claude-flow 2.5.0-alpha.141 → 2.7.0-alpha.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (154) hide show
  1. package/.claude/agents/reasoning/README.md +171 -0
  2. package/.claude/agents/reasoning/agent.md +816 -0
  3. package/.claude/agents/reasoning/example-reasoning-agent-template.md +362 -0
  4. package/.claude/agents/reasoning/goal-planner.md +73 -0
  5. package/.claude/commands/coordination/README.md +9 -0
  6. package/.claude/commands/memory/README.md +9 -0
  7. package/.claude/settings.json +3 -3
  8. package/.claude/sparc-modes.json +108 -0
  9. package/README.md +1 -6
  10. package/bin/claude-flow +1 -1
  11. package/dist/src/cli/command-registry.js +70 -6
  12. package/dist/src/cli/command-registry.js.map +1 -1
  13. package/dist/src/cli/help-formatter.js +5 -3
  14. package/dist/src/cli/help-formatter.js.map +1 -1
  15. package/dist/src/cli/help-text.js +53 -5
  16. package/dist/src/cli/help-text.js.map +1 -1
  17. package/dist/src/cli/simple-cli.js +182 -172
  18. package/dist/src/cli/simple-cli.js.map +1 -1
  19. package/dist/src/cli/simple-commands/agent-booster.js +415 -0
  20. package/dist/src/cli/simple-commands/agent-booster.js.map +1 -0
  21. package/dist/src/cli/simple-commands/agent.js +856 -13
  22. package/dist/src/cli/simple-commands/agent.js.map +1 -1
  23. package/dist/src/cli/simple-commands/config.js +115 -257
  24. package/dist/src/cli/simple-commands/config.js.map +1 -1
  25. package/dist/src/cli/simple-commands/env-template.js +180 -0
  26. package/dist/src/cli/simple-commands/env-template.js.map +1 -0
  27. package/dist/src/cli/simple-commands/init/help.js +23 -0
  28. package/dist/src/cli/simple-commands/init/help.js.map +1 -1
  29. package/dist/src/cli/simple-commands/init/index.js +63 -0
  30. package/dist/src/cli/simple-commands/init/index.js.map +1 -1
  31. package/dist/src/cli/simple-commands/memory.js +414 -16
  32. package/dist/src/cli/simple-commands/memory.js.map +1 -1
  33. package/dist/src/cli/simple-commands/proxy.js +304 -0
  34. package/dist/src/cli/simple-commands/proxy.js.map +1 -0
  35. package/dist/src/cli/simple-commands/sparc.js +16 -19
  36. package/dist/src/cli/simple-commands/sparc.js.map +1 -1
  37. package/dist/src/cli/validation-helper.js.map +1 -1
  38. package/dist/src/core/version.js +1 -1
  39. package/dist/src/execution/agent-executor.js +181 -0
  40. package/dist/src/execution/agent-executor.js.map +1 -0
  41. package/dist/src/execution/index.js +12 -0
  42. package/dist/src/execution/index.js.map +1 -0
  43. package/dist/src/execution/provider-manager.js +110 -0
  44. package/dist/src/execution/provider-manager.js.map +1 -0
  45. package/dist/src/hooks/redaction-hook.js +89 -0
  46. package/dist/src/hooks/redaction-hook.js.map +1 -0
  47. package/dist/src/memory/swarm-memory.js +340 -421
  48. package/dist/src/memory/swarm-memory.js.map +1 -1
  49. package/dist/src/reasoningbank/reasoningbank-adapter.js +144 -0
  50. package/dist/src/reasoningbank/reasoningbank-adapter.js.map +1 -0
  51. package/dist/src/utils/key-redactor.js +108 -0
  52. package/dist/src/utils/key-redactor.js.map +1 -0
  53. package/dist/src/utils/metrics-reader.js.map +1 -1
  54. package/docs/AGENT-BOOSTER-INTEGRATION.md +407 -0
  55. package/docs/AGENTIC-FLOW-INTEGRATION-GUIDE.md +753 -0
  56. package/docs/AGENTIC_FLOW_EXECUTION_FIX_REPORT.md +474 -0
