cui-llama.rn 1.1.2 → 1.1.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/android/src/main/CMakeLists.txt +1 -2
- package/android/src/main/jni.cpp +26 -21
- package/cpp/common.cpp +181 -1584
- package/cpp/common.h +131 -52
- package/cpp/ggml-aarch64.c +612 -0
- package/cpp/ggml-alloc.h +2 -2
- package/cpp/ggml-backend.c +33 -6
- package/cpp/ggml-backend.h +2 -0
- package/cpp/ggml-common.h +20 -0
- package/cpp/ggml-impl.h +36 -7
- package/cpp/ggml-metal.m +68 -8
- package/cpp/ggml-quants.c +932 -50
- package/cpp/ggml-quants.h +15 -0
- package/cpp/ggml.c +1712 -325
- package/cpp/ggml.h +169 -100
- package/cpp/llama-grammar.cpp +721 -122
- package/cpp/llama-grammar.h +120 -15
- package/cpp/llama-impl.h +132 -1
- package/cpp/llama-sampling.cpp +1483 -354
- package/cpp/llama-sampling.h +20 -48
- package/cpp/llama-vocab.cpp +140 -7
- package/cpp/llama-vocab.h +3 -2
- package/cpp/llama.cpp +824 -327
- package/cpp/llama.h +235 -256
- package/cpp/rn-llama.hpp +18 -14
- package/cpp/sampling.cpp +353 -354
- package/cpp/sampling.h +62 -143
- package/cpp/sgemm.cpp +153 -0
- package/package.json +1 -1
- package/cpp/grammar-parser.cpp +0 -539
- package/cpp/grammar-parser.h +0 -29
package/cpp/sampling.cpp
CHANGED
@@ -1,464 +1,463 @@
|
|
1
|
-
#define LLAMA_API_INTERNAL
|
2
1
|
#include "sampling.h"
|
3
|
-
#include <random>
|
4
2
|
|
5
|
-
|
6
|
-
struct llama_sampling_context * result = new llama_sampling_context();
|
3
|
+
#include "common.h"
|
7
4
|
|
8
|
-
|
9
|
-
|
5
|
+
#include <cmath>
|
6
|
+
#include <unordered_map>
|
10
7
|
|
11
|
-
|
12
|
-
|
13
|
-
|
8
|
+
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
9
|
+
// TODO: deduplicate with llama-impl.h
|
10
|
+
template<typename T>
|
11
|
+
struct ring_buffer {
|
12
|
+
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
|
14
13
|
|
15
|
-
|
16
|
-
if (
|
17
|
-
|
18
|
-
delete result;
|
19
|
-
return nullptr;
|
14
|
+
T & front() {
|
15
|
+
if (sz == 0) {
|
16
|
+
throw std::runtime_error("ring buffer is empty");
|
20
17
|
}
|
18
|
+
return data[first];
|
19
|
+
}
|
21
20
|
|
22
|
-
|
23
|
-
if (
|
24
|
-
|
25
|
-
delete result;
|
26
|
-
return nullptr;
|
21
|
+
const T & front() const {
|
22
|
+
if (sz == 0) {
|
23
|
+
throw std::runtime_error("ring buffer is empty");
|
27
24
|
}
|
25
|
+
return data[first];
|
26
|
+
}
|
28
27
|
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
grammar_rules.data(),
|
33
|
-
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
|
34
|
-
if (grammar == nullptr) {
|
35
|
-
throw std::runtime_error("Failed to initialize llama_grammar");
|
28
|
+
T & back() {
|
29
|
+
if (sz == 0) {
|
30
|
+
throw std::runtime_error("ring buffer is empty");
|
36
31
|
}
|
37
|
-
|
32
|
+
return data[pos];
|
38
33
|
}
|
39
34
|
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
return result;
|
47
|
-
}
|
48
|
-
|
49
|
-
void llama_sampling_free(struct llama_sampling_context * ctx) {
|
50
|
-
if (ctx->grammar != NULL) {
|
51
|
-
llama_grammar_free(ctx->grammar);
|
35
|
+
const T & back() const {
|
36
|
+
if (sz == 0) {
|
37
|
+
throw std::runtime_error("ring buffer is empty");
|
38
|
+
}
|
39
|
+
return data[pos];
|
52
40
|
}
|
53
41
|
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
42
|
+
void push_back(const T & value) {
|
43
|
+
if (sz == capacity) {
|
44
|
+
// advance the start when buffer is full
|
45
|
+
