cdk-comprehend-s3olap 2.0.162 → 2.0.164

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. package/.jsii +4 -4
  2. package/lib/cdk-comprehend-s3olap.js +2 -2
  3. package/lib/comprehend-lambdas.js +2 -2
  4. package/lib/iam-roles.js +4 -4
  5. package/node_modules/aws-sdk/CHANGELOG.md +24 -1
  6. package/node_modules/aws-sdk/README.md +1 -1
  7. package/node_modules/aws-sdk/apis/appsync-2017-07-25.min.json +484 -131
  8. package/node_modules/aws-sdk/apis/backup-2018-11-15.min.json +4 -1
  9. package/node_modules/aws-sdk/apis/codepipeline-2015-07-09.min.json +3 -0
  10. package/node_modules/aws-sdk/apis/connect-2017-08-08.min.json +6 -3
  11. package/node_modules/aws-sdk/apis/gamelift-2015-10-01.min.json +213 -204
  12. package/node_modules/aws-sdk/apis/glue-2017-03-31.min.json +615 -557
  13. package/node_modules/aws-sdk/apis/migration-hub-refactor-spaces-2021-10-26.min.json +9 -0
  14. package/node_modules/aws-sdk/apis/quicksight-2018-04-01.min.json +1005 -383
  15. package/node_modules/aws-sdk/apis/quicksight-2018-04-01.paginators.json +12 -0
  16. package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.min.json +676 -598
  17. package/node_modules/aws-sdk/apis/translate-2017-07-01.min.json +84 -17
  18. package/node_modules/aws-sdk/clients/applicationautoscaling.d.ts +6 -6
  19. package/node_modules/aws-sdk/clients/appsync.d.ts +398 -2
  20. package/node_modules/aws-sdk/clients/backup.d.ts +6 -2
  21. package/node_modules/aws-sdk/clients/codepipeline.d.ts +69 -65
  22. package/node_modules/aws-sdk/clients/connect.d.ts +1 -1
  23. package/node_modules/aws-sdk/clients/cur.d.ts +2 -2
  24. package/node_modules/aws-sdk/clients/gamelift.d.ts +22 -10
  25. package/node_modules/aws-sdk/clients/glue.d.ts +57 -2
  26. package/node_modules/aws-sdk/clients/migrationhubrefactorspaces.d.ts +16 -4
  27. package/node_modules/aws-sdk/clients/pinpoint.d.ts +7 -7
  28. package/node_modules/aws-sdk/clients/quicksight.d.ts +749 -4
  29. package/node_modules/aws-sdk/clients/sagemaker.d.ts +109 -7
  30. package/node_modules/aws-sdk/clients/translate.d.ts +69 -5
  31. package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
  32. package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +12 -12
  33. package/node_modules/aws-sdk/dist/aws-sdk.js +309 -227
  34. package/node_modules/aws-sdk/dist/aws-sdk.min.js +65 -65
  35. package/node_modules/aws-sdk/lib/core.js +1 -1
  36. package/node_modules/aws-sdk/package.json +1 -1
  37. package/package.json +7 -7
@@ -1045,11 +1045,11 @@ declare class SageMaker extends Service {
1045
1045
  */
1046
1046
  describeHumanTaskUi(callback?: (err: AWSError, data: SageMaker.Types.DescribeHumanTaskUiResponse) => void): Request<SageMaker.Types.DescribeHumanTaskUiResponse, AWSError>;
1047
1047
  /**
1048
- * Gets a description of a hyperparameter tuning job.
1048
+ * Returns a description of a hyperparameter tuning job, depending on the fields selected. These fields can include the name, Amazon Resource Name (ARN), job status of your tuning job and more.
1049
1049
  */
1050
1050
  describeHyperParameterTuningJob(params: SageMaker.Types.DescribeHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.DescribeHyperParameterTuningJobResponse, AWSError>;
1051
1051
  /**
1052
- * Gets a description of a hyperparameter tuning job.
1052
+ * Returns a description of a hyperparameter tuning job, depending on the fields selected. These fields can include the name, Amazon Resource Name (ARN), job status of your tuning job and more.
