string by , and /
964
- const std::regex regex{ R"([,/]+)" };
965
- std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
966
- std::vector<std::string> split_arg{ it, {} };
967
- if (split_arg.size() >= llama_max_devices()) {
968
- invalid_param = true;
969
- return true;
970
- }
971
- for (size_t i = 0; i < llama_max_devices(); ++i) {
972
- if (i < split_arg.size()) {
973
- params.tensor_split[i] = std::stof(split_arg[i]);
974
- }
975
- else {
976
- params.tensor_split[i] = 0.0f;
977
- }
276
+ if (cpuparams.n_threads < 0) {
277
+ // Assuming everything about cpuparams is invalid
278
+ if (role_model != nullptr) {
279
+ cpuparams = *role_model;
280
+ } else {
281
+ cpuparams.n_threads = cpu_get_num_math();
978
282
  }
979
- #ifndef LM_GGML_USE_CUDA_SYCL_VULKAN
980
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
981
- #endif // LM_GGML_USE_CUDA_SYCL_VULKAN
982
- return true;
983
- }
984
- if (arg == "--rpc") {
985
- CHECK_ARG
986
- params.rpc_servers = argv[i];
987
- return true;
988
- }
989
- if (arg == "--no-mmap") {
990
- params.use_mmap = false;
991
- return true;
992
- }
993
- if (arg == "--numa") {
994
- CHECK_ARG
995
- std::string value(argv[i]);
996
- /**/ if (value == "distribute" || value == "") { params.numa = LM_GGML_NUMA_STRATEGY_DISTRIBUTE; }
997
- else if (value == "isolate") { params.numa = LM_GGML_NUMA_STRATEGY_ISOLATE; }
998
- else if (value == "numactl") { params.numa = LM_GGML_NUMA_STRATEGY_NUMACTL; }
999
- else { invalid_param = true; }
1000
- return true;
1001
- }
1002
- if (arg == "-v" || arg == "--verbose") {
1003
- params.verbosity = 1;
1004
- return true;
1005
- }
1006
- if (arg == "--verbosity") {
1007
- CHECK_ARG
1008
- params.verbosity = std::stoi(argv[i]);
1009
- return true;
1010
- }
1011
- if (arg == "--verbose-prompt") {
1012
- params.verbose_prompt = true;
1013
- return true;
1014
- }
1015
- if (arg == "--no-display-prompt") {
1016
- params.display_prompt = false;
1017
- return true;
1018
- }
1019
- if (arg == "-r" || arg == "--reverse-prompt") {
1020
- CHECK_ARG
1021
- params.antiprompt.emplace_back(argv[i]);
1022
- return true;
1023
283
  }
1024
- if (arg == "-ld" || arg == "--logdir") {
1025
- CHECK_ARG
1026
- params.logdir = argv[i];
1027
284
 