first = (first + 1) % capacity;
|
46
|
+
} else {
|
47
|
+
sz++;
|
48
|
+
}
|
49
|
+
data[pos] = value;
|
50
|
+
pos = (pos + 1) % capacity;
|
61
51
|
}
|
62
52
|
|
63
|
-
|
64
|
-
|
53
|
+
T pop_front() {
|
54
|
+
if (sz == 0) {
|
55
|
+
throw std::runtime_error("ring buffer is empty");
|
56
|
+
}
|
57
|
+
T value = data[first];
|
58
|
+
first = (first + 1) % capacity;
|
59
|
+
sz--;
|
60
|
+
return value;
|
61
|
+
}
|
65
62
|
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
if (grammar == nullptr) {
|
70
|
-
throw std::runtime_error("Failed to initialize llama_grammar");
|
63
|
+
const T & rat(size_t i) const {
|
64
|
+
if (i >= sz) {
|
65
|
+
throw std::runtime_error("ring buffer: index out of bounds");
|
71
66
|
}
|
72
|
-
|
67
|
+
return data[(first + sz - i - 1) % capacity];
|
73
68
|
}
|
74
69
|
|
75
|
-
std::
|
76
|
-
|
77
|
-
|
78
|
-
|
70
|
+
std::vector<T> to_vector() const {
|
71
|
+
std::vector<T> result;
|
72
|
+
result.reserve(sz);
|
73
|
+
for (size_t i = 0; i < sz; i++) {
|
74
|
+
result.push_back(data[(first + i) % capacity]);
|
75
|
+
}
|
76
|
+
return result;
|
77
|
+
}
|
79
78
|
|
80
|
-
void
|
81
|
-
|
82
|
-
|
79
|
+
void clear() {
|
80
|
+
// here only reset the status of the buffer
|
81
|
+
sz = 0;
|
82
|
+
first = 0;
|
83
|
+
pos = 0;
|
83
84
|
}
|
84
|
-
ctx->rng.seed(seed);
|
85
|
-
}
|
86
85
|
|
87
|
-
|
88
|
-
|
89
|
-
llama_grammar_free(dst->grammar);
|
90
|
-
dst->grammar = nullptr;
|
86
|
+
bool empty() const {
|
87
|
+
return sz == 0;
|
91
88
|
}
|
92
89
|
|
93
|
-
|
94
|
-
|
90
|
+
size_t size() const {
|
91
|
+
return sz;
|
95
92
|
}
|
96
93
|
|
97
|
-
|
98
|
-
|
94
|
+
size_t capacity = 0;
|
95
|
+
size_t sz = 0;
|
96
|
+
size_t first = 0;
|
97
|
+
size_t pos = 0;
|
98
|
+
std::vector<T> data;
|
99
|
+
};
|
99
100
|
|
100
|
-
|
101
|
-
|
102
|
-
}
|
101
|
+
struct gpt_sampler {
|
102
|
+
gpt_sampler_params params;
|
103
103
|
|
104
|
-
|
105
|
-
|
104
|
+
struct llama_sampler * grmr;
|
105
|
+
struct llama_sampler * chain;
|
106
106
|
|
107
|
-
|
107
|
+
ring_buffer<llama_token> prev;
|
108
108
|
|
109
|
-
std::
|
109
|
+
std::vector<llama_token_data> cur;
|
110
110
|
|
111
|
-
|
112
|
-
result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
|
113
|
-
}
|
111
|
+
llama_token_data_array cur_p;
|
114
112
|
|
115
|
-
|
116
|
-
|
113
|
+
void set_logits(struct llama_context * ctx, int idx) {
|
114
|
+
const auto * logits = llama_get_logits_ith(ctx, idx);
|
115
|
+
|
116
|
+
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
117
117
|
|
118
|
-
|
118
|
+
cur.resize(n_vocab);
|
119
|
+
|
120
|
+
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
121
|
+
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
|
122
|
+
}
|
123
|
+
|
124
|
+
cur_p = { cur.data(), cur.size(), -1, false };
|
125
|
+
}
|
126
|
+
};
|
127
|
+
|
128
|
+
std::string gpt_sampler_params::print() const {
|
119
129
|
char result[1024];
|
120
130
|
|
121
131
|
snprintf(result, sizeof(result),
|
122
132
|
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
123
133
|
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
|
124
134
|
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
|
125
|
-
|
126
|
-
|
127
|
-
|
135
|
+
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
|
136
|
+
top_k, tfs_z, top_p, min_p, typ_p, temp,
|
137
|
+
mirostat, mirostat_eta, mirostat_tau);
|
