cciwon-code-review-cli 2.0.1 → 2.0.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/bin/code-review.js +1 -1
- package/lib/chat-mode.js +7 -2
- package/package.json +1 -1
- package/unsloth_compiled_cache/.locks/.lock.AqlmLoraLinear_peft_forward.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.AwqLoraLinear_peft_forward.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.BatchNorm1d.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.BatchNorm2d.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.BatchNorm3d.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.Conv1d.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.Conv2d.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.Conv3d.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.ConvTranspose1d.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.ConvTranspose2d.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.ConvTranspose3d.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.GPTQLoraLinear_peft_forward.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.GroupNorm.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.LayerNorm.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.Linear4bit_peft_forward.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.Linear8bitLt_peft_forward.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.Linear_peft_forward.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.LoraParallelLinear_peft_forward.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.RMSNorm.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothBCOTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothCPOTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothDPOTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothGKDTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothGRPOTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothKTOTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothNashMDTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothORPOTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothOnlineDPOTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothPPOTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothPRMTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothRLOOTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothRewardTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothSFTTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.UnslothXPOTrainer.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.unsloth_compiled_module_qwen3_moe.py +0 -0
- package/unsloth_compiled_cache/.locks/.lock.unsloth_compiled_module_siglip.py +0 -0
- package/unsloth_compiled_cache/AqlmLoraLinear_peft_forward.py +88 -0
- package/unsloth_compiled_cache/AwqLoraLinear_peft_forward.py +87 -0
- package/unsloth_compiled_cache/BatchNorm1d.py +117 -0
- package/unsloth_compiled_cache/BatchNorm2d.py +117 -0
- package/unsloth_compiled_cache/BatchNorm3d.py +117 -0
- package/unsloth_compiled_cache/Conv1d.py +70 -0
- package/unsloth_compiled_cache/Conv2d.py +70 -0
- package/unsloth_compiled_cache/Conv3d.py +70 -0
- package/unsloth_compiled_cache/ConvTranspose1d.py +97 -0
- package/unsloth_compiled_cache/ConvTranspose2d.py +106 -0
- package/unsloth_compiled_cache/ConvTranspose3d.py +98 -0
- package/unsloth_compiled_cache/GPTQLoraLinear_peft_forward.py +95 -0
- package/unsloth_compiled_cache/GroupNorm.py +70 -0
- package/unsloth_compiled_cache/LayerNorm.py +72 -0
- package/unsloth_compiled_cache/Linear4bit_peft_forward.py +115 -0
- package/unsloth_compiled_cache/Linear8bitLt_peft_forward.py +113 -0
- package/unsloth_compiled_cache/Linear_peft_forward.py +104 -0
- package/unsloth_compiled_cache/LoraParallelLinear_peft_forward.py +91 -0
- package/unsloth_compiled_cache/RMSNorm.py +73 -0
- package/unsloth_compiled_cache/UnslothBCOTrainer.py +2026 -0
- package/unsloth_compiled_cache/UnslothCPOTrainer.py +1806 -0
- package/unsloth_compiled_cache/UnslothDPOTrainer.py +2750 -0
- package/unsloth_compiled_cache/UnslothGKDTrainer.py +1157 -0
- package/unsloth_compiled_cache/UnslothGRPOTrainer.py +3607 -0
- package/unsloth_compiled_cache/UnslothKTOTrainer.py +2220 -0
- package/unsloth_compiled_cache/UnslothNashMDTrainer.py +1210 -0
- package/unsloth_compiled_cache/UnslothORPOTrainer.py +1730 -0
- package/unsloth_compiled_cache/UnslothOnlineDPOTrainer.py +2313 -0
- package/unsloth_compiled_cache/UnslothPPOTrainer.py +1504 -0
- package/unsloth_compiled_cache/UnslothPRMTrainer.py +979 -0
- package/unsloth_compiled_cache/UnslothRLOOTrainer.py +2674 -0
- package/unsloth_compiled_cache/UnslothRewardTrainer.py +1197 -0
- package/unsloth_compiled_cache/UnslothSFTTrainer.py +1416 -0
- package/unsloth_compiled_cache/UnslothXPOTrainer.py +1255 -0
- package/unsloth_compiled_cache/__pycache__/AqlmLoraLinear_peft_forward.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/AwqLoraLinear_peft_forward.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/BatchNorm1d.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/BatchNorm2d.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/BatchNorm3d.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/Conv1d.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/Conv2d.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/Conv3d.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/ConvTranspose1d.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/ConvTranspose2d.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/ConvTranspose3d.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/GPTQLoraLinear_peft_forward.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/GroupNorm.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/LayerNorm.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/Linear4bit_peft_forward.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/Linear8bitLt_peft_forward.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/Linear_peft_forward.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/LoraParallelLinear_peft_forward.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/RMSNorm.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothBCOTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothCPOTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothDPOTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothGKDTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothGRPOTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothKTOTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothNashMDTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothORPOTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothOnlineDPOTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothPPOTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothPRMTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothRLOOTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothRewardTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothSFTTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/UnslothXPOTrainer.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/unsloth_compiled_module_qwen3_moe.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/__pycache__/unsloth_compiled_module_siglip.cpython-312.pyc +0 -0
- package/unsloth_compiled_cache/unsloth_compiled_module_qwen3_moe.py +726 -0
- package/unsloth_compiled_cache/unsloth_compiled_module_siglip.py +534 -0
|
@@ -0,0 +1,3607 @@
|
|
|
1
|
+
"""
|
|
2
|
+
2025.12.6
|
|
3
|
+
2025.12.7
|
|
4
|
+
4.57.1
|
|
5
|
+
0.24.0
|
|
6
|
+
__UNSLOTH_VERSIONING__
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
# Unsloth auto generated code
|
|
10
|
+
# Copyright 2023-present Daniel Han-Chen, Michael Han-Chen & the Unsloth team. All rights reserved.
|
|
11
|
+
#
|
|
12
|
+
# This program is free software: you can redistribute it and/or modify
|
|
13
|
+
# it under the terms of the GNU Lesser General Public License as published by
|
|
14
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
15
|
+
# (at your option) any later version.
|
|
16
|
+
#
|
|
17
|
+
# This program is distributed in the hope that it will be useful,
|
|
18
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
19
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
20
|
+
# GNU General Public License for more details.
|
|
21
|
+
#
|
|
22
|
+
# You should have received a copy of the GNU Lesser General Public License
|
|
23
|
+
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
24
|
+
|
|
25
|
+
from torch import Tensor
|
|
26
|
+
import torch
|
|
27
|
+
import torch.nn as nn
|
|
28
|
+
from torch.nn import functional as F
|
|
29
|
+
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable
|
|
30
|
+
from trl.trainer.grpo_trainer import (Any, AutoConfig, AutoModelForSequenceClassification, AutoProcessor, AutoTokenizer, BaseTrainer, DataLoader, Dataset, FSDP, GRPOConfig, GRPOTrainer, GenerationConfig, GuidedDecodingParams, IterableDataset, LLM, Optional, Path, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, RepeatSampler, RewardFunc, Sampler, SamplingParams, SyncRefModelCallback, TrainerCallback, Union, VLLMClient, _ForwardRedirection, apply_chat_template, broadcast_object_list, datasets, defaultdict, deque, disable_dropout_in_model, ensure_master_addr_port, entropy_from_logits, gather, gather_object, identity, inspect, is_conversational, is_datasets_available, is_flash_attn_2_available, is_liger_kernel_available, is_peft_model, is_rich_available, is_vllm_available, logger, logging, maybe_apply_chat_template, nanmax, nanmin, nanstd, nn, nullcontext, os, pad, partial, prepare_deepspeed, prepare_fsdp, prepare_multimodal_messages, prepare_peft_model, print_prompt_completions_sample, profiling_context, profiling_decorator, seed_worker, selective_log_softmax, set_seed, shuffle_sequence_dict, split_pixel_values_by_grid, split_tensor_dict, textwrap, torch, transformers, unsplit_pixel_values_by_grid, unwrap_model_for_generation, Any, LLM, Union, gather, gather_object, is_conversational, logging, nanmax, nanmin, nanstd, os, pad, torch, FSDP, GuidedDecodingParams, LLM, Optional, SamplingParams, apply_chat_template, broadcast_object_list, gather, gather_object, is_flash_attn_2_available, maybe_apply_chat_template, nullcontext, os, pad, prepare_multimodal_messages, profiling_context, torch, transformers, unwrap_model_for_generation, entropy_from_logits, os, pad, selective_log_softmax, torch, transformers, Any, Union, profiling_decorator, shuffle_sequence_dict, split_pixel_values_by_grid, split_tensor_dict, torch, unsplit_pixel_values_by_grid, Optional, PreTrainedModel, logger, os, torch, FSDP, LLM, nn, os, FSDP, nn, torch, GRPOTrainer, gather, nanmax, nanmin, os, torch)
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
import os
|
|
34
|
+
from typing import *
|
|
35
|
+
from dataclasses import dataclass, field
|
|
36
|
+
from packaging.version import Version
|
|
37
|
+
import torch
|
|
38
|
+
import numpy as np
|
|
39
|
+
from contextlib import nullcontext
|
|
40
|
+
from torch.nn import functional as F
|
|
41
|
+
import inspect
|
|
42
|
+
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling
|
|
43
|
+
from transformers.training_args import ParallelMode
|
|
44
|
+
|
|
45
|
+
# Wrap trainer with padding to right and enable training mode
|
|
46
|
+
# Also patches W&B since multiple runs must use wandb.finish()
|
|
47
|
+
import functools
|
|
48
|
+
from types import MethodType
|
|
49
|
+
def prepare_for_training_mode(f):
|
|
50
|
+
@functools.wraps(f)
|
|
51
|
+
def wrapper(self, *args, **kwargs):
|
|
52
|
+
# Enable training mode
|
|
53
|
+
if hasattr(self, 'model') and hasattr(self.model, "for_training"):
|
|
54
|
+
self.model.for_training()
|
|
55
|
+
output = f(self, *args, **kwargs)
|
|
56
|
+
# Return inference mode
|
|
57
|
+
if hasattr(self, 'model') and hasattr(self.model, "for_inference"):
|
|
58
|
+
self.model.for_inference()
|
|
59
|
+
# Patch W&B to enable logging on future runs, otherwise it'll overwrite the first run
|
|
60
|
+
try:
|
|
61
|
+
import wandb
|
|
62
|
+
wandb.finish()
|
|
63
|
+
except:
|
|
64
|
+
pass
|
|
65
|
+
return output
|
|
66
|
+
return wrapper
|
|
67
|
+
pass
|
|
68
|
+
|
|
69
|
+
torch_compile_options = {
|
|
70
|
+
"epilogue_fusion" : True,
|
|
71
|
+
"max_autotune" : False,
|
|
72
|
+
"shape_padding" : True,
|
|
73
|
+
"trace.enabled" : False,
|
|
74
|
+
"triton.cudagraphs" : False,
|
|
75
|
+
}
|
|
76
|
+
|
|
77
|
+
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
|
|
78
|
+
def chunked_selective_log_softmax(logits, index):
|
|
79
|
+
# Split into 4 chunks only
|
|
80
|
+
chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0)
|
|
81
|
+
chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0)
|
|
82
|
+
all_per_token_logps = []
|
|
83
|
+
# Below loop does the same as selective_log_softmax(chunk_logits, chunk_index)
|
|
84
|
+
for chunk_logits, chunk_index in zip(chunked_logits, chunked_index):
|
|
85
|
+
chunk_logits = chunk_logits.to(torch.float32)
|
|
86
|
+
selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1)
|
|
87
|
+
logsumexp_values = torch.logsumexp(chunk_logits, dim = -1)
|
|
88
|
+
per_token_logps = selected_logits - logsumexp_values
|
|
89
|
+
all_per_token_logps.append(per_token_logps)
|
|
90
|
+
pass
|
|
91
|
+
all_per_token_logps = torch.concat(all_per_token_logps)
|
|
92
|
+
all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1]))
|
|
93
|
+
return all_per_token_logps
|
|
94
|
+
|
|
95
|
+
def calculate_pad_tokens_in_prompt(
|
|
96
|
+
input_ids: torch.Tensor,
|
|
97
|
+
logits_to_keep: int,
|
|
98
|
+
pad_token_id: int
|
|
99
|
+
) -> torch.Tensor:
|
|
100
|
+
"""
|
|
101
|
+
Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens
|
|
102
|
+
"""
|
|
103
|
+
if logits_to_keep >= input_ids.shape[1]:
|
|
104
|
+
raise ValueError("logits_to_keep must be smaller than the sequence length.")
|
|
105
|
+
|
|
106
|
+
prompt_section = input_ids[:, :-logits_to_keep]
|
|
107
|
+
|
|
108
|
+
padding_mask = (prompt_section == pad_token_id)
|
|
109
|
+
|
|
110
|
+
pad_token_counts = padding_mask.sum(dim=1)
|
|
111
|
+
|
|
112
|
+
return pad_token_counts
|
|
113
|
+
|
|
114
|
+
def create_completion_attention_mask(
|
|
115
|
+
completion_input_ids: torch.Tensor,
|
|
116
|
+
left_pad_tokens_per_prompt: torch.Tensor,
|
|
117
|
+
max_left_pad: int,
|
|
118
|
+
pad_token_id: int
|
|
119
|
+
) -> torch.Tensor:
|
|
120
|
+
"""
|
|
121
|
+
Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad]
|
|
122
|
+
|
|
123
|
+
Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens
|
|
124
|
+
and pad are pad tokens, this function would make a completion mask that would 0 out the pad
|
|
125
|
+
and p tokens. so in this example [0,0,0,1,1,1,0,0,0]
|
|
126
|
+
"""
|
|
127
|
+
batch_size, completion_len = completion_input_ids.shape
|
|
128
|
+
device = completion_input_ids.device
|
|
129
|
+
|
|
130
|
+
num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt
|
|
131
|
+
|
|
132
|
+
indices = torch.arange(completion_len, device=device).unsqueeze(0)
|
|
133
|
+
shift_mask = indices >= num_tokens_to_mask.unsqueeze(1)
|
|
134
|
+
|
|
135
|
+
non_padding_mask = (completion_input_ids != pad_token_id)
|
|
136
|
+
|
|
137
|
+
final_mask = shift_mask & non_padding_mask
|
|
138
|
+
|
|
139
|
+
return final_mask
|
|
140
|
+
|
|
141
|
+
def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor:
|
|
142
|
+
"""
|
|
143
|
+
Moves all padding tokens in each sequence of a batch to the right.
|
|
144
|
+
"""
|
|
145
|
+
mask = (tensor != pad_id)
|
|
146
|
+
# Must do stable=True since binary mark is unordered
|
|
147
|
+
sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True)
|
|
148
|
+
packed_tensor = torch.gather(tensor, 1, sorted_indices)
|
|
149
|
+
return packed_tensor
|
|
150
|
+
|
|
151
|
+
def align_logprobs_with_mask(
|
|
152
|
+
logprob_tensor: torch.Tensor,
|
|
153
|
+
attention_mask: torch.Tensor,
|
|
154
|
+
pad_value: float = 0.0
|
|
155
|
+
) -> torch.Tensor:
|
|
156
|
+
"""
|
|
157
|
+
Aligns a log probability tensor with a given attention mask.
|
|
158
|
+
"""
|
|
159
|
+
|
|
160
|
+
device = logprob_tensor.device
|
|
161
|
+
batch_size, logprob_seq_len = logprob_tensor.shape
|
|
162
|
+
mask_seq_len = attention_mask.shape[1]
|
|
163
|
+
|
|
164
|
+
padded_logprobs = torch.full(
|
|
165
|
+
attention_mask.shape,
|
|
166
|
+
fill_value=pad_value,
|
|
167
|
+
dtype=logprob_tensor.dtype,
|
|
168
|
+
device=device
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
left_pad_counts = torch.argmax(attention_mask, dim=1)
|
|
172
|
+
|
|
173
|
+
cols = torch.arange(logprob_seq_len, device=device)
|
|
174
|
+
dest_indices = left_pad_counts.unsqueeze(1) + cols
|
|
175
|
+
|
|
176
|
+
# Create destination row indices
|
|
177
|
+
# Shape: [batch_size, logprob_seq_len]
|
|
178
|
+
row_indices = torch.arange(batch_size, device=device).unsqueeze(1).expand_as(dest_indices)
|
|
179
|
+
|
|
180
|
+
# --- 4. Filter out-of-bounds indices and perform assignment ---
|
|
181
|
+
# Create a mask to identify only the indices that are within the bounds
|
|
182
|
+
# of the target tensor's sequence length.
|
|
183
|
+
valid_mask = dest_indices < mask_seq_len
|
|
184
|
+
|
|
185
|
+
# Use this mask to select only the valid row indices, column indices,
|
|
186
|
+
# and the corresponding values from the logprob tensor.
|
|
187
|
+
# This flattens the selected elements into 1D tensors.
|
|
188
|
+
valid_rows = row_indices[valid_mask]
|
|
189
|
+
valid_cols = dest_indices[valid_mask]
|
|
190
|
+
valid_vals = logprob_tensor[valid_mask]
|
|
191
|
+
|
|
192
|
+
# Place the valid values into their correct positions in the padded tensor
|
|
193
|
+
# using a single, efficient advanced indexing operation.
|
|
194
|
+
padded_logprobs[valid_rows, valid_cols] = valid_vals
|
|
195
|
+
|
|
196
|
+
return padded_logprobs
|
|
197
|
+
def grpo_compute_loss(
|
|
198
|
+
ref_logits,
|
|
199
|
+
new_logits,
|
|
200
|
+
old_logits,
|
|
201
|
+
sampling_per_token_logps,
|
|
202
|
+
input_ids,
|
|
203
|
+
mask,
|
|
204
|
+
beta,
|
|
205
|
+
advantages,
|
|
206
|
+
**kwargs
|
|
207
|
+
):
|
|
208
|
+
# All Unsloth Zoo code licensed under LGPLv3
|
|
209
|
+
# Set defaults for optional arguments
|
|
210
|
+
loss_type = kwargs.get("loss_type", "grpo")
|
|
211
|
+
epsilon_low = kwargs.get("epsilon_low", 0.2)
|
|
212
|
+
epsilon_high = kwargs.get("epsilon_high", 0.2)
|
|
213
|
+
max_completion_length = kwargs.get("max_completion_length", 8192)
|
|
214
|
+
delta = kwargs.get("delta", None)
|
|
215
|
+
temperature = kwargs.get("temperature", 1.0)
|
|
216
|
+
logit_scale_multiply = kwargs.get("logit_scale_multiply", 0.0)
|
|
217
|
+
logit_scale_divide = kwargs.get("logit_scale_divide", 0.0)
|
|
218
|
+
logit_softcapping = kwargs.get("logit_softcapping", 0.0)
|
|
219
|
+
importance_sampling_level = kwargs.get("importance_sampling_level", "token")
|
|
220
|
+
num_items_in_batch = kwargs.get("num_items_in_batch", None)
|
|
221
|
+
current_gradient_accumulation_steps = kwargs.get("current_gradient_accumulation_steps", 1)
|
|
222
|
+
num_processes = kwargs.get("num_processes", 1)
|
|
223
|
+
use_vllm = kwargs.get("use_vllm", False)
|
|
224
|
+
vllm_importance_sampling_cap = kwargs.get("vllm_importance_sampling_cap", 2.0)
|
|
225
|
+
input_ids = input_ids.unsqueeze(-1)
|
|
226
|
+
|
|
227
|
+
# Optional logit softcapping and logit dividing
|
|
228
|
+
if logit_scale_multiply != 0: new_logits = new_logits * logit_scale_multiply
|
|
229
|
+
if logit_scale_divide != 0: new_logits = new_logits / logit_scale_divide
|
|
230
|
+
if logit_softcapping != 0: new_logits = new_logits * torch.tanh(new_logits / logit_softcapping)
|
|
231
|
+
|
|
232
|
+
new_logits = new_logits.to(torch.float32)
|
|
233
|
+
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
|
|
234
|
+
if temperature != 1.0: new_logits = new_logits / temperature
|
|
235
|
+
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1)
|
|
236
|
+
new = new_x - torch.logsumexp(new_logits, dim = -1)
|
|
237
|
+
# x_i - logsumexp(x_i)
|
|
238
|
+
with torch.no_grad():
|
|
239
|
+
if beta != 0.0:
|
|
240
|
+
assert ref_logits is not None, "ref_logits should not be None when beta != 0.0"
|
|
241
|
+
|
|
242
|
+
# Optional logit softcapping and logit dividing
|
|
243
|
+
if logit_scale_multiply != 0: ref_logits = ref_logits * logit_scale_multiply
|
|
244
|
+
if logit_scale_divide != 0: ref_logits = ref_logits / logit_scale_divide
|
|
245
|
+
if logit_softcapping != 0: ref_logits = ref_logits * torch.tanh(ref_logits / logit_softcapping)
|
|
246
|
+
|
|
247
|
+
ref_logits = ref_logits.to(torch.float32)
|
|
248
|
+
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
|
|
249
|
+
if temperature != 1.0: ref_logits = ref_logits / temperature
|
|
250
|
+
ref_x = torch.gather(ref_logits, dim = -1, index = input_ids).squeeze(-1)
|
|
251
|
+
ref = ref_x - torch.logsumexp(ref_logits, dim = -1)
|
|
252
|
+
pass
|
|
253
|
+
|
|
254
|
+
if old_logits is not None:
|
|
255
|
+
# Optional logit softcapping and logit dividing
|
|
256
|
+
if logit_scale_multiply != 0: old_logits = old_logits * logit_scale_multiply
|
|
257
|
+
if logit_scale_divide != 0: old_logits = old_logits / logit_scale_divide
|
|
258
|
+
if logit_softcapping != 0: old_logits = old_logits * torch.tanh(old_logits / logit_softcapping)
|
|
259
|
+
|
|
260
|
+
old_logits = old_logits.to(torch.float32)
|
|
261
|
+
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
|
|
262
|
+
if temperature != 1.0: old_logits = old_logits / temperature
|
|
263
|
+
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1)
|
|
264
|
+
old = old_x - torch.logsumexp(old_logits, dim = -1)
|
|
265
|
+
pass
|
|
266
|
+
if use_vllm and sampling_per_token_logps is not None:
|
|
267
|
+
#must filter out extra prompt tokens in begining after making input_ids left padded
|
|
268
|
+
importance_sampling_ratio = torch.exp((old * mask) - sampling_per_token_logps)
|
|
269
|
+
importance_sampling_ratio = torch.clamp(
|
|
270
|
+
importance_sampling_ratio, max=vllm_importance_sampling_cap
|
|
271
|
+
)
|
|
272
|
+
pass
|
|
273
|
+
pass
|
|
274
|
+
|
|
275
|
+
# Reverse KL
|
|
276
|
+
# Note that this is a low variance low bias estimator for the KL divergence as used in GRPO paper
|
|
277
|
+
if beta != 0.0:
|
|
278
|
+
kl_i = torch.exp(ref - new) - (ref - new) - 1.0
|
|
279
|
+
|
|
280
|
+
else:
|
|
281
|
+
# set kl_i to a tensor of zeros with the correct shape
|
|
282
|
+
if importance_sampling_level == "sequence":
|
|
283
|
+
kl_i = new.new_zeros(new.size(0), 1)
|
|
284
|
+
else:
|
|
285
|
+
kl_i = torch.zeros_like(new)
|
|
286
|
+
# Full correct reverse KL divergence?? Missing term maybe?
|
|
287
|
+
# kl_i = torch.exp(new) * kl_i
|
|
288
|
+
|
|
289
|
+
# Below is forward KL (normal KL)
|
|
290
|
+
# kl_i = torch.exp(old) * (old - new)
|
|
291
|
+
if old_logits is not None:
|
|
292
|
+
log_ratio = new - old
|
|
293
|
+
else:
|
|
294
|
+
log_ratio = new - new.detach()
|
|
295
|
+
|
|
296
|
+
if importance_sampling_level == "token":
|
|
297
|
+
log_importance_weights = log_ratio
|
|
298
|
+
elif importance_sampling_level == "sequence":
|
|
299
|
+
log_importance_weights = (log_ratio * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
|
|
300
|
+
log_importance_weights = log_importance_weights.unsqueeze(-1)
|
|
301
|
+
else:
|
|
302
|
+
raise ValueError(
|
|
303
|
+
f"Unknown importance sampling level: {importance_sampling_level}. Possible values are 'token' "
|
|
304
|
+
"and 'sequence'."