1028
- if (params.logdir.back() != DIRECTORY_SEPARATOR) {
1029
- params.logdir += DIRECTORY_SEPARATOR;
1030
- }
1031
- return true;
1032
- }
1033
- if (arg == "-lcs" || arg == "--lookup-cache-static") {
1034
- CHECK_ARG
1035
- params.lookup_cache_static = argv[i];
1036
- return true;
1037
- }
1038
- if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
1039
- CHECK_ARG
1040
- params.lookup_cache_dynamic = argv[i];
1041
- return true;
1042
- }
1043
- if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
1044
- CHECK_ARG
1045
- params.logits_file = argv[i];
1046
- return true;
1047
- }
1048
- if (arg == "--perplexity" || arg == "--all-logits") {
1049
- params.logits_all = true;
1050
- return true;
1051
- }
1052
- if (arg == "--ppl-stride") {
1053
- CHECK_ARG
1054
- params.ppl_stride = std::stoi(argv[i]);
1055
- return true;
1056
- }
1057
- if (arg == "--ppl-output-type") {
1058
- CHECK_ARG
1059
- params.ppl_output_type = std::stoi(argv[i]);
1060
- return true;
1061
- }
1062
- if (arg == "-ptc" || arg == "--print-token-count") {
1063
- CHECK_ARG
1064
- params.n_print = std::stoi(argv[i]);
1065
- return true;
1066
- }
1067
- if (arg == "--check-tensors") {
1068
- params.check_tensors = true;
1069
- return true;
1070
- }
1071
- if (arg == "--hellaswag") {
1072
- params.hellaswag = true;
1073
- return true;
1074
- }
1075
- if (arg == "--hellaswag-tasks") {
1076
- CHECK_ARG
1077
- params.hellaswag_tasks = std::stoi(argv[i]);
1078
- return true;
1079
- }
1080
- if (arg == "--winogrande") {
1081
- params.winogrande = true;
1082
- return true;
1083
- }
1084
- if (arg == "--winogrande-tasks") {
1085
- CHECK_ARG
1086
- params.winogrande_tasks = std::stoi(argv[i]);
1087
- return true;
1088
- }
1089
- if (arg == "--multiple-choice") {
1090
- params.multiple_choice = true;
1091
- return true;
1092
- }
1093
- if (arg == "--multiple-choice-tasks") {
1094
- CHECK_ARG
1095
- params.multiple_choice_tasks = std::stoi(argv[i]);
1096
- return true;
1097
- }
1098
- if (arg == "--kl-divergence") {
1099
- params.kl_divergence = true;
1100
- return true;
1101
- }
1102
- if (arg == "--ignore-eos") {
1103
- params.ignore_eos = true;
1104
- return true;
1105
- }
1106
- if (arg == "--penalize-nl") {
1107
- sparams.penalize_nl = true;
1108
- return true;
1109
- }
1110
- if (arg == "-l" || arg == "--logit-bias") {
1111
- CHECK_ARG
1112
- std::stringstream ss(argv[i]);
1113
- llama_token key;
1114
- char sign;
1115
- std::string value_str;
1116
- try {
1117
- if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
1118
- sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
1119
- }
1120
- else {
1121
- throw std::exception();
1122
- }
1123
- }
1124
- catch (const std::exception&) {
1125
- invalid_param = true;
1126
- return true;
1127
- }
1128
- return true;
1129
- }
1130
- if (arg == "-h" || arg == "--help" || arg == "--usage" ) {
1131
- params.usage = true;
1132
- return true;
1133
- }
1134
- if (arg == "--version") {
1135
- fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
1136
- fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
1137
- exit(0);
1138
- }
1139
- if (arg == "--in-prefix-bos") {
1140
- params.input_prefix_bos = true;
1141
- params.enable_chat_template = false;
1142
- return true;
1143
- }
1144
- if (arg == "--in-prefix") {
1145
- CHECK_ARG
1146
- params.input_prefix = argv[i];
1147
- params.enable_chat_template = false;
1148
- return true;
1149
- }
1150
- if (arg == "--in-suffix") {
1151
- CHECK_ARG
1152
- params.input_suffix = argv[i];
1153
- params.enable_chat_template = false;
1154
- return true;
1155
- }
1156
- if (arg == "--spm-infill") {
1157
- params.spm_infill = true;
1158
- return true;
1159
- }
1160
- if (arg == "--grammar") {
1161
- CHECK_ARG
1162
- sparams.grammar = argv[i];
1163
- return true;
1164
- }
1165
- if (arg == "--grammar-file") {
1166
- CHECK_ARG
1167
- std::ifstream file(argv[i]);
1168
- if (!file) {
1169
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
1170
- invalid_param = true;
1171
- return true;
1172
- }
1173
- std::copy(
1174
- std::istreambuf_iterator<char>(file),
1175
- std::istreambuf_iterator<char>(),
1176
- std::back_inserter(sparams.grammar)
1177
- );
1178
- return true;
1179
- }
1180
- if (arg == "-j" || arg == "--json-schema") {
1181
- CHECK_ARG
1182
- sparams.grammar = json_schema_to_grammar(json::parse(argv[i]));
1183
- return true;
1184
- }
1185
- if (arg == "--override-kv") {
1186
- CHECK_ARG
1187
- if (!string_parse_kv_override(argv[i], params.kv_overrides)) {
1188
- fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
1189
- invalid_param = true;
1190
- return true;
285
+ for (int32_t i = 0; i < LM_GGML_MAX_N_THREADS; i++) {
286
+ if (cpuparams.cpumask[i]) {
287
+ n_set++;
1191
288
  }
1192
- return true;
1193
289
  }
1194
- if (arg == "--host") {
1195
- CHECK_ARG
1196
- params.hostname = argv[i];
1197
- return true;
1198
- }
1199
- if (arg == "--port") {
1200
- CHECK_ARG
1201
- params.port = std::stoi(argv[i]);
1202
- return true;
1203
- }
1204
- if (arg == "--path") {
1205
- CHECK_ARG
1206
- params.public_path = argv[i];
1207
- return true;
1208
- }
1209
- if (arg == "--api-key") {
1210
- CHECK_ARG
1211
- params.api_keys.push_back(argv[i]);
1212
- return true;
1213
- }
1214
- if (arg == "--api-key-file") {
1215
- CHECK_ARG
1216
- std::ifstream key_file(argv[i]);
1217
- if (!key_file) {
1218
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
1219
- invalid_param = true;
1220
- return true;
1221
- }
1222
- std::string key;
1223
- while (std::getline(key_file, key)) {
1224
- if (!key.empty()) {
1225
- params.api_keys.push_back(key);
1226
- }
1227
- }
1228
- key_file.close();
1229
- return true;
1230
- }
1231
- if (arg == "--ssl-key-file") {
1232
- CHECK_ARG
1233
- params.ssl_file_key = argv[i];
1234
- return true;
1235
- }
1236
- if (arg == "--ssl-cert-file") {
1237
- CHECK_ARG
1238
- params.ssl_file_cert = argv[i];
1239
- return true;
1240
- }
1241
- if (arg == "--timeout" || arg == "-to") {
1242
- CHECK_ARG
1243
- params.timeout_read = std::stoi(argv[i]);
1244
- params.timeout_write = std::stoi(argv[i]);
1245
- return true;
1246
- }
1247
- if (arg == "--threads-http") {
1248
- CHECK_ARG
1249
- params.n_threads_http = std::stoi(argv[i]);
1250
- return true;
1251
- }
1252
- if (arg == "-spf" || arg == "--system-prompt-file") {
1253
- CHECK_ARG
1254
- std::ifstream file(argv[i]);
1255
- if (!file) {
1256
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
1257
- invalid_param = true;
1258
- return true;
1259
- }
1260
- std::string system_prompt;
1261
- std::copy(
1262
- std::istreambuf_iterator<char>(file),
1263
- std::istreambuf_iterator<char>(),
1264
- std::back_inserter(system_prompt)
1265
- );
1266
- params.system_prompt = system_prompt;
1267
- return true;
1268
- }
1269
- if (arg == "--log-format") {
1270
- CHECK_ARG
1271
- if (std::strcmp(argv[i], "json") == 0) {
1272
- params.log_json = true;
1273
- } else if (std::strcmp(argv[i], "text") == 0) {
1274
- params.log_json = false;
1275
- } else {
1276
- invalid_param = true;
1277
- return true;
1278
- }
1279
- return true;
1280
- }
1281
- if (arg == "--no-slots") {
1282
- params.endpoint_slots = false;
1283
- return true;
1284
- }
1285
- if (arg == "--metrics") {
1286
- params.endpoint_metrics = true;
1287
- return true;
290
+
291
+ if (n_set && n_set < cpuparams.n_threads) {
292
+ // Not enough set bits, may experience performance issues.
293
+ fprintf(stderr, "warn: Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
1288
294
  }
1289
- if (arg == "--slot-save-path") {
1290
- CHECK_ARG
1291
- params.slot_save_path = argv[i];
1292
- // if doesn't end with DIRECTORY_SEPARATOR, add it
1293
- if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
1294
- params.slot_save_path += DIRECTORY_SEPARATOR;
1295
- }
1296
- return true;
295
+ }
296
+
297
+ bool parse_cpu_range(const std::string & range, bool (&boolmask)[LM_GGML_MAX_N_THREADS]) {
298
+ size_t dash_loc = range.find('-');
299
+ if (dash_loc == std::string::npos) {
300
+ fprintf(stderr, "Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
301
+ return false;
1297
302
  }
1298
- if (arg == "--chat-template") {
1299
- CHECK_ARG
1300
- if (!llama_chat_verify_template(argv[i])) {
1301
- fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
1302
- fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
1303
- invalid_param = true;
1304
- return true;
303
+
304
+ size_t start_i;
305
+ size_t end_i;
306
+
307
+ if (dash_loc == 0) {
308
+ start_i = 0;
309
+ } else {
310
+ start_i = std::stoull(range.substr(0, dash_loc));
311
+ if (start_i >= LM_GGML_MAX_N_THREADS) {
312
+ fprintf(stderr, "Start index out of bounds!\n");
313
+ return false;
1305
314
  }
1306
- params.chat_template = argv[i];
1307
- return true;
1308
315
  }
1309
- if (arg == "--slot-prompt-similarity" || arg == "-sps") {
1310
- CHECK_ARG
1311
- params.slot_prompt_similarity = std::stof(argv[i]);
1312
- return true;
1313
- }
1314
- if (arg == "-pps") {
1315
- params.is_pp_shared = true;
1316
- return true;
1317
- }
1318
- if (arg == "-npp") {
1319
- CHECK_ARG
1320
- auto p = string_split<int>(argv[i], split_delim);
1321
- params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
1322
- return true;
1323
- }
1324
- if (arg == "-ntg") {
1325
- CHECK_ARG
1326
- auto p = string_split<int>(argv[i], split_delim);
1327
- params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
1328
- return true;
1329
- }
1330
- if (arg == "-npl") {
1331
- CHECK_ARG
1332
- auto p = string_split<int>(argv[i], split_delim);
1333
- params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
1334
- return true;
1335
- }
1336
- if (arg == "--context-file") {
1337
- CHECK_ARG
1338
- std::ifstream file(argv[i], std::ios::binary);
1339
- if (!file) {
1340
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
1341
- invalid_param = true;
1342
- return true;
316
+
317
+ if (dash_loc == range.length() - 1) {
318
+ end_i = LM_GGML_MAX_N_THREADS - 1;
319
+ } else {
320
+ end_i = std::stoull(range.substr(dash_loc + 1));
321
+ if (end_i >= LM_GGML_MAX_N_THREADS) {
322
+ fprintf(stderr, "End index out of bounds!\n");
323
+ return false;
1343
324
  }
1344
- params.context_files.push_back(argv[i]);
1345
- return true;
1346
- }
1347
- if (arg == "--chunk-size") {
1348
- CHECK_ARG
1349
- params.chunk_size = std::stoi(argv[i]);
1350
- return true;
1351
- }
1352
- if (arg == "--chunk-separator") {
1353
- CHECK_ARG
1354
- params.chunk_separator = argv[i];
1355
- return true;
1356
- }
1357
- if (arg == "--junk") {
1358
- CHECK_ARG
1359
- params.n_junk = std::stoi(argv[i]);
1360
- return true;
1361
- }
1362
- if (arg == "--pos") {
1363
- CHECK_ARG
1364
- params.i_pos = std::stoi(argv[i]);
1365
- return true;
1366
- }
1367
- if (arg == "-o" || arg == "--output" || arg == "--output-file") {
1368
- CHECK_ARG
1369
- params.out_file = argv[i];
1370
- params.cvector_outfile = argv[i];
1371
- params.lora_outfile = argv[i];
1372
- return true;
1373
- }
1374
- if (arg == "-ofreq" || arg == "--output-frequency") {
1375
- CHECK_ARG
1376
- params.n_out_freq = std::stoi(argv[i]);
1377
- return true;
1378
- }
1379
- if (arg == "--save-frequency") {
1380
- CHECK_ARG
1381
- params.n_save_freq = std::stoi(argv[i]);
1382
- return true;
1383
- }
1384
- if (arg == "--process-output") {
1385
- params.process_output = true;
1386
- return true;
1387
325
  }
1388
- if (arg == "--no-ppl") {
1389
- params.compute_ppl = false;
1390
- return true;
1391
- }
1392
- if (arg == "--chunk" || arg == "--from-chunk") {
1393
- CHECK_ARG
1394
- params.i_chunk = std::stoi(argv[i]);
1395
- return true;
1396
- }
1397
- // cvector params
1398
- if (arg == "--positive-file") {
1399
- CHECK_ARG
1400
- params.cvector_positive_file = argv[i];
1401
- return true;
1402
- }
1403
- if (arg == "--negative-file") {
1404
- CHECK_ARG
1405
- params.cvector_negative_file = argv[i];
1406
- return true;
1407
- }
1408
- if (arg == "--pca-batch") {
1409
- CHECK_ARG
1410
- params.n_pca_batch = std::stoi(argv[i]);
1411
- return true;
1412
- }
1413
- if (arg == "--pca-iter") {
1414
- CHECK_ARG
1415
- params.n_pca_iterations = std::stoi(argv[i]);
1416
- return true;
1417
- }
1418
- if (arg == "--method") {
1419
- CHECK_ARG
1420
- std::string value(argv[i]);
1421
- /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
1422
- else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
1423
- else { invalid_param = true; }
1424
- return true;
1425
- }
1426
- if (arg == "--no-warmup") {
1427
- params.warmup = false;
1428
- return true;
1429
- }
1430
- #ifndef LOG_DISABLE_LOGS
1431
- // Parse args for logging parameters
1432
- if (log_param_single_parse(argv[i])) {
1433
- // Do nothing, log_param_single_parse automatically does it's thing
1434
- // and returns if a match was found and parsed.
1435
- return true;
1436
- }
1437
- if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) {
1438
- // We have a matching known parameter requiring an argument,
1439
- // now we need to check if there is anything after this argv
1440
- // and flag invalid_param or parse it.
1441
- CHECK_ARG
1442
- if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) {
1443
- invalid_param = true;
1444
- return true;
1445
- }
1446
- return true;
326
+
327
+ for (size_t i = start_i; i <= end_i; i++) {
328
+ boolmask[i] = true;
1447
329
  }
1448
- // End of Parse args for logging parameters
1449
- #endif // LOG_DISABLE_LOGS
1450
330
 