1053
1053
  */
1054
1054
  describeHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.DescribeHyperParameterTuningJobResponse, AWSError>;
1055
1055
  /**
@@ -3375,12 +3375,30 @@ declare namespace SageMaker {
3375
3375
  }
3376
3376
  export type AutoMLSortBy = "Name"|"CreationTime"|"Status"|string;
3377
3377
  export type AutoMLSortOrder = "Ascending"|"Descending"|string;
3378
+ export interface AutoParameter {
3379
+ /**
3380
+ * The name of the hyperparameter to optimize using Autotune.
3381
+ */
3382
+ Name: ParameterKey;
3383
+ /**
3384
+ * An example value of the hyperparameter to optimize using Autotune.
3385
+ */
3386
+ ValueHint: ParameterValue;
3387
+ }
3388
+ export type AutoParameters = AutoParameter[];
3378
3389
  export interface AutoRollbackConfig {
3379
3390
  /**
3380
3391
  * List of CloudWatch alarms in your account that are configured to monitor metrics on an endpoint. If any alarms are tripped during a deployment, SageMaker rolls back the deployment.
3381
3392
  */
3382
3393
  Alarms?: AlarmList;
3383
3394
  }
3395
+ export interface Autotune {
3396
+ /**
3397
+ * Set Mode to Enabled if you want to use Autotune.
3398
+ */
3399
+ Mode: AutotuneMode;
3400
+ }
3401
+ export type AutotuneMode = "Enabled"|string;
3384
3402
  export type AwsManagedHumanLoopRequestSource = "AWS/Rekognition/DetectModerationLabels/Image/V3"|"AWS/Textract/AnalyzeDocument/Forms/V1"|string;
3385
3403
  export interface BatchDataCaptureConfig {
3386
3404
  /**
@@ -4942,6 +4960,10 @@ declare namespace SageMaker {
4942
4960
  * An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources. Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.
4943
4961
  */
4944
4962
  Tags?: TagList;
4963
+ /**
4964
+ * Configures SageMaker Automatic model tuning (AMT) to automatically find optimal parameters for the following fields: ParameterRanges: The names and ranges of parameters that a hyperparameter tuning job can optimize. ResourceLimits: The maximum resources that can be used for a training job. These resources include the maximum number of training jobs, the maximum runtime of a tuning job, and the maximum number of training jobs to run at the same time. TrainingJobEarlyStoppingType: A flag that specifies whether or not to use early stopping for training jobs launched by a hyperparameter tuning job. RetryStrategy: The number of times to retry a training job. Strategy: Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training jobs that it launches. ConvergenceDetected: A flag to indicate that Automatic model tuning (AMT) has detected model convergence.
4965
+ */
4966
+ Autotune?: Autotune;
4945
4967
  }
4946
4968
  export interface CreateHyperParameterTuningJobResponse {
4947
4969
  /**
@@ -5818,7 +5840,7 @@ declare namespace SageMaker {
5818
5840
  */
5819
5841
  RoleArn: RoleArn;
5820
5842
  /**
5821
- * An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location. Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format. Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.
5843
+ * An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location. Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format. Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded. Your input must be in the same Amazon Web Services region as your training job.
5822
5844
  */
5823
5845
  InputDataConfig?: InputDataConfig;
5824
5846
  /**
@@ -6804,6 +6826,16 @@ declare namespace SageMaker {
6804
6826
  */
6805
6827
  AutoRollbackConfiguration?: AutoRollbackConfig;
6806
6828
  }
6829
+ export interface DeploymentRecommendation {
6830
+ /**
6831
+ * Status of the deployment recommendation. NOT_APPLICABLE means that SageMaker is unable to provide a default recommendation for the model using the information provided.
6832
+ */
6833
+ RecommendationStatus: RecommendationStatus;
6834
+ /**
6835
+ * A list of RealTimeInferenceRecommendation items.
6836
+ */
6837
+ RealTimeInferenceRecommendations?: RealTimeInferenceRecommendations;
6838
+ }
6807
6839
  export interface DeploymentStage {
6808
6840
  /**
6809
6841
  * The name of the stage.
@@ -8267,7 +8299,7 @@ declare namespace SageMaker {
8267
8299
  }
8268
8300
  export interface DescribeHyperParameterTuningJobResponse {
8269
8301
  /**
8270
- * The name of the tuning job.
8302
+ * The name of the hyperparameter tuning job.