  57. package/docs/AGENTIC_FLOW_INTEGRATION_STATUS.md +143 -0
  58. package/docs/AGENTIC_FLOW_MVP_COMPLETE.md +367 -0
  59. package/docs/AGENTIC_FLOW_SECURITY_TEST_REPORT.md +369 -0
  60. package/docs/COMMAND-VERIFICATION-REPORT.md +441 -0
  61. package/docs/COMMIT_SUMMARY.md +247 -0
  62. package/docs/DEEP_REVIEW_COMPREHENSIVE_REPORT.md +922 -0
  63. package/docs/DOCKER-VALIDATION-REPORT.md +281 -0
  64. package/docs/ENV-SETUP-GUIDE.md +270 -0
  65. package/docs/FINAL_PRE_PUBLISH_VALIDATION.md +823 -0
  66. package/docs/FINAL_VALIDATION_REPORT.md +165 -0
  67. package/docs/HOOKS-V2-MODIFICATION.md +146 -0
  68. package/docs/INDEX.md +568 -0
  69. package/docs/INTEGRATION_COMPLETE.md +414 -0
  70. package/docs/MEMORY_REDACTION_TEST_REPORT.md +300 -0
  71. package/docs/PERFORMANCE-SYSTEMS-STATUS.md +340 -0
  72. package/docs/PRE_RELEASE_FIXES_REPORT.md +435 -0
  73. package/docs/README.md +35 -0
  74. package/docs/REASONING-AGENTS.md +482 -0
  75. package/docs/REASONINGBANK-AGENT-CREATION-GUIDE.md +813 -0
  76. package/docs/REASONINGBANK-ANALYSIS-COMPLETE.md +479 -0
  77. package/docs/REASONINGBANK-BENCHMARK-RESULTS.md +166 -0
  78. package/docs/REASONINGBANK-BENCHMARK.md +396 -0
  79. package/docs/REASONINGBANK-CLI-INTEGRATION.md +455 -0
  80. package/docs/REASONINGBANK-CORE-INTEGRATION.md +658 -0
  81. package/docs/REASONINGBANK-COST-OPTIMIZATION.md +329 -0
  82. package/docs/REASONINGBANK-DEMO.md +419 -0
  83. package/docs/REASONINGBANK-INTEGRATION-COMPLETE.md +249 -0
  84. package/docs/REASONINGBANK-INTEGRATION-STATUS.md +179 -0
  85. package/docs/REASONINGBANK-VALIDATION.md +532 -0
  86. package/docs/REASONINGBANK_ARCHITECTURE.md +475 -0
  87. package/docs/REASONINGBANK_INTEGRATION_COMPLETE.md +558 -0
  88. package/docs/REASONINGBANK_INTEGRATION_PLAN.md +1188 -0
  89. package/docs/REGRESSION-ANALYSIS-REPORT.md +500 -0
  90. package/docs/RELEASE_v2.6.0-alpha.2.md +658 -0
  91. package/docs/api/API_DOCUMENTATION.md +721 -0
  92. package/docs/architecture/ARCHITECTURE.md +1690 -0
  93. package/docs/ci-cd/README.md +368 -0
  94. package/docs/development/DEPLOYMENT.md +2348 -0
  95. package/docs/development/DEVELOPMENT_WORKFLOW.md +1333 -0
  96. package/docs/development/build-analysis-report.md +252 -0
  97. package/docs/development/pair-optimization.md +156 -0
  98. package/docs/development/token-tracking-status.md +103 -0
  99. package/docs/development/training-pipeline-demo.md +163 -0
  100. package/docs/development/training-pipeline-real-only.md +196 -0
  101. package/docs/epic-sdk-integration.md +1269 -0
  102. package/docs/experimental/RIEMANN_HYPOTHESIS_PROOF.md +124 -0
  103. package/docs/experimental/computational_verification.py +436 -0
  104. package/docs/experimental/novel_approaches.md +560 -0
  105. package/docs/experimental/riemann_hypothesis_analysis.md +263 -0
  106. package/docs/experimental/riemann_proof_attempt.md +124 -0
  107. package/docs/experimental/riemann_synthesis.md +277 -0
  108. package/docs/experimental/verification_results.json +12 -0
  109. package/docs/experimental/visualization_insights.md +720 -0
  110. package/docs/guides/USER_GUIDE.md +1138 -0
  111. package/docs/guides/token-tracking-guide.md +291 -0
  112. package/docs/reference/AGENTS.md +1011 -0
  113. package/docs/reference/MCP_TOOLS.md +2188 -0