128
138
|
|
129
139
|
return std::string(result);
|
130
140
|
}
|
131
141
|
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
142
|
+
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) {
|
143
|
+
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
144
|
+
|
145
|
+
lparams.no_perf = params.no_perf;
|
146
|
+
|
147
|
+
auto * result = new gpt_sampler {
|
148
|
+
/* .params = */ params,
|
149
|
+
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
|
150
|
+
/* .chain = */ llama_sampler_chain_init(lparams),
|
151
|
+
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
|
152
|
+
/* .cur = */ {},
|
153
|
+
/* .cur_p = */ {},
|
154
|
+
};
|
155
|
+
|
156
|
+
llama_sampler_chain_add(result->chain,
|
157
|
+
llama_sampler_init_logit_bias(
|
158
|
+
llama_n_vocab(model),
|
159
|
+
params.logit_bias.size(),
|
160
|
+
params.logit_bias.data()));
|
161
|
+
|
162
|
+
llama_sampler_chain_add(result->chain,
|
163
|
+
llama_sampler_init_penalties(
|
164
|
+
llama_n_vocab (model),
|
165
|
+
llama_token_eos(model),
|
166
|
+
llama_token_nl (model),
|
167
|
+
params.penalty_last_n,
|
168
|
+
params.penalty_repeat,
|
169
|
+
params.penalty_freq,
|
170
|
+
params.penalty_present,
|
171
|
+
params.penalize_nl,
|
172
|
+
params.ignore_eos));
|
173
|
+
|
174
|
+
if (params.temp > 0.0f) {
|
175
|
+
if (params.mirostat == 0) {
|
176
|
+
for (const auto & cnstr : params.samplers) {
|
177
|
+
switch (cnstr) {
|
178
|
+
case GPT_SAMPLER_TYPE_TOP_K:
|
179
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
180
|
+
break;
|
181
|
+
case GPT_SAMPLER_TYPE_TOP_P:
|
182
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
183
|
+
break;
|
184
|
+
case GPT_SAMPLER_TYPE_MIN_P:
|
185
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
186
|
+
break;
|
187
|
+
case GPT_SAMPLER_TYPE_TFS_Z:
|
188
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
|
189
|
+
break;
|
190
|
+
case GPT_SAMPLER_TYPE_TYPICAL_P:
|
191
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
192
|
+
break;
|
193
|
+
case GPT_SAMPLER_TYPE_XTC:
|
194
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_p, params.xtc_t, params.min_keep, params.seed));
|
195
|
+
break;
|
196
|
+
case GPT_SAMPLER_TYPE_TEMPERATURE:
|
197
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
198
|
+
break;
|
199
|
+
default:
|
200
|
+
LM_GGML_ASSERT(false && "unknown sampler type");
|
201
|
+
}
|
139
202
|
}
|
203
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
|
204
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
205
|
+
} else if (params.mirostat == 1) {
|
206
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
207
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
208
|
+
} else if (params.mirostat == 2) {
|
209
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
210
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
|
211
|
+
} else {
|
212
|
+
LM_GGML_ASSERT(false && "unknown mirostat version");
|
140
213
|
}
|
141
214
|
} else {
|
142
|
-
result
|
215
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
|
216
|
+
llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
|
143
217
|
}
|
144
218
|
|
145
219
|
return result;
|
146
220
|
}
|
147
221
|
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
case llama_sampler_type::TEMPERATURE: return "temperature";
|
156
|
-
default : return "";
|
222
|
+
void gpt_sampler_free(struct gpt_sampler * gsmpl) {