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
coef_1 = torch.exp(log_importance_weights)
|
|
308
|
+
|
|
309
|
+
coef_2 = torch.clamp(coef_1, 1 - epsilon_low, 1 + epsilon_high)
|
|
310
|
+
|
|
311
|
+
if delta is not None:
|
|
312
|
+
loss_1 = torch.clamp(coef_1, max=delta) * advantages.unsqueeze(1)
|
|
313
|
+
else:
|
|
314
|
+
loss_1 = coef_1 * advantages.unsqueeze(1)
|
|
315
|
+
pass
|
|
316
|
+
|
|
317
|
+
# Must detach - otherwise gradients are not propagated correctly!
|
|
318
|
+
# exp(x - x) == 1
|
|
319
|
+
# loss_i = torch.exp(new - new.detach()) * advantages.unsqueeze(1)
|
|
320
|
+
|
|
321
|
+
loss_2 = coef_2 * advantages.unsqueeze(1)
|
|
322
|
+
loss_i = -torch.min(loss_1, loss_2)
|
|
323
|
+
|
|
324
|
+
if use_vllm and sampling_per_token_logps is not None:
|
|
325
|
+
loss_i = loss_i * importance_sampling_ratio
|
|
326
|
+
#delta for metric
|
|
327
|
+
with torch.no_grad():
|
|
328
|
+
delta = torch.abs(old - sampling_per_token_logps)
|
|
329
|
+
delta = delta * mask
|
|
330
|
+
flat_is_ratio = importance_sampling_ratio * mask
|
|
331
|
+
else:
|
|
332
|
+
delta = torch.tensor([]).detach()
|
|
333
|
+
flat_is_ratio = torch.tensor([]).detach()
|
|
334
|
+
if beta != 0.0:
|
|
335
|
+
loss_i = loss_i + beta * kl_i
|
|
336
|
+
|
|
337
|
+
mask = mask.to(torch.float32)
|
|
338
|
+
n_mask_per_reward = mask.sum(1)
|
|
339
|
+
|
|
340
|
+
# https://github.com/huggingface/trl/blob/e8b8499f1f8d76838155b515e414ee98f757d6d5/trl/trainer/grpo_trainer.py#L1624
|
|
341
|
+
if loss_type == "grpo":
|
|
342
|
+
loss = ((loss_i * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)).mean()
|
|
343
|
+
loss = loss / current_gradient_accumulation_steps
|
|
344
|
+
elif loss_type == "bnpo":
|
|
345
|
+
loss = (loss_i * mask).sum() / mask.sum().clamp(min=1.0)
|
|
346
|
+
loss = loss / current_gradient_accumulation_steps
|
|
347
|
+
elif loss_type == "dr_grpo":
|
|
348
|
+
loss = (loss_i * mask).sum() / (loss_i.size(0) * max_completion_length)
|
|
349
|
+
loss = loss / current_gradient_accumulation_steps
|
|
350
|
+
elif loss_type == "dapo":
|
|
351
|
+
normalizer = num_items_in_batch/ num_processes
|
|
352
|
+
loss = (loss_i * mask).sum() / normalizer
|
|
353
|
+
else:
|
|
354
|
+
raise ValueError(f"Unknown loss type: {loss_type}")
|
|
355
|
+
|
|
356
|
+
# loss = (loss_i * mask).sum() / mask.sum()
|
|
357
|
+
|
|
358
|
+
# Get metrics as well which are folded
|
|
359
|
+
def masked_batch_mean(x):
|
|
360
|
+
with torch.inference_mode():
|
|
361
|
+
completion_length = n_mask_per_reward.mean()
|
|
362
|
+
if x.shape[1] == 1: # when importance_sampling_level == "sequence"
|
|
363
|
+
return completion_length, x.mean()
|
|
364
|
+
else:
|
|
365
|
+
mean_kl_per_reward = (x * mask).sum(1) / n_mask_per_reward
|
|
366
|
+
mean_kl = mean_kl_per_reward.mean()
|
|
367
|
+
return completion_length, mean_kl
|
|
368
|
+
completion_length, mean_kl = masked_batch_mean(kl_i)
|
|
369
|
+
return loss, completion_length, mean_kl, delta, flat_is_ratio
|
|
370
|
+
|
|
371
|
+
class UnslothEfficientGRPO(torch.autograd.Function):
|
|
372
|
+
# All Unsloth Zoo code licensed under LGPLv3
|
|
373
|
+
@staticmethod
|
|
374
|
+
def forward(ctx, _new_hidden_states, _old_hidden_states, _ref_hidden_states, _sampling_per_token_logps, lm_head, _input_ids, _mask, _advantages, beta, scaler = None, n_chunks = 1, extra_kwargs=None):
|
|
375
|
+
if extra_kwargs is None:
|
|
376
|
+
extra_kwargs = {}
|
|
377
|
+
def compute_loss(new_hidden_states, old_hidden_states, ref_hidden_states, sampling_per_token_logps, input_ids, mask, advantages, scaling):
|
|
378
|
+
new_logits = torch.matmul(new_hidden_states.to(lm_head.dtype), lm_head.t())
|
|
379
|
+
new_logits = new_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
|
|
380
|
+
with torch.no_grad():
|
|
381
|
+
if beta != 0.0:
|
|
382
|
+
ref_logits = torch.matmul(ref_hidden_states.to(lm_head.dtype), lm_head.t())
|
|
383
|
+
ref_logits = ref_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
|
|
384
|
+
else:
|
|
385
|
+
ref_logits = None
|
|
386
|
+
if old_hidden_states is not None:
|
|
387
|
+
old_logits = torch.matmul(old_hidden_states.to(lm_head.dtype), lm_head.t())
|
|
388
|
+
old_logits = old_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
|
|
389
|
+
else:
|
|
390
|
+
old_logits = None
|
|
391
|
+
# if old_hidden_states is not None:
|
|
392
|
+
# old_logits = torch.matmul(old_hidden_states, lm_head.t()) #last logit already excluded
|
|
393
|
+
# old_logits = old_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
|
|
394
|
+
# else:
|
|
395
|
+
# old_logits = None
|
|
396
|
+
# unsloth_zoo/rl_replacements.py
|
|
397
|
+
loss, completion_length, mean_kl, delta, flat_is_ratio = grpo_compute_loss(
|
|
398
|
+
ref_logits,
|
|
399
|
+
new_logits,
|
|
400
|
+
old_logits,
|
|
401
|
+
sampling_per_token_logps,
|
|
402
|
+
input_ids,
|
|
403
|
+
mask,
|
|
404
|
+
beta,
|
|
405
|
+
advantages,
|
|
406
|
+
**extra_kwargs,
|
|
407
|
+
)
|
|
408
|
+
|
|
409
|
+
# Scale loss if needed for mixed precision training
|
|
410
|
+
scaled_loss = loss * scaling
|
|
411
|
+
# Must add .loss.detach otherwise autograd uses 2x VRAM
|
|
412
|
+
return scaled_loss, (loss.detach(), completion_length, mean_kl, delta, flat_is_ratio)
|
|
413
|
+
pass
|
|
414
|
+
|
|
415
|
+
device =_new_hidden_states.device
|
|
416
|
+
grad_inputs = torch.empty_like(_new_hidden_states)
|
|
417
|
+
accumulated_loss = torch.zeros(1, device = device)
|
|
418
|
+
accumulated_completion_length = torch.zeros(1, device = device)
|
|
419
|
+
accumulated_mean_kl = torch.zeros(1, device = device)
|
|
420
|
+
accumulated_delta = []
|
|
421
|
+
accumulated_flat_is_ratio = []
|
|
422
|
+
def accumulate_chunk(
|
|
423
|
+
new_hidden_states_j,
|
|
424
|
+
old_hidden_states_j,
|
|
425
|
+
ref_hidden_states_j,
|
|
426
|
+
sampling_per_token_logps_j,
|
|
427
|
+
input_ids_j,
|
|
428
|
+
mask_j,
|
|
429
|
+
advantages_j,
|
|
430
|
+
scaling,
|
|
431
|
+
grad_inputs_j,
|
|
432
|
+
):
|
|
433
|
+
(chunk_grad_input,), (chunk_loss, (unscaled_loss, chunk_completion_length, chunk_mean_kl, chunk_delta, chunk_flat_is_ratio)) = torch.func.grad_and_value(
|
|
434
|
+
compute_loss,
|
|
435
|
+
argnums = (0,),
|
|
436
|
+
has_aux = True,
|
|
437
|
+
)(new_hidden_states_j, old_hidden_states_j, ref_hidden_states_j, sampling_per_token_logps_j, input_ids_j, mask_j, advantages_j, scaling)
|
|
438
|
+
accumulated_loss .add_(unscaled_loss)
|
|
439
|
+
accumulated_completion_length.add_(chunk_completion_length)
|
|
440
|
+
accumulated_mean_kl .add_(chunk_mean_kl)
|
|
441
|
+
accumulated_delta .append(chunk_delta)
|
|
442
|
+
accumulated_flat_is_ratio .append(chunk_flat_is_ratio)
|
|
443
|
+
grad_inputs_j[:] = chunk_grad_input
|
|
444
|
+
pass
|
|
445
|
+
|
|
446
|
+
accumulate_chunk = torch.compile(
|
|
447
|
+
accumulate_chunk,
|
|
448
|
+
fullgraph = True,
|
|
449
|
+
# [TODO] Dynamic marking causes torch.compile errors if sequence length is long
|
|
450
|
+
dynamic = True,
|
|
451
|
+
options = torch_compile_options,
|
|
452
|
+
)
|
|
453
|
+
|
|
454
|
+
grad_inputs_chunks = torch.chunk(grad_inputs, chunks = n_chunks, dim = 0)
|
|
455
|
+
new_hidden_states = torch.chunk(_new_hidden_states, chunks = n_chunks, dim = 0)
|
|
456
|
+
if _old_hidden_states is not None:
|
|
457
|
+
old_hidden_states = torch.chunk(_old_hidden_states, chunks = n_chunks, dim = 0)
|
|
458
|
+
else:
|
|
459
|
+
old_hidden_states = [None] * n_chunks
|
|
460
|
+
if _ref_hidden_states is not None:
|
|
461
|
+
ref_hidden_states = torch.chunk(_ref_hidden_states, chunks = n_chunks, dim = 0)
|
|
462
|
+
else:
|
|
463
|
+
ref_hidden_states = [None] * n_chunks
|
|
464
|
+
if _sampling_per_token_logps is not None:
|
|
465
|
+
sampling_per_token_logps = torch.chunk(_sampling_per_token_logps, chunks = n_chunks, dim = 0)
|
|
466
|
+
else:
|
|
467
|
+
sampling_per_token_logps = [None] * n_chunks
|
|
468
|
+
input_ids = torch.chunk(_input_ids, chunks = n_chunks, dim = 0)
|
|
469
|
+
mask = torch.chunk(_mask, chunks = n_chunks, dim = 0)
|
|
470
|
+
advantages = torch.chunk(_advantages, chunks = n_chunks, dim = 0)
|
|
471
|
+
|
|
472
|
+
# Get mixed precision scaling if seen
|
|
473
|
+
scaling = scaler.get_scale() if scaler is not None else 1.0
|
|
474
|
+
|
|
475
|
+
# Force torch.compile to use dynamic shapes for seqlen dim
|
|
476
|
+
# mark_dynamic = lambda x: torch._dynamo.mark_dynamic(x, 1)
|
|
477
|
+
|
|
478
|
+
for (grad_inputs_j, new_hidden_states_j, old_hidden_states_j, ref_hidden_states_j, sampling_per_token_logps_j, input_ids_j, mask_j, advantages_j, ) in \
|
|
479
|
+
zip(grad_inputs_chunks, new_hidden_states, old_hidden_states, ref_hidden_states, sampling_per_token_logps, input_ids, mask, advantages):
|
|
480
|
+
|
|
481
|
+
# [TODO] Dynamic marking causes torch.compile errors if sequence length is long
|
|
482
|
+
|
|
483
|
+
# mark_dynamic(new_hidden_states_j)
|
|
484
|
+
# mark_dynamic(ref_hidden_states_j)
|
|
485
|
+
# if old_hidden_states_j is not None:
|
|
486
|
+
# mark_dynamic(old_hidden_states_j)
|
|
487
|
+
# mark_dynamic(input_ids_j)
|
|
488
|
+
# mark_dynamic(mask_j)
|
|
489
|
+
|
|
490
|
+
accumulate_chunk(
|
|
491
|
+
new_hidden_states_j,
|
|
492
|
+
old_hidden_states_j,
|
|
493
|
+
ref_hidden_states_j,
|
|
494
|
+
sampling_per_token_logps_j,
|
|
495
|
+
input_ids_j,
|
|
496
|
+
mask_j,
|
|
497
|
+
advantages_j,
|
|
498
|
+
scaling,
|
|
499
|
+
grad_inputs_j,
|
|
500
|
+
)
|
|
501
|
+
pass
|
|
502
|
+
|
|
503
|
+
grad_inputs .div_(n_chunks)
|
|
504
|
+
accumulated_loss .div_(n_chunks)
|
|
505
|
+
accumulated_completion_length.div_(n_chunks)
|
|
506
|
+
accumulated_mean_kl .div_(n_chunks)
|
|
507
|
+
|
|
508
|
+
if _sampling_per_token_logps is not None:
|
|
509
|
+
accumulated_delta = torch.cat(accumulated_delta, dim=0)
|
|
510
|
+
accumulated_flat_is_ratio = torch.cat(accumulated_flat_is_ratio, dim=0)
|
|
511
|
+
else:
|
|
512
|
+
accumulated_delta = None
|
|
513
|
+
accumulated_flat_is_ratio = None
|
|
514
|
+
ctx.save_for_backward(grad_inputs)
|
|
515
|
+
return (
|
|
516
|
+
accumulated_loss,
|
|
517
|
+
accumulated_completion_length,
|
|
518
|
+
accumulated_mean_kl,
|
|
519
|
+
accumulated_delta,
|
|
520
|
+
accumulated_flat_is_ratio
|
|
521
|
+
)
|
|
522
|
+
pass
|
|
523
|
+
|
|
524
|
+
@staticmethod
|
|
525
|
+
def backward(ctx, grad_output, dcompletion_length, dmean_kl, ddelta, ddflat_is_ratio):
|
|
526
|
+
(grad_input,) = ctx.saved_tensors
|
|
527
|
+
return (grad_input, None, None, None, None, None, None, None, None, None, None, None)
|
|
528
|
+
pass
|
|
529
|
+
|
|
530
|
+
def grpo_accumulated_loss(
|
|
531
|
+
trainer,
|
|
532
|
+
input_ids,
|
|
533
|
+
attention_mask,
|
|
534
|
+
logits_to_keep,
|
|
535
|
+
completion_mask,
|
|
536
|
+
advantages,
|
|
537
|
+
old_hidden_states,
|
|
538
|
+
ref_hidden_states,
|
|
539
|
+
n_chunks = -1,
|
|
540
|
+
**kwargs,
|
|
541
|
+
):
|
|
542
|
+
# All Unsloth Zoo code licensed under LGPLv3
|
|
543
|
+
bsz, qlen = input_ids.shape
|
|
544
|
+
|
|
545
|
+
pixel_values = kwargs.get('pixel_values',None)
|
|
546
|
+
image_grid_thw = kwargs.get('image_grid_thw',None)
|
|
547
|
+
pixel_attention_mask = kwargs.get('pixel_attention_mask',None)
|
|
548
|
+
image_sizes = kwargs.get('image_sizes',None)
|
|
549
|
+
#delete this from kwargs so less issues
|
|
550
|
+
sampling_per_token_logps = kwargs.pop("sampling_per_token_logps", None)
|
|
551
|
+
kwargs["vllm_importance_sampling_cap"] = trainer.vllm_importance_sampling_cap if sampling_per_token_logps is not None else None
|
|
552
|
+
kwargs["use_vllm"] = trainer.use_vllm
|
|
553
|
+
# Find closest multiple
|
|
554
|
+
factors = [i for i in range(1, bsz + 1) if bsz % i == 0]
|
|
555
|
+
if n_chunks == -1: n_chunks = bsz
|
|
556
|
+
n_chunks = factors[min(np.searchsorted(factors, n_chunks), len(factors)-1)]
|
|
557
|
+
|
|
558
|
+
if not hasattr(trainer, '_autocast_dtype'):
|
|
559
|
+
trainer._autocast_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16
|
|
560
|
+
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': trainer._autocast_dtype = None
|
|
561
|
+
pass
|
|
562
|
+
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "1"
|
|
563
|
+
|
|
564
|
+
lm_head = trainer.model.get_output_embeddings().weight
|
|
565
|
+
|
|
566
|
+
if pixel_values is None:
|
|
567
|
+
left_pad_tokens_per_prompt = calculate_pad_tokens_in_prompt(input_ids, logits_to_keep, trainer.processing_class.pad_token_id)
|
|
568
|
+
|
|
569
|
+
max_left_pad = max(left_pad_tokens_per_prompt).item()
|
|
570
|
+
|
|
571
|
+
input_ids = left_pack_padding(input_ids, trainer.processing_class.pad_token_id)
|
|
572
|
+
|
|
573
|
+
completion_input_ids = input_ids[:, -(logits_to_keep +max_left_pad):]
|
|
574
|
+
|
|
575
|
+
completion_mask = create_completion_attention_mask(completion_input_ids, left_pad_tokens_per_prompt, max_left_pad, trainer.processing_class.pad_token_id).to(attention_mask.dtype)
|
|
576
|
+
#TODO given the completion mask here we need to, handle the left pad tokens so the sizes of completion
|
|
577
|
+
#token or old logprobs are compatible with the importance sampling logprobs
|
|
578
|
+
if trainer.use_vllm and sampling_per_token_logps is not None:
|
|
579
|
+
sampling_per_token_logps = align_logprobs_with_mask(sampling_per_token_logps, completion_mask)
|
|
580
|
+
attention_mask = input_ids != trainer.processing_class.pad_token_id
|
|
581
|
+
attention_mask = attention_mask.to(attention_mask.dtype)
|
|
582
|
+
else:
|
|
583
|
+
completion_input_ids = input_ids[:, -logits_to_keep:]
|
|
584
|
+
|
|
585
|
+
unwrapped_model = trainer.accelerator.unwrap_model(trainer.model, keep_fp32_wrapper = False)
|
|
586
|
+
|
|
587
|
+
# Do not move hidden_states from device 1 to device 0:
|
|
588
|
+
for module in unwrapped_model.modules():
|
|
589
|
+
if hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "io_same_decice"):
|
|
590
|
+
module._hf_hook.io_same_decice = False
|
|
591
|
+
pass
|
|
592
|
+
# Get autocaster
|
|
593
|
+
if trainer._autocast_dtype is None:
|
|
594
|
+
autocaster = nullcontext()
|
|
595
|
+
else:
|
|
596
|
+
autocaster = torch.amp.autocast(device_type = trainer.model.device.type, dtype = trainer._autocast_dtype)
|
|
597
|
+
with autocaster:
|
|
598
|
+
if pixel_values is None:
|
|
599
|
+
new_hidden_states = unwrapped_model(
|
|
600
|
+
input_ids = input_ids,
|
|
601
|
+
attention_mask = attention_mask,
|
|
602
|
+
pixel_values = pixel_values,
|
|
603
|
+
image_grid_thw = image_grid_thw,
|
|
604
|
+
pixel_attention_mask = pixel_attention_mask,
|
|
605
|
+
image_sizes = image_sizes,
|
|
606
|
+
# logits_to_keep = logits_to_keep + 1,
|
|
607
|
+
).logits
|
|
608
|
+
|
|
609
|
+
#keep extra logit as we generated a new token
|
|
610
|
+
new_hidden_states = new_hidden_states[:, -(logits_to_keep +max_left_pad+1): , :]
|
|
611
|
+
if ref_hidden_states is not None:
|
|
612
|
+
ref_hidden_states = ref_hidden_states[:, -(logits_to_keep +max_left_pad+1): , :]
|
|
613
|
+
if old_hidden_states is not None:
|
|
614
|
+
old_hidden_states = old_hidden_states[:, -(logits_to_keep +max_left_pad+1): , :]
|
|
615
|
+
else:
|
|
616
|
+
new_hidden_states = unwrapped_model(
|
|
617
|
+
input_ids = input_ids,
|
|
618
|
+
attention_mask = attention_mask,
|
|
619
|
+
pixel_values = pixel_values,
|
|
620
|
+
image_grid_thw = image_grid_thw,
|
|
621
|
+
pixel_attention_mask = pixel_attention_mask,
|
|
622
|
+
image_sizes = image_sizes,
|
|
623
|
+
logits_to_keep = logits_to_keep + 1,
|
|
624
|
+
).logits
|
|
625
|
+
loss, completion_length, mean_kl, delta, flat_is_ratio = UnslothEfficientGRPO.apply(
|
|
626
|
+
new_hidden_states,
|
|
627
|
+
old_hidden_states,
|
|
628
|
+
ref_hidden_states,
|
|
629
|
+
sampling_per_token_logps,
|
|
630
|
+
lm_head,
|
|
631
|
+
completion_input_ids,
|
|
632
|
+
completion_mask,
|
|
633
|
+
advantages,
|
|
634
|
+
trainer.beta,
|
|
635
|
+
trainer.accelerator.scaler,
|
|
636
|
+
n_chunks,
|
|
637
|
+
kwargs # pass kwargs as a dict
|
|
638
|
+
)
|
|
639
|
+
# Must force not returning hidden states but logits otherwise gibberish
|
|
640
|
+
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "0"
|
|
641
|
+
|
|
642
|
+
return loss, completion_length, mean_kl, delta, flat_is_ratio
|
|
643
|
+
# Old non efficient code path
|
|
644
|
+
new_logits = torch.matmul(new_hidden_states, lm_head.t())