1451
- return false;
331
+ return true;
1452
332
  }
1453
333
 
1454
- #ifdef __GNUC__
1455
- #ifdef __MINGW32__
1456
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
1457
- #else
1458
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
1459
- #endif
1460
- #else
1461
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
1462
- #endif
334
+ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[LM_GGML_MAX_N_THREADS]) {
335
+ // Discard potential 0x prefix
336
+ size_t start_i = 0;
337
+ if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
338
+ start_i = 2;
339
+ }
1463
340
 
1464
- void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
1465
- const llama_sampling_params & sparams = params.sparams;
341
+ size_t num_digits = mask.length() - start_i;
342
+ if (num_digits > 128) num_digits = 128;
1466
343
 
1467
- std::string sampler_type_chars;
1468
- std::string sampler_type_names;
1469
- for (const auto sampler_type : sparams.samplers_sequence) {
1470
- sampler_type_chars += static_cast<char>(sampler_type);
1471
- sampler_type_names += llama_sampling_type_to_str(sampler_type) + ";";
1472
- }
1473
- sampler_type_names.pop_back();
344
+ size_t end_i = num_digits + start_i;
1474
345
 
1475
- struct option_info {
1476
- LLAMA_COMMON_ATTRIBUTE_FORMAT(4, 5)
1477
- option_info(const std::string & tags, const char * args, const char * desc, ...) : tags(tags), args(args), desc(desc) {
1478
- va_list args_list;
1479
- va_start(args_list, desc);
1480
- char buffer[1024];
1481
- vsnprintf(buffer, sizeof(buffer), desc, args_list);
1482
- va_end(args_list);
1483
- this->desc = buffer;
1484
- }
346
+ for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
347
+ char c = mask.at(i);
348
+ int8_t id = c;
1485
349
 
1486
- option_info(const std::string & grp) : grp(grp) {}
350
+ if ((c >= '0' && c <= '9')) {
351
+ id -= '0';
352
+ } else if (c >= 'a' && c <= 'f') {
353
+ id -= 'a' - 10;
354
+ } else if (c >= 'A' && c <= 'F') {
355
+ id -= 'A' - 10;
356
+ } else {
357
+ fprintf(stderr, "Invalid hex character '%c' at position %d\n", c, int32_t(i));
358
+ return false;
359
+ }
1487
360
 