8271
8303
  */
8272
8304
  HyperParameterTuningJobName: HyperParameterTuningJobName;
8273
8305
  /**
@@ -8331,6 +8363,10 @@ declare namespace SageMaker {
8331
8363
  */
8332
8364
  TuningJobCompletionDetails?: HyperParameterTuningJobCompletionDetails;
8333
8365
  ConsumedResources?: HyperParameterTuningJobConsumedResources;
8366
+ /**
8367
+ * A flag to indicate if autotune is enabled for the hyperparameter tuning job.
8368
+ */
8369
+ Autotune?: Autotune;
8334
8370
  }
8335
8371
  export interface DescribeImageRequest {
8336
8372
  /**
@@ -8933,6 +8969,10 @@ declare namespace SageMaker {
8933
8969
  * If True, no inbound or outbound network calls can be made to or from the model container.
8934
8970
  */
8935
8971
  EnableNetworkIsolation?: Boolean;
8972
+ /**
8973
+ * A set of recommended deployment configurations for the model.
8974
+ */
8975
+ DeploymentRecommendation?: DeploymentRecommendation;
8936
8976
  }
8937
8977
  export interface DescribeModelPackageGroupInput {
8938
8978
  /**
@@ -12346,6 +12386,14 @@ declare namespace SageMaker {
12346
12386
  * The recommendation ID which uniquely identifies each recommendation.
12347
12387
  */
12348
12388
  RecommendationId?: String;
12389
+ /**
12390
+ * A timestamp that shows when the benchmark completed.
12391
+ */
12392
+ InvocationEndTime?: InvocationEndTime;
12393
+ /**
12394
+ * A timestamp that shows when the benchmark started.
12395
+ */
12396
+ InvocationStartTime?: InvocationStartTime;
12349
12397
  }
12350
12398
  export type InferenceRecommendations = InferenceRecommendation[];
12351
12399
  export interface InferenceRecommendationsJob {
@@ -12389,6 +12437,18 @@ declare namespace SageMaker {
12389
12437
  * If the job fails, provides information why the job failed.
12390
12438
  */
12391
12439
  FailureReason?: FailureReason;
12440
+ /**
12441
+ * The name of the created model.
12442
+ */
12443
+ ModelName?: ModelName;
12444
+ /**
12445
+ * The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
12446
+ */
12447
+ SamplePayloadUrl?: S3Uri;
12448
+ /**
12449
+ * The Amazon Resource Name (ARN) of a versioned model package.
12450
+ */
12451
+ ModelPackageVersionArn?: ModelPackageArn;
12392
12452
  }
12393
12453
  export interface InferenceRecommendationsJobStep {
12394
12454
  /**
@@ -12511,6 +12571,8 @@ declare namespace SageMaker {
12511
12571
  }
12512
12572
  export type IntegerParameterRanges = IntegerParameterRange[];
12513
12573
  export type IntegerValue = number;
12574
+ export type InvocationEndTime = Date;
12575
+ export type InvocationStartTime = Date;
12514
12576
  export type InvocationsMaxRetries = number;
12515
12577
  export type InvocationsTimeoutInSeconds = number;
12516
12578
  export type IotRoleAlias = string;
@@ -14309,6 +14371,14 @@ declare namespace SageMaker {
14309
14371
  * The maximum number of recommendations to return in the response.
14310
14372
  */
14311
14373
  MaxResults?: MaxResults;
14374
+ /**
14375
+ * A filter that returns only jobs that were created for this model.
14376
+ */
14377
+ ModelNameEquals?: ModelName;
14378
+ /**
14379
+ * A filter that returns only jobs that were created for this versioned model package.
14380
+ */
14381
+ ModelPackageVersionArnEquals?: ModelPackageArn;
14312
14382
  }
14313
14383
  export interface ListInferenceRecommendationsJobsResponse {
14314
14384
  /**
@@ -16084,6 +16154,10 @@ declare namespace SageMaker {
16084
16154
  * A list of key-value pairs associated with the model. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.
16085
16155
  */
16086
16156
  Tags?: TagList;
16157
+ /**
16158
+ * A set of recommended deployment configurations for the model.