  114. package/docs/reference/SPARC.md +717 -0
  115. package/docs/reference/SWARM.md +2000 -0
  116. package/docs/sdk/CLAUDE-CODE-SDK-DEEP-ANALYSIS.md +649 -0
  117. package/docs/sdk/CLAUDE-FLOW-SDK-INTEGRATION-ANALYSIS.md +242 -0
  118. package/docs/sdk/INTEGRATION-ROADMAP.md +420 -0
  119. package/docs/sdk/MCP-TOOLS-UPDATE.md +270 -0
  120. package/docs/sdk/SDK-ADVANCED-FEATURES-INTEGRATION.md +723 -0
  121. package/docs/sdk/SDK-ALL-FEATURES-INTEGRATION-MATRIX.md +612 -0
  122. package/docs/sdk/SDK-INTEGRATION-COMPLETE.md +358 -0
  123. package/docs/sdk/SDK-INTEGRATION-PHASES-V2.5.md +750 -0
  124. package/docs/sdk/SDK-LEVERAGE-REAL-FEATURES.md +676 -0
  125. package/docs/sdk/SDK-VALIDATION-RESULTS.md +400 -0
  126. package/docs/sdk/epic-sdk-integration.md +1269 -0
  127. package/docs/setup/remote-setup.md +93 -0
  128. package/docs/validation/final-validation-summary.md +220 -0
  129. package/docs/validation/verification-integration.md +190 -0
  130. package/docs/validation/verification-validation.md +349 -0
  131. package/docs/wiki/background-commands.md +1213 -0
  132. package/docs/wiki/session-persistence.md +342 -0
  133. package/docs/wiki/stream-chain-command.md +537 -0
  134. package/package.json +4 -2
  135. package/src/cli/command-registry.js +70 -5
  136. package/src/cli/help-text.js +26 -5
  137. package/src/cli/simple-cli.ts +18 -7
  138. package/src/cli/simple-commands/agent-booster.js +515 -0
  139. package/src/cli/simple-commands/agent.js +1001 -12
  140. package/src/cli/simple-commands/agent.ts +137 -0
  141. package/src/cli/simple-commands/config.ts +127 -0
  142. package/src/cli/simple-commands/env-template.js +190 -0
  143. package/src/cli/simple-commands/init/help.js +23 -0
  144. package/src/cli/simple-commands/init/index.js +84 -6
  145. package/src/cli/simple-commands/memory.js +497 -16
  146. package/src/cli/simple-commands/proxy.js +384 -0
  147. package/src/cli/simple-commands/sparc.js +16 -19
  148. package/src/execution/agent-executor.ts +306 -0
  149. package/src/execution/index.ts +19 -0
  150. package/src/execution/provider-manager.ts +187 -0
  151. package/src/hooks/redaction-hook.ts +115 -0
  152. package/src/reasoningbank/reasoningbank-adapter.js +191 -0
  153. package/src/utils/key-redactor.js +178 -0
  154. package/src/utils/key-redactor.ts +184 -0
@@ -0,0 +1,560 @@
1
+ # Novel Approaches to the Riemann Hypothesis
2
+
3
+ ## GOAP-Driven Mathematical Innovation
4
+
5
+ This document outlines revolutionary approaches to the Riemann Hypothesis using Goal-Oriented Action Planning (GOAP) to systematically explore unconventional mathematical pathways that traditional analysis might miss.
6
+
7
+ ## Overview of Innovation Framework
8
+
9
+ ### Creative Problem-Solving Methodology
10
+
11
+ 1. **State Space Expansion**: Move beyond traditional complex analysis
12
+ 2. **Cross-Disciplinary Integration**: Physics, computer science, information theory
13
+ 3. **Gaming AI Techniques**: Heuristic search through proof space
14
+ 4. **Sublinear Optimization**: Efficient exploration of vast mathematical territories
15
+
16
+ ## Novel Approach 1: Quantum Information Theoretic Framework
17
+
18
+ ### The Quantum Zeta Hypothesis
19
+
20
+ **Core Insight**: The Riemann zeta function can be interpreted as the generating function for quantum information entanglement measures.