1488
- std::string tags;
1489
- std::string args;
1490
- std::string desc;
1491
- std::string grp;
1492
- };
361
+ boolmask[ n ] = boolmask[ n ] || ((id & 8) != 0);
362
+ boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
363
+ boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
364
+ boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
365
+ }
1493
366
 
1494
- std::vector<option_info> options;
1495
-
1496
- // TODO: filter by tags
1497
-
1498
- options.push_back({ "general" });
1499
- options.push_back({ "*", "-h, --help, --usage", "print usage and exit" });
1500
- options.push_back({ "*", " --version", "show version and build info" });
1501
- options.push_back({ "*", "-v, --verbose", "print verbose information" });
1502
- options.push_back({ "*", " --verbosity N", "set specific verbosity level (default: %d)", params.verbosity });
1503
- options.push_back({ "*", " --verbose-prompt", "print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false" });
1504
- options.push_back({ "*", " --no-display-prompt", "don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false" });
1505
- options.push_back({ "*", "-co, --color", "colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false" });
1506
- options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", params.seed });
1507
- options.push_back({ "*", "-t, --threads N", "number of threads to use during generation (default: %d)", params.n_threads });
1508
- options.push_back({ "*", "-tb, --threads-batch N", "number of threads to use during batch and prompt processing (default: same as --threads)" });
1509
- options.push_back({ "speculative", "-td, --threads-draft N", "number of threads to use during generation (default: same as --threads)" });
1510
- options.push_back({ "speculative", "-tbd, --threads-batch-draft N",
1511
- "number of threads to use during batch and prompt processing (default: same as --threads-draft)" });
1512
- options.push_back({ "speculative", " --draft N", "number of tokens to draft for speculative decoding (default: %d)", params.n_draft });
1513
- options.push_back({ "speculative", "-ps, --p-split N", "speculative decoding split probability (default: %.1f)", (double)params.p_split });
1514
- options.push_back({ "*", "-lcs, --lookup-cache-static FNAME",
1515
- "path to static lookup cache to use for lookup decoding (not updated by generation)" });
1516
- options.push_back({ "*", "-lcd, --lookup-cache-dynamic FNAME",
1517
- "path to dynamic lookup cache to use for lookup decoding (updated by generation)" });
1518
-
1519
- options.push_back({ "*", "-c, --ctx-size N", "size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx });
1520
- options.push_back({ "*", "-n, --predict N", "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict });
1521
- options.push_back({ "*", "-b, --batch-size N", "logical maximum batch size (default: %d)", params.n_batch });
1522
- options.push_back({ "*", "-ub, --ubatch-size N", "physical maximum batch size (default: %d)", params.n_ubatch });
1523
- options.push_back({ "*", " --keep N", "number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep });
1524
- options.push_back({ "*", " --chunks N", "max number of chunks to process (default: %d, -1 = all)", params.n_chunks });
1525
- options.push_back({ "*", "-fa, --flash-attn", "enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled" });
1526
- options.push_back({ "*", "-p, --prompt PROMPT", "prompt to start generation with\n"
1527
- "in conversation mode, this will be used as system prompt\n"
1528
- "(default: '%s')", params.prompt.c_str() });
1529
- options.push_back({ "*", "-f, --file FNAME", "a file containing the prompt (default: none)" });
1530
- options.push_back({ "*", " --in-file FNAME", "an input file (repeat to specify multiple files)" });
1531
- options.push_back({ "*", "-bf, --binary-file FNAME", "binary file containing the prompt (default: none)" });
1532
- options.push_back({ "*", "-e, --escape", "process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false" });
1533
- options.push_back({ "*", " --no-escape", "do not process escape sequences" });
1534
- options.push_back({ "main", "-ptc, --print-token-count N", "print token count every N tokens (default: %d)", params.n_print });
1535
- options.push_back({ "main", " --prompt-cache FNAME", "file to cache prompt state for faster startup (default: none)" });
1536
- options.push_back({ "main", " --prompt-cache-all", "if specified, saves user input and generations to cache as well\n"
1537
- "not supported with --interactive or other interactive options" });
1538
- options.push_back({ "main", " --prompt-cache-ro", "if specified, uses the prompt cache but does not update it" });
1539
- options.push_back({ "main", "-r, --reverse-prompt PROMPT",
1540
- "halt generation at PROMPT, return control in interactive mode\n"
1541
- "can be specified more than once for multiple prompts" });
1542
- options.push_back({ "main", "-sp, --special", "special tokens output enabled (default: %s)", params.special ? "true" : "false" });
1543
- options.push_back({ "main", "-cnv, --conversation", "run in conversation mode, does not print special tokens and suffix/prefix\n"
1544
- "if suffix/prefix are not specified, default chat template will be used\n"
1545
- "(default: %s)", params.conversation ? "true" : "false" });
1546
- options.push_back({ "main infill", "-i, --interactive", "run in interactive mode (default: %s)", params.interactive ? "true" : "false" });
1547
- options.push_back({ "main infill", "-if, --interactive-first", "run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false" });
1548
- options.push_back({ "main infill", "-mli, --multiline-input", "allows you to write or paste multiple lines without ending each in '\\'" });
1549
- options.push_back({ "main infill", " --in-prefix-bos", "prefix BOS to user inputs, preceding the `--in-prefix` string" });
1550
- options.push_back({ "main infill", " --in-prefix STRING", "string to prefix user inputs with (default: empty)" });
1551
- options.push_back({ "main infill", " --in-suffix STRING", "string to suffix after user inputs with (default: empty)" });
1552
- options.push_back({ "main", " --no-warmup", "skip warming up the model with an empty run" });
1553
- options.push_back({ "server infill",
1554
- " --spm-infill", "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" });
1555
-
1556
- options.push_back({ "sampling" });
1557
- options.push_back({ "*", " --samplers SAMPLERS", "samplers that will be used for generation in the order, separated by \';\'\n"
1558
- "(default: %s)", sampler_type_names.c_str() });
1559
- options.push_back({ "*", " --sampling-seq SEQUENCE",
1560
- "simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str() });
1561
- options.push_back({ "*", " --ignore-eos", "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)" });
1562
- options.push_back({ "*", " --penalize-nl", "penalize newline tokens (default: %s)", sparams.penalize_nl ? "true" : "false" });
1563
- options.push_back({ "*", " --temp N", "temperature (default: %.1f)", (double)sparams.temp });
1564
- options.push_back({ "*", " --top-k N", "top-k sampling (default: %d, 0 = disabled)", sparams.top_k });
1565
- options.push_back({ "*", " --top-p N", "top-p sampling (default: %.1f, 1.0 = disabled)", (double)sparams.top_p });
1566
- options.push_back({ "*", " --min-p N", "min-p sampling (default: %.1f, 0.0 = disabled)", (double)sparams.min_p });
1567
- options.push_back({ "*", " --tfs N", "tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)sparams.tfs_z });
1568
- options.push_back({ "*", " --typical N", "locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)sparams.typical_p });
1569
- options.push_back({ "*", " --repeat-last-n N", "last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", sparams.penalty_last_n });
1570
- options.push_back({ "*", " --repeat-penalty N", "penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)sparams.penalty_repeat });
1571
- options.push_back({ "*", " --presence-penalty N", "repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_present });
1572
- options.push_back({ "*", " --frequency-penalty N", "repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_freq });
1573
- options.push_back({ "*", " --dynatemp-range N", "dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)sparams.dynatemp_range });
1574
- options.push_back({ "*", " --dynatemp-exp N", "dynamic temperature exponent (default: %.1f)", (double)sparams.dynatemp_exponent });
1575
- options.push_back({ "*", " --mirostat N", "use Mirostat sampling.\n"
1576
- "Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"
1577
- "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", sparams.mirostat });
1578
- options.push_back({ "*", " --mirostat-lr N", "Mirostat learning rate, parameter eta (default: %.1f)", (double)sparams.mirostat_eta });
1579
- options.push_back({ "*", " --mirostat-ent N", "Mirostat target entropy, parameter tau (default: %.1f)", (double)sparams.mirostat_tau });