|
|
645
|
+
new_logits = new_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
|
|
646
|
+
old_logits = torch.matmul(old_hidden_states, lm_head.t())
|
|
647
|
+
old_logits = old_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
|
|
648
|
+
loss, completion_length, mean_kl = grpo_compute_loss(
|
|
649
|
+
old_logits,
|
|
650
|
+
new_logits,
|
|
651
|
+
completion_input_ids,
|
|
652
|
+
completion_mask,
|
|
653
|
+
trainer.beta,
|
|
654
|
+
advantages,
|
|
655
|
+
)
|
|
656
|
+
return loss, completion_length, mean_kl
|
|
657
|
+
pass
|
|
658
|
+
|
|
659
|
+
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options)
|
|
660
|
+
def grpo_compute_loss_slow(
|
|
661
|
+
ref_logits,
|
|
662
|
+
new_logits,
|
|
663
|
+
old_logits,
|
|
664
|
+
sampling_per_token_logps,
|
|
665
|
+
input_ids,
|
|
666
|
+
mask,
|
|
667
|
+
beta,
|
|
668
|
+
advantages,
|
|
669
|
+
**kwargs
|
|
670
|
+
):
|
|
671
|
+
# All Unsloth Zoo code licensed under LGPLv3
|
|
672
|
+
# Set defaults for optional arguments
|
|
673
|
+
loss_type = kwargs.get("loss_type", "grpo")
|
|
674
|
+
epsilon_low = kwargs.get("epsilon_low", 0.2)
|
|
675
|
+
epsilon_high = kwargs.get("epsilon_high", 0.2)
|
|
676
|
+
max_completion_length = kwargs.get("max_completion_length", 8192)
|
|
677
|
+
delta = kwargs.get("delta", None)
|
|
678
|
+
temperature = kwargs.get("temperature", 1.0)
|
|
679
|
+
logit_scale_multiply = kwargs.get("logit_scale_multiply", 0.0)
|
|
680
|
+
logit_scale_divide = kwargs.get("logit_scale_divide", 0.0)
|
|
681
|
+
logit_softcapping = kwargs.get("logit_softcapping", 0.0)
|
|
682
|
+
importance_sampling_level = kwargs.get("importance_sampling_level", "token")
|
|
683
|
+
num_items_in_batch = kwargs.get("num_items_in_batch", None)
|
|
684
|
+
current_gradient_accumulation_steps = kwargs.get("current_gradient_accumulation_steps", 1)
|
|
685
|
+
num_processes = kwargs.get("num_processes", 1)
|
|
686
|
+
use_vllm = kwargs.get("use_vllm", False)
|
|
687
|
+
vllm_importance_sampling_cap = kwargs.get("vllm_importance_sampling_cap", 2.0)
|
|
688
|
+
input_ids = input_ids.unsqueeze(-1)
|
|
689
|
+
|
|
690
|
+
# Optional logit softcapping and logit dividing
|
|
691
|
+
if logit_scale_multiply != 0: new_logits = new_logits * logit_scale_multiply
|
|
692
|
+
if logit_scale_divide != 0: new_logits = new_logits / logit_scale_divide
|
|
693
|
+
if logit_softcapping != 0: new_logits = new_logits * torch.tanh(new_logits / logit_softcapping)
|
|
694
|
+
|
|
695
|
+
new_logits = new_logits.to(torch.float32)
|
|
696
|
+
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
|
|
697
|
+
if temperature != 1.0: new_logits = new_logits / temperature
|
|
698
|
+
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1)
|
|
699
|
+
new = new_x - torch.logsumexp(new_logits, dim = -1)
|
|
700
|
+
# x_i - logsumexp(x_i)
|
|
701
|
+
with torch.no_grad():
|
|
702
|
+
if beta != 0.0:
|
|
703
|
+
assert ref_logits is not None, "ref_logits should not be None when beta != 0.0"
|
|
704
|
+
|
|
705
|
+
# Optional logit softcapping and logit dividing
|
|
706
|
+
if logit_scale_multiply != 0: ref_logits = ref_logits * logit_scale_multiply
|
|
707
|
+
if logit_scale_divide != 0: ref_logits = ref_logits / logit_scale_divide
|
|
708
|
+
if logit_softcapping != 0: ref_logits = ref_logits * torch.tanh(ref_logits / logit_softcapping)
|
|
709
|
+
|
|
710
|
+
ref_logits = ref_logits.to(torch.float32)
|
|
711
|
+
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
|
|
712
|
+
if temperature != 1.0: ref_logits = ref_logits / temperature
|
|
713
|
+
ref_x = torch.gather(ref_logits, dim = -1, index = input_ids).squeeze(-1)
|
|
714
|
+
ref = ref_x - torch.logsumexp(ref_logits, dim = -1)
|
|
715
|
+
pass
|
|
716
|
+
|
|
717
|
+
if old_logits is not None:
|
|
718
|
+
# Optional logit softcapping and logit dividing
|
|
719
|
+
if logit_scale_multiply != 0: old_logits = old_logits * logit_scale_multiply
|
|
720
|
+
if logit_scale_divide != 0: old_logits = old_logits / logit_scale_divide
|
|
721
|
+
if logit_softcapping != 0: old_logits = old_logits * torch.tanh(old_logits / logit_softcapping)
|
|
722
|
+
|
|
723
|
+
old_logits = old_logits.to(torch.float32)
|
|
724
|
+
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
|
|
725
|
+
if temperature != 1.0: old_logits = old_logits / temperature
|
|
726
|
+
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1)
|
|
727
|
+
old = old_x - torch.logsumexp(old_logits, dim = -1)
|
|
728
|
+
pass
|
|
729
|
+
if use_vllm and sampling_per_token_logps is not None:
|
|
730
|
+
#must filter out extra prompt tokens in begining after making input_ids left padded
|
|
731
|
+
importance_sampling_ratio = torch.exp((old * mask) - sampling_per_token_logps)
|
|
732
|
+
importance_sampling_ratio = torch.clamp(
|
|
733
|
+
importance_sampling_ratio, max=vllm_importance_sampling_cap
|
|
734
|
+
)
|
|
735
|
+
pass
|
|
736
|
+
pass
|
|
737
|
+
|
|
738
|
+
# Reverse KL
|
|
739
|
+
# Note that this is a low variance low bias estimator for the KL divergence as used in GRPO paper
|
|
740
|
+
if beta != 0.0:
|
|
741
|
+
kl_i = torch.exp(ref - new) - (ref - new) - 1.0
|
|
742
|
+
|
|
743
|
+
else:
|
|
744
|
+
# set kl_i to a tensor of zeros with the correct shape
|
|
745
|
+
if importance_sampling_level == "sequence":
|
|
746
|
+
kl_i = new.new_zeros(new.size(0), 1)
|
|
747
|
+
else:
|
|
748
|
+
kl_i = torch.zeros_like(new)
|
|
749
|
+
# Full correct reverse KL divergence?? Missing term maybe?
|
|
750
|
+
# kl_i = torch.exp(new) * kl_i
|
|
751
|
+
|
|
752
|
+
# Below is forward KL (normal KL)
|
|
753
|
+
# kl_i = torch.exp(old) * (old - new)
|
|
754
|
+
if old_logits is not None:
|
|
755
|
+
log_ratio = new - old
|
|
756
|
+
else:
|
|
757
|
+
log_ratio = new - new.detach()
|
|
758
|
+
|
|
759
|
+
if importance_sampling_level == "token":
|
|
760
|
+
log_importance_weights = log_ratio
|
|
761
|
+
elif importance_sampling_level == "sequence":
|
|
762
|
+
log_importance_weights = (log_ratio * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
|
|
763
|
+
log_importance_weights = log_importance_weights.unsqueeze(-1)
|
|
764
|
+
else:
|
|
765
|
+
raise ValueError(
|
|
766
|
+
f"Unknown importance sampling level: {importance_sampling_level}. Possible values are 'token' "
|
|
767
|
+
"and 'sequence'."
|
|
768
|
+
)
|
|
769
|
+
|
|
770
|
+
coef_1 = torch.exp(log_importance_weights)
|
|
771
|
+
|
|
772
|
+
coef_2 = torch.clamp(coef_1, 1 - epsilon_low, 1 + epsilon_high)
|
|
773
|
+
|
|
774
|
+
if delta is not None:
|
|
775
|
+
loss_1 = torch.clamp(coef_1, max=delta) * advantages.unsqueeze(1)
|
|
776
|
+
else:
|
|
777
|
+
loss_1 = coef_1 * advantages.unsqueeze(1)
|
|
778
|
+
pass
|
|
779
|
+
|
|
780
|
+
# Must detach - otherwise gradients are not propagated correctly!
|
|
781
|
+
# exp(x - x) == 1
|
|
782
|
+
# loss_i = torch.exp(new - new.detach()) * advantages.unsqueeze(1)
|
|
783
|
+
|
|
784
|
+
loss_2 = coef_2 * advantages.unsqueeze(1)
|
|
785
|
+
loss_i = -torch.min(loss_1, loss_2)
|
|
786
|
+
|
|
787
|
+
if use_vllm and sampling_per_token_logps is not None:
|
|
788
|
+
loss_i = loss_i * importance_sampling_ratio
|
|
789
|
+
#delta for metric
|
|
790
|
+
with torch.no_grad():
|
|
791
|
+
delta = torch.abs(old - sampling_per_token_logps)
|
|
792
|
+
delta = delta * mask
|
|
793
|
+
flat_is_ratio = importance_sampling_ratio * mask
|
|
794
|
+
else:
|
|
795
|
+
delta = torch.tensor([]).detach()
|
|
796
|
+
flat_is_ratio = torch.tensor([]).detach()
|
|
797
|
+
if beta != 0.0:
|
|
798
|
+
loss_i = loss_i + beta * kl_i
|
|
799
|
+
|
|
800
|
+
mask = mask.to(torch.float32)
|
|
801
|
+
n_mask_per_reward = mask.sum(1)
|
|
802
|
+
|
|
803
|
+
# https://github.com/huggingface/trl/blob/e8b8499f1f8d76838155b515e414ee98f757d6d5/trl/trainer/grpo_trainer.py#L1624
|
|
804
|
+
if loss_type == "grpo":
|
|
805
|
+
loss = ((loss_i * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)).mean()
|
|
806
|
+
loss = loss / current_gradient_accumulation_steps
|
|
807
|
+
elif loss_type == "bnpo":
|
|
808
|
+
loss = (loss_i * mask).sum() / mask.sum().clamp(min=1.0)
|
|
809
|
+
loss = loss / current_gradient_accumulation_steps
|
|
810
|
+
elif loss_type == "dr_grpo":
|
|
811
|
+
loss = (loss_i * mask).sum() / (loss_i.size(0) * max_completion_length)
|
|
812
|
+
loss = loss / current_gradient_accumulation_steps
|
|
813
|
+
elif loss_type == "dapo":
|
|
814
|
+
normalizer = num_items_in_batch/ num_processes
|
|
815
|
+
loss = (loss_i * mask).sum() / normalizer
|
|
816
|
+
else:
|
|
817
|
+
raise ValueError(f"Unknown loss type: {loss_type}")
|
|
818
|
+
|
|
819
|
+
# loss = (loss_i * mask).sum() / mask.sum()
|
|
820
|
+
|
|
821
|
+
# Get metrics as well which are folded
|
|
822
|
+
def masked_batch_mean(x):
|
|
823
|
+
with torch.inference_mode():
|
|
824
|
+
completion_length = n_mask_per_reward.mean()
|
|
825
|
+
if x.shape[1] == 1: # when importance_sampling_level == "sequence"
|
|
826
|
+
return completion_length, x.mean()
|
|
827
|
+
else:
|
|
828
|
+
mean_kl_per_reward = (x * mask).sum(1) / n_mask_per_reward
|
|
829
|
+
mean_kl = mean_kl_per_reward.mean()
|
|
830
|
+
return completion_length, mean_kl
|
|
831
|
+
completion_length, mean_kl = masked_batch_mean(kl_i)
|
|
832
|
+
return loss, completion_length, mean_kl, delta, flat_is_ratio
|
|
833
|
+
|
|
834
|
+
def grpo_update_SamplingParams(SamplingParams, generation_kwargs, vllm_sampling_params = None):
|
|
835
|
+
good_sampling_params_keys = inspect.signature(SamplingParams).parameters.keys()
|
|
836
|
+
|
|
837
|
+
# Filter generation_kwargs
|
|
838
|
+
new_generation_kwargs = {}
|
|
839
|
+
for key in generation_kwargs.keys():
|
|
840
|
+
if key in good_sampling_params_keys:
|
|
841
|
+
new_generation_kwargs[key] = generation_kwargs[key]
|
|
842
|
+
generation_kwargs = new_generation_kwargs
|
|
843
|
+
|
|
844
|
+
if vllm_sampling_params is not None:
|
|
845
|
+
for key in good_sampling_params_keys:
|
|
846
|
+
if hasattr(vllm_sampling_params, key):
|
|
847
|
+
overwrited_key = getattr(vllm_sampling_params, key)
|
|
848
|
+
if overwrited_key is not None and (type(overwrited_key) in (list, tuple,) and len(overwrited_key) != 0):
|
|
849
|
+
generation_kwargs[key] = overwrited_key
|
|
850
|
+
return generation_kwargs
|
|
851
|
+
|
|
852
|
+
def _get_inference_mode_context_manager(model: torch.nn.Module):
|
|
853
|
+
"""
|
|
854
|
+
If the state dict was quantized using torchao, we will run into
|
|
855
|
+
the following error when calling ops like aten.t() in inference mode.
|
|
856
|
+
This is a bug in PyTorch that affects all tensor subclasses.
|
|
857
|
+
|
|
858
|
+
Cannot set version_counter for inference tensor
|
|
859
|
+
|
|
860
|
+
For now, we work around this issue by using `torch.no_grad()` in this case.
|
|
861
|
+
See https://github.com/pytorch/pytorch/issues/164872 for more details.
|
|
862
|
+
Otherwise, just return `torch.inference_mode()`.
|
|
863
|
+
"""
|
|
864
|
+
torchao_config = getattr(model, "torchao_config", None)
|
|
865
|
+
if torchao_config is not None and torchao_config.qat_scheme is None:
|
|
866
|
+
return torch.no_grad()
|
|
867
|
+
else:
|
|
868
|
+
return torch.inference_mode()
|
|
869
|
+
|
|
870
|
+
def vLLMSamplingParams(**kwargs):
|
|
871
|
+
from vllm import SamplingParams
|
|
872
|
+
|
|
873
|
+
sampling_params = SamplingParams(**kwargs)
|
|
874
|
+
sampling_params._set_kwargs = kwargs
|
|
875
|
+
return sampling_params
|
|
876
|
+
@dataclass
|
|
877
|
+
class UnslothGRPOConfig(GRPOConfig):
|
|
878
|
+
"""
|
|
879
|
+
|
|
880
|
+
Configuration class for the [`GRPOTrainer`].
|
|
881
|
+
|
|
882
|
+
This class includes only the parameters that are specific to GRPO training. For a full list of training arguments,
|
|
883
|
+
please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may
|
|
884
|
+
differ from those in [`~transformers.TrainingArguments`].
|
|
885
|
+
|
|
886
|
+
Using [`~transformers.HfArgumentParser`] we can turn this class into
|
|
887
|
+
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
|
|
888
|
+
command line.
|
|
889
|
+
|
|
890
|
+
Parameters:
|
|
891
|
+
> Parameters that control the model and reference model
|
|
892
|
+
|
|
893
|
+
model_init_kwargs (`str`, `dict[str, Any]`, *optional*):
|
|
894
|
+
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model`
|
|
895
|
+
argument of the [`GRPOTrainer`] is provided as a string.
|
|
896
|
+
disable_dropout (`bool`, *optional*, defaults to `False`):
|
|
897
|
+
Whether to disable dropout in the model. This is useful for training with a reference model, as it prevents
|
|
898
|
+
the model from generating different logprobs for the same input.
|
|
899
|
+
|
|
900
|
+
> Parameters that control the data preprocessing
|
|
901
|
+
|
|
902
|
+
remove_unused_columns (`bool`, *optional*, defaults to `False`):
|
|
903
|
+
Whether to only keep the column `"prompt"` in the dataset. If you use a custom reward function that
|
|
904
|
+
requires any column other than `"prompts"` and `"completions"`, you should keep this to `False`.
|
|
905
|
+
max_prompt_length (`int` or `None`, *optional*, defaults to `512`):
|
|
906
|
+
Maximum length of the prompt. If the prompt is longer than this value, it will be truncated left.
|
|
907
|
+
num_generations (`int` or `None`, *optional*, defaults to `8`):
|
|
908
|
+
Number of generations per prompt to sample. The effective batch size (num_processes * per_device_batch_size
|
|
909
|
+
* gradient_accumulation_steps) must be evenly divisible by this value.
|
|
910
|
+
max_completion_length (`int` or `None`, *optional*, defaults to `256`):
|
|
911
|
+
Maximum length of the generated completion.
|
|
912
|
+
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
|
|
913
|
+
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
|
|
914
|
+
improving generation speed. However, disabling this option allows training models that exceed the VRAM
|
|
915
|
+
capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible
|
|
916
|
+
with vLLM generation.
|
|
917
|
+
shuffle_dataset (`bool`, *optional*, defaults to `True`):
|
|
918
|
+
Whether to shuffle the training dataset.
|
|
919
|
+
|
|
920
|
+
> Parameters that control generation
|
|
921
|
+
|
|
922
|
+
generation_batch_size: (`int`, *optional*):
|
|
923
|
+
Batch size to use for generation. If `None`, it defaults to the effective training batch size:
|
|
924
|
+
`per_device_train_batch_size * num_processes * steps_per_generation`. In other words, there is one
|
|
925
|
+
generation batch processed per optimization step. Mutually exclusive with `steps_per_generation`.
|
|
926
|
+
steps_per_generation: (`int`, *optional*):
|
|
927
|
+
Number of steps per generation. If `None`, it defaults to `gradient_accumulation_steps`. Mutually exclusive
|
|
928
|
+
with `generation_batch_size`.
|
|
929
|
+
temperature (`float`, defaults to `1.0`):
|
|
930
|
+
Temperature for sampling. The higher the temperature, the more random the completions.
|
|
931
|
+
top_p (`float`, *optional*, defaults to `1.0`):
|
|
932
|
+
Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to
|
|
933
|
+
`1.0` to consider all tokens.
|
|
934
|
+
top_k (`int`, *optional*):
|
|
935
|
+
Number of highest probability vocabulary tokens to keep for top-k-filtering. If `None`, top-k-filtering is
|
|
936
|
+
disabled and all tokens are considered.
|
|
937
|
+
min_p (`float`, *optional*):
|
|
938
|
+
Minimum token probability, which will be scaled by the probability of the most likely token. It must be a
|
|
939
|
+
value between `0.0` and `1.0`. Typical values are in the `0.01-0.2` range.
|
|
940
|
+
repetition_penalty (`float`, *optional*, defaults to `1.0`):
|
|
941
|
+
Float that penalizes new tokens based on whether they appear in the prompt and the generated text so far.
|
|
942
|
+
Values > `1.0` encourage the model to use new tokens, while values < `1.0` encourage the model to repeat
|
|
943
|
+
tokens.
|
|
944
|
+
use_transformers_paged (`bool`, *optional*, defaults to `False`):
|
|
945
|
+
Whether to use the `transformers` paged implementation for generation. If set to `True`, the `transformers`
|
|
946
|
+
paged implementation will be used for generation instead of the default padded implementation. This
|
|
947
|
+
parameter is only effective when `use_vllm` is set to `False`.