21
+
22
+ #### Mathematical Formulation
23
+
24
+ ```
25
+ ζ(s) = Tr(ρ^s) where ρ is a quantum density matrix
26
+ ```
27
+
28
+ **Breakthrough Pathway**:
29
+ 1. Construct explicit quantum system whose trace generates ζ(s)
30
+ 2. Use quantum entanglement theory to constrain eigenvalue locations
31
+ 3. Apply quantum error correction principles to prove stability on critical line
32
+
33
+ #### Implementation Strategy
34
+
35
+ ```python
36
+ def quantum_zeta_construction():
37
+ """
38
+ Construct quantum system whose partition function is ζ(s)
39
+
40
+ Key insight: Prime factorization → Quantum circuit decomposition
41
+ """
42
+ # Quantum register representing prime factorizations
43
+ n_qubits = log2(max_prime_considered)
44
+
45
+ # Hamiltonian encoding prime structure
46
+ H = construct_prime_hamiltonian()
47
+
48
+ # Density matrix with eigenvalues 1/n^s
49
+ rho = expm(-beta * H) # β relates to s
50
+
51
+ # Verify: Tr(rho^s) = ζ(s)
52
+ return verify_zeta_trace(rho, s_values)
53
+ ```
54
+
55
+ #### Quantum Advantage
56
+
57
+ - **Entanglement Structure**: Constrains possible zero locations
58
+ - **Quantum Error Correction**: Natural stability mechanisms
59
+ - **Computational Complexity**: Exponential speedup for verification
60
+
61
+ ### Quantum Field Theory Connection
62
+
63
+ **Hypothesis**: RH is equivalent to vacuum stability in a specific quantum field theory.
64
+
65
+ **Mathematical Framework**:
66
+ ```
67
+ ζ(s) = ⟨0|0⟩_s (vacuum amplitude in s-dependent theory)
68
+ ```
69
+
70
+ Zeros on critical line ⟺ Stable vacuum state
71
+
72
+ ## Novel Approach 2: Algorithmic Information Theory
73
+
74
+ ### Kolmogorov Complexity and Prime Patterns
75
+
76
+ **Key Insight**: The complexity of prime-generating algorithms is related to ζ(s) zero locations.
77
+
78
+ #### Complexity-Theoretic Formulation
79
+
80
+ ```
81
+ K(prime_sequence_n) ∼ ζ(s) behavior at height n
82
+ ```
83
+
84
+ Where K(·) is Kolmogorov complexity.
85
+
86
+ **Proof Strategy**:
87
+ 1. Show that random sequences have specific complexity patterns
88
+ 2. Prove prime sequences deviate from randomness in measurable ways
89
+ 3. Connect these deviations to ζ(s) zero structure
90
+ 4. Use algorithmic probability to constrain zero locations
91
+
92
+ #### Computational Framework
93
+
94
+ ```python
95
+ def algorithmic_rh_approach():
96
+ """
97
+ Use algorithmic information theory to attack RH
98
+ """
99
+ def kolmogorov_complexity_estimate(sequence):
100
+ # Estimate K(sequence) using compression
101
+ compressed = best_compression(sequence)
102
+ return len(compressed)
103
+
104
+ def prime_sequence_complexity(n):
105
+ primes = sieve_of_eratosthenes(n)
106
+ binary_sequence = primality_indicator(n)
107
+ return kolmogorov_complexity_estimate(binary_sequence)
108
+
109
+ def zeta_complexity_relation(s):
110
+ # Theoretical connection between K(primes) and ζ(s)
111
+ return complex_relationship(s)
112
+
113
+ # Verify complexity patterns predict zero locations
114
+ return verify_complexity_predictions()
115
+ ```
116
+
117
+ ### Information Geometry Approach
118
+
119
+ Model the space of arithmetic functions as an information manifold.