16159
+ */
16160
+ DeploymentRecommendation?: DeploymentRecommendation;
16087
16161
  }
16088
16162
  export type ModelApprovalStatus = "Approved"|"Rejected"|"PendingManualApproval"|string;
16089
16163
  export type ModelArn = string;
@@ -17812,6 +17886,10 @@ declare namespace SageMaker {
17812
17886
  * The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.
17813
17887
  */
17814
17888
  CategoricalParameterRanges?: CategoricalParameterRanges;
17889
+ /**
17890
+ * A list containing hyperparameter names and example values to be used by Autotune to determine optimal ranges for your tuning job.
17891
+ */
17892
+ AutoParameters?: AutoParameters;
17815
17893
  }
17816
17894
  export type ParameterType = "Integer"|"Continuous"|"Categorical"|"FreeText"|string;
17817
17895
  export type ParameterValue = string;
@@ -19013,6 +19091,21 @@ declare namespace SageMaker {
19013
19091
  */
19014
19092
  InstanceCount: TaskCount;
19015
19093
  }
19094
+ export interface RealTimeInferenceRecommendation {
19095
+ /**
19096
+ * The recommendation ID which uniquely identifies each recommendation.
19097
+ */
19098
+ RecommendationId: String;
19099
+ /**
19100
+ * The recommended instance type for Real-Time Inference.
19101
+ */
19102
+ InstanceType: ProductionVariantInstanceType;
19103
+ /**
19104
+ * The recommended environment variables to set in the model container for Real-Time Inference.
19105
+ */
19106
+ Environment?: EnvironmentMap;
19107
+ }
19108
+ export type RealTimeInferenceRecommendations = RealTimeInferenceRecommendation[];
19016
19109
  export type RealtimeInferenceInstanceTypes = ProductionVariantInstanceType[];
19017
19110
  export type RecommendationFailureReason = string;
19018
19111
  export type RecommendationJobArn = string;
@@ -19068,6 +19161,14 @@ declare namespace SageMaker {
19068
19161
  */
19069
19162
  FailureReason?: RecommendationFailureReason;
19070
19163
  EndpointMetrics?: InferenceMetrics;
19164
+ /**
19165
+ * A timestamp that shows when the benchmark completed.
19166
+ */
19167
+ InvocationEndTime?: InvocationEndTime;
19168
+ /**
19169
+ * A timestamp that shows when the benchmark started.
19170
+ */
19171
+ InvocationStartTime?: InvocationStartTime;
19071
19172
  }
19072
19173
  export interface RecommendationJobInputConfig {
19073
19174
  /**
@@ -19196,6 +19297,7 @@ declare namespace SageMaker {
19196
19297
  */
19197
19298
  MemoryUtilization?: UtilizationMetric;
19198
19299
  }
19300
+ export type RecommendationStatus = "IN_PROGRESS"|"COMPLETED"|"FAILED"|"NOT_APPLICABLE"|string;
19199
19301
  export type RecommendationStepType = "BENCHMARK"|string;
19200
19302
  export type RecordWrapper = "None"|"RecordIO"|string;
19201
19303
  export type RedshiftClusterId = string;
@@ -19424,7 +19526,7 @@ declare namespace SageMaker {
19424
19526
  */
19425
19527
  S3DataType: S3DataType;
19426
19528
  /**
19427
- * Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example: A key name prefix might look like this: s3://bucketname/exampleprefix A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri. Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
19529
+ * Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example: A key name prefix might look like this: s3://bucketname/exampleprefix A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri. Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf. Your input bucket must be located in same Amazon Web Services region as your training job.
19428
19530
  */
19429
19531
  S3Uri: S3Uri;
19430
19532
  /**
@@ -19733,7 +19835,7 @@ declare namespace SageMaker {
19733
19835
  export type SortTrialsBy = "Name"|"CreationTime"|string;
19734
19836
  export interface SourceAlgorithm {
19735
19837
  /**
19736
- * The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same region as the algorithm.
19838
+ * The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same Amazon Web Services region as the algorithm.
19737
19839
  */
19738
19840
  ModelDataUrl?: Url;
19739
19841
  /**
@@ -20257,7 +20359,7 @@ declare namespace SageMaker {
20257
20359
  */
20258
20360
  RoleArn?: RoleArn;
20259
20361
  /**
20260
- * An array of Channel objects that describes each data input channel.
20362
+ * An array of Channel objects that describes each data input channel. Your input must be in the same Amazon Web Services region as your training job.