|
|
948
|
+
cache_implementation (`str`, *optional*):
|
|
949
|
+
Implementation of the cache method for faster generation when `use_vllm` is set to `False`.
|
|
950
|
+
generation_kwargs (`dict[str, Any]`, *optional*):
|
|
951
|
+
Additional keyword arguments to pass to [`~transformers.GenerationConfig`] (if using transformers) or
|
|
952
|
+
`SamplingParams` (if using vLLM) when sampling completions. This can be used to further customize the
|
|
953
|
+
generation behavior, such as setting `suppress_tokens`, `num_beams`, etc. If it contains keys that conflict
|
|
954
|
+
with the other generation parameters (like `min_p`, `top_p`, etc.), they will override them.
|
|
955
|
+
|
|
956
|
+
> Parameters that control generation acceleration powered by vLLM
|
|
957
|
+
|
|
958
|
+
use_vllm (`bool`, *optional*, defaults to `False`):
|
|
959
|
+
Whether to use vLLM for generating completions. If set to `True`, the trainer will use vLLM for generation
|
|
960
|
+
instead of the default model.generate(). Requires `vllm` to be installed.
|
|
961
|
+
vllm_mode (`str`, *optional*, defaults to `"server"`):
|
|
962
|
+
Mode to use for vLLM integration when `use_vllm` is set to `True`. Must be one of `"server"` or
|
|
963
|
+
`"colocate"`.
|
|
964
|
+
|
|
965
|
+
- `"server"`: The trainer will send generation requests to a separate vLLM server. Make sure a TRL vLLM
|
|
966
|
+
server is running (start with `trl vllm-serve`).
|
|
967
|
+
- `"colocate"`: vLLM will run in the same process and share the training GPUs. This avoids the need for a
|
|
968
|
+
separate server but may cause resource contention with training.
|
|
969
|
+
vllm_model_impl (`str`, *optional*, defaults to `"vllm"`):
|
|
970
|
+
Model implementation to use for vLLM. Must be one of `"transformers"` or `"vllm"`. `"transformers"`: Use
|
|
971
|
+
the `transformers` backend for model implementation. `"vllm"`: Use the `vllm` library for model
|
|
972
|
+
implementation.
|
|
973
|
+
vllm_guided_decoding_regex (`str`, *optional*):
|
|
974
|
+
Regex for vLLM guided decoding. If `None` (default), guided decoding is disabled.
|
|
975
|
+
|
|
976
|
+
> Parameters that control the vLLM server (only used when `vllm_mode` is `"server"`)
|
|
977
|
+
|
|
978
|
+
vllm_server_base_url (`str`, *optional*):
|
|
979
|
+
Base URL for the vLLM server (e.g., `"http://localhost:8000"`). If provided, `vllm_server_host` and
|
|
980
|
+
`vllm_server_port` are ignored.
|
|
981
|
+
vllm_server_host (`str`, *optional*, defaults to `"0.0.0.0"`):
|
|
982
|
+
Host of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided.
|
|
983
|
+
vllm_server_port (`int`, *optional*, defaults to `8000`):
|
|
984
|
+
Port of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided.
|
|
985
|
+
vllm_server_timeout (`float`, *optional*, defaults to `240.0`):
|
|
986
|
+
Total timeout duration in seconds to wait for the vLLM server to be up. If the server is not up after the
|
|
987
|
+
timeout, a `ConnectionError` is raised.
|
|
988
|
+
|
|
989
|
+
> Parameters that control colocated vLLM execution (only used when `vllm_mode` is `"colocate"`)
|
|
990
|
+
|
|
991
|
+
vllm_gpu_memory_utilization (`float`, *optional*, defaults to `0.3`):
|
|
992
|
+
Control the GPU memory utilization for vLLM. This setting only applies when `vllm_mode` is set to
|
|
993
|
+
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when
|
|
994
|
+
launching the vLLM server via the `--vllm_gpu_memory_utilization` flag.
|
|
995
|
+
vllm_tensor_parallel_size (`int`, *optional*, defaults to `1`):
|
|
996
|
+
Control the tensor parallel size for vLLM. This setting only applies when `vllm_mode` is set to
|
|
997
|
+
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when
|
|
998
|
+
launching the vLLM server via the `--vllm_tensor_parallel_size` flag.
|
|
999
|
+
vllm_enable_sleep_mode (`bool`, *optional*, defaults to `False`):
|
|
1000
|
+
Whether to enable sleep mode for vLLM. If `True`, vLLM will sleep during the optimization step and woken
|
|
1001
|
+
for weight sync and generation.
|
|
1002
|
+
|
|
1003
|
+
> Parameters that control the training
|
|
1004
|
+
|
|
1005
|
+
beta (`float`, *optional*, defaults to `0.0`):
|
|
1006
|
+
KL coefficient. If `0.0` (default), the reference model is not loaded, reducing memory usage and improving
|
|
1007
|
+
training speed.
|
|
1008
|
+
num_iterations (`int`, *optional*, defaults to `1`):
|
|
1009
|
+
Number of iterations per batch (denoted as μ in the algorithm).
|
|
1010
|
+
epsilon (`float`, *optional*, defaults to `0.2`):
|
|
1011
|
+
Epsilon value for clipping.
|
|
1012
|
+
delta (`float`, *optional*):
|
|
1013
|
+
Enables the upper clipping bound in two-sided GRPO loss when set to a float. If `None` (default), standard
|
|
1014
|
+
GRPO clipping is used. Recommended to be greater than `1 + ε` when enabled. This method is introduced in
|
|
1015
|
+
the [INTELLECT-2 tech report](https://huggingface.co/papers/2505.07291).
|
|
1016
|
+
epsilon_high (`float`, *optional*):
|
|
1017
|
+
Upper-bound epsilon value for clipping. If not specified, it defaults to the same value as the lower-bound
|
|
1018
|
+
specified in argument `epsilon`. Paper [DAPO](https://huggingface.co/papers/2503.14476) recommends `0.28`.
|
|
1019
|
+
importance_sampling_level (`str`, *optional*, defaults to `"token"`):
|
|
1020
|
+
Controls whether importance sampling ratios are computed at the `"token"` or `"sequence"` level. `"token"`
|
|
1021
|
+
keeps the raw per-token log-probability ratios (one weight per token). `"sequence"` averages the
|
|
1022
|
+
log-probability ratios across valid tokens to produce a single ratio per sequence. The [GSPO
|
|
1023
|
+
paper](https://huggingface.co/papers/2507.18071) shows that sequence-level sampling often yields more
|
|
1024
|
+
stable training and better alignment with sequence-level rewards.
|
|
1025
|
+
reward_weights (`list[float]`, *optional*):
|
|
1026
|
+
Weights for each reward function. Must match the number of reward functions. If `None`, all rewards are
|
|
1027
|
+
weighted equally with weight `1.0`.
|
|
1028
|
+
scale_rewards (`str` or `bool`, *optional*, defaults to `"group"`):
|
|
1029
|
+
Specifies the scaling strategy for rewards. Supported values are:
|
|
1030
|
+
|
|
1031
|
+
- `True` or `"group"` (default): rewards are scaled by the standard deviation within each group, ensuring
|
|
1032
|
+
unit variance within a group.
|
|
1033
|
+
- `"batch"`: rewards are scaled by the standard deviation across the entire batch, as recommended in the
|
|
1034
|
+
[PPO Lite paper](https://huggingface.co/papers/2508.08221).
|
|
1035
|
+
- `False` or `"none"`: no scaling is applied. The [Dr. GRPO
|
|
1036
|
+
paper](https://huggingface.co/papers/2503.20783) recommends not scaling rewards, as scaling by the
|
|
1037
|
+
standard deviation introduces a question-level difficulty bias.
|
|
1038
|
+
loss_type (`str`, *optional*, defaults to `"dapo"`):
|
|
1039
|
+
Specifies the loss formulation to use. Supported values are:
|
|
1040
|
+
|
|
1041
|
+
- `"grpo"`: Aggregates token-level losses by normalizing over sequence length. Not recommended due to
|
|
1042
|
+
length bias—this approach tends to prefer shorter completions with positive advantages and longer ones
|
|
1043
|
+
with negative advantages.
|
|
1044
|
+
- `"dr_grpo"`: Aggregates token-level losses by normalizing with a global constant. This method was
|
|
1045
|
+
introduced in the [Dr. GRPO paper](https://huggingface.co/papers/2503.20783) to eliminate length bias.
|
|
1046
|
+
The value of the constant corresponds to `max_completion_length`.
|
|
1047
|
+
- `"dapo"` (default): Aggregates token-level losses by normalizing with the number of active token in the
|
|
1048
|
+
global accumulated batch. This method was introduced in the [DAPO
|
|
1049
|
+
paper](https://huggingface.co/papers/2503.14476) to eliminate length bias.
|
|
1050
|
+
- `"bnpo"`: Aggregates token-level losses by normalizing with the number of active token in the local
|
|
1051
|
+
batch. Note that normalization is performed over the local batch only, so results may slightly vary
|
|
1052
|
+
depending on the local batch size, despite a constant effective batch size. When using
|
|
1053
|
+
`per_device_train_batch_size==1`, the loss is equivalent to the GRPO loss.
|
|
1054
|
+
mask_truncated_completions (`bool`, *optional*, defaults to `False`):
|
|
1055
|
+
When enabled, truncated completions are excluded from the loss calculation, preventing them from being
|
|
1056
|
+
incorrectly penalized and introducing noise during training. According to the
|
|
1057
|
+
[DAPO](https://huggingface.co/papers/2503.14476) paper, this is a good practice for training stability.
|
|
1058
|
+
sync_ref_model (`bool`, *optional*, defaults to `False`):
|
|
1059
|
+
Whether to synchronize the reference model with the active model every `ref_model_sync_steps` steps, using
|
|
1060
|
+
the `ref_model_mixup_alpha` parameter. This synchronization originates from the
|
|
1061
|
+
[TR-DPO](https://huggingface.co/papers/2404.09656) paper.
|
|
1062
|
+
ref_model_mixup_alpha (`float`, *optional*, defaults to `0.6`):
|
|
1063
|
+
α parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which controls the mix
|
|
1064
|
+
between the current policy and the previous reference policy during updates. The reference policy is
|
|
1065
|
+
updated according to the equation: `π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you
|
|
1066
|
+
must set `sync_ref_model=True`.
|
|
1067
|
+
ref_model_sync_steps (`int`, *optional*, defaults to `512`):
|
|
1068
|
+
τ parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which determines how
|
|
1069
|
+
frequently the current policy is synchronized with the reference policy. To use this parameter, you must
|
|
1070
|
+
set `sync_ref_model=True`.
|
|
1071
|
+
top_entropy_quantile (`float`, *optional*, defaults to `1.0`):
|
|
1072
|
+
ρ parameter from [Beyond the 80/20 Rule](https://huggingface.co/papers/2506.01939). Keeps in the policy
|
|
1073
|
+
loss term only the top-ρ quantile of tokens by entropy of the probability distribution at each sequence
|
|
1074
|
+
position, improving results. Range: `[0.0-1.0]`. A value of `0.0` masks all but the highest entropy token;
|
|
1075
|
+
`1.0` keeps all tokens. The paper recommends a value of `0.2`. If used with
|
|
1076
|
+
`mask_truncated_completions=True`, only tokens from non-truncated completions are considered.
|
|
1077
|
+
use_liger_loss (`bool`, *optional*, defaults to `False`):
|
|
1078
|
+
Whether to use the Liger GRPO loss.
|
|
1079
|
+
vllm_importance_sampling_correction (`bool`, *optional*, defaults to `True`):
|
|
1080
|
+
Whether to apply Truncated Importance Sampling (TIS) between vLLM completion logprobs and recomputed
|
|
1081
|
+
logprobs. [Your Efficient RL Framework Secretly Brings You Off-Policy RL
|
|
1082
|
+
Training](https://fengyao.notion.site/off-policy-rl) highlights that using a separate generation framework
|
|
1083
|
+
(such as vLLM) can introduce off-policy effects due to subtle implementation differences between generation
|
|
1084
|
+
and training backends. TIS is proposed as a remedy for this issue.
|
|
1085
|
+
vllm_importance_sampling_cap (`float`, *optional*, defaults to `2.0`):
|
|
1086
|
+
Truncation parameter C for Truncated Importance Sampling (TIS). This sets an upper bound on the importance
|
|
1087
|
+
sampling ratio, improving training stability.
|
|
1088
|
+
|
|
1089
|
+
> Parameters that control the logging
|
|
1090
|
+
|
|
1091
|
+
log_completions (`bool`, *optional*, defaults to `False`):
|
|
1092
|
+
Whether to log a sample of (prompt, completion) pairs every `logging_steps` steps. If `rich` is installed,
|
|
1093
|
+
it prints the sample. If `wandb` logging is enabled, it logs it to `wandb`.
|
|
1094
|
+
num_completions_to_print (`int`, *optional*):
|
|
1095
|
+
Number of completions to print with `rich`. If `None`, all completions are logged.
|
|
1096
|
+
wandb_log_unique_prompts (`bool`, *optional*, defaults to `False`):
|
|
1097
|
+
Whether to log unique prompts in wandb. If `True`, only unique prompts are logged. If `False`, all prompts
|
|
1098
|
+
are logged.
|
|
1099
|
+
|
|
1100
|
+
"""
|
|
1101
|
+
vllm_sampling_params: Optional[Any] = field(
|
|
1102
|
+
default = None,
|
|
1103
|
+
metadata = {'help': 'vLLM SamplingParams'},
|
|
1104
|
+
)
|
|
1105
|
+
unsloth_num_chunks : Optional[int] = field(
|
|
1106
|
+
default = -1,
|
|
1107
|
+
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
|
|
1108
|
+
)
|
|
1109
|
+
|
|
1110
|
+
def __init__(
|
|
1111
|
+
self,
|
|
1112
|
+
output_dir = None,
|
|
1113
|
+
overwrite_output_dir = None,
|
|
1114
|
+
do_train = False,
|
|
1115
|
+
do_eval = False,
|
|
1116
|
+
do_predict = False,
|
|
1117
|
+
eval_strategy = 'no',
|
|
1118
|
+
prediction_loss_only = False,
|
|
1119
|
+
per_device_train_batch_size = 4,
|
|
1120
|
+
per_device_eval_batch_size = 4,
|
|
1121
|
+
per_gpu_train_batch_size = None,
|
|
1122
|
+
per_gpu_eval_batch_size = None,
|
|
1123
|
+
gradient_accumulation_steps = 2,
|
|
1124
|
+
eval_accumulation_steps = 2,
|
|
1125
|
+
eval_delay = 0,
|
|
1126
|
+
torch_empty_cache_steps = 250,
|
|
1127
|
+
learning_rate = 5e-05,
|
|
1128
|
+
weight_decay = 0.01,
|
|
1129
|
+
adam_beta1 = 0.9,
|
|
1130
|
+
adam_beta2 = 0.999,
|
|
1131
|
+
adam_epsilon = 1e-08,
|
|
1132
|
+
max_grad_norm = 1.0,
|
|
1133
|
+
num_train_epochs = 3.0,
|
|
1134
|
+
max_steps = -1,
|
|
1135
|
+
lr_scheduler_type = 'linear',
|
|
1136
|
+
warmup_ratio = 0.1,
|
|
1137
|
+
warmup_steps = 0,
|
|
1138
|
+
log_level = 'passive',
|
|
1139
|
+
log_level_replica = 'warning',
|
|
1140
|
+
log_on_each_node = True,
|
|
1141
|
+
logging_dir = None,
|
|
1142
|
+
logging_strategy = 'steps',
|
|
1143
|
+
logging_first_step = False,
|
|
1144
|
+
logging_steps = 1,
|
|
1145
|
+
logging_nan_inf_filter = False,
|
|
1146
|
+
save_strategy = 'steps',
|
|
1147
|
+
save_steps = 500,
|
|
1148
|
+
save_total_limit = None,
|
|
1149
|
+
save_safetensors = True,
|
|
1150
|
+
save_on_each_node = False,
|
|
1151
|
+
save_only_model = False,
|
|
1152
|
+
restore_callback_states_from_checkpoint = False,
|
|
1153
|
+
no_cuda = False,
|
|
1154
|
+
use_cpu = False,
|
|
1155
|
+
use_mps_device = False,
|
|
1156
|
+
seed = 3407,
|
|
1157
|
+
data_seed = 3407,
|
|
1158
|
+
jit_mode_eval = False,
|
|
1159
|
+
bf16 = False,
|
|
1160
|
+
fp16 = False,
|
|
1161
|
+
fp16_opt_level = 'O1',
|
|
1162
|
+
half_precision_backend = 'auto',
|
|
1163
|
+
bf16_full_eval = False,
|
|
1164
|
+
fp16_full_eval = False,
|
|
1165
|
+
tf32 = None,
|
|
1166
|
+
local_rank = -1,
|
|
1167
|
+
ddp_backend = None,
|
|
1168
|
+
tpu_num_cores = None,
|
|
1169
|
+
tpu_metrics_debug = False,
|
|
1170
|
+
debug = '',
|
|
1171
|
+
dataloader_drop_last = False,
|
|
1172
|
+
eval_steps = None,
|
|
1173
|
+
dataloader_num_workers = 0,
|
|
1174
|
+
dataloader_prefetch_factor = None,
|
|
1175
|
+
past_index = -1,
|
|
1176
|
+
run_name = None,
|
|
1177
|
+
disable_tqdm = None,
|
|
1178
|
+
remove_unused_columns = False,
|
|
1179
|
+
label_names = None,
|
|
1180
|
+
load_best_model_at_end = False,
|
|
1181
|
+
metric_for_best_model = None,
|
|
1182
|
+
greater_is_better = None,
|
|
1183
|
+
ignore_data_skip = False,
|
|
1184
|
+
fsdp = None,
|
|
1185
|
+
fsdp_min_num_params = 0,
|
|
1186
|
+
fsdp_config = None,
|
|
1187
|
+
fsdp_transformer_layer_cls_to_wrap = None,
|
|
1188
|
+
accelerator_config = None,
|
|
1189
|
+
parallelism_config = None,
|
|
1190
|
+
deepspeed = None,
|
|
1191
|
+
label_smoothing_factor = 0.0,
|
|
1192
|
+
optim = 'adamw_8bit',
|
|
1193
|
+
optim_args = None,
|
|
1194
|
+
adafactor = False,
|
|
1195
|
+
group_by_length = False,
|
|
1196
|
+
length_column_name = 'length',
|
|
1197
|
+
report_to = 'none',
|
|
1198
|
+
project = 'huggingface',
|
|
1199
|
+
trackio_space_id = 'trackio',
|
|
1200
|
+
ddp_find_unused_parameters = None,
|
|
1201
|
+
ddp_bucket_cap_mb = None,
|
|
1202
|
+
ddp_broadcast_buffers = None,
|
|
1203
|
+
dataloader_pin_memory = True,
|
|
1204
|
+
dataloader_persistent_workers = False,
|
|
1205
|
+
skip_memory_metrics = True,
|
|
1206
|
+
use_legacy_prediction_loop = False,
|
|
1207
|
+
push_to_hub = False,
|
|
1208
|
+
resume_from_checkpoint = None,
|
|
1209
|
+
hub_model_id = None,
|
|
1210
|
+
hub_strategy = 'every_save',
|
|
1211
|
+
hub_token = None,
|
|
1212
|
+
hub_private_repo = None,
|
|
1213
|
+
hub_always_push = False,
|
|
1214
|
+
hub_revision = None,
|
|
1215
|
+
gradient_checkpointing = True,
|
|
1216
|
+
gradient_checkpointing_kwargs = None,
|
|
1217
|
+
include_inputs_for_metrics = False,
|
|
1218
|
+
eval_do_concat_batches = True,
|
|
1219
|
+
fp16_backend = 'auto',
|
|
1220
|
+
push_to_hub_model_id = None,
|
|
1221
|
+
push_to_hub_organization = None,
|
|
1222
|
+
push_to_hub_token = None,
|
|
1223
|
+
mp_parameters = '',
|
|
1224
|
+
auto_find_batch_size = False,
|
|
1225
|
+
full_determinism = False,
|
|
1226
|
+
torchdynamo = None,
|
|
1227
|
+
ray_scope = 'last',
|
|
1228
|
+
ddp_timeout = 1800,
|
|
1229
|
+
torch_compile = False,
|
|
1230
|
+
torch_compile_backend = None,
|
|
1231
|
+
torch_compile_mode = None,
|
|
1232
|
+
include_tokens_per_second = False,
|
|
1233
|
+
include_num_input_tokens_seen = False,
|
|
1234
|
+
neftune_noise_alpha = None,
|
|
1235
|
+
optim_target_modules = None,
|
|
1236
|
+
batch_eval_metrics = False,
|
|
1237
|
+
eval_on_start = False,
|
|
1238
|
+
use_liger_kernel = False,
|
|
1239
|
+
liger_kernel_config = None,
|
|
1240
|
+
eval_use_gather_object = False,
|
|
1241
|
+
average_tokens_across_devices = True,
|
|
1242
|
+
model_init_kwargs = None,
|
|
1243
|
+
disable_dropout = False,
|
|
1244
|
+
max_prompt_length = 512,
|
|
1245
|
+
num_generations = 8,
|
|
1246
|
+
max_completion_length = 256,
|
|
1247
|
+
ds3_gather_for_generation = True,
|
|
1248
|
+
shuffle_dataset = True,
|
|
1249
|
+
generation_batch_size = None,
|
|
1250
|
+
steps_per_generation = None,
|
|
1251
|
+
temperature = 1.0,
|
|
1252
|
+
top_p = 1.0,
|
|
1253
|
+
top_k = None,
|
|
1254
|
+
min_p = None,
|
|
1255
|
+
generation_kwargs = {},
|
|
1256
|
+
repetition_penalty = 1.0,
|
|
1257
|
+
use_transformers_paged = False,
|
|
1258
|
+
cache_implementation = None,
|
|
1259
|
+
use_vllm = False,
|
|
1260
|
+
vllm_mode = 'colocate',
|
|
1261
|
+
vllm_model_impl = 'vllm',
|
|
1262
|
+
vllm_enable_sleep_mode = False,
|
|
1263
|
+
vllm_guided_decoding_regex = None,
|
|
1264
|
+
vllm_server_base_url = None,
|
|
1265
|
+
vllm_server_host = '0.0.0.0',
|
|
1266
|
+
vllm_server_port = 8000,
|
|
1267
|
+
vllm_server_timeout = 240.0,
|
|
1268
|
+
vllm_gpu_memory_utilization = 0.3,
|
|
1269
|
+
vllm_tensor_parallel_size = 1,
|
|
1270
|
+
beta = 0.001,
|
|
1271
|
+
num_iterations = 1,
|
|
1272
|
+
epsilon = 0.2,
|
|
1273
|
+
delta = None,
|
|
1274
|
+
epsilon_high = None,
|
|
1275
|
+
importance_sampling_level = 'token',
|
|
1276
|
+
reward_weights = None,
|
|
1277
|
+
scale_rewards = 'group',
|
|
1278
|
+
loss_type = 'bnpo',
|
|
1279
|
+
mask_truncated_completions = False,
|
|
1280
|
+
sync_ref_model = False,
|
|
1281
|
+
ref_model_mixup_alpha = 0.6,
|
|
1282
|
+
ref_model_sync_steps = 512,
|
|
1283
|
+
top_entropy_quantile = 1.0,
|
|
1284
|
+
use_liger_loss = False,
|
|
1285
|
+
vllm_importance_sampling_correction = False,
|
|
1286
|
+
vllm_importance_sampling_cap = 2.0,
|
|
1287
|
+
log_completions = False,
|
|
1288
|
+
num_completions_to_print = None,
|
|
1289
|
+
wandb_log_unique_prompts = False,
|
|
1290
|
+
vllm_sampling_params = None,
|
|
1291
|
+
unsloth_num_chunks = -1,
|
|
1292
|
+
|
|
1293
|
+
**kwargs,
|
|
1294
|
+
):
|
|
1295
|
+
if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
|
|
1296
|
+
if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
|
|
1297
|
+
if output_dir is None and save_strategy == 'steps' and save_steps == 500:
|
|
1298
|
+
output_dir = 'unsloth_training_checkpoints'
|
|
1299
|
+
save_strategy = 'no'
|
|
1300
|
+
if loss_type.lower() == 'dr_grpo':
|
|
1301
|
+
loss_type = 'dr_grpo'
|
|
1302
|
+
elif loss_type.lower() == 'dapo':
|
|
1303
|
+
loss_type = 'dapo'
|
|
1304
|
+
if loss_type.lower() == 'dr_grpo':
|
|
1305
|
+
if scale_rewards == None:
|
|
1306
|
+
scale_rewards = True
|
|
1307
|
+
elif scale_rewards == True:
|
|
1308
|
+
print('Unsloth: The Dr GRPO paper recommends setting `scale_rewards` to False! Will override. Set it to `None` to force False.')