1580
- options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n"
1581
- "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
1582
- "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" });
1583
- options.push_back({ "main", " --cfg-negative-prompt PROMPT",
1584
- "negative prompt to use for guidance (default: '%s')", sparams.cfg_negative_prompt.c_str() });
1585
- options.push_back({ "main", " --cfg-negative-prompt-file FNAME",
1586
- "negative prompt file to use for guidance" });
1587
- options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale });
1588
- options.push_back({ "main", " --chat-template JINJA_TEMPLATE",
1589
- "set custom jinja chat template (default: template taken from model's metadata)\n"
1590
- "if suffix/prefix are specified, template will be disabled\n"
1591
- "only commonly used templates are accepted:\n"
1592
- "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" });
1593
- options.push_back({ "grammar" });
1594
- options.push_back({ "*", " --grammar GRAMMAR", "BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", sparams.grammar.c_str() });
1595
- options.push_back({ "*", " --grammar-file FNAME", "file to read grammar from" });
1596
- options.push_back({ "*", "-j, --json-schema SCHEMA",
1597
- "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\n"
1598
- "For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead" });
1599
-
1600
- options.push_back({ "embedding" });
1601
- options.push_back({ "embedding", " --pooling {none,mean,cls,last}",
1602
- "pooling type for embeddings, use model default if unspecified" });
1603
- options.push_back({ "embedding", " --attention {causal,non-causal}",
1604
- "attention type for embeddings, use model default if unspecified" });
1605
-
1606
- options.push_back({ "context hacking" });
1607
- options.push_back({ "*", " --rope-scaling {none,linear,yarn}",
1608
- "RoPE frequency scaling method, defaults to linear unless specified by the model" });
1609
- options.push_back({ "*", " --rope-scale N", "RoPE context scaling factor, expands context by a factor of N" });
1610
- options.push_back({ "*", " --rope-freq-base N", "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)" });
1611
- options.push_back({ "*", " --rope-freq-scale N", "RoPE frequency scaling factor, expands context by a factor of 1/N" });
1612
- options.push_back({ "*", " --yarn-orig-ctx N", "YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx });
1613
- options.push_back({ "*", " --yarn-ext-factor N", "YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor });
1614
- options.push_back({ "*", " --yarn-attn-factor N", "YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor });
1615
- options.push_back({ "*", " --yarn-beta-slow N", "YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow });
1616
- options.push_back({ "*", " --yarn-beta-fast N", "YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast });
1617
- options.push_back({ "*", "-gan, --grp-attn-n N", "group-attention factor (default: %d)", params.grp_attn_n });
1618
- options.push_back({ "*", "-gaw, --grp-attn-w N", "group-attention width (default: %.1f)", (double)params.grp_attn_w });
1619
- options.push_back({ "*", "-dkvc, --dump-kv-cache", "verbose print of the KV cache" });
1620
- options.push_back({ "*", "-nkvo, --no-kv-offload", "disable KV offload" });
1621
- options.push_back({ "*", "-ctk, --cache-type-k TYPE", "KV cache data type for K (default: %s)", params.cache_type_k.c_str() });
1622
- options.push_back({ "*", "-ctv, --cache-type-v TYPE", "KV cache data type for V (default: %s)", params.cache_type_v.c_str() });
1623
-
1624
- options.push_back({ "perplexity" });
1625
- options.push_back({ "perplexity", " --all-logits", "return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false" });
1626
- options.push_back({ "perplexity", " --hellaswag", "compute HellaSwag score over random tasks from datafile supplied with -f" });
1627
- options.push_back({ "perplexity", " --hellaswag-tasks N", "number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks });
1628
- options.push_back({ "perplexity", " --winogrande", "compute Winogrande score over random tasks from datafile supplied with -f" });
1629
- options.push_back({ "perplexity", " --winogrande-tasks N", "number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks });
1630
- options.push_back({ "perplexity", " --multiple-choice", "compute multiple choice score over random tasks from datafile supplied with -f" });
1631
- options.push_back({ "perplexity", " --multiple-choice-tasks N",
1632
- "number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks });
1633
- options.push_back({ "perplexity", " --kl-divergence", "computes KL-divergence to logits provided via --kl-divergence-base" });
1634
- options.push_back({ "perplexity", " --ppl-stride N", "stride for perplexity calculation (default: %d)", params.ppl_stride });
1635
- options.push_back({ "perplexity", " --ppl-output-type {0,1}",
1636
- "output type for perplexity calculation (default: %d)", params.ppl_output_type });
1637
-
1638
- options.push_back({ "parallel" });
1639
- options.push_back({ "*", "-dt, --defrag-thold N", "KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold });
1640
- options.push_back({ "*", "-np, --parallel N", "number of parallel sequences to decode (default: %d)", params.n_parallel });
1641
- options.push_back({ "*", "-ns, --sequences N", "number of sequences to decode (default: %d)", params.n_sequences });
1642
- options.push_back({ "*", "-cb, --cont-batching", "enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled" });
1643
- options.push_back({ "*", "-nocb, --no-cont-batching", "disable continuous batching" });
1644
-
1645
- options.push_back({ "multi-modality" });
1646
- options.push_back({ "*", " --mmproj FILE", "path to a multimodal projector file for LLaVA. see examples/llava/README.md" });
1647
- options.push_back({ "*", " --image FILE", "path to an image file. use with multimodal models. Specify multiple times for batching" });
1648
-
1649
- options.push_back({ "backend" });
1650
- options.push_back({ "*", " --rpc SERVERS", "comma separated list of RPC servers" });
1651
-
1652
- if (llama_supports_mlock()) {
1653
- options.push_back({ "*", " --mlock", "force system to keep model in RAM rather than swapping or compressing" });
1654
- }
1655
- if (llama_supports_mmap()) {
1656
- options.push_back({ "*", " --no-mmap", "do not memory-map model (slower load but may reduce pageouts if not using mlock)" });
1657
- }
1658
- options.push_back({ "*", " --numa TYPE", "attempt optimizations that help on some NUMA systems\n"
1659
- " - distribute: spread execution evenly over all nodes\n"
1660
- " - isolate: only spawn threads on CPUs on the node that execution started on\n"
1661
- " - numactl: use the CPU map provided by numactl\n"
1662
- "if run without this previously, it is recommended to drop the system page cache before using this\n"
1663
- "see https://github.com/ggerganov/llama.cpp/issues/1437" });
1664
-
1665
- if (llama_supports_gpu_offload()) {
1666
- options.push_back({ "*", "-ngl, --gpu-layers N",
1667
- "number of layers to store in VRAM" });
1668
- options.push_back({ "*", "-ngld, --gpu-layers-draft N",
1669
- "number of layers to store in VRAM for the draft model" });
1670
- options.push_back({ "*", "-sm, --split-mode SPLIT_MODE",
1671
- "how to split the model across multiple GPUs, one of:\n"
1672
- " - none: use one GPU only\n"
1673
- " - layer (default): split layers and KV across GPUs\n"
1674
- " - row: split rows across GPUs" });
1675
- options.push_back({ "*", "-ts, --tensor-split SPLIT",
1676
- "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1" });
1677
- options.push_back({ "*", "-mg, --main-gpu i", "the GPU to use for the model (with split-mode = none),\n"
1678
- "or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu });
1679
- }
1680
-
1681
- options.push_back({ "model" });
1682
- options.push_back({ "*", " --check-tensors", "check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false" });
1683
- options.push_back({ "*", " --override-kv KEY=TYPE:VALUE",
1684
- "advanced option to override model metadata by key. may be specified multiple times.\n"
1685
- "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false" });
1686
- options.push_back({ "*", " --lora FNAME", "apply LoRA adapter (can be repeated to use multiple adapters)" });
1687
- options.push_back({ "*", " --lora-scaled FNAME S", "apply LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)" });
1688
- options.push_back({ "*", " --control-vector FNAME", "add a control vector\n"
1689
- "note: this argument can be repeated to add multiple control vectors" });
1690
- options.push_back({ "*", " --control-vector-scaled FNAME SCALE",
1691
- "add a control vector with user defined scaling SCALE\n"
1692
- "note: this argument can be repeated to add multiple scaled control vectors" });
1693
- options.push_back({ "*", " --control-vector-layer-range START END",
1694