|
223
|
+
if (gsmpl) {
|
224
|
+
llama_sampler_free(gsmpl->grmr);
|
225
|
+
|
226
|
+
llama_sampler_free(gsmpl->chain);
|
227
|
+
|
228
|
+
delete gsmpl;
|
157
229
|
}
|
158
230
|
}
|
159
231
|
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
{"typical_p", llama_sampler_type::TYPICAL_P},
|
165
|
-
{"min_p", llama_sampler_type::MIN_P},
|
166
|
-
{"tfs_z", llama_sampler_type::TFS_Z},
|
167
|
-
{"temperature", llama_sampler_type::TEMPERATURE}
|
168
|
-
};
|
232
|
+
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
233
|
+
if (accept_grammar) {
|
234
|
+
llama_sampler_accept(gsmpl->grmr, token);
|
235
|
+
}
|
169
236
|
|
170
|
-
|
171
|
-
// make it ready for both system names and input names
|
172
|
-
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
|
173
|
-
{"top-k", llama_sampler_type::TOP_K},
|
174
|
-
{"top-p", llama_sampler_type::TOP_P},
|
175
|
-
{"nucleus", llama_sampler_type::TOP_P},
|
176
|
-
{"typical-p", llama_sampler_type::TYPICAL_P},
|
177
|
-
{"typical", llama_sampler_type::TYPICAL_P},
|
178
|
-
{"min-p", llama_sampler_type::MIN_P},
|
179
|
-
{"tfs-z", llama_sampler_type::TFS_Z},
|
180
|
-
{"tfs", llama_sampler_type::TFS_Z},
|
181
|
-
{"temp", llama_sampler_type::TEMPERATURE}
|
182
|
-
};
|
237
|
+
llama_sampler_accept(gsmpl->chain, token);
|
183
238
|
|
184
|
-
|
185
|
-
sampler_types.reserve(names.size());
|
186
|
-
for (const auto & name : names)
|
187
|
-
{
|
188
|
-
auto sampler_item = sampler_canonical_name_map.find(name);
|
189
|
-
if (sampler_item != sampler_canonical_name_map.end())
|
190
|
-
{
|
191
|
-
sampler_types.push_back(sampler_item->second);
|
192
|
-
}
|
193
|
-
else
|
194
|
-
{
|
195
|
-
if (allow_alt_names)
|
196
|
-
{
|
197
|
-
sampler_item = sampler_alt_name_map.find(name);
|
198
|
-
if (sampler_item != sampler_alt_name_map.end())
|
199
|
-
{
|
200
|
-
sampler_types.push_back(sampler_item->second);
|
201
|
-
}
|
202
|
-
}
|
203
|
-
}
|
204
|
-
}
|
205
|
-
return sampler_types;
|
239
|
+
gsmpl->prev.push_back(token);
|
206
240
|
}
|
207
241
|
|
208
|
-
|
209
|
-
|
210
|
-
{'k', llama_sampler_type::TOP_K},
|
211
|
-
{'p', llama_sampler_type::TOP_P},
|
212
|
-
{'y', llama_sampler_type::TYPICAL_P},
|
213
|
-
{'m', llama_sampler_type::MIN_P},
|
214
|
-
{'f', llama_sampler_type::TFS_Z},
|
215
|
-
{'t', llama_sampler_type::TEMPERATURE}
|
216
|
-
};
|
242
|
+
void gpt_sampler_reset(struct gpt_sampler * gsmpl) {
|
243
|
+
llama_sampler_reset(gsmpl->grmr);
|
217
244
|
|
218
|
-
|
219
|
-
sampler_types.reserve(names_string.size());
|
220
|
-
for (const auto & c : names_string) {
|
221
|
-
const auto sampler_item = sampler_name_map.find(c);
|
222
|
-
if (sampler_item != sampler_name_map.end()) {
|
223
|
-
sampler_types.push_back(sampler_item->second);
|
224
|
-
}
|
225
|
-
}
|
226
|
-
return sampler_types;
|
245
|
+
llama_sampler_reset(gsmpl->chain);
|
227
246
|
}
|
228
247
|
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
const float dynatemp_exponent = params.dynatemp_exponent;
|
239
|
-
const int32_t top_k = params.top_k;
|
240
|
-
const float top_p = params.top_p;
|
241
|
-
const float min_p = params.min_p;
|
242
|
-
const float xtc_t = params.xtc_t;
|
243
|
-
const float xtc_p = params.xtc_p;
|
244
|
-
const float tfs_z = params.tfs_z;
|
245
|
-
const float typical_p = params.typical_p;
|
246
|
-
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