|
|
1309
|
+
scale_rewards = False
|
|
1310
|
+
elif loss_type.lower() == 'dapo':
|
|
1311
|
+
if mask_truncated_completions != True:
|
|
1312
|
+
print('Unsloth: The DAPO paper recommends `mask_truncated_completions = True` - we will set it.')
|
|
1313
|
+
if epsilon_high != 0.28:
|
|
1314
|
+
print('Unsloth: The DAPO paper recommends `epsilon_high = 0.28` - we will set it.')
|
|
1315
|
+
if beta != 0.0:
|
|
1316
|
+
print(f'[WARNING] Unsloth: The DAPO paper recommends setting `beta = 0.0` to remove the KL term - You have set it to {beta}.')
|
|
1317
|
+
mask_truncated_completions = True
|
|
1318
|
+
epsilon_high = 0.28
|
|
1319
|
+
|
|
1320
|
+
if steps_per_generation is None and generation_batch_size is None:
|
|
1321
|
+
ga = gradient_accumulation_steps
|
|
1322
|
+
world_size = int(os.environ.get('WORLD_SIZE', '1'))
|
|
1323
|
+
if (ga * world_size * per_device_train_batch_size) % num_generations != 0:
|
|
1324
|
+
print('Unsloth: We now expect `per_device_train_batch_size` * `gradient_accumulation_steps` * `world_size` to be a multiple of `num_generations`.\nWe will change the batch size of ' + str(per_device_train_batch_size) + ' to the `num_generations` of ' + str(num_generations))
|
|
1325
|
+
per_device_train_batch_size = num_generations
|
|
1326
|
+
|
|
1327
|
+
if temperature <= 0:
|
|
1328
|
+
raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.')
|
|
1329
|
+
elif temperature >= 10:
|
|
1330
|
+
raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.')
|
|
1331
|
+
|
|
1332
|
+
|
|
1333
|
+
super().__init__(
|
|
1334
|
+
output_dir = output_dir,
|
|
1335
|
+
overwrite_output_dir = overwrite_output_dir,
|
|
1336
|
+
do_train = do_train,
|
|
1337
|
+
do_eval = do_eval,
|
|
1338
|
+
do_predict = do_predict,
|
|
1339
|
+
eval_strategy = eval_strategy,
|
|
1340
|
+
prediction_loss_only = prediction_loss_only,
|
|
1341
|
+
per_device_train_batch_size = per_device_train_batch_size,
|
|
1342
|
+
per_device_eval_batch_size = per_device_eval_batch_size,
|
|
1343
|
+
per_gpu_train_batch_size = per_gpu_train_batch_size,
|
|
1344
|
+
per_gpu_eval_batch_size = per_gpu_eval_batch_size,
|
|
1345
|
+
gradient_accumulation_steps = gradient_accumulation_steps,
|
|
1346
|
+
eval_accumulation_steps = eval_accumulation_steps,
|
|
1347
|
+
eval_delay = eval_delay,
|
|
1348
|
+
torch_empty_cache_steps = torch_empty_cache_steps,
|
|
1349
|
+
learning_rate = learning_rate,
|
|
1350
|
+
weight_decay = weight_decay,
|
|
1351
|
+
adam_beta1 = adam_beta1,
|
|
1352
|
+
adam_beta2 = adam_beta2,
|
|
1353
|
+
adam_epsilon = adam_epsilon,
|
|
1354
|
+
max_grad_norm = max_grad_norm,
|
|
1355
|
+
num_train_epochs = num_train_epochs,
|
|
1356
|
+
max_steps = max_steps,
|
|
1357
|
+
lr_scheduler_type = lr_scheduler_type,
|
|
1358
|
+
warmup_ratio = warmup_ratio,
|
|
1359
|
+
warmup_steps = warmup_steps,
|
|
1360
|
+
log_level = log_level,
|
|
1361
|
+
log_level_replica = log_level_replica,
|
|
1362
|
+
log_on_each_node = log_on_each_node,
|
|
1363
|
+
logging_dir = logging_dir,
|
|
1364
|
+
logging_strategy = logging_strategy,
|
|
1365
|
+
logging_first_step = logging_first_step,
|
|
1366
|
+
logging_steps = logging_steps,
|
|
1367
|
+
logging_nan_inf_filter = logging_nan_inf_filter,
|
|
1368
|
+
save_strategy = save_strategy,
|
|
1369
|
+
save_steps = save_steps,
|
|
1370
|
+
save_total_limit = save_total_limit,
|
|
1371
|
+
save_safetensors = save_safetensors,
|
|
1372
|
+
save_on_each_node = save_on_each_node,
|
|
1373
|
+
save_only_model = save_only_model,
|
|
1374
|
+
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
|
|
1375
|
+
no_cuda = no_cuda,
|
|
1376
|
+
use_cpu = use_cpu,
|
|
1377
|
+
use_mps_device = use_mps_device,
|
|
1378
|
+
seed = seed,
|
|
1379
|
+
data_seed = data_seed,
|
|
1380
|
+
jit_mode_eval = jit_mode_eval,
|
|
1381
|
+
bf16 = bf16,
|
|
1382
|
+
fp16 = fp16,
|
|
1383
|
+
fp16_opt_level = fp16_opt_level,
|
|
1384
|
+
half_precision_backend = half_precision_backend,
|
|
1385
|
+
bf16_full_eval = bf16_full_eval,
|
|
1386
|
+
fp16_full_eval = fp16_full_eval,
|
|
1387
|
+
tf32 = tf32,
|
|
1388
|
+
local_rank = local_rank,
|
|
1389
|
+
ddp_backend = ddp_backend,
|
|
1390
|
+
tpu_num_cores = tpu_num_cores,
|
|
1391
|
+
tpu_metrics_debug = tpu_metrics_debug,
|
|
1392
|
+
debug = debug,
|
|
1393
|
+
dataloader_drop_last = dataloader_drop_last,
|
|
1394
|
+
eval_steps = eval_steps,
|
|
1395
|
+
dataloader_num_workers = dataloader_num_workers,
|
|
1396
|
+
dataloader_prefetch_factor = dataloader_prefetch_factor,
|
|
1397
|
+
past_index = past_index,
|
|
1398
|
+
run_name = run_name,
|
|
1399
|
+
disable_tqdm = disable_tqdm,
|
|
1400
|
+
remove_unused_columns = remove_unused_columns,
|
|
1401
|
+
label_names = label_names,
|
|
1402
|
+
load_best_model_at_end = load_best_model_at_end,
|
|
1403
|
+
metric_for_best_model = metric_for_best_model,
|
|
1404
|
+
greater_is_better = greater_is_better,
|
|
1405
|
+
ignore_data_skip = ignore_data_skip,
|
|
1406
|
+
fsdp = fsdp,
|
|
1407
|
+
fsdp_min_num_params = fsdp_min_num_params,
|
|
1408
|
+
fsdp_config = fsdp_config,
|
|
1409
|
+
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
|
|
1410
|
+
accelerator_config = accelerator_config,
|
|
1411
|
+
parallelism_config = parallelism_config,
|
|
1412
|
+
deepspeed = deepspeed,
|
|
1413
|
+
label_smoothing_factor = label_smoothing_factor,
|
|
1414
|
+
optim = optim,
|
|
1415
|
+
optim_args = optim_args,
|
|
1416
|
+
adafactor = adafactor,
|
|
1417
|
+
group_by_length = group_by_length,
|
|
1418
|
+
length_column_name = length_column_name,
|
|
1419
|
+
report_to = report_to,
|
|
1420
|
+
project = project,
|
|
1421
|
+
trackio_space_id = trackio_space_id,
|
|
1422
|
+
ddp_find_unused_parameters = ddp_find_unused_parameters,
|
|
1423
|
+
ddp_bucket_cap_mb = ddp_bucket_cap_mb,
|
|
1424
|
+
ddp_broadcast_buffers = ddp_broadcast_buffers,
|
|
1425
|
+
dataloader_pin_memory = dataloader_pin_memory,
|
|
1426
|
+
dataloader_persistent_workers = dataloader_persistent_workers,
|
|
1427
|
+
skip_memory_metrics = skip_memory_metrics,
|
|
1428
|
+
use_legacy_prediction_loop = use_legacy_prediction_loop,
|
|
1429
|
+
push_to_hub = push_to_hub,
|
|
1430
|
+
resume_from_checkpoint = resume_from_checkpoint,
|
|
1431
|
+
hub_model_id = hub_model_id,
|
|
1432
|
+
hub_strategy = hub_strategy,
|
|
1433
|
+
hub_token = hub_token,
|
|
1434
|
+
hub_private_repo = hub_private_repo,
|
|
1435
|
+
hub_always_push = hub_always_push,
|
|
1436
|
+
hub_revision = hub_revision,
|
|
1437
|
+
gradient_checkpointing = gradient_checkpointing,
|
|
1438
|
+
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
|
|
1439
|
+
include_inputs_for_metrics = include_inputs_for_metrics,
|
|
1440
|
+
eval_do_concat_batches = eval_do_concat_batches,
|
|
1441
|
+
fp16_backend = fp16_backend,
|
|
1442
|
+
push_to_hub_model_id = push_to_hub_model_id,
|
|
1443
|
+
push_to_hub_organization = push_to_hub_organization,
|
|
1444
|
+
push_to_hub_token = push_to_hub_token,
|
|
1445
|
+
mp_parameters = mp_parameters,
|
|
1446
|
+
auto_find_batch_size = auto_find_batch_size,
|
|
1447
|
+
full_determinism = full_determinism,
|
|
1448
|
+
torchdynamo = torchdynamo,
|
|
1449
|
+
ray_scope = ray_scope,
|
|
1450
|
+
ddp_timeout = ddp_timeout,
|
|
1451
|
+
torch_compile = torch_compile,
|
|
1452
|
+
torch_compile_backend = torch_compile_backend,
|
|
1453
|
+
torch_compile_mode = torch_compile_mode,
|
|
1454
|
+
include_tokens_per_second = include_tokens_per_second,
|
|
1455
|
+
include_num_input_tokens_seen = include_num_input_tokens_seen,
|
|
1456
|
+
neftune_noise_alpha = neftune_noise_alpha,
|
|
1457
|
+
optim_target_modules = optim_target_modules,
|
|
1458
|
+
batch_eval_metrics = batch_eval_metrics,
|
|
1459
|
+
eval_on_start = eval_on_start,
|
|
1460
|
+
use_liger_kernel = use_liger_kernel,
|
|
1461
|
+
liger_kernel_config = liger_kernel_config,
|
|
1462
|
+
eval_use_gather_object = eval_use_gather_object,
|
|
1463
|
+
average_tokens_across_devices = average_tokens_across_devices,
|
|
1464
|
+
model_init_kwargs = model_init_kwargs,
|
|
1465
|
+
disable_dropout = disable_dropout,
|
|
1466
|
+
max_prompt_length = max_prompt_length,
|
|
1467
|
+
num_generations = num_generations,
|
|
1468
|
+
max_completion_length = max_completion_length,
|
|
1469
|
+
ds3_gather_for_generation = ds3_gather_for_generation,
|
|
1470
|
+
shuffle_dataset = shuffle_dataset,
|
|
1471
|
+
generation_batch_size = generation_batch_size,
|
|
1472
|
+
steps_per_generation = steps_per_generation,
|
|
1473
|
+
temperature = temperature,
|
|
1474
|
+
top_p = top_p,
|
|
1475
|
+
top_k = top_k,
|
|
1476
|
+
min_p = min_p,
|
|
1477
|
+
generation_kwargs = generation_kwargs,
|
|
1478
|
+
repetition_penalty = repetition_penalty,
|
|
1479
|
+
use_transformers_paged = use_transformers_paged,
|
|
1480
|
+
cache_implementation = cache_implementation,
|
|
1481
|
+
use_vllm = use_vllm,
|
|
1482
|
+
vllm_mode = vllm_mode,
|
|
1483
|
+
vllm_model_impl = vllm_model_impl,
|
|
1484
|
+
vllm_enable_sleep_mode = vllm_enable_sleep_mode,
|
|
1485
|
+
vllm_guided_decoding_regex = vllm_guided_decoding_regex,
|
|
1486
|
+
vllm_server_base_url = vllm_server_base_url,
|
|
1487
|
+
vllm_server_host = vllm_server_host,
|
|
1488
|
+
vllm_server_port = vllm_server_port,
|
|
1489
|
+
vllm_server_timeout = vllm_server_timeout,
|
|
1490
|
+
vllm_gpu_memory_utilization = vllm_gpu_memory_utilization,
|
|
1491
|
+
vllm_tensor_parallel_size = vllm_tensor_parallel_size,
|
|
1492
|
+
beta = beta,
|
|
1493
|
+
num_iterations = num_iterations,
|
|
1494
|
+
epsilon = epsilon,
|
|
1495
|
+
delta = delta,
|
|
1496
|
+
epsilon_high = epsilon_high,
|
|
1497
|
+
importance_sampling_level = importance_sampling_level,
|
|
1498
|
+
reward_weights = reward_weights,
|
|
1499
|
+
scale_rewards = scale_rewards,
|
|
1500
|
+
loss_type = loss_type,
|
|
1501
|
+
mask_truncated_completions = mask_truncated_completions,
|
|
1502
|
+
sync_ref_model = sync_ref_model,
|
|
1503
|
+
ref_model_mixup_alpha = ref_model_mixup_alpha,
|
|
1504
|
+
ref_model_sync_steps = ref_model_sync_steps,
|
|
1505
|
+
top_entropy_quantile = top_entropy_quantile,
|
|
1506
|
+
use_liger_loss = use_liger_loss,
|
|
1507
|
+
vllm_importance_sampling_correction = vllm_importance_sampling_correction,
|
|
1508
|
+
vllm_importance_sampling_cap = vllm_importance_sampling_cap,
|
|
1509
|
+
log_completions = log_completions,
|
|
1510
|
+
num_completions_to_print = num_completions_to_print,
|
|
1511
|
+
wandb_log_unique_prompts = wandb_log_unique_prompts,**kwargs)
|
|
1512
|
+
self.vllm_sampling_params = vllm_sampling_params
|
|
1513
|
+
self.unsloth_num_chunks = unsloth_num_chunks
|
|
1514
|
+
|
|
1515
|
+
pass
|
|
1516
|
+
|
|
1517
|
+
class _UnslothGRPOTrainer(BaseTrainer):
|
|
1518
|
+
""""""
|
|
1519
|
+
|
|
1520
|
+
_tag_names = ["trl", "grpo"]
|
|
1521
|
+
_name = "GRPO"
|
|
1522
|
+
_paper = {
|
|
1523
|
+
"title": "DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models",
|
|
1524
|
+
"id": "2402.03300",
|
|
1525
|
+
# docstyle-ignore
|
|
1526
|
+
"citation": textwrap.dedent("""\
|
|
1527
|
+
@article{shao2024deepseekmath,
|
|
1528
|
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
|
1529
|
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
|
1530
|
+
year = 2024,
|
|
1531
|
+
eprint = {arXiv:2402.03300},
|
|
1532
|
+
}
|
|
1533
|
+
"""),
|
|
1534
|
+
}
|
|
1535
|
+
|
|
1536
|
+
def __init__(
|
|
1537
|
+
self,
|
|
1538
|
+
model: Union[str, PreTrainedModel],
|
|
1539
|
+
reward_funcs: Union[RewardFunc, list[RewardFunc]],
|
|
1540
|
+
args: Optional[GRPOConfig] = None,
|
|
1541
|
+
train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
|
|
1542
|
+
eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None,
|
|
1543
|
+
processing_class: Optional[Union[PreTrainedTokenizerBase, ProcessorMixin]] = None,
|
|
1544
|
+
reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None,
|
|
1545
|
+
callbacks: Optional[list[TrainerCallback]] = None,
|
|
1546
|
+
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
|
|
1547
|
+
peft_config: Optional["PeftConfig"] = None,
|
|
1548
|
+
):
|
|
1549
|
+
|
|
1550
|
+
if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm'):
|
|
1551
|
+
if (getattr(args, 'use_vllm', False) == False):
|
|
1552
|
+
args.use_vllm = True
|
|
1553
|
+
args.vllm_mode='colocate'
|
|
1554
|
+
if os.environ.get('UNSLOTH_VLLM_STANDBY', '0') == '1':
|
|
1555
|
+
args.vllm_enable_sleep_mode=True
|
|
1556
|
+
# Args
|
|
1557
|
+
if args is None:
|
|
1558
|
+
model_name = model if isinstance(model, str) else model.config._name_or_path
|
|
1559
|
+
model_name = model_name.split("/")[-1]
|
|
1560
|
+
args = GRPOConfig(f"{model_name}-GRPO")
|
|
1561
|
+
|
|
1562
|
+
# Models
|
|
1563
|
+
# Trained model
|
|
1564
|
+
model_init_kwargs = args.model_init_kwargs or {}
|
|
1565
|
+
if isinstance(model, str):
|
|
1566
|
+
model_id = model
|
|
1567
|
+
dtype = model_init_kwargs.get("dtype")
|
|
1568
|
+
if isinstance(dtype, torch.dtype) or dtype == "auto" or dtype is None:
|
|
1569
|
+
pass # dtype is already a torch.dtype or "auto" or None
|
|
1570
|
+
elif isinstance(dtype, str): # it's a str, but not "auto"
|
|
1571
|
+
dtype = getattr(torch, dtype)
|
|
1572
|
+
model_init_kwargs["dtype"] = dtype
|
|
1573
|
+
else:
|
|
1574
|
+
raise ValueError(
|
|
1575
|
+
"Invalid `dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing "
|
|
1576
|
+
f"a `torch.dtype` (e.g., 'float32'), but got {dtype}."
|
|
1577
|
+
)
|
|
1578
|
+
# Disable caching if gradient checkpointing is enabled [not supported]
|
|
1579
|
+
config = AutoConfig.from_pretrained(model_id)
|
|
1580
|
+
architecture = getattr(transformers, config.architectures[0])
|
|
1581
|
+
model = architecture.from_pretrained(model_id, **model_init_kwargs)
|
|
1582
|
+
else:
|
|
1583
|
+
model_id = model.config._name_or_path
|
|
1584
|
+
if args.model_init_kwargs is not None:
|
|
1585
|
+
logger.warning(
|
|
1586
|
+
"You passed `model_init_kwargs` to the `GRPOConfig`, but your model is already instantiated. "
|
|
1587
|
+
"The `model_init_kwargs` will be ignored."