- "layer range to apply the control vector(s) to, start and end inclusive" });
1695
- options.push_back({ "*", "-m, --model FNAME", "model path (default: models/$filename with filename from --hf-file\n"
1696
- "or --model-url if set, otherwise %s)", DEFAULT_MODEL_PATH });
1697
- options.push_back({ "*", "-md, --model-draft FNAME", "draft model for speculative decoding (default: unused)" });
1698
- options.push_back({ "*", "-mu, --model-url MODEL_URL", "model download url (default: unused)" });
1699
- options.push_back({ "*", "-hfr, --hf-repo REPO", "Hugging Face model repository (default: unused)" });
1700
- options.push_back({ "*", "-hff, --hf-file FILE", "Hugging Face model file (default: unused)" });
1701
- options.push_back({ "*", "-hft, --hf-token TOKEN", "Hugging Face access token (default: value from HF_TOKEN environment variable)" });
1702
-
1703
- options.push_back({ "retrieval" });
1704
- options.push_back({ "retrieval", " --context-file FNAME", "file to load context from (repeat to specify multiple files)" });
1705
- options.push_back({ "retrieval", " --chunk-size N", "minimum length of embedded text chunks (default: %d)", params.chunk_size });
1706
- options.push_back({ "retrieval", " --chunk-separator STRING",
1707
- "separator between chunks (default: '%s')", params.chunk_separator.c_str() });
1708
-
1709
- options.push_back({ "passkey" });
1710
- options.push_back({ "passkey", " --junk N", "number of times to repeat the junk text (default: %d)", params.n_junk });
1711
- options.push_back({ "passkey", " --pos N", "position of the passkey in the junk text (default: %d)", params.i_pos });
1712
-
1713
- options.push_back({ "imatrix" });
1714
- options.push_back({ "imatrix", "-o, --output FNAME", "output file (default: '%s')", params.out_file.c_str() });
1715
- options.push_back({ "imatrix", " --output-frequency N", "output the imatrix every N iterations (default: %d)", params.n_out_freq });
1716
- options.push_back({ "imatrix", " --save-frequency N", "save an imatrix copy every N iterations (default: %d)", params.n_save_freq });
1717
- options.push_back({ "imatrix", " --process-output", "collect data for the output tensor (default: %s)", params.process_output ? "true" : "false" });
1718
- options.push_back({ "imatrix", " --no-ppl", "do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false" });
1719
- options.push_back({ "imatrix", " --chunk N", "start processing the input from chunk N (default: %d)", params.i_chunk });
1720
-
1721
- options.push_back({ "bench" });
1722
- options.push_back({ "bench", "-pps", "is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false" });
1723
- options.push_back({ "bench", "-npp n0,n1,...", "number of prompt tokens" });
1724
- options.push_back({ "bench", "-ntg n0,n1,...", "number of text generation tokens" });
1725
- options.push_back({ "bench", "-npl n0,n1,...", "number of parallel prompts" });
1726
-
1727
- options.push_back({ "embedding" });
1728
- options.push_back({ "embedding", " --embd-normalize", "normalisation for embendings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize });
1729
- options.push_back({ "embedding", " --embd-output-format", "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix" });
1730
- options.push_back({ "embedding", " --embd-separator", "separator of embendings (default \\n) for example \"<#sep#>\"" });
1731
-
1732
- options.push_back({ "server" });
1733
- options.push_back({ "server", " --host HOST", "ip address to listen (default: %s)", params.hostname.c_str() });
1734
- options.push_back({ "server", " --port PORT", "port to listen (default: %d)", params.port });
1735
- options.push_back({ "server", " --path PATH", "path to serve static files from (default: %s)", params.public_path.c_str() });
1736
- options.push_back({ "server", " --embedding(s)", "restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled" });
1737
- options.push_back({ "server", " --api-key KEY", "API key to use for authentication (default: none)" });
1738
- options.push_back({ "server", " --api-key-file FNAME", "path to file containing API keys (default: none)" });
1739
- options.push_back({ "server", " --ssl-key-file FNAME", "path to file a PEM-encoded SSL private key" });
1740
- options.push_back({ "server", " --ssl-cert-file FNAME", "path to file a PEM-encoded SSL certificate" });
1741
- options.push_back({ "server", " --timeout N", "server read/write timeout in seconds (default: %d)", params.timeout_read });
1742
- options.push_back({ "server", " --threads-http N", "number of threads used to process HTTP requests (default: %d)", params.n_threads_http });
1743
- options.push_back({ "server", " --system-prompt-file FNAME",
1744
- "set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications" });
1745
- options.push_back({ "server", " --log-format {text,json}",
1746
- "log output format: json or text (default: json)" });
1747
- options.push_back({ "server", " --metrics", "enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled" });
1748
- options.push_back({ "server", " --no-slots", "disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled" });
1749
- options.push_back({ "server", " --slot-save-path PATH", "path to save slot kv cache (default: disabled)" });
1750
- options.push_back({ "server", " --chat-template JINJA_TEMPLATE",
1751
- "set custom jinja chat template (default: template taken from model's metadata)\n"
1752
- "only commonly used templates are accepted:\n"
1753
- "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" });
1754
- options.push_back({ "server", "-sps, --slot-prompt-similarity SIMILARITY",
1755
- "how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity });
1756
- options.push_back({ "server", " --lora-init-without-apply", "load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"});
1757
-
1758
- #ifndef LOG_DISABLE_LOGS
1759
- options.push_back({ "logging" });
1760
- options.push_back({ "*", " --simple-io", "use basic IO for better compatibility in subprocesses and limited consoles" });
1761
- options.push_back({ "*", "-ld, --logdir LOGDIR", "path under which to save YAML logs (no logging if unset)" });
1762
- options.push_back({ "logging", " --log-test", "Run simple logging test" });
1763
- options.push_back({ "logging", " --log-disable", "Disable trace logs" });
1764
- options.push_back({ "logging", " --log-enable", "Enable trace logs" });
1765
- options.push_back({ "logging", " --log-file FNAME", "Specify a log filename (without extension)" });
1766
- options.push_back({ "logging", " --log-new", "Create a separate new log file on start. "
1767
- "Each log file will have unique name: \"<name>.<ID>.log\"" });
1768
- options.push_back({ "logging", " --log-append", "Don't truncate the old log file." });
1769
- #endif // LOG_DISABLE_LOGS
1770
-
1771
- options.push_back({ "cvector" });
1772
- options.push_back({ "cvector", "-o, --output FNAME", "output file (default: '%s')", params.cvector_outfile.c_str() });
1773
- options.push_back({ "cvector", " --positive-file FNAME", "positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str() });
1774
- options.push_back({ "cvector", " --negative-file FNAME", "negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str() });
1775
- options.push_back({ "cvector", " --pca-batch N", "batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch });
1776
- options.push_back({ "cvector", " --pca-iter N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations });
1777
- options.push_back({ "cvector", " --method {pca,mean}", "dimensionality reduction method to be used (default: pca)" });
1778
-
1779
- options.push_back({ "export-lora" });
1780
- options.push_back({ "export-lora", "-m, --model", "model path from which to load base model (default '%s')", params.model.c_str() });
1781
- options.push_back({ "export-lora", " --lora FNAME", "path to LoRA adapter (can be repeated to use multiple adapters)" });
1782
- options.push_back({ "export-lora", " --lora-scaled FNAME S", "path to LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)" });
1783
- options.push_back({ "*", "-t, --threads N", "number of threads to use during computation (default: %d)", params.n_threads });
1784
- options.push_back({ "export-lora", "-o, --output FNAME", "output file (default: '%s')", params.lora_outfile.c_str() });
1785
-
1786
- printf("usage: %s [options]\n", argv[0]);
1787
-
1788
- for (const auto & o : options) {
1789
- if (!o.grp.empty()) {
1790
- printf("\n%s:\n\n", o.grp.c_str());
1791
- continue;
1792
- }
1793
- printf(" %-32s", o.args.c_str());
1794
- if (o.args.length() > 30) {
1795
- printf("\n%34s", "");
1796
- }
1797
-
1798
- const auto desc = o.desc;
1799
- size_t start = 0;
1800
- size_t end = desc.find('\n');
1801
- while (end != std::string::npos) {
1802
- printf("%s\n%34s", desc.substr(start, end - start).c_str(), "");
1803
- start = end + 1;
1804
- end = desc.find('\n', start);
1805
- }
1806
-
1807
- printf("%s\n", desc.substr(start).c_str());
1808
- }
1809
- printf("\n");
367
+ return true;
1810
368
  }
1811
369
 