|
247
|
-
|
248
|
-
for (auto sampler_type : samplers_sequence) {
|
249
|
-
switch (sampler_type) {
|
250
|
-
case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
|
251
|
-
case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
|
252
|
-
case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
|
253
|
-
case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
|
254
|
-
case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
|
255
|
-
case llama_sampler_type::XTC : llama_sample_xtc (ctx_main, &cur_p, xtc_t, xtc_p, min_keep, ctx_sampling->rng); break;
|
256
|
-
case llama_sampler_type::TEMPERATURE:
|
257
|
-
if (dynatemp_range > 0) {
|
258
|
-
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
|
259
|
-
float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
|
260
|
-
llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
|
261
|
-
} else {
|
262
|
-
llama_sample_temp(ctx_main, &cur_p, temp);
|
263
|
-
}
|
264
|
-
break;
|
265
|
-
default : break;
|
266
|
-
}
|
267
|
-
}
|
248
|
+
struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
|
249
|
+
return new gpt_sampler {
|
250
|
+
/* .params = */ gsmpl->params,
|
251
|
+
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
|
252
|
+
/* .chain = */ llama_sampler_clone(gsmpl->chain),
|
253
|
+
/* .prev = */ gsmpl->prev,
|
254
|
+
/* .cur = */ gsmpl->cur,
|
255
|
+
/* .cur_p = */ gsmpl->cur_p,
|
256
|
+
};
|
268
257
|
}
|
269
258
|
|
270
|
-
|
271
|
-
|
272
|
-
struct llama_context * ctx_main,
|
273
|
-
struct llama_context * ctx_cfg,
|
274
|
-
const int idx,
|
275
|
-
bool is_resampling) {
|
276
|
-
const llama_sampling_params & params = ctx_sampling->params;
|
277
|
-
|
278
|
-
const float temp = params.temp;
|
279
|
-
const int mirostat = params.mirostat;
|
280
|
-
const float mirostat_tau = params.mirostat_tau;
|
281
|
-
const float mirostat_eta = params.mirostat_eta;
|
282
|
-
|
283
|
-
std::vector<float> original_logits;
|
284
|
-
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
|
285
|
-
if (ctx_sampling->grammar != NULL && !is_resampling) {
|
286
|
-
LM_GGML_ASSERT(!original_logits.empty());
|
287
|
-
}
|
288
|
-
llama_token id = 0;
|
289
|
-
|
290
|
-
if (temp < 0.0) {
|
291
|
-
// greedy sampling, with probs
|
292
|
-
llama_sample_softmax(ctx_main, &cur_p);
|
293
|
-
id = cur_p.data[0].id;
|
294
|
-
} else if (temp == 0.0) {
|
295
|
-
// greedy sampling, no probs
|
296
|
-
id = llama_sample_token_greedy(ctx_main, &cur_p);
|
297
|
-
} else {
|
298
|
-
if (mirostat == 1) {
|
299
|
-
const int mirostat_m = 100;
|
300
|
-
llama_sample_temp(ctx_main, &cur_p, temp);
|
301
|
-
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
|
302
|
-
} else if (mirostat == 2) {
|
303
|
-
llama_sample_temp(ctx_main, &cur_p, temp);
|
304
|
-
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
305
|
-
} else {
|
306
|
-
// temperature sampling
|
307
|
-
size_t min_keep = std::max(1, params.min_keep);
|
308
|
-
|
309
|
-
sampler_queue(ctx_main, ctx_sampling, params, cur_p, min_keep);
|
259
|
+
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl) {
|
260
|
+
// TODO: measure grammar performance
|
310
261
|
|
311
|
-
|
262
|
+
if (gsmpl) {
|
263
|
+
llama_perf_sampler_print(gsmpl->chain);
|
264
|
+
}
|
265
|
+
if (ctx) {
|
266
|
+
llama_perf_context_print(ctx);
|
267
|
+
}
|
268
|
+
}
|
312
269
|
|
313
|
-
|