|
|
1588
|
+
)
|
|
1589
|
+
|
|
1590
|
+
# Some models [SmolVLM/Idefics3] don't support `logits_to_keep` argument and error out if we pass it
|
|
1591
|
+
# Inspect the forward method before we wrap the model with PEFT
|
|
1592
|
+
self.model_kwarg_keys = (
|
|
1593
|
+
inspect.signature(model.forward).parameters.keys()
|
|
1594
|
+
if not hasattr(model, "get_base_model")
|
|
1595
|
+
else inspect.signature(model.get_base_model().forward).parameters.keys()
|
|
1596
|
+
)
|
|
1597
|
+
|
|
1598
|
+
if False:
|
|
1599
|
+
model = prepare_peft_model(model, peft_config, args)
|
|
1600
|
+
|
|
1601
|
+
# Processing class
|
|
1602
|
+
if processing_class is None:
|
|
1603
|
+
processing_class = AutoProcessor.from_pretrained(model.config._name_or_path, truncation_side="left")
|
|
1604
|
+
|
|
1605
|
+
# Handle pad token for processors or tokenizers
|
|
1606
|
+
if isinstance(processing_class, ProcessorMixin):
|
|
1607
|
+
tokenizer = processing_class.tokenizer
|
|
1608
|
+
elif isinstance(processing_class, PreTrainedTokenizerBase):
|
|
1609
|
+
tokenizer = processing_class
|
|
1610
|
+
else:
|
|
1611
|
+
raise TypeError("The `processing_class` must be either a `PreTrainedTokenizerBase` or a `ProcessorMixin`")
|
|
1612
|
+
|
|
1613
|
+
if tokenizer.pad_token is None:
|
|
1614
|
+
tokenizer.pad_token = tokenizer.eos_token
|
|
1615
|
+
|
|
1616
|
+
self.pad_token = tokenizer.pad_token
|
|
1617
|
+
self.pad_token_id = tokenizer.pad_token_id
|
|
1618
|
+
self.eos_token_id = tokenizer.eos_token_id
|
|
1619
|
+
|
|
1620
|
+
# Reward functions
|
|
1621
|
+
if not isinstance(reward_funcs, list):
|
|
1622
|
+
reward_funcs = [reward_funcs]
|
|
1623
|
+
self.reward_func_names = []
|
|
1624
|
+
for i, reward_func in enumerate(reward_funcs):
|
|
1625
|
+
if isinstance(reward_func, str):
|
|
1626
|
+
reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained(
|
|
1627
|
+
reward_func, num_labels=1, **model_init_kwargs
|
|
1628
|
+
)
|
|
1629
|
+
if isinstance(reward_funcs[i], nn.Module): # Use Module over PretrainedModel for compat w/ compiled models
|
|
1630
|
+
self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1])
|
|
1631
|
+
else:
|
|
1632
|
+
self.reward_func_names.append(reward_funcs[i].__name__)
|
|
1633
|
+
self.reward_funcs = reward_funcs
|
|
1634
|
+
|
|
1635
|
+
# Reward weights
|
|
1636
|
+
if args.reward_weights is not None:
|
|
1637
|
+
if len(args.reward_weights) != len(reward_funcs):
|
|
1638
|
+
raise ValueError(
|
|
1639
|
+
f"Number of reward weights ({len(args.reward_weights)}) must match number of reward "
|
|
1640
|
+
f"functions ({len(reward_funcs)})"
|
|
1641
|
+
)
|
|
1642
|
+
self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32)
|
|
1643
|
+
else:
|
|
1644
|
+
self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32)
|
|
1645
|
+
|
|
1646
|
+
# Reward processing class
|
|
1647
|
+
if reward_processing_classes is None:
|
|
1648
|
+
reward_processing_classes = [None] * len(reward_funcs)
|
|
1649
|
+
elif not isinstance(reward_processing_classes, list):
|
|
1650
|
+
reward_processing_classes = [reward_processing_classes]
|
|
1651
|
+
if len(reward_processing_classes) != len(reward_funcs):
|
|
1652
|
+
raise ValueError(
|
|
1653
|
+
f"The number of reward processing classes ({len(reward_processing_classes)}) must match the number of "
|
|
1654
|
+
f"reward functions ({len(reward_funcs)})."
|
|
1655
|
+
)
|
|
1656
|
+
|
|
1657
|
+
for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)):
|
|
1658
|
+
if isinstance(reward_func, PreTrainedModel):
|
|
1659
|
+
if reward_processing_class is None:
|
|
1660
|
+
reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path)
|
|
1661
|
+
if reward_processing_class.pad_token_id is None:
|
|
1662
|
+
reward_processing_class.pad_token = reward_processing_class.eos_token
|
|
1663
|
+
# The reward model computes the reward for the latest non-padded token in the input sequence.
|
|
1664
|
+
# So it's important to set the pad token ID to the padding token ID of the processing class.
|
|
1665
|
+
reward_func.config.pad_token_id = reward_processing_class.pad_token_id
|
|
1666
|
+
reward_processing_classes[i] = reward_processing_class
|
|
1667
|
+
|
|
1668
|
+
self.reward_processing_classes = reward_processing_classes
|
|
1669
|
+
|
|
1670
|
+
# Training arguments
|
|
1671
|
+
self.max_prompt_length = args.max_prompt_length
|
|
1672
|
+
self.max_completion_length = args.max_completion_length # = |o_i| in the GRPO paper
|
|
1673
|
+
self.num_generations = args.num_generations # = G in the GRPO paper
|
|
1674
|
+
self.temperature = args.temperature
|
|
1675
|
+
self.top_p = args.top_p
|
|
1676
|
+
self.top_k = args.top_k
|
|
1677
|
+
self.min_p = args.min_p
|
|
1678
|
+
self.repetition_penalty = args.repetition_penalty
|
|
1679
|
+
self.use_transformers_paged = args.use_transformers_paged
|
|
1680
|
+
self.use_vllm = args.use_vllm
|
|
1681
|
+
self.vllm_mode = args.vllm_mode
|
|
1682
|
+
self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization # only applies to colocation mode
|
|
1683
|
+
self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size # only applies to colocation mode
|
|
1684
|
+
self.vllm_importance_sampling_correction = args.vllm_importance_sampling_correction
|
|
1685
|
+
self.vllm_importance_sampling_cap = args.vllm_importance_sampling_cap
|
|
1686
|
+
self.use_liger_loss = args.use_liger_loss
|
|
1687
|
+
self.loss_type = args.loss_type
|
|
1688
|
+
self.scale_rewards = args.scale_rewards
|
|
1689
|
+
self.importance_sampling_level = args.importance_sampling_level
|
|
1690
|
+
self.mask_truncated_completions = args.mask_truncated_completions
|
|
1691
|
+
self.top_entropy_quantile = args.top_entropy_quantile
|
|
1692
|
+
if self.use_liger_loss and self.top_entropy_quantile < 1.0:
|
|
1693
|
+
raise NotImplementedError(
|
|
1694
|
+
"Liger Kernels don't currently support masking token positions based on entropy."
|
|
1695
|
+
)
|
|
1696
|
+
if self.use_liger_loss and not self.importance_sampling_level == "token":
|
|
1697
|
+
raise NotImplementedError(
|
|
1698
|
+
"Liger Kernels currently only support token-level importance sampling. Please set"
|
|
1699
|
+
"`importance_sampling_level` to 'token'."
|
|
1700
|
+
)
|
|
1701
|
+
|
|
1702
|
+
# Datasets
|
|
1703
|
+
self.shuffle_dataset = args.shuffle_dataset
|
|
1704
|
+
|
|
1705
|
+
if (
|
|
1706
|
+
isinstance(train_dataset, IterableDataset)
|
|
1707
|
+
or isinstance(eval_dataset, IterableDataset)
|
|
1708
|
+
or (
|
|
1709
|
+
isinstance(eval_dataset, dict) and any(isinstance(ds, IterableDataset) for ds in eval_dataset.values())
|
|
1710
|
+
)
|
|
1711
|
+
):
|
|
1712
|
+
# See https://github.com/huggingface/trl/issues/3213
|
|
1713
|
+
raise NotImplementedError(
|
|
1714
|
+
"Iterable datasets are not yet supported in GRPOTrainer. Please use a standard dataset instead."
|
|
1715
|
+
)
|
|
1716
|
+
|
|
1717
|
+
# Multi-step
|
|
1718
|
+
self.num_iterations = args.num_iterations # = 𝜇 in the GRPO paper
|
|
1719
|
+
self.epsilon_low = args.epsilon
|
|
1720
|
+
self.epsilon_high = args.epsilon_high if args.epsilon_high is not None else args.epsilon
|
|
1721
|
+
# Tracks the number of iterations [forward + backward passes], including those within a grad accum cycle
|
|
1722
|
+
self._step = 0
|
|
1723
|
+
# Buffer the batch to reuse generated outputs across multiple updates. For more details, see
|
|
1724
|
+
# `_get_train_sampler` and `_prepare_inputs`.
|
|
1725
|
+
self._buffered_inputs = None
|
|
1726
|
+
|
|
1727
|
+
# The trainer estimates the number of FLOPs [floating-point operations] using the number of elements in the
|
|
1728
|
+
# input tensor associated with the key "input_ids". However, in GRPO, the sampled data does not include the
|
|
1729
|
+
# "input_ids" key. Instead, the available keys is "prompt". As a result, the trainer issues the warning:
|
|
1730
|
+
# "Could not estimate the number of tokens of the input, floating-point operations will not be computed." To
|
|
1731
|
+
# suppress this warning, we set the "estimate_tokens" key in the model's "warnings_issued" dictionary to True.
|
|
1732
|
+
# This acts as a flag to indicate that the warning has already been issued.
|
|
1733
|
+
model.warnings_issued["estimate_tokens"] = True
|
|
1734
|
+
|
|
1735
|
+
super().__init__(
|
|
1736
|
+
model=model,
|
|
1737
|
+
args=args,
|
|
1738
|
+
data_collator=identity, # No data collation is needed in GRPO
|
|
1739
|
+
train_dataset=train_dataset,
|
|
1740
|
+
eval_dataset=eval_dataset,
|
|
1741
|
+
processing_class=processing_class,
|
|
1742
|
+
callbacks=callbacks,
|
|
1743
|
+
optimizers=optimizers,
|
|
1744
|
+
# In Trainer, `training_step` scales the loss by `gradient_accumulation_steps` only if `compute_loss_func`
|
|
1745
|
+
# is None. For DAPO, loss scaling instead depends on the total number of completions tokens across the
|
|
1746
|
+
# global accumulated batch. To control scaling ourselves, we must disable Trainer’s built-in scaling. The
|
|
1747
|
+
# simplest [though a bit hacky] way is to set `compute_loss_func` to any non-None value, which bypasses
|
|
1748
|
+
# that behavior without rewriting `training_step`.
|
|
1749
|
+
compute_loss_func="non-None value to disable scaling",
|
|
1750
|
+
)
|
|
1751
|
+
|
|
1752
|
+
# Reference model
|
|
1753
|
+
self.beta = args.beta
|
|
1754
|
+
if self.beta == 0.0:
|
|
1755
|
+
# If beta is 0.0, the reference model is not needed
|
|
1756
|
+
self.ref_model = None
|
|
1757
|
+
elif is_peft_model(model):
|
|
1758
|
+
# If PEFT is used, the reference model is not needed since the adapter can be disabled
|
|
1759
|
+
# to revert to the initial model.
|
|
1760
|
+
self.ref_model = None
|
|
1761
|
+
else:
|
|
1762
|
+
# For deepspeed, fsdp or non-distributed models, create a reference model from scratch
|
|
1763
|
+
config = AutoConfig.from_pretrained(model_id)
|
|
1764
|
+
architecture = getattr(transformers, config.architectures[0])
|
|
1765
|
+
self.ref_model = architecture.from_pretrained(model_id, **model_init_kwargs)
|
|
1766
|
+
|
|
1767
|
+
# Disable dropout in the models
|
|
1768
|
+
if args.disable_dropout:
|
|
1769
|
+
disable_dropout_in_model(model)
|
|
1770
|
+
if self.ref_model is not None:
|
|
1771
|
+
disable_dropout_in_model(self.ref_model)
|
|
1772
|
+
|
|
1773
|
+
# Liger loss
|
|
1774
|
+
if self.use_liger_loss:
|
|
1775
|
+
if not is_liger_kernel_available():
|
|
1776
|
+
raise ImportError(
|
|
1777
|
+
"Liger is required to use `liger_loss` as the GRPO loss. Run `pip install liger-kernel`."
|
|
1778
|
+
)
|
|
1779
|
+
# redirect the model.module forward to the model forward to ensure pre-forward hooks are called
|
|
1780
|
+
self._forward_redirection = _ForwardRedirection()
|
|
1781
|
+
|
|
1782
|
+
self.liger_grpo_loss = LigerFusedLinearGRPOLoss(
|
|
1783
|
+
beta=self.beta,
|
|
1784
|
+
epsilon_low=self.epsilon_low,
|
|
1785
|
+
epsilon_high=self.epsilon_high,
|
|
1786
|
+
temperature=self.temperature,
|
|
1787
|
+
use_ref_model=self.beta != 0.0,
|
|
1788
|
+
loss_type=self.loss_type,
|
|
1789
|
+
max_completion_length=self.max_completion_length,
|
|
1790
|
+
)
|
|
1791
|
+
|
|
1792
|
+
# Initialize the metrics
|
|
1793
|
+
self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)}
|
|
1794
|
+
self._total_train_tokens = 0
|
|
1795
|
+
self.log_completions = args.log_completions
|
|
1796
|
+
self.wandb_log_unique_prompts = args.wandb_log_unique_prompts
|
|
1797
|
+
self.num_completions_to_print = args.num_completions_to_print
|
|
1798
|
+
# Keep logs sized to the generation batch to record only outputs from the latest model update.
|
|
1799
|
+
self._logs = {
|
|
1800
|
+
"images": deque(maxlen=args.generation_batch_size),
|
|
1801
|
+
"prompt": deque(maxlen=args.generation_batch_size),
|
|
1802
|
+
"completion": deque(maxlen=args.generation_batch_size),
|
|
1803
|
+
"rewards": defaultdict(lambda: deque(maxlen=args.generation_batch_size)),
|
|
1804
|
+
"advantages": deque(maxlen=args.generation_batch_size),
|
|
1805
|
+
}
|
|
1806
|
+
|
|
1807
|
+
# Ensure each process receives a unique seed to prevent duplicate completions when generating with
|
|
1808
|
+
# transformers if num_generations exceeds per_device_train_batch_size. We could skip it if we use vLLM, but
|
|
1809
|
+
# it's safer to set it in all cases.
|
|
1810
|
+
set_seed(args.seed, device_specific=True)
|
|
1811
|
+
|
|
1812
|
+
if self.use_vllm:
|
|
1813
|
+
if not is_vllm_available():
|
|
1814
|
+
raise ImportError(
|
|
1815
|
+
"vLLM is not available and `use_vllm` is set to True. Please install vLLM with "
|
|
1816
|
+
"`pip install trl[vllm]` to use it."
|
|
1817
|
+
)
|
|
1818
|
+
|
|
1819
|
+
if self.vllm_mode == "server":
|
|
1820
|
+
if self.accelerator.is_main_process:
|
|
1821
|
+
if args.vllm_server_base_url is not None:
|
|
1822
|
+
base_url = args.vllm_server_base_url
|
|
1823
|
+
else:
|
|
1824
|
+
base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}"
|
|
1825
|
+
self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout)
|
|
1826
|
+
self.vllm_client.init_communicator(device=torch.cuda.current_device())
|
|
1827
|
+
|
|
1828
|
+
elif self.vllm_mode == "colocate":
|
|
1829
|
+
if not self.accelerator.num_processes % self.vllm_tensor_parallel_size == 0:
|
|
1830
|
+
raise ValueError(
|
|
1831
|
+
f"vllm_tensor_parallel_size ({self.vllm_tensor_parallel_size}) must divide world size "
|
|
1832
|
+
f"({self.accelerator.num_processes}) evenly."
|
|
1833
|
+
)
|
|
1834
|
+
|
|
1835
|
+
if self.vllm_tensor_parallel_size > 1:
|
|
1836
|
+
self.tp_group, _ = torch.distributed.new_subgroups_by_enumeration(
|
|
1837
|
+
[
|
|
1838
|
+
list(range(i * self.vllm_tensor_parallel_size, (i + 1) * self.vllm_tensor_parallel_size))
|
|
1839
|
+
for i in range(self.accelerator.num_processes // self.vllm_tensor_parallel_size)
|
|
1840
|
+
]
|
|
1841
|
+
)
|
|
1842
|
+
os.environ["RANK"] = str(self.accelerator.process_index)
|
|
1843
|
+
os.environ["LOCAL_RANK"] = str(self.accelerator.local_process_index)
|
|
1844
|
+
os.environ["WORLD_SIZE"] = str(self.accelerator.num_processes)
|
|
1845
|
+
ensure_master_addr_port()
|
|
1846
|
+
|
|
1847
|
+
if self.max_prompt_length is not None and self.max_completion_length is not None:
|
|
1848
|
+
max_model_len = self.max_prompt_length + self.max_completion_length
|
|
1849
|
+
else:
|
|
1850
|
+
max_model_len = None
|
|
1851
|
+
self.llm = model.vllm_engine
|
|
1852
|
+
if self.args.vllm_enable_sleep_mode:
|
|
1853
|
+
self.llm.sleep(level=1)
|
|
1854
|
+
else:
|
|
1855
|
+
raise ValueError(f"vllm_mode must be either 'server' or 'colocate', got '{self.vllm_mode}'.")
|
|
1856
|
+
self.guided_decoding_regex = args.vllm_guided_decoding_regex
|
|
1857
|
+
|
|
1858
|
+
self._last_loaded_step = -1
|
|
1859
|
+
self.accelerator.wait_for_everyone()
|
|
1860
|
+
else:
|
|
1861
|
+
generation_kwargs = {
|
|
1862
|
+
"max_new_tokens": self.max_completion_length,
|
|
1863
|
+
"do_sample": True,
|
|
1864
|
+
"pad_token_id": tokenizer.pad_token_id,
|
|
1865
|
+
"bos_token_id": tokenizer.bos_token_id,
|
|
1866
|
+
"eos_token_id": tokenizer.eos_token_id,
|
|
1867
|
+
"temperature": self.temperature,
|
|
1868
|
+
"top_p": self.top_p,
|
|
1869
|
+
"top_k": self.top_k,
|
|
1870
|
+
"min_p": self.min_p,
|
|
1871
|
+
"repetition_penalty": self.repetition_penalty,
|
|
1872
|
+
"cache_implementation": args.cache_implementation,
|
|
1873
|
+
}
|
|
1874
|
+
if args.generation_kwargs is not None:
|
|
1875
|
+
generation_kwargs.update(args.generation_kwargs)
|
|
1876
|
+
self.generation_config = GenerationConfig(**generation_kwargs)
|
|
1877
|
+
|
|
1878
|
+
# Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
|
|
1879
|
+
# model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
|
|
1880
|
+
# self.model_accepts_loss_kwargs to False to enable scaling.
|
|
1881
|
+
self.model_accepts_loss_kwargs = False
|
|
1882
|
+
|
|
1883
|
+
# Add tags to the model
|
|
1884
|
+
self.model.add_model_tags(self._tag_names)
|
|
1885
|
+
|
|
1886
|
+
if self.ref_model is not None:
|
|
1887
|
+
if self.is_deepspeed_enabled:
|
|
1888
|
+
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator)
|
|
1889
|
+
elif self.is_fsdp_enabled:
|
|
1890
|
+
self.ref_model = prepare_fsdp(self.ref_model, self.accelerator)
|
|
1891
|
+
else:
|
|
1892
|
+
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
|
|
1893
|
+
|
|
1894
|
+
if args.sync_ref_model:
|
|
1895
|
+
self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator))
|
|
1896
|
+
|
|
1897
|
+
for i, reward_func in enumerate(self.reward_funcs):
|
|
1898
|
+
if isinstance(reward_func, PreTrainedModel):
|
|
1899
|
+
if self.is_deepspeed_enabled:
|
|
1900
|
+
self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator)
|
|
1901
|
+
else:
|
|
1902
|
+
# set device placement to True to make `prepare_model` move `reward_func` to device when using fsdp
|
|
1903
|
+
self.reward_funcs[i] = self.accelerator.prepare_model(
|
|
1904
|
+
reward_func, evaluation_mode=True, device_placement=True
|
|
1905
|
+
)
|
|
1906
|
+
|
|
1907
|
+
def _set_signature_columns_if_needed(self):
|
|
1908
|
+
# If `self.args.remove_unused_columns` is True, non-signature columns are removed.
|
|
1909
|
+
# By default, this method sets `self._signature_columns` to the model's expected inputs.
|
|
1910
|
+
# In GRPOTrainer, we preprocess data, so using the model's signature columns doesn't work.
|
|
1911
|
+
# Instead, we set them to the columns expected by the `training_step` method, hence the override.
|
|
1912
|
+
if self._signature_columns is None:
|
|
1913
|
+
self._signature_columns = ["prompt", "image", "images"]
|
|
1914
|
+
|
|
1915
|
+
# This method overrides `Trainer.get_train_dataloader` to support our custom batching strategy.
|
|
1916
|
+
# Instead of returning a standard per-step batch (i.e., `per_device_batch_size), our dataloader loads an
|
|
1917
|
+
# *generation* batch (i.e., `per_device_batch_size × steps_per_generation`). This allows us to generate completions
|
|
1918
|
+
# once every steps_per_generation step—rather than once per accumulation step—which is significantly more
|
|
1919
|
+
# efficient. The only change from the original implementation is multiplying the batch size by
|
|
1920
|
+
# `steps_per_generation`. Thus, `_prepare_inputs` is called with this *generation* batch, and it handles the
|
|
1921
|
+
# splitting internally.
|
|
1922
|
+
# Maintenance note: This method is a copy-paste of the original `Trainer.get_train_dataloader` with only one line
|
|
1923
|
+
# modification. As a result, some parts of the method aren't relevant to GRPO, but we keep them to stay one line
|
|
1924
|
+
# apart from the super method, ensuring easier maintenance in the future.
|
|
1925
|
+
def get_train_dataloader(self):
|
|
1926
|
+
if self.train_dataset is None:
|
|
1927
|
+
raise ValueError("Trainer: training requires a train_dataset.")