20261
20363
  */
20262
20364
  InputDataConfig?: InputDataConfig;
20263
20365
  /**
@@ -131,6 +131,14 @@ declare class Translate extends Service {
131
131
  * Associates a specific tag with a resource. A tag is a key-value pair that adds as a metadata to a resource. For more information, see Tagging your resources.
132
132
  */
133
133
  tagResource(callback?: (err: AWSError, data: Translate.Types.TagResourceResponse) => void): Request<Translate.Types.TagResourceResponse, AWSError>;
134
+ /**
135
+ * Translates the input document from the source language to the target language. This synchronous operation supports plain text or HTML for the input document. TranslateDocument supports translations from English to any supported language, and from any supported language to English. Therefore, specify either the source language code or the target language code as “en” (English). TranslateDocument does not support language auto-detection. If you set the Formality parameter, the request will fail if the target language does not support formality. For a list of target languages that support formality, see Setting formality.
136
+ */
137
+ translateDocument(params: Translate.Types.TranslateDocumentRequest, callback?: (err: AWSError, data: Translate.Types.TranslateDocumentResponse) => void): Request<Translate.Types.TranslateDocumentResponse, AWSError>;
138
+ /**
139
+ * Translates the input document from the source language to the target language. This synchronous operation supports plain text or HTML for the input document. TranslateDocument supports translations from English to any supported language, and from any supported language to English. Therefore, specify either the source language code or the target language code as “en” (English). TranslateDocument does not support language auto-detection. If you set the Formality parameter, the request will fail if the target language does not support formality. For a list of target languages that support formality, see Setting formality.
140
+ */
141
+ translateDocument(callback?: (err: AWSError, data: Translate.Types.TranslateDocumentResponse) => void): Request<Translate.Types.TranslateDocumentResponse, AWSError>;
134
142
  /**
135
143
  * Translates input text from the source language to the target language. For a list of available languages and language codes, see Supported languages.
136
144
  */
@@ -241,6 +249,17 @@ declare namespace Translate {
241
249
  export type Description = string;
242
250
  export type Directionality = "UNI"|"MULTI"|string;
243
251
  export type DisplayLanguageCode = "de"|"en"|"es"|"fr"|"it"|"ja"|"ko"|"pt"|"zh"|"zh-TW"|string;
252
+ export interface Document {
253
+ /**
254
+ * The Contentfield type is Binary large object (blob). This object contains the document content converted into base64-encoded binary data. If you use one of the AWS SDKs, the SDK performs the Base64-encoding on this field before sending the request.
255
+ */
256
+ Content: DocumentContent;
257
+ /**
258
+ * Describes the format of the document. You can specify one of the following: text/html - The input data consists of HTML content. Amazon Translate translates only the text in the HTML element. text/plain - The input data consists of unformatted text. Amazon Translate translates every character in the content.
259
+ */
260
+ ContentType: ContentType;
261
+ }
262
+ export type DocumentContent = Buffer|Uint8Array|Blob|string;
244
263
  export interface EncryptionKey {
245
264
  /**
246
265
  * The type of encryption key used by Amazon Translate to encrypt this object.
@@ -861,27 +880,65 @@ declare namespace Translate {
861
880
  */
862
881
  DataAccessRoleArn?: IamRoleArn;
863
882
  /**
864
- * Settings that configure the translation output.
883
+ * Settings that modify the translation output.
865
884
  */
866
885
  Settings?: TranslationSettings;
867
886
  }
868
887
  export type TextTranslationJobPropertiesList = TextTranslationJobProperties[];
869
888
  export type Timestamp = Date;
889
+ export interface TranslateDocumentRequest {
890
+ /**
891
+ * The content and content type for the document to be translated. The document size must not exceed 100 KB.
892
+ */
893
+ Document: Document;
894
+ /**
895
+ * The name of a terminology list file to add to the translation job. This file provides source terms and the desired translation for each term. A terminology list can contain a maximum of 256 terms. You can use one custom terminology resource in your translation request. Use the ListTerminologies operation to get the available terminology lists. For more information about custom terminology lists, see Custom terminology.
896
+ */
897
+ TerminologyNames?: ResourceNameList;
898
+ /**
899
+ * The language code for the language of the source text. Do not use auto, because TranslateDocument does not support language auto-detection. For a list of supported language codes, see Supported languages.