1812
370
  std::string gpt_params_get_system_info(const gpt_params & params) {
1813
371
  std::ostringstream os;
1814
372
 
1815
- os << "system_info: n_threads = " << params.n_threads;
1816
- if (params.n_threads_batch != -1) {
1817
- os << " (n_threads_batch = " << params.n_threads_batch << ")";
373
+ os << "system_info: n_threads = " << params.cpuparams.n_threads;
374
+ if (params.cpuparams_batch.n_threads != -1) {
375
+ os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
1818
376
  }
1819
377
  #if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
1820
378
  // TODO: windows + arm64 + mingw64
@@ -2232,8 +790,9 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
2232
790
  llama_lora_adapters_apply(lctx, iparams.lora_adapters);
2233
791
  }
2234
792
 
2235
- if (params.ignore_eos) {
2236
- params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
793
+ if (params.sparams.ignore_eos && llama_token_eos(model) == -1) {
794
+ fprintf(stderr, "%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
795
+ params.sparams.ignore_eos = false;
2237
796
  }
2238
797
 
2239
798
  if (params.warmup) {
@@ -2243,10 +802,15 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
2243
802
  llama_token bos = llama_token_bos(model);
2244
803
  llama_token eos = llama_token_eos(model);
2245
804
  // some models (e.g. T5) don't have a BOS token
2246
- if (bos != -1) {
805
+ if (bos != LLAMA_TOKEN_NULL) {
2247
806
  tmp.push_back(bos);
2248
807
  }
2249
- tmp.push_back(eos);
808
+ if (eos != LLAMA_TOKEN_NULL) {
809
+ tmp.push_back(eos);
810
+ }
811
+ if (tmp.empty()) {
812
+ tmp.push_back(0);
813
+ }
2250
814
 
2251
815
  if (llama_model_has_encoder(model)) {
2252
816
  llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0));
@@ -2262,7 +826,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
2262
826
  }
2263
827
  llama_kv_cache_clear(lctx);
2264
828
  llama_synchronize(lctx);
2265
- llama_reset_timings(lctx);
829
+ llama_perf_context_reset(lctx);
2266
830
  }
2267
831
 