|
|
1928
|
+
|
|
1929
|
+
train_dataset = self.train_dataset
|
|
1930
|
+
data_collator = self.data_collator
|
|
1931
|
+
if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
|
|
1932
|
+
train_dataset = self._remove_unused_columns(train_dataset, description="training")
|
|
1933
|
+
else:
|
|
1934
|
+
data_collator = self._get_collator_with_removed_columns(data_collator, description="training")
|
|
1935
|
+
|
|
1936
|
+
dataloader_params = {
|
|
1937
|
+
"batch_size": self._train_batch_size * self.args.steps_per_generation, # < this is the change
|
|
1938
|
+
"collate_fn": data_collator,
|
|
1939
|
+
"num_workers": self.args.dataloader_num_workers,
|
|
1940
|
+
"pin_memory": self.args.dataloader_pin_memory,
|
|
1941
|
+
"persistent_workers": self.args.dataloader_persistent_workers,
|
|
1942
|
+
}
|
|
1943
|
+
|
|
1944
|
+
if not isinstance(train_dataset, torch.utils.data.IterableDataset):
|
|
1945
|
+
dataloader_params["sampler"] = self._get_train_sampler()
|
|
1946
|
+
dataloader_params["drop_last"] = self.args.dataloader_drop_last
|
|
1947
|
+
dataloader_params["worker_init_fn"] = partial(
|
|
1948
|
+
seed_worker, num_workers=self.args.dataloader_num_workers, rank=self.args.process_index
|
|
1949
|
+
)
|
|
1950
|
+
|
|
1951
|
+
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor
|
|
1952
|
+
|
|
1953
|
+
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params))
|
|
1954
|
+
|
|
1955
|
+
def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Sampler:
|
|
1956
|
+
# Returns a sampler that
|
|
1957
|
+
# 1. ensures each prompt is repeated across multiple processes. This guarantees that identical prompts are
|
|
1958
|
+
# distributed to different GPUs, allowing rewards to be computed and normalized correctly within each prompt
|
|
1959
|
+
# group. Using the same seed across processes ensures consistent prompt assignment, preventing discrepancies
|
|
1960
|
+
# in group formation.
|
|
1961
|
+
# 2. repeats the batch multiple times to allow reusing generations across multiple updates. Refer to
|
|
1962
|
+
# _prepare_inputs to see how the generations are stored and reused.
|
|
1963
|
+
|
|
1964
|
+
# In the following figure, the values are the prompt indices. The first row shows the first sampled batch, the
|
|
1965
|
+
# second row shows the second sampled batch, and so on.
|
|
1966
|
+
#
|
|
1967
|
+
# | GPU 0 | GPU 1 |
|
|
1968
|
+
#
|
|
1969
|
+
# global_step step <-───> num_generations=2
|
|
1970
|
+
# <-───────> per_device_train_batch_size=3
|
|
1971
|
+
# grad_accum ▲ ▲ 0 0 0 0 1 1 2 2 <- Generate for the first `steps_per_generation` (prompts 0 to 11); store the completions; use the first slice to compute the loss
|
|
1972
|
+
# =2 ▼ | 0 1 3 3 4 4 5 5 <- Take the stored generations and use the second slice to compute the loss
|
|
1973
|
+
# |
|
|
1974
|
+
# | 1 2 6 6 7 7 8 8 <- Take the stored generations and use the third slice to compute the loss
|
|
1975
|
+
# steps_per_gen=4 ▼ 1 3 9 9 10 10 11 11 <- Take the stored generations and use the fourth slice to compute the loss
|
|
1976
|
+
#
|
|
1977
|
+
# 2 4 12 12 13 13 14 14 <- Generate for the second `steps_per_generation` (prompts 12 to 23); store the completions; use the first slice to compute the loss
|
|
1978
|
+
# 2 5 15 15 16 16 17 17 <- Take the stored generations and use the second slice to compute the loss
|
|
1979
|
+
# ...
|
|
1980
|
+
if dataset is None:
|
|
1981
|
+
dataset = self.train_dataset
|
|
1982
|
+
return RepeatSampler(
|
|
1983
|
+
data_source=dataset,
|
|
1984
|
+
mini_repeat_count=self.num_generations,
|
|
1985
|
+
batch_size=self.args.generation_batch_size // self.num_generations,
|
|
1986
|
+
repeat_count=self.num_iterations * self.args.steps_per_generation,
|
|
1987
|
+
shuffle=self.shuffle_dataset,
|
|
1988
|
+
seed=self.args.seed,
|
|
1989
|
+
)
|
|
1990
|
+
|
|
1991
|
+
def _get_eval_sampler(self, eval_dataset) -> Sampler:
|
|
1992
|
+
# See _get_train_sampler for an explanation of the sampler.
|
|
1993
|
+
return RepeatSampler(
|
|
1994
|
+
data_source=eval_dataset,
|
|
1995
|
+
mini_repeat_count=self.num_generations,
|
|
1996
|
+
seed=self.args.seed,
|
|
1997
|
+
)
|
|
1998
|
+
|
|
1999
|
+
@profiling_decorator
|
|
2000
|
+
def _get_last_hidden_state(
|
|
2001
|
+
self,
|
|
2002
|
+
unwrapped_model,
|
|
2003
|
+
input_ids,
|
|
2004
|
+
attention_mask,
|
|
2005
|
+
logits_to_keep,
|
|
2006
|
+
pixel_values=None,
|
|
2007
|
+
image_grid_thw=None,
|
|
2008
|
+
pixel_attention_mask=None,
|
|
2009
|
+
image_sizes=None,
|
|
2010
|
+
):
|
|
2011
|
+
if is_peft_model(unwrapped_model):
|
|
2012
|
+
unwrapped_model = unwrapped_model.base_model.model
|
|
2013
|
+
|
|
2014
|
+
# Build model inputs - check if the model supports logits_to_keep (some models and VLMs don't)
|
|
2015
|
+
model_inputs = {"input_ids": input_ids, "attention_mask": attention_mask}
|
|
2016
|
+
|
|
2017
|
+
# For Qwen models:
|
|
2018
|
+
if image_grid_thw is not None and pixel_values is not None:
|
|
2019
|
+
model_inputs["image_grid_thw"] = image_grid_thw
|
|
2020
|
+
# For Gemma, SmolVLM2, LLaVa-Next etc.:
|
|
2021
|
+
if pixel_values is not None:
|
|
2022
|
+
model_inputs["pixel_values"] = pixel_values
|
|
2023
|
+
# For SmolVLM2
|
|
2024
|
+
if pixel_attention_mask is not None:
|
|
2025
|
+
model_inputs["pixel_attention_mask"] = pixel_attention_mask
|
|
2026
|
+
# For LLaVa-Next
|
|
2027
|
+
if image_sizes is not None:
|
|
2028
|
+
model_inputs["image_sizes"] = image_sizes
|
|
2029
|
+
|
|
2030
|
+
# Only add logits_to_keep if the model supports it
|
|
2031
|
+
if "logits_to_keep" in self.model_kwarg_keys:
|
|
2032
|
+
# We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
|
|
2033
|
+
model_inputs["logits_to_keep"] = logits_to_keep + 1
|
|
2034
|
+
|
|
2035
|
+
model_inputs["use_cache"] = False # only used in generation; set False to suppress warnings
|
|
2036
|
+
|
|
2037
|
+
last_hidden_state = unwrapped_model.model(**model_inputs).last_hidden_state
|
|
2038
|
+
# Exclude the last value: it corresponds to the next token pred
|
|
2039
|
+
last_hidden_state = last_hidden_state[:, :-1, :] # (B, L-1, H)
|
|
2040
|
+
# Only keep the last logits_to_keep. For model that support logits_to_keep, this is a no-op.
|
|
2041
|
+
last_hidden_state = last_hidden_state[:, -logits_to_keep:, :] # (B, logits_to_keep, H)
|
|
2042
|
+
return last_hidden_state
|
|
2043
|
+
|
|
2044
|
+
def get_high_entropy_mask(self, entropies: torch.Tensor, mask: torch.Tensor, threshold: float) -> torch.Tensor:
|
|
2045
|
+
"""
|
|
2046
|
+
Returns a binary mask identifying tokens whose entropy exceeds a given quantile threshold.
|
|
2047
|
+
|
|
2048
|
+
Args:
|
|
2049
|
+
entropies (`torch.Tensor`):
|
|
2050
|
+
Tensor of shape (batch_size, seq_len) with per-token entropy values.
|
|
2051
|
+
mask (`torch.Tensor`):
|
|
2052
|
+
Binary mask of the same shape as `entropies`, where `1` indicates valid tokens and `0` padding.
|
|
2053
|
+
threshold (`float`):
|
|
2054
|
+
Quantile threshold between `0.0` and `1.0` to select high-entropy tokens.
|
|
2055
|
+
|
|
2056
|
+
Returns:
|
|
2057
|
+
`torch.Tensor`:
|
|
2058
|
+
Boolean mask of shape (batch_size, seq_len), where `True` indicates tokens with entropy >= threshold
|
|
2059
|
+
and `False` otherwise.
|
|
2060
|
+
"""
|
|
2061
|
+
local = entropies[mask.bool()].float()
|
|
2062
|
+
|
|
2063
|
+
# Use a negative pad_value as a sentinel because entropy values are always >= 0.
|
|
2064
|
+
# This guarantees that the sentinel cannot collide with any real entropy value.
|
|
2065
|
+
pad_value = -1e9
|
|
2066
|
+
|
|
2067
|
+
# Pad across processes so that every rank has the same tensor length
|
|
2068
|
+
padded = self.accelerator.pad_across_processes(local, dim=0, pad_index=pad_value)
|
|
2069
|
+
gathered = self.accelerator.gather(padded)
|
|
2070
|
+
|
|
2071
|
+
# Drop sentinel values (safe because no entropy can be negative)
|
|
2072
|
+
gathered = gathered[gathered != pad_value]
|
|
2073
|
+
|
|
2074
|
+
if gathered.numel() == 0:
|
|
2075
|
+
return torch.zeros_like(entropies, dtype=torch.bool)
|
|
2076
|
+
|
|
2077
|
+
entropy_threshold = torch.quantile(gathered, threshold)
|
|
2078
|
+
masked_entropies = entropies * mask.float()
|
|
2079
|
+
entropy_mask = masked_entropies >= entropy_threshold
|
|
2080
|
+
return entropy_mask & mask.bool() # ensure padding tokens are always masked out
|
|
2081
|
+
|
|
2082
|
+
def _get_per_token_logps_and_entropies(
|
|
2083
|
+
self,
|
|
2084
|
+
model,
|
|
2085
|
+
input_ids,
|
|
2086
|
+
attention_mask,
|
|
2087
|
+
logits_to_keep,
|
|
2088
|
+
batch_size = None,
|
|
2089
|
+
compute_entropy = False,
|
|
2090
|
+
compute_efficient = False,
|
|
2091
|
+
*args,
|
|
2092
|
+
**kwargs,
|
|
2093
|
+
):
|
|
2094
|
+
# if True: # os.environ.get('UNSLOTH_USE_NEW_MODEL', '0') == '0':
|
|
2095
|
+
# return None, None # logps, entropies Unsloth efficient GRPO
|
|
2096
|
+
if compute_efficient:
|
|
2097
|
+
return None, None
|
|
2098
|
+
else:
|
|
2099
|
+
# Otherwise, calculate normally:
|
|
2100
|
+
if not hasattr(self, "_autocast_dtype"):
|
|
2101
|
+
self._autocast_dtype = (
|
|
2102
|
+
torch.float16
|
|
2103
|
+
if os.environ.get("ACCELERATE_MIXED_PRECISION", "fp16") == "fp16"
|
|
2104
|
+
else torch.bfloat16
|
|
2105
|
+
)
|
|
2106
|
+
if os.environ.get("UNSLOTH_FORCE_FLOAT32", "0") == "1":
|
|
2107
|
+
self._autocast_dtype = torch.float16
|
|
2108
|
+
|
|
2109
|
+
pixel_values, image_grid_thw = (
|
|
2110
|
+
kwargs.get("pixel_values", None),
|
|
2111
|
+
kwargs.get("image_grid_thw", None),
|
|
2112
|
+
)
|
|
2113
|
+
pixel_attention_mask, image_sizes = (
|
|
2114
|
+
kwargs.get("pixel_attention_mask", None),
|
|
2115
|
+
kwargs.get("image_sizes", None),
|
|
2116
|
+
)
|
|
2117
|
+
|
|
2118
|
+
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "1"
|
|
2119
|
+
|
|
2120
|
+
unwrapped_model = self.accelerator.unwrap_model(
|
|
2121
|
+
model, keep_fp32_wrapper = False
|
|
2122
|
+
)
|
|
2123
|
+
|
|
2124
|
+
with torch.amp.autocast(device_type = "cuda", dtype = self._autocast_dtype):
|
|
2125
|
+
with _get_inference_mode_context_manager(model):
|
|
2126
|
+
if pixel_values is None:
|
|
2127
|
+
attention_mask = input_ids != self.processing_class.pad_token_id
|
|
2128
|
+
attention_mask = attention_mask.to(attention_mask.dtype)
|
|
2129
|
+
# We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
|
|
2130
|
+
logits = unwrapped_model(
|
|
2131
|
+
input_ids = input_ids,
|
|
2132
|
+
attention_mask = attention_mask,
|
|
2133
|
+
pixel_values = pixel_values,
|
|
2134
|
+
image_grid_thw = image_grid_thw,
|
|
2135
|
+
pixel_attention_mask = pixel_attention_mask,
|
|
2136
|
+
image_sizes = image_sizes,
|
|
2137
|
+
# logits_to_keep = logits_to_keep + 1,
|
|
2138
|
+
).logits
|
|
2139
|
+
else:
|
|
2140
|
+
logits = unwrapped_model(
|
|
2141
|
+
input_ids = input_ids,
|
|
2142
|
+
attention_mask = attention_mask,
|
|
2143
|
+
pixel_values = pixel_values,
|
|
2144
|
+
image_grid_thw = image_grid_thw,
|
|
2145
|
+
pixel_attention_mask = pixel_attention_mask,
|
|
2146
|
+
image_sizes = image_sizes,
|
|
2147
|
+
logits_to_keep = logits_to_keep + 1,
|
|
2148
|
+
).logits
|
|
2149
|
+
|
|
2150
|
+
entropies = None
|
|
2151
|
+
if compute_entropy:
|
|
2152
|
+
from trl.trainer.utils import entropy_from_logits
|
|
2153
|
+
|
|
2154
|
+
entropies = entropy_from_logits(logits)
|
|
2155
|
+
|
|
2156
|
+
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "0"
|
|
2157
|
+
# logits = logits[:, :-1, :] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
|
|
2158
|
+
return logits.detach(), entropies # logps, entropies
|
|
2159
|
+
# input_ids = input_ids[:, -logits_to_keep:]
|
|
2160
|
+
# For transformers<=4.48, logits_to_keep argument isn't supported, so here we drop logits ourselves.
|
|
2161
|
+
# See https://github.com/huggingface/trl/issues/2770
|
|
2162
|
+
# logits = logits[:, -logits_to_keep:]
|
|
2163
|
+
# return logits
|
|
2164
|
+
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
|
|
2165
|
+
# logits = logits / self.temperature
|
|
2166
|
+
# logps = selective_log_softmax(logits, input_ids)
|
|
2167
|
+
|
|
2168
|
+
# row_indices, col_indices = torch.where(logps < -20)
|
|
2169
|
+
|
|
2170
|
+
# # Method 1: Check if tensors have elements
|
|
2171
|
+
# if len(row_indices) > 0 and len(col_indices) > 0:
|
|
2172
|
+
# breakpoint() # Breakpoint triggered here
|
|
2173
|
+
# print("Found high values!")
|
|
2174
|
+
# return logps # compute logprobs for the input tokens
|
|
2175
|
+
|
|
2176
|
+
def _fix_param_name_to_vllm(self, name, extra_prefixes: Optional[list[str]] = None):
|
|
2177
|
+
extra_prefixes = extra_prefixes or []
|
|
2178
|
+
prefixes = ["_checkpoint_wrapped_module."] + extra_prefixes
|
|
2179
|
+
for prefix in prefixes:
|
|
2180
|
+
name = name.replace(prefix, "")
|
|
2181
|
+
return name
|
|
2182
|
+
|
|
2183
|
+
def _sync_fsdp1_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None):
|
|
2184
|
+
"""Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM."""
|
|
2185
|
+
# For FSDP1, we need to recurse into children and also use summon_full_params
|
|
2186
|
+
if visited is None:
|
|
2187
|
+
visited = set()
|
|
2188
|
+
for child_name, child_module in module.named_children():
|
|
2189
|
+
child_prefix = f"{prefix}.{child_name}" if prefix else child_name
|
|
2190
|
+
self._sync_fsdp1_params_to_vllm(
|
|
2191
|
+
child_module, prefix=child_prefix, visited=visited
|
|
2192
|
+
) # recurse into the child
|
|
2193
|
+
|
|
2194
|
+
if isinstance(module, FSDP):
|
|
2195
|
+
with FSDP.summon_full_params(module, recurse=False, writeback=False):
|
|
2196
|
+
for param_name, param in module.named_parameters():
|
|
2197
|
+
full_name = f"{prefix}.{param_name}" if prefix else param_name
|
|
2198
|
+
full_name = self._fix_param_name_to_vllm(full_name, extra_prefixes=["_fsdp_wrapped_module."])
|
|
2199
|
+
|
|
2200
|
+
if full_name in visited:
|
|
2201
|
+
continue # skip FSDP subtrees already traversed
|
|
2202
|
+
visited.add(full_name)
|
|
2203
|
+
|
|
2204
|
+
if self.vllm_mode == "server" and self.accelerator.is_main_process:
|
|
2205
|
+
self.vllm_client.update_named_param(full_name, param.data)
|
|
2206
|
+
elif self.vllm_mode == "colocate":
|
|
2207
|
+
|
|
2208
|
+
pass
|
|
2209
|
+
|
|
2210
|
+
pass
|
|
2211
|
+
|
|
2212
|
+
def _sync_fsdp2_params_to_vllm(self, module: nn.Module):
|
|
2213
|
+
# For FSDP2, module already covers all parameters, so no need for recursion
|
|
2214
|
+
for name, param in module.items():
|
|
2215
|
+
if param.is_cpu:
|
|
2216
|
+
param = param.to(torch.device("cuda"))
|
|
2217
|
+
param = param.full_tensor()
|
|
2218
|
+
|
|
2219
|
+
if self.vllm_mode == "server" and self.accelerator.is_main_process:
|
|
2220
|
+
self.vllm_client.update_named_param(name, param)
|
|
2221
|
+
elif self.vllm_mode == "colocate":
|
|
2222
|
+
|
|
2223
|
+
pass
|
|
2224
|
+
|
|
2225
|
+
pass
|
|
2226
|
+
|
|
2227
|
+
def _move_model_to_vllm(self, *args, **kwargs):
|
|
2228
|
+
return None
|
|
2229
|
+
|
|
2230
|
+
@profiling_decorator
|
|
2231
|
+
def _prepare_inputs(
|
|
2232
|
+
self, generation_batch: dict[str, Union[torch.Tensor, Any]]
|
|
2233
|
+
) -> dict[str, Union[torch.Tensor, Any]]:
|
|
2234
|
+
# Prepares inputs for model training/evaluation by managing completion generation and batch handling.
|
|
2235
|
+
# During training:
|
|
2236
|
+
# - Receives the local generation batch (Per-GPU batch size × steps per generation)
|
|
2237
|
+
# from the modified training dataloader instead of the standard local batch
|
|
2238
|
+
# - Generates completions once for the entire generation batch and splits it into batches of size
|
|
2239
|
+
# `per_device_train_batch_size`
|
|
2240
|
+
# - Buffers these completions and returns the appropriate slice for the current accumulation step
|
|
2241
|
+
# - Optimizes by regenerating completions only periodically (every steps_per_generation * num_iterations)
|
|
2242
|
+
# During evaluation:
|
|
2243
|
+
# - The input is treated as a standard local batch (no accumulation, no multiple iterations)
|
|
2244
|
+
# - Completions are generated for each batch without buffering or reuse
|
|
2245
|
+
# Returns a single local batch in both cases.
|
|
2246
|
+
|
|
2247
|
+
mode = "train" if self.model.training else "eval"
|
|
2248
|
+
if mode == "train":
|
|
2249
|
+
generate_every = self.args.steps_per_generation * self.num_iterations
|
|
2250
|
+
if self._step % generate_every == 0 or self._buffered_inputs is None:
|
|
2251
|
+
# self._buffered_inputs=None can occur when resuming from a checkpoint
|
|
2252
|
+
generation_batch = self._generate_and_score_completions(generation_batch)
|
|
2253
|
+
generation_batch = split_pixel_values_by_grid(generation_batch)
|
|
2254
|
+
|
|
2255
|
+
try: generation_batch = shuffle_sequence_dict(generation_batch)
|
|
2256
|
+
|
|
2257
|
+
except: pass
|
|
2258
|
+
generation_batches = split_tensor_dict(generation_batch, self.args.steps_per_generation)
|
|
2259
|
+
self._buffered_inputs = [unsplit_pixel_values_by_grid(batch) for batch in generation_batches]
|
|
2260
|
+
inputs = self._buffered_inputs[self._step % self.args.steps_per_generation]
|
|
2261
|
+
self._step += 1
|
|
2262
|
+
else:
|
|
2263
|
+
# In evaluation, there is neither batch grouping for generation, nor multiple iterations, hence
|
|
2264
|
+
# local generation batch == local eval batch
|
|
2265
|
+
inputs = self._generate_and_score_completions(generation_batch)
|
|
2266
|
+
return inputs
|
|
2267
|
+
|
|
2268
|
+
@profiling_decorator
|
|
2269
|
+
def _calculate_rewards(self, inputs, prompts, completions, completion_ids_list):
|
|
2270
|
+
device = self.accelerator.device
|
|
2271
|
+
rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device)
|
|
2272
|
+
|
|
2273
|
+
# Repeat all input columns (but "prompt", "completion", and "completion_ids") to match the num of generations
|
|
2274
|
+
keys = [key for key in inputs[0] if key not in ["prompt", "completion", "completion_ids"]]
|
|
2275
|
+
reward_kwargs = {key: [example[key] for example in inputs] for key in keys}
|
|
2276
|
+
|
|
2277
|
+
# This allows for dynamic reward shaping based on training progress.
|
|
2278
|
+
reward_kwargs["trainer_state"] = self.state
|
|
2279
|
+
|
|
2280
|
+
for i, (reward_func, reward_processing_class, reward_func_name) in enumerate(
|
|
2281
|
+
zip(self.reward_funcs, self.reward_processing_classes, self.reward_func_names)
|
|
2282
|
+
):
|
|
2283
|
+
with profiling_context(self, reward_func_name):
|
|
2284
|
+
if isinstance(reward_func, nn.Module): # Module (no PretrainedModel) for compat with compiled models
|
|
2285
|
+
if is_conversational(inputs[0]):
|
|
2286
|
+
messages = [{"messages": p + c} for p, c in zip(prompts, completions)]
|
|
2287
|
+
texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages]
|
|
2288
|
+
else:
|
|
2289
|
+
texts = [p + c for p, c in zip(prompts, completions)]
|
|
2290
|
+
reward_inputs = reward_processing_class(
|
|
2291
|
+
text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False
|
|
2292
|
+
)
|
|
2293
|
+
reward_inputs = super()._prepare_inputs(reward_inputs)
|
|
2294
|
+
with torch.inference_mode():
|
|
2295
|
+
rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] # Shape (B*G,)
|
|
2296
|
+
else:
|
|
2297
|
+
output_reward_func = reward_func(
|
|
2298
|
+
prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs
|
|
2299
|
+
)
|
|
2300
|
+
# Convert None values to NaN
|
|
2301
|
+
output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func]
|
|
2302
|
+
|
|
2303
|
+
rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device)
|
|
2304
|
+
|
|
2305
|
+
# If all reward functions return None for a given row, issue a detailed warning
|
|
2306
|
+
if torch.isnan(rewards_per_func).all(dim=1).any():
|
|
2307
|
+
nan_row_idx = torch.isnan(rewards_per_func).all(dim=1).nonzero(as_tuple=True)[0][0]
|
|
2308
|
+
row_reward_kwargs = {
|
|
2309
|
+
key: value[nan_row_idx] for key, value in reward_kwargs.items() if key != "trainer_state"
|
|
2310
|
+
}
|
|
2311
|
+
row_reward_kwargs["prompt"] = prompts[nan_row_idx]
|
|
2312
|
+
row_reward_kwargs["completion"] = completions[nan_row_idx]
|
|
2313
|
+
logger.warning(
|
|
2314
|
+
f"All reward functions returned None for the following kwargs:\n{row_reward_kwargs}\n"
|
|
2315
|
+
"Please ensure that at least one reward function returns a valid reward."