314
|
-
|
315
|
-
// LOG("top %d candidates:\n", n_top);
|
270
|
+
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
271
|
+
gsmpl->set_logits(ctx, idx);
|
316
272
|
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
|
321
|
-
// }
|
322
|
-
//}
|
273
|
+
auto & grmr = gsmpl->grmr;
|
274
|
+
auto & chain = gsmpl->chain;
|
275
|
+
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
|
323
276
|
|
324
|
-
|
325
|
-
|
277
|
+
if (grammar_first) {
|
278
|
+
llama_sampler_apply(grmr, &cur_p);
|
326
279
|
}
|
327
280
|
|
328
|
-
|
329
|
-
// Get a pointer to the logits
|
330
|
-
float * logits = llama_get_logits_ith(ctx_main, idx);
|
281
|
+
llama_sampler_apply(chain, &cur_p);
|
331
282
|
|
332
|
-
|
333
|
-
llama_token_data single_token_data = {id, logits[id], 0.0f};
|
334
|
-
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
|
283
|
+
LM_GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
|
335
284
|
|
336
|
-
|
337
|
-
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &single_token_data_array);
|
285
|
+
const llama_token id = cur_p.data[cur_p.selected].id;
|
338
286
|
|
339
|
-
|
340
|
-
|
287
|
+
if (grammar_first) {
|
288
|
+
return id;
|
289
|
+
}
|
341
290
|
|
342
|
-
|
343
|
-
|
344
|
-
|
291
|
+
// check if it the sampled token fits the grammar
|
292
|
+
{
|
293
|
+
llama_token_data single_token_data = { id, 1.0f, 0.0f };
|
294
|
+
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
|
345
295
|
|
346
|
-
|
347
|
-
std::copy(original_logits.begin(), original_logits.end(), logits);
|
296
|
+
llama_sampler_apply(grmr, &single_token_data_array);
|
348
297
|
|
349
|
-
|
298
|
+
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
|
299
|
+
if (is_valid) {
|
300
|
+
return id;
|
350
301
|
}
|
351
302
|
}
|
352
303
|
|
353
|
-
|
304
|
+
// resampling:
|
305
|
+
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
|
306
|
+
gsmpl->set_logits(ctx, idx);
|
354
307
|
|
355
|
-
|
356
|
-
|
308
|
+
llama_sampler_apply(grmr, &cur_p);
|
309
|
+
llama_sampler_apply(chain, &cur_p);
|
357
310
|
|
358
|
-
|
359
|
-
struct llama_sampling_context * ctx_sampling,
|
360
|
-
struct llama_context * ctx_main,
|
361
|
-
struct llama_context * ctx_cfg,
|
362
|
-
const int idx,
|
363
|
-
bool apply_grammar,
|
364
|
-
std::vector<float> * original_logits) {
|
365
|
-
const llama_sampling_params & params = ctx_sampling->params;
|
311
|
+
LM_GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
|
366
312
|
|
367
|
-
|
313
|
+
return cur_p.data[cur_p.selected].id;
|
314
|
+
}
|
368
315
|
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
const float penalty_present = params.penalty_present;
|
316
|
+
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
|
317
|
+
return llama_sampler_get_seed(gsmpl->chain);
|
318
|
+
}
|
373
319
|
|
374
|
-
|
320
|
+
// helpers
|
375
321
|
|
376
|
-
|
377
|
-
|
322
|
+
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
|
323
|
+
return &gsmpl->cur_p;
|
324
|
+
}
|
378
325
|
|
379
|
-
|
380
|
-
|
326
|
+
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) {
|
327
|
+
return gsmpl->prev.rat(0);
|
328
|
+
}
|
329
|
+
|
330
|
+
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
|
331
|
+
std::string result = "\tlogits ";
|
381
332
|
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
*original_logits = {logits, logits + n_vocab};
|
333
|
+