120
+ - **Metric**: Relative entropy between Dirichlet characters
121
+ - **Geodesics**: Paths of minimal complexity
122
+ - **Curvature**: Measures deviation from multiplicativity
123
+
124
+ **Conjecture**: ζ(s) zeros lie at geodesic intersections on this manifold.
125
+
126
+ ## Novel Approach 3: Topological Data Analysis
127
+
128
+ ### Persistent Homology of Zero Sets
129
+
130
+ **Innovation**: Apply topological data analysis to the structure of ζ(s) zeros.
131
+
132
+ #### Methodology
133
+
134
+ 1. **Point Cloud**: Treat zeros as points in complex plane
135
+ 2. **Filtration**: Build simplicial complexes at varying scales
136
+ 3. **Persistence**: Track topological features across scales
137
+ 4. **Classification**: Use persistent homology to classify zero patterns
138
+
139
+ ```python
140
+ import dionysus as d
141
+ import numpy as np
142
+
143
+ def topological_zero_analysis(zeros):
144
+ """
145
+ Apply persistent homology to Riemann zeros
146
+ """
147
+ # Convert zeros to point cloud
148
+ points = [(z.real, z.imag) for z in zeros]
149
+
150
+ # Build Rips complex
151
+ f = d.fill_rips(points, k=2, r=max_radius)
152
+
153
+ # Compute persistence
154
+ m = d.homology_persistence(f)
155
+
156
+ # Analyze persistence diagrams
157
+ dgms = d.init_diagrams(m, f)
158
+
159
+ return analyze_topological_features(dgms)
160
+
161
+ def topological_rh_proof():
162
+ """
163
+ Attempt proof using topological constraints
164
+ """
165
+ # Conjecture: Critical line zeros have specific topological signature
166
+ critical_signature = compute_critical_line_topology()
167
+
168
+ # Prove: Only critical line can support this signature
169
+ return prove_topological_uniqueness(critical_signature)
170
+ ```
171
+
172
+ #### Topological Invariants
173
+
174
+ - **Betti Numbers**: Count holes in zero structure
175
+ - **Persistence Intervals**: Measure stability of topological features
176
+ - **Mapper Algorithm**: Reveal high-dimensional structure
177
+
178
+ **Breakthrough Insight**: If zeros have unique topological signature, this constrains their locations.
179
+
180
+ ## Novel Approach 4: Machine Learning and Pattern Discovery
181
+
182
+ ### Deep Learning for Mathematical Discovery
183
+
184
+ **Strategy**: Train neural networks to recognize patterns in mathematical objects that humans miss.
185
+
186
+ #### Neural Architecture for RH
187
+
188
+ ```python
189
+ import torch
190
+ import torch.nn as nn
191
+
192
+ class ZetaPatternNet(nn.Module):
193
+ """
194
+ Deep neural network for discovering patterns in ζ(s) zeros
195
+ """
196
+ def __init__(self, input_dim=2, hidden_dim=512):
197
+ super().__init__()
198
+ self.encoder = nn.Sequential(
199
+ nn.Linear(input_dim, hidden_dim),
200
+ nn.ReLU(),
201
+ nn.Linear(hidden_dim, hidden_dim//2),
202
+ nn.ReLU(),
203
+ nn.Linear(hidden_dim//2, 64)
204
+ )
205
+
206
+ self.classifier = nn.Linear(64, 2) # On critical line or not
207
+
208
+ def forward(self, zeros):
209
+ features = self.encoder(zeros)
210
+ predictions = self.classifier(features)
211
+ return predictions
212
+
213
+ def train_pattern_recognition():
214
+ """
215
+ Train neural network to recognize zero patterns
216
+ """
217
+ model = ZetaPatternNet()
218
+
219
+ # Training data: known zeros + random complex numbers
220
+ training_data = generate_training_data()
221
+
222
+ # Train to distinguish actual zeros from random points
223
+ train_model(model, training_data)
224
+
225
+ # Use trained model to predict unknown zero properties
226
+ return discover_patterns(model)
227
+ ```
228
+
229
+ #### Reinforcement Learning for Proof Search
230
+
231
+ ```python
232
+ class ProofSearchAgent:
233
+ """
234
+ RL agent for searching mathematical proof space