900
+ */
901
+ SourceLanguageCode: LanguageCodeString;
902
+ /**
903
+ * The language code requested for the translated document. For a list of supported language codes, see Supported languages.
904
+ */
905
+ TargetLanguageCode: LanguageCodeString;
906
+ Settings?: TranslationSettings;
907
+ }
908
+ export interface TranslateDocumentResponse {
909
+ /**
910
+ * The document containing the translated content. The document format matches the source document format.
911
+ */
912
+ TranslatedDocument: TranslatedDocument;
913
+ /**
914
+ * The language code of the source document.
915
+ */
916
+ SourceLanguageCode: LanguageCodeString;
917
+ /**
918
+ * The language code of the translated document.
919
+ */
920
+ TargetLanguageCode: LanguageCodeString;
921
+ /**
922
+ * The names of the custom terminologies applied to the input text by Amazon Translate to produce the translated text document.
923
+ */
924
+ AppliedTerminologies?: AppliedTerminologyList;
925
+ AppliedSettings?: TranslationSettings;
926
+ }
870
927
  export interface TranslateTextRequest {
871
928
  /**
872
929
  * The text to translate. The text string can be a maximum of 10,000 bytes long. Depending on your character set, this may be fewer than 10,000 characters.
873
930
  */
874
931
  Text: BoundedLengthString;
875
932
  /**
876
- * The name of the terminology list file to be used in the TranslateText request. You can use 1 terminology list at most in a TranslateText request. Terminology lists can contain a maximum of 256 terms.
933
+ * The name of a terminology list file to add to the translation job. This file provides source terms and the desired translation for each term. A terminology list can contain a maximum of 256 terms. You can use one custom terminology resource in your translation request. Use the ListTerminologies operation to get the available terminology lists. For more information about custom terminology lists, see Custom terminology.
877
934
  */
878
935
  TerminologyNames?: ResourceNameList;
879
936
  /**
880
- * The language code for the language of the source text. The language must be a language supported by Amazon Translate. For a list of language codes, see Supported languages. To have Amazon Translate determine the source language of your text, you can specify auto in the SourceLanguageCode field. If you specify auto, Amazon Translate will call Amazon Comprehend to determine the source language. If you specify auto, you must send the TranslateText request in a region that supports Amazon Comprehend. Otherwise, the request returns an error indicating that autodetect is not supported.
937
+ * The language code for the language of the source text. For a list of language codes, see Supported languages. To have Amazon Translate determine the source language of your text, you can specify auto in the SourceLanguageCode field. If you specify auto, Amazon Translate will call Amazon Comprehend to determine the source language. If you specify auto, you must send the TranslateText request in a region that supports Amazon Comprehend. Otherwise, the request returns an error indicating that autodetect is not supported.
881
938
  */
882
939
  SourceLanguageCode: LanguageCodeString;
883
940
  /**
884
- * The language code requested for the language of the target text. The language must be a language supported by Amazon Translate.
941
+ * The language code requested for the language of the target text. For a list of language codes, see Supported languages.
885
942
  */
886
943
  TargetLanguageCode: LanguageCodeString;
887
944
  /**
@@ -907,10 +964,17 @@ declare namespace Translate {
907
964
  */
908
965
  AppliedTerminologies?: AppliedTerminologyList;
909
966
  /**
910
- * Settings that configure the translation output.
967
+ * Optional settings that modify the translation output.
911
968
  */
912
969
  AppliedSettings?: TranslationSettings;
913
970
  }
971
+ export interface TranslatedDocument {
972
+ /**
973
+ * The document containing the translated content.
974
+ */
975
+ Content: TranslatedDocumentContent;
976
+ }
977
+ export type TranslatedDocumentContent = Buffer|Uint8Array|Blob|string;
914
978
  export type TranslatedTextString = string;
915
979
  export interface TranslationSettings {
916
980
  /**
@@ -83,7 +83,7 @@ return /******/ (function(modules) { // webpackBootstrap
83
83
  /**
84
84
  * @constant
85
85
  */
86
- VERSION: '2.1381.0',
86
+ VERSION: '2.1385.0',
87
87
 
88
88
  /**
89
89
  * @api private