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
|
334
|
+
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
|
335
|
+
result += std::string("-> ") + llama_sampler_name(smpl) + " ";
|
386
336
|
}
|
387
337
|
|
388
|
-
|
389
|
-
|
390
|
-
|
338
|
+
return result;
|
339
|
+
}
|
340
|
+
|
341
|
+
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main, int n) {
|
342
|
+
n = std::min(n, (int) gsmpl->prev.size());
|
343
|
+
|
344
|
+
if (n <= 0) {
|
345
|
+
return "";
|
391
346
|
}
|
392
347
|
|
393
|
-
|
394
|
-
|
395
|
-
|
348
|
+
std::string result;
|
349
|
+
result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
|
350
|
+
|
351
|
+
for (int i = n - 1; i >= 0; i--) {
|
352
|
+
const llama_token id = gsmpl->prev.rat(i);
|
353
|
+
|
354
|
+
LM_GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
|
355
|
+
|
356
|
+
result += llama_token_to_piece(ctx_main, id);
|
396
357
|
}
|
397
358
|
|
398
|
-
|
359
|
+
return result;
|
360
|
+
}
|
399
361
|
|
400
|
-
|
401
|
-
|
362
|
+
struct llama_sampler_timings gpt_sampler_get_timigs(const struct gpt_sampler * gsmpl){
|
363
|
+
return llama_sampler_chain_timings(gsmpl -> chain);
|
364
|
+
}
|
365
|
+
|
366
|
+
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr) {
|
367
|
+
switch (cnstr) {
|
368
|
+
case GPT_SAMPLER_TYPE_TOP_K: return 'k';
|
369
|
+
case GPT_SAMPLER_TYPE_TFS_Z: return 'f';
|
370
|
+
case GPT_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
371
|
+
case GPT_SAMPLER_TYPE_TOP_P: return 'p';
|
372
|
+
case GPT_SAMPLER_TYPE_MIN_P: return 'm';
|
373
|
+
case GPT_SAMPLER_TYPE_TEMPERATURE: return 't';
|
374
|
+
case GPT_SAMPLER_TYPE_XTC: return 'x';
|
375
|
+
default : return '?';
|
376
|
+
}
|
377
|
+
}
|
378
|
+
|
379
|
+
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr) {
|
380
|
+
switch (cnstr) {
|
381
|
+
case GPT_SAMPLER_TYPE_TOP_K: return "top_k";
|
382
|
+
case GPT_SAMPLER_TYPE_TFS_Z: return "tfs_z";
|
383
|
+
case GPT_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
384
|
+
case GPT_SAMPLER_TYPE_TOP_P: return "top_p";
|
385
|
+
case GPT_SAMPLER_TYPE_MIN_P: return "min_p";
|
386
|
+
case GPT_SAMPLER_TYPE_XTC: return "xtc";
|
387
|
+
case GPT_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
388
|
+
default : return "";
|
402
389
|
}
|
390
|
+
}
|
403
391
|
|
404
|
-
|
392
|
+
std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
393
|
+
std::unordered_map<std::string, gpt_sampler_type> sampler_canonical_name_map {
|
394
|
+
{ "top_k", GPT_SAMPLER_TYPE_TOP_K },
|
395
|
+
{ "top_p", GPT_SAMPLER_TYPE_TOP_P },
|
396
|
+
{ "typ_p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
397
|
+
{ "min_p", GPT_SAMPLER_TYPE_MIN_P },
|
398
|
+
{ "tfs_z", GPT_SAMPLER_TYPE_TFS_Z },
|
399
|
+
{ "xtc", GPT_SAMPLER_TYPE_XTC},
|
400
|
+
{ "temperature", GPT_SAMPLER_TYPE_TEMPERATURE },
|
401
|
+
};
|
405
402
|
|
406
|
-
//
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
403
|
+
// since samplers names are written multiple ways
|
404
|
+
// make it ready for both system names and input names
|
405
|
+
std::unordered_map<std::string, gpt_sampler_type> sampler_alt_name_map {
|
406
|
+
{ "top-k", GPT_SAMPLER_TYPE_TOP_K },
|
407
|
+
{ "top-p", GPT_SAMPLER_TYPE_TOP_P },
|
408
|
+
{ "nucleus", GPT_SAMPLER_TYPE_TOP_P },
|
409
|
+
{ "typical-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
410
|
+
{ "typical", GPT_SAMPLER_TYPE_TYPICAL_P },