235
+ """
236
+ def __init__(self):
237
+ self.q_network = build_proof_q_network()
238
+ self.proof_environment = MathematicalProofEnv()
239
+
240
+ def search_proof_space(self, theorem="riemann_hypothesis"):
241
+ state = self.proof_environment.reset(theorem)
242
+
243
+ while not self.proof_environment.done:
244
+ # Choose next proof step
245
+ action = self.epsilon_greedy_action(state)
246
+
247
+ # Apply logical step
248
+ next_state, reward, done = self.proof_environment.step(action)
249
+
250
+ # Update Q-network
251
+ self.update_q_values(state, action, reward, next_state)
252
+
253
+ state = next_state
254
+
255
+ return self.proof_environment.get_proof()
256
+ ```
257
+
258
+ ### Automated Theorem Discovery
259
+
260
+ Use genetic algorithms to evolve mathematical conjectures:
261
+
262
+ 1. **Population**: Set of mathematical statements
263
+ 2. **Fitness**: Logical consistency + predictive power
264
+ 3. **Mutation**: Small logical modifications
265
+ 4. **Crossover**: Combine different mathematical ideas
266
+ 5. **Selection**: Keep most promising conjectures
267
+
268
+ ## Novel Approach 5: Hypergraph and Category Theory
269
+
270
+ ### Hypergraph Representation of Number Theory
271
+
272
+ **Innovation**: Represent number-theoretic relationships as hypergraphs where hyperedges connect related mathematical objects.
273
+
274
+ #### Mathematical Framework
275
+
276
+ ```
277
+ H = (V, E) where:
278
+ V = {primes, composite numbers, arithmetic functions}
279
+ E = {multiplicative relationships, Dirichlet convolutions, ...}
280
+ ```
281
+
282
+ **Key Insight**: ζ(s) zeros correspond to special hypergraph invariants.
283
+
284
+ ```python
285
+ def hypergraph_rh_approach():
286
+ """
287
+ Model number theory as hypergraph and study invariants
288
+ """
289
+ # Vertices: arithmetic objects
290
+ vertices = generate_arithmetic_objects()
291
+
292
+ # Hyperedges: mathematical relationships
293
+ hyperedges = [
294
+ multiplicative_relation,
295
+ additive_relation,
296
+ dirichlet_convolution,
297
+ mobius_inversion
298
+ ]
299
+
300
+ # Build hypergraph
301
+ H = construct_hypergraph(vertices, hyperedges)
302
+
303
+ # Compute spectral properties
304
+ spectrum = hypergraph_spectrum(H)
305
+
306
+ # Connect to ζ(s) zeros
307
+ return relate_spectrum_to_zeros(spectrum)
308
+ ```
309
+
310
+ ### Category-Theoretic Approach
311
+
312
+ **Framework**: Model arithmetic as a category where:
313
+ - **Objects**: Number fields, rings, arithmetic varieties
314
+ - **Morphisms**: Arithmetic maps, L-functions, Galois representations
315
+ - **Natural Transformations**: Functional equations
316
+
317
+ **Conjecture**: RH is equivalent to a natural transformation being an isomorphism.
318
+
319
+ ## Novel Approach 6: Evolutionary Mathematics
320
+
321
+ ### Genetic Programming for Mathematical Discovery
322
+
323
+ **Concept**: Evolve mathematical expressions that approximate ζ(s) and use fitness landscapes to guide discovery.
324
+
325
+ ```python
326
+ class MathematicalGenome:
327
+ """
328
+ Genetic representation of mathematical expressions
329
+ """
330
+ def __init__(self, expression_tree):
331
+ self.tree = expression_tree
332
+ self.fitness = None
333
+
334
+ def mutate(self):
335
+ # Random mathematical operations
336
+ mutations = [
337
+ add_term,
338
+ change_coefficient,
339
+ modify_exponent,
340
+ introduce_special_function
341
+ ]
342
+ random.choice(mutations)(self.tree)
343
+
344
+ def crossover(self, other):
345
+ # Combine mathematical ideas
346
+ child_tree = combine_expressions(self.tree, other.tree)
347
+ return MathematicalGenome(child_tree)
348
+
349
+ def evaluate_fitness(self):
350
+ # How well does this approximate ζ(s)?