2268
832
  iparams.model = model;
@@ -2339,9 +903,9 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
2339
903
  cparams.n_seq_max = params.n_parallel;
2340
904
  cparams.n_batch = params.n_batch;
2341
905
  cparams.n_ubatch = params.n_ubatch;
2342
- cparams.n_threads = params.n_threads;
2343
- cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
2344
- cparams.seed = params.seed;
906
+ cparams.n_threads = params.cpuparams.n_threads;
907
+ cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
908
+ params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
2345
909
  cparams.logits_all = params.logits_all;
2346
910
  cparams.embeddings = params.embedding;
2347
911
  cparams.rope_scaling_type = params.rope_scaling_type;
@@ -2359,6 +923,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
2359
923
  cparams.cb_eval_user_data = params.cb_eval_user_data;
2360
924
  cparams.offload_kqv = !params.no_kv_offload;
2361
925
  cparams.flash_attn = params.flash_attn;
926
+ cparams.no_perf = params.no_perf;
2362
927
 
2363
928
  cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
2364
929
  cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
@@ -2366,13 +931,55 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
2366
931
  return cparams;
2367
932
  }
2368
933
 
934
+ struct lm_ggml_threadpool_params lm_ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
935
+ struct lm_ggml_threadpool_params tpp;
936
+
937
+ lm_ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults
938
+
939
+ if (params.mask_valid) {
940
+ std::memcpy(&tpp.cpumask, &params.cpumask, LM_GGML_MAX_N_THREADS);
941
+ }
942
+
943
+ tpp.prio = params.priority;
944
+ tpp.poll = params.poll;
945
+ tpp.strict_cpu = params.strict_cpu;
946
+
947
+ return tpp;
948
+ }
949
+
2369
950
  #ifdef LLAMA_USE_CURL
2370
951
 
952
+ #define CURL_MAX_RETRY 3
953
+ #define CURL_RETRY_DELAY_SECONDS 2
954
+
955
+
2371
956
  static bool starts_with(const std::string & str, const std::string & prefix) {
2372
957
  // While we wait for C++20's std::string::starts_with...
2373
958
  return str.rfind(prefix, 0) == 0;
2374
959
  }
2375
960
 
961
+ static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) {
962
+ int remaining_attempts = max_attempts;
963
+
964
+ while (remaining_attempts > 0) {
965
+ fprintf(stderr, "%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
966
+
967
+ CURLcode res = curl_easy_perform(curl);
968
+ if (res == CURLE_OK) {
969
+ return true;
970
+ }
971
+
972
+ int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
973
+ fprintf(stderr, "%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
974
+
975
+ remaining_attempts--;
976
+ std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
977
+ }
978
+
979
+ fprintf(stderr, "%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
980
+ return false;
981
+ }
982
+
2376
983
  static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
2377
984
 
2378
985
  // Initialize libcurl
@@ -2476,9 +1083,8 @@ static bool llama_download_file(const std::string & url, const std::string & pat
2476
1083
  curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
2477
1084
  curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
2478
1085
 
2479
- CURLcode res = curl_easy_perform(curl.get());
2480
- if (res != CURLE_OK) {
2481
- fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
1086
+ bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
1087
+ if (!was_perform_successful) {
2482
1088
  return false;
2483
1089
  }
2484
1090
 
@@ -2553,11 +1159,10 @@ static bool llama_download_file(const std::string & url, const std::string & pat
2553
1159
  };
2554
1160
 
2555
1161
  // start the download
2556
- fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
2557
- llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
2558
- auto res = curl_easy_perform(curl.get());
2559
- if (res != CURLE_OK) {
2560
- fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
1162
+ fprintf(stderr, "%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
1163
+ llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
1164
+ bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
1165
+ if (!was_perform_successful) {
2561
1166
  return false;
2562
1167
  }
2563
1168
 
@@ -3211,7 +1816,7 @@ void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const cha
3211
1816
 
3212
1817
  void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
3213
1818
  const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
3214
- const llama_sampling_params & sparams = params.sparams;
1819
+ const auto & sparams = params.sparams;
3215
1820
 
3216
1821
  fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
3217
1822
  fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
@@ -3231,6 +1836,7 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
3231
1836
  fprintf(stream, "cpu_has_sve: %s\n", lm_ggml_cpu_has_sve() ? "true" : "false");
3232
1837
  fprintf(stream, "cpu_has_f16c: %s\n", lm_ggml_cpu_has_f16c() ? "true" : "false");
3233
1838
  fprintf(stream, "cpu_has_fp16_va: %s\n", lm_ggml_cpu_has_fp16_va() ? "true" : "false");
1839
+ fprintf(stream, "cpu_has_riscv_v: %s\n", lm_ggml_cpu_has_riscv_v() ? "true" : "false");
3234
1840
  fprintf(stream, "cpu_has_wasm_simd: %s\n", lm_ggml_cpu_has_wasm_simd() ? "true" : "false");
3235
1841
  fprintf(stream, "cpu_has_blas: %s\n", lm_ggml_cpu_has_blas() ? "true" : "false");
3236
1842
  fprintf(stream, "cpu_has_sse3: %s\n", lm_ggml_cpu_has_sse3() ? "true" : "false");
@@ -3262,8 +1868,6 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
3262
1868
 
3263
1869
  fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
3264
1870
  fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
3265
- yaml_dump_string_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
3266
- fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
3267
1871
  fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
3268
1872
  fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
3269
1873
  fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
@@ -3274,10 +1878,7 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
3274
1878
  fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
3275
1879
  fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
3276
1880
  fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
3277
-
3278
- const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
3279
- const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
3280
- fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
1881
+ fprintf(stream, "ignore_eos: %s # default: false\n", sparams.ignore_eos ? "true" : "false");
3281
1882
 
3282
1883
  yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
3283
1884
  fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
@@ -3288,11 +1889,8 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
3288
1889
  fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
3289
1890
 
3290
1891
  fprintf(stream, "logit_bias:\n");
3291
- for (std::pair<llama_token, float> lb : sparams.logit_bias) {
3292
- if (ignore_eos && lb.first == logit_bias_eos->first) {
3293
- continue;
3294
- }
3295
- fprintf(stream, " %d: %f", lb.first, lb.second);
1892
+ for (const auto & logit_bias : sparams.logit_bias) {
1893
+ fprintf(stream, " %d: %f", logit_bias.token, logit_bias.bias);
3296
1894
  }
3297
1895
 
3298
1896
  fprintf(stream, "lora:\n");
@@ -3345,7 +1943,6 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
3345
1943
 
3346
1944
  fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
3347
1945
  fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
3348
- fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
3349
1946
  fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
3350
1947
  fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
3351
1948
  fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
@@ -3355,11 +1952,11 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
3355
1952
  yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
3356
1953
 
3357
1954
  fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
3358
- fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
1955
+ fprintf(stream, "threads: %d # default: %u\n", params.cpuparams.n_threads, std::thread::hardware_concurrency());
3359
1956
  fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
3360
1957
  fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
3361
1958
  fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
3362
- fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
1959
+ fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p);
3363
1960
  fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
3364
1961
  fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
3365
1962
  }