|
411
|
+
{ "typ-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
412
|
+
{ "typ", GPT_SAMPLER_TYPE_TYPICAL_P },
|
413
|
+
{ "min-p", GPT_SAMPLER_TYPE_MIN_P },
|
414
|
+
{ "tfs-z", GPT_SAMPLER_TYPE_TFS_Z },
|
415
|
+
{ "tfs", GPT_SAMPLER_TYPE_TFS_Z },
|
416
|
+
{ "xtc_p", GPT_SAMPLER_TYPE_XTC},
|
417
|
+
{ "xtc_t", GPT_SAMPLER_TYPE_XTC},
|
418
|
+
{ "temp", GPT_SAMPLER_TYPE_TEMPERATURE },
|
419
|
+
};
|
411
420
|
|
412
|
-
|
413
|
-
|
414
|
-
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
|
421
|
+
std::vector<gpt_sampler_type> samplers;
|
422
|
+
samplers.reserve(names.size());
|
415
423
|
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
424
|
+
for (const auto & name : names) {
|
425
|
+
auto sampler = sampler_canonical_name_map.find(name);
|
426
|
+
if (sampler != sampler_canonical_name_map.end()) {
|
427
|
+
samplers.push_back(sampler->second);
|
428
|
+
} else {
|
429
|
+
if (allow_alt_names) {
|
430
|
+
sampler = sampler_alt_name_map.find(name);
|
431
|
+
if (sampler != sampler_alt_name_map.end()) {
|
432
|
+
samplers.push_back(sampler->second);
|
421
433
|
}
|
422
434
|
}
|
423
435
|
}
|
424
436
|
}
|
425
437
|
|
426
|
-
|
427
|
-
if (apply_grammar && ctx_sampling->grammar != NULL) {
|
428
|
-
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &cur_p);
|
429
|
-
}
|
430
|
-
|
431
|
-
return cur_p;
|
438
|
+
return samplers;
|
432
439
|
}
|
433
440
|
|
434
|
-
|
435
|
-
|
436
|
-
|
437
|
-
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
}
|
442
|
-
|
443
|
-
|
444
|
-
struct llama_sampling_context * ctx_sampling,
|
445
|
-
struct llama_context * ctx_main,
|
446
|
-
struct llama_context * ctx_cfg,
|
447
|
-
const int idx,
|
448
|
-
bool apply_grammar,
|
449
|
-
std::vector<float> * original_logits) {
|
450
|
-
return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
|
451
|
-
}
|
441
|
+
std::vector<gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars) {
|
442
|
+
std::unordered_map<char, gpt_sampler_type> sampler_name_map = {
|
443
|
+
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_K), GPT_SAMPLER_TYPE_TOP_K },
|
444
|
+
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TFS_Z), GPT_SAMPLER_TYPE_TFS_Z },
|
445
|
+
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TYPICAL_P), GPT_SAMPLER_TYPE_TYPICAL_P },
|
446
|
+
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_P), GPT_SAMPLER_TYPE_TOP_P },
|
447
|
+
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_MIN_P), GPT_SAMPLER_TYPE_MIN_P },
|
448
|
+
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_XTC), GPT_SAMPLER_TYPE_XTC},
|
449
|
+
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TEMPERATURE), GPT_SAMPLER_TYPE_TEMPERATURE }
|
450
|
+
};
|
452
451
|
|
453
|
-
|
454
|
-
|
455
|
-
struct llama_context * ctx_main,
|
456
|
-
llama_token id,
|
457
|
-
bool apply_grammar) {
|
458
|
-
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
|
459
|
-
ctx_sampling->prev.push_back(id);
|
452
|
+
std::vector<gpt_sampler_type> samplers;
|
453
|
+
samplers.reserve(chars.size());
|
460
454
|
|
461
|
-
|
462
|
-
|
455
|
+
for (const auto & c : chars) {
|
456
|
+
const auto sampler = sampler_name_map.find(c);
|
457
|
+
if (sampler != sampler_name_map.end()) {
|
458
|
+
samplers.push_back(sampler->second);
|
459
|
+
}
|
463
460
|
}
|
461
|
+
|
462
|
+
return samplers;
|
464
463
|
}
|