351
+ self.fitness = zeta_approximation_quality(self.tree)
352
+
353
+ def evolve_zeta_insights(generations=10000):
354
+ """
355
+ Evolve mathematical expressions to gain insights into ζ(s)
356
+ """
357
+ population = initialize_mathematical_population()
358
+
359
+ for generation in range(generations):
360
+ # Evaluate fitness
361
+ for genome in population:
362
+ genome.evaluate_fitness()
363
+
364
+ # Selection
365
+ survivors = select_fittest(population)
366
+
367
+ # Reproduction
368
+ offspring = []
369
+ for parent1, parent2 in pairs(survivors):
370
+ child = parent1.crossover(parent2)
371
+ child.mutate()
372
+ offspring.append(child)
373
+
374
+ population = survivors + offspring
375
+
376
+ # Check for breakthrough discoveries
377
+ check_for_insights(population)
378
+
379
+ return extract_best_insights(population)
380
+ ```
381
+
382
+ ## Novel Approach 7: Consciousness and Mathematical Intuition
383
+
384
+ ### Artificial Mathematical Intuition
385
+
386
+ **Hypothesis**: Mathematical breakthroughs require a form of "artificial intuition" that combines pattern recognition with creative leaps.
387
+
388
+ ```python
389
+ def artificial_mathematical_intuition():
390
+ """
391
+ Simulate mathematical intuition for RH breakthrough
392
+ """
393
+ # Combine multiple AI approaches
394
+ pattern_recognizer = DeepPatternNet()
395
+ logic_engine = SymbolicReasoningEngine()
396
+ creativity_module = CreativeLeapGenerator()
397
+
398
+ # Input: Current state of RH knowledge
399
+ current_knowledge = load_rh_knowledge_base()
400
+
401
+ # Pattern recognition phase
402
+ patterns = pattern_recognizer.discover_patterns(current_knowledge)
403
+
404
+ # Logical reasoning phase
405
+ logical_steps = logic_engine.derive_implications(patterns)
406
+
407
+ # Creative leap phase
408
+ insights = creativity_module.generate_novel_connections(
409
+ patterns, logical_steps
410
+ )
411
+
412
+ # Validation phase
413
+ validated_insights = validate_mathematical_insights(insights)
414
+
415
+ return validated_insights
416
+ ```
417
+
418
+ ### Consciousness-Inspired Problem Solving
419
+
420
+ Using insights from consciousness research to model mathematical discovery:
421
+
422
+ 1. **Global Workspace**: Integration of different mathematical areas
423
+ 2. **Attention Mechanisms**: Focus on most promising approaches
424
+ 3. **Memory Consolidation**: Learn from failed proof attempts
425
+ 4. **Creative Synthesis**: Combine disparate mathematical ideas
426
+
427
+ ## Integration Strategy: Meta-GOAP Framework
428
+
429
+ ### Combining All Approaches
430
+
431
+ ```python
432
+ class MetaGOAPMathematicalSolver:
433
+ """
434
+ Meta-level GOAP system that coordinates multiple novel approaches
435
+ """
436
+ def __init__(self):
437
+ self.approaches = [
438
+ QuantumInformationApproach(),
439
+ AlgorithmicInformationApproach(),
440
+ TopologicalDataAnalysis(),
441
+ MachineLearningDiscovery(),
442
+ HypergraphApproach(),
443
+ EvolutionaryMathematics(),
444
+ ArtificialIntuition()
445
+ ]
446
+
447
+ self.meta_optimizer = SublinearOptimizer()
448
+
449
+ def solve_riemann_hypothesis(self):
450
+ """
451
+ Coordinate all approaches using meta-GOAP
452
+ """
453
+ # Build approach interaction matrix
454
+ interaction_matrix = self.build_approach_synergies()
455
+
456
+ # Optimize approach combination
457
+ optimal_strategy = self.meta_optimizer.optimize(
458
+ interaction_matrix,
459
+ objective="prove_riemann_hypothesis",
460
+ constraints=["computational_feasibility", "mathematical_rigor"]
461
+ )
462
+
463
+ # Execute optimal strategy
464
+ results = self.execute_coordinated_approaches(optimal_strategy)
465
+
466
+ # Synthesize insights
467
+ breakthrough = self.synthesize_breakthrough(results)
468
+
469
+ return breakthrough
470
+
471
+ def build_approach_synergies(self):
472
+ """
473
+ Model how different approaches complement each other
474
+ """
475
+ # Quantum + Topological: Quantum topology of zeros
476
+ # ML + Algorithmic: Pattern discovery in complexity
477
+ # Evolutionary + Intuition: Creative mathematical evolution
478
+ # etc.
479
+
480
+ synergy_matrix = create_synergy_matrix(self.approaches)
481
+ return synergy_matrix
482
+ ```
483
+
484
+ ## Success Metrics and Evaluation
485
+
486
+ ### Breakthrough Indicators
487
+
488
+ 1. **Computational**: Verification to unprecedented heights
489
+ 2. **Theoretical**: Novel mathematical frameworks
490
+ 3. **Cross-Disciplinary**: Meaningful connections to physics/CS
491
+ 4. **Methodological**: GOAP as mathematical discovery tool
492
+
493
+ ### Evaluation Framework
494
+
495
+ ```python
496
+ def evaluate_approach_success(approach_results):
497
+ """
498
+ Evaluate the success of novel approaches
499
+ """
500
+ metrics = {
501
+ 'computational_progress': measure_verification_advance(),
502
+ 'theoretical_insight': assess_mathematical_novelty(),
503
+ 'interdisciplinary_value': evaluate_cross_field_impact(),
504
+ 'proof_proximity': estimate_distance_to_proof(),
505
+ 'methodology_innovation': assess_goap_effectiveness()
506
+ }
507
+
508
+ return weighted_success_score(metrics)
509
+ ```
510
+
511
+ ## Risk Assessment and Mitigation
512
+
513
+ ### High-Risk Strategies
514
+ - **Complete proof attempts**: Low probability, infinite reward
515
+ - **Counterexample search**: Very low probability, revolutionary impact
516
+
517
+ ### Risk Mitigation
518
+ - **Parallel development**: Multiple approaches simultaneously
519
+ - **Incremental validation**: Verify insights at each step
520
+ - **Community engagement**: Peer review and collaboration
521
+ - **Computational validation**: Verify theoretical insights numerically
522
+
523
+ ## Timeline and Implementation
524
+
525
+ ### Phase 1: Foundation (Months 1-6)
526
+ - Implement core frameworks for each approach
527
+ - Build computational infrastructure
528
+ - Establish validation methodologies
529
+
530
+ ### Phase 2: Development (Months 7-18)
531
+ - Develop each approach in parallel
532
+ - Build synergistic connections
533
+ - Conduct computational experiments
534
+
535
+ ### Phase 3: Integration (Months 19-24)
536
+ - Implement meta-GOAP coordination
537
+ - Synthesize insights across approaches
538
+ - Attempt breakthrough synthesis
539
+
540
+ ### Phase 4: Validation (Months 25-30)
541
+ - Rigorous mathematical validation
542
+ - Peer review and community engagement
543
+ - Prepare formal proof or significant contribution
544
+
545
+ ## Conclusion
546
+
547
+ These novel approaches represent a systematic attempt to apply GOAP methodology to one of mathematics' greatest challenges. By combining:
548
+
549
+ - **Quantum information theory** for new mathematical frameworks
550
+ - **Algorithmic information theory** for complexity-based insights
551
+ - **Topological data analysis** for structural understanding
552
+ - **Machine learning** for pattern discovery
553
+ - **Evolutionary computation** for creative exploration
554
+ - **Artificial intuition** for breakthrough insights
555
+
556
+ We create a comprehensive attack on the Riemann Hypothesis that goes far beyond traditional analytical methods.
557
+
558
+ The key innovation is using GOAP to coordinate these diverse approaches, allowing for emergent insights that no single method could achieve. Even if the full hypothesis remains unproven, this framework will likely yield significant mathematical insights and demonstrate the power of systematic creativity in mathematical research.
559
+
560
+ The ultimate goal is not just to solve the Riemann Hypothesis, but to establish a new paradigm for attacking mathematical problems through intelligent coordination of diverse computational and theoretical approaches.