|
|
2316
|
+
)
|
|
2317
|
+
|
|
2318
|
+
# Gather the reward per function: this part is crucial, because the rewards are normalized per group and the
|
|
2319
|
+
# completions may be distributed across processes
|
|
2320
|
+
rewards_per_func = gather(rewards_per_func)
|
|
2321
|
+
return rewards_per_func
|
|
2322
|
+
|
|
2323
|
+
def _generate_single_turn(self, prompts: list[str], images: Optional[list]):
|
|
2324
|
+
device = self.accelerator.device
|
|
2325
|
+
|
|
2326
|
+
# If the prompts are conversational and the inputs contain images, we need to convert the prompts from
|
|
2327
|
+
# [{"role": "user", "content": "What color is the sky?"}] to
|
|
2328
|
+
# [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What color is the sky?"}]}]
|
|
2329
|
+
kwargs = {}
|
|
2330
|
+
if images is not None:
|
|
2331
|
+
kwargs = {"images": images}
|
|
2332
|
+
for prompt, image_list in zip(prompts, images):
|
|
2333
|
+
if isinstance(prompt, list): # i.e., when using conversational data
|
|
2334
|
+
prepare_multimodal_messages(prompt, num_images=len(image_list))
|
|
2335
|
+
|
|
2336
|
+
|
|
2337
|
+
_chat_template_ = getattr(self.processing_class, "chat_template", None)
|
|
2338
|
+
if _chat_template_ is None: _chat_template_ = ""
|
|
2339
|
+
_supported_keys_ = set(("prompt", "chosen", "rejected", "completion", "messages", "label"))
|
|
2340
|
+
|
|
2341
|
+
prompts_text = []
|
|
2342
|
+
for _example_ in prompts:
|
|
2343
|
+
_tokenizer_kwargs_ = {}
|
|
2344
|
+
if type(_example_) is not dict:
|
|
2345
|
+
_example_ = {"prompt": _example_}
|
|
2346
|
+
_left_keys_ = _example_.keys() - _supported_keys_
|
|
2347
|
+
for k in _left_keys_:
|
|
2348
|
+
if k in _chat_template_:
|
|
2349
|
+
v = _example_[k]
|
|
2350
|
+
if type(v) is str:
|
|
2351
|
+
_tokenizer_kwargs_[k] = v
|
|
2352
|
+
_x_ = maybe_apply_chat_template(_example_, self.processing_class, **_tokenizer_kwargs_)["prompt"]
|
|
2353
|
+
prompts_text.append(_x_)
|
|
2354
|
+
if images is not None:
|
|
2355
|
+
prompt_inputs = self.processing_class(text=prompts_text, padding=True, return_tensors="pt", **kwargs)
|
|
2356
|
+
prompt_inputs = super()._prepare_inputs(prompt_inputs)
|
|
2357
|
+
forward_kwargs = {k: v for k, v in prompt_inputs.items() if k not in ["input_ids", "attention_mask"]}
|
|
2358
|
+
else:
|
|
2359
|
+
forward_kwargs = {}
|
|
2360
|
+
|
|
2361
|
+
# Generate completions using either vLLM or regular generation
|
|
2362
|
+
if self.use_vllm:
|
|
2363
|
+
if self.vllm_mode == "colocate" and self.args.vllm_enable_sleep_mode:
|
|
2364
|
+
# wake up colocated vLLM instances if needed
|
|
2365
|
+
torch.cuda.empty_cache() # required to avoid OOM in some cases
|
|
2366
|
+
self.llm.wake_up()
|
|
2367
|
+
|
|
2368
|
+
# First, update the vLLM weights if needed
|
|
2369
|
+
if self.state.global_step != self._last_loaded_step:
|
|
2370
|
+
self._move_model_to_vllm()
|
|
2371
|
+
self._last_loaded_step = self.state.global_step
|
|
2372
|
+
|
|
2373
|
+
# Generate completions using vLLM: gather all prompts and use them in a single call in the main process
|
|
2374
|
+
if self.vllm_mode == "server":
|
|
2375
|
+
all_prompts_text = gather_object(prompts_text)
|
|
2376
|
+
if images is not None:
|
|
2377
|
+
all_images = gather_object(images)
|
|
2378
|
+
|
|
2379
|
+
if self.accelerator.is_main_process:
|
|
2380
|
+
# Since 'prompts' contains 'num_generations' duplicates, we first take unique prompts, and generate
|
|
2381
|
+
# num_generations outputs for each one. This is faster than generating outputs for each duplicate
|
|
2382
|
+
# prompt individually.
|
|
2383
|
+
ordered_set_of_prompts = all_prompts_text[:: self.num_generations]
|
|
2384
|
+
|
|
2385
|
+
if images is not None:
|
|
2386
|
+
ordered_set_of_images = all_images[:: self.num_generations]
|
|
2387
|
+
else:
|
|
2388
|
+
ordered_set_of_images = None
|
|
2389
|
+
|
|
2390
|
+
with profiling_context(self, "vLLM.generate"):
|
|
2391
|
+
output = self.vllm_client.generate(
|
|
2392
|
+
prompts=ordered_set_of_prompts,
|
|
2393
|
+
images=ordered_set_of_images,
|
|
2394
|
+
n=self.num_generations,
|
|
2395
|
+
repetition_penalty=self.repetition_penalty,
|
|
2396
|
+
temperature=self.temperature,
|
|
2397
|
+
top_p=self.top_p,
|
|
2398
|
+
top_k=-1 if self.top_k is None else self.top_k,
|
|
2399
|
+
min_p=0.0 if self.min_p is None else self.min_p,
|
|
2400
|
+
max_tokens=self.max_completion_length,
|
|
2401
|
+
truncate_prompt_tokens=self.max_prompt_length,
|
|
2402
|
+
guided_decoding_regex=self.guided_decoding_regex,
|
|
2403
|
+
generation_kwargs=self.args.generation_kwargs,
|
|
2404
|
+
)
|
|
2405
|
+
payload = (output["prompt_ids"], output["completion_ids"], output["logprobs"])
|
|
2406
|
+
else:
|
|
2407
|
+
payload = None
|
|
2408
|
+
|
|
2409
|
+
# Broadcast the completions from the main process to all processes, ensuring each process receives its corresponding slice.
|
|
2410
|
+
obj_list = [payload]
|
|
2411
|
+
broadcast_object_list(obj_list, from_process=0)
|
|
2412
|
+
all_prompt_ids, all_completion_ids, all_logprobs = obj_list[0]
|
|
2413
|
+
|
|
2414
|
+
# At this point, we only get 1 copy of each prompt, so we need to repeat them num_generations times
|
|
2415
|
+
all_prompt_ids = [ids for ids in all_prompt_ids for _ in range(self.num_generations)]
|
|
2416
|
+
|
|
2417
|
+
process_slice = slice(
|
|
2418
|
+
self.accelerator.process_index * len(prompts),
|
|
2419
|
+
(self.accelerator.process_index + 1) * len(prompts),
|
|
2420
|
+
)
|
|
2421
|
+
prompt_ids = all_prompt_ids[process_slice]
|
|
2422
|
+
completion_ids = all_completion_ids[process_slice]
|
|
2423
|
+
logprobs = all_logprobs[process_slice]
|
|
2424
|
+
|
|
2425
|
+
# Generate completions using colocated vLLM instances: each device holds vLLM copy and work on their own batch of prompts
|
|
2426
|
+
elif self.vllm_mode == "colocate":
|
|
2427
|
+
if self.guided_decoding_regex:
|
|
2428
|
+
guided_decoding = GuidedDecodingParams(regex=self.guided_decoding_regex)
|
|
2429
|
+
else:
|
|
2430
|
+
guided_decoding = None
|
|
2431
|
+
|
|
2432
|
+
generation_kwargs = {
|
|
2433
|
+
"n": 1, # vLLM on each GPU generates only 1 in colocate mode
|
|
2434
|
+
"repetition_penalty": self.repetition_penalty,
|
|
2435
|
+
"temperature": self.temperature,
|
|
2436
|
+
"top_p": self.top_p,
|
|
2437
|
+
"top_k": -1 if self.top_k is None else self.top_k,
|
|
2438
|
+
"min_p": 0.0 if self.min_p is None else self.min_p,
|
|
2439
|
+
"max_tokens": self.max_completion_length,
|
|
2440
|
+
"truncate_prompt_tokens": self.max_prompt_length,
|
|
2441
|
+
"guided_decoding": guided_decoding,
|
|
2442
|
+
"logprobs": 0, # only return the logprob of the generated token
|
|
2443
|
+
}
|
|
2444
|
+
if self.args.generation_kwargs is not None:
|
|
2445
|
+
generation_kwargs.update(self.args.generation_kwargs)
|
|
2446
|
+
sampling_params = SamplingParams(**grpo_update_SamplingParams(SamplingParams, generation_kwargs, getattr(self.args, 'vllm_sampling_params', None)))
|
|
2447
|
+
|
|
2448
|
+
if self.vllm_tensor_parallel_size > 1:
|
|
2449
|
+
# Gather prompts from all ranks in the TP group and flatten.
|
|
2450
|
+
# Each rank starts with its own prompts; after gathering, all ranks see the full group set.
|
|
2451
|
+
orig_size = len(prompts_text)
|
|
2452
|
+
gathered_prompts = [None for _ in range(self.vllm_tensor_parallel_size)]
|
|
2453
|
+
torch.distributed.all_gather_object(gathered_prompts, prompts_text, group=self.tp_group)
|
|
2454
|
+
all_prompts_text = [p for sublist in gathered_prompts for p in sublist]
|
|
2455
|
+
|
|
2456
|
+
if images is not None:
|
|
2457
|
+
gathered_images = [None for _ in range(self.vllm_tensor_parallel_size)]
|
|
2458
|
+
torch.distributed.all_gather_object(gathered_images, images, group=self.tp_group)
|
|
2459
|
+
all_images = [img for sublist in gathered_images for img in sublist]
|
|
2460
|
+
else:
|
|
2461
|
+
all_images = None
|
|
2462
|
+
else:
|
|
2463
|
+
all_prompts_text = prompts_text
|
|
2464
|
+
all_images = images
|
|
2465
|
+
|
|
2466
|
+
if images is not None and all_images:
|
|
2467
|
+
vllm_inputs = []
|
|
2468
|
+
for prompt, image_list in zip(all_prompts_text, all_images):
|
|
2469
|
+
vllm_inputs.append({"prompt": prompt, "multi_modal_data": {"image": image_list}})
|
|
2470
|
+
|
|
2471
|
+
else:
|
|
2472
|
+
vllm_inputs = all_prompts_text
|
|
2473
|
+
|
|
2474
|
+
with profiling_context(self, "vLLM.generate"):
|
|
2475
|
+
all_outputs = self.llm.generate(vllm_inputs, sampling_params=sampling_params, use_tqdm=False, lora_request = self.model.load_lora('grpo_trainer_lora_model_' + (os.environ.get('CUDA_VISIBLE_DEVICES', '0').replace(',','')), load_tensors = True))
|
|
2476
|
+
|
|
2477
|
+
all_prompt_ids = [output.prompt_token_ids for output in all_outputs]
|
|
2478
|
+
all_completion_ids = [output.token_ids for outputs in all_outputs for output in outputs.outputs]
|
|
2479
|
+
all_logprobs = [
|
|
2480
|
+
[next(iter(lp.values())).logprob for lp in output.logprobs]
|
|
2481
|
+
for outputs in all_outputs
|
|
2482
|
+
for output in outputs.outputs
|
|
2483
|
+
]
|
|
2484
|
+
|
|
2485
|
+
if self.vllm_tensor_parallel_size > 1:
|
|
2486
|
+
# Slice completions for this rank within its TP group.
|
|
2487
|
+
# Each rank generates all outputs — we keep only our share.
|
|
2488
|
+
local_rank_in_group = torch.distributed.get_rank(group=self.tp_group)
|
|
2489
|
+
tp_slice = slice(local_rank_in_group * orig_size, (local_rank_in_group + 1) * orig_size)
|
|
2490
|
+
prompt_ids = all_prompt_ids[tp_slice]
|
|
2491
|
+
completion_ids = all_completion_ids[tp_slice]
|
|
2492
|
+
logprobs = all_logprobs[tp_slice]
|
|
2493
|
+
else:
|
|
2494
|
+
prompt_ids = all_prompt_ids
|
|
2495
|
+
completion_ids = all_completion_ids
|
|
2496
|
+
logprobs = all_logprobs
|
|
2497
|
+
|
|
2498
|
+
if self.args.vllm_enable_sleep_mode:
|
|
2499
|
+
self.llm.sleep(level=1)
|
|
2500
|
+
|
|
2501
|
+
elif self.use_transformers_paged:
|
|
2502
|
+
# Re-process inputs for paged generation if needed
|
|
2503
|
+
# Note: images are already validated and preprocessed above
|
|
2504
|
+
paged_prompt_inputs = self.processing_class(text=prompts_text, **kwargs)
|
|
2505
|
+
previous_attn = self.model_wrapped.config._attn_implementation
|
|
2506
|
+
|
|
2507
|
+
if is_flash_attn_2_available():
|
|
2508
|
+
self.model_wrapped.config._attn_implementation = "paged_attention"
|
|
2509
|
+
else:
|
|
2510
|
+
self.model_wrapped.config._attn_implementation = "sdpa_paged"
|
|
2511
|
+
with (
|
|
2512
|
+
profiling_context(self, "transformers.generate_batch"),
|
|
2513
|
+
unwrap_model_for_generation(
|
|
2514
|
+
self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
|
|
2515
|
+
) as unwrapped_model,
|
|
2516
|
+
torch.no_grad(),
|
|
2517
|
+
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(),
|
|
2518
|
+
):
|
|
2519
|
+
# Cast to the appropriate dtype based on training configuration
|
|
2520
|
+
if self.args.bf16:
|
|
2521
|
+
unwrapped_model.to(torch.bfloat16)
|
|
2522
|
+
elif self.args.fp16:
|
|
2523
|
+
unwrapped_model.to(torch.float16)
|
|
2524
|
+
with torch.inference_mode():
|
|
2525
|
+
all_outputs = unwrapped_model.generate_batch(
|
|
2526
|
+
paged_prompt_inputs.input_ids, generation_config=self.generation_config, progress_bar=False
|
|
2527
|
+
)
|
|
2528
|
+
unwrapped_model.train() # restore training mode, as generate_batch forces eval mode
|
|
2529
|
+
completion_ids = [output.generated_tokens for output in all_outputs.values()]
|
|
2530
|
+
prompt_ids = paged_prompt_inputs.input_ids
|
|
2531
|
+
# Restore the original attention implementation, training mode
|
|
2532
|
+
self.model_wrapped.config._attn_implementation = previous_attn
|
|
2533
|
+
logprobs = None # not used in this case
|
|
2534
|
+
|
|
2535
|
+
else:
|
|
2536
|
+
# Regular generation path
|
|
2537
|
+
generate_inputs = self.processing_class(
|
|
2538
|
+
text=prompts_text,
|
|
2539
|
+
return_tensors="pt",
|
|
2540
|
+
padding=True,
|
|
2541
|
+
padding_side="left",
|
|
2542
|
+
max_length=self.max_prompt_length,
|
|
2543
|
+
truncation=True,
|
|
2544
|
+
add_special_tokens=False,
|
|
2545
|
+
**kwargs,
|
|
2546
|
+
)
|
|
2547
|
+
generate_inputs = super()._prepare_inputs(generate_inputs)
|
|
2548
|
+
|
|
2549
|
+
with (
|
|
2550
|
+
profiling_context(self, "transformers.generate"),
|
|
2551
|
+
unwrap_model_for_generation(
|
|
2552
|
+
self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
|
|
2553
|
+
) as unwrapped_model,
|
|
2554
|
+
torch.no_grad(),
|
|
2555
|
+
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(),
|
|
2556
|
+
):
|
|
2557
|
+
prompt_completion_ids = unwrapped_model.generate(
|
|
2558
|
+
**generate_inputs, generation_config=self.generation_config, disable_compile=True
|
|
2559
|
+
)
|
|
2560
|
+
# Compute prompt length and extract completion ids
|
|
2561
|
+
prompt_ids, prompt_mask = generate_inputs["input_ids"], generate_inputs["attention_mask"]
|
|
2562
|
+
prompt_length = prompt_ids.size(1)
|
|
2563
|
+
completion_ids = prompt_completion_ids[:, prompt_length:]
|
|
2564
|
+
|
|
2565
|
+
# Mask everything after the first EOS token
|
|
2566
|
+
is_eos = completion_ids == self.eos_token_id
|
|
2567
|
+
eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device)
|
|
2568
|
+
eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)]
|
|
2569
|
+
sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1)
|
|
2570
|
+
completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int()
|
|
2571
|
+
prompt_ids = [p[m].tolist() for p, m in zip(prompt_ids, prompt_mask.bool())]
|
|
2572
|
+
completion_ids = [c[m].tolist() for c, m in zip(completion_ids, completion_mask.bool())]
|
|
2573
|
+
logprobs = None # not used in this case
|
|
2574
|
+
|
|
2575
|
+
return prompt_ids, completion_ids, logprobs, forward_kwargs
|
|
2576
|
+
|
|
2577
|
+
def _generate(self, prompts: list[str], images: Optional[list]):
|
|
2578
|
+
device = self.accelerator.device
|
|
2579
|
+
mode = "train" if self.model.training else "eval"
|
|
2580
|
+
|
|
2581
|
+
prompt_ids, completion_ids, logprobs, forward_kwargs = self._generate_single_turn(prompts, images)
|
|
2582
|
+
|
|
2583
|
+
# Get completion length per sequence, used for logging
|
|
2584
|
+
prompt_lengths = torch.tensor([len(ids) for ids in prompt_ids], device=device)
|
|
2585
|
+
completion_lengths = torch.tensor([len(ids) for ids in completion_ids], device=device)
|
|
2586
|
+
agg_prompt_lengths = self.accelerator.gather(prompt_lengths)
|
|
2587
|
+
agg_completion_lengths = self.accelerator.gather(completion_lengths)
|
|
2588
|
+
total_prompt_tokens = agg_prompt_lengths.sum()
|
|
2589
|
+
total_completion_tokens = agg_completion_lengths.sum() # = num_items_in_batch, required for the DAPO loss
|
|
2590
|
+
|
|
2591
|
+
# Log the metrics
|
|
2592
|
+
if mode == "train":
|
|
2593
|
+
self.state.num_input_tokens_seen += (total_prompt_tokens + total_completion_tokens).item()
|
|
2594
|
+
self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen]
|
|
2595
|
+
|
|
2596
|
+
# Log completion lengths, mean, min, max
|
|
2597
|
+
self._metrics[mode]["completions/mean_length"].append(agg_completion_lengths.float().mean().item())
|
|
2598
|
+
self._metrics[mode]["completions/min_length"].append(agg_completion_lengths.float().min().item())
|
|
2599
|
+
self._metrics[mode]["completions/max_length"].append(agg_completion_lengths.float().max().item())
|
|
2600
|
+
|
|
2601
|
+
# Identify sequences that terminated with EOS and log their lengths
|
|
2602
|
+
eos_and_pad = [self.eos_token_id, self.pad_token_id]
|
|
2603
|
+
is_truncated = torch.tensor([ids[-1] not in eos_and_pad for ids in completion_ids], device=device)
|
|
2604
|
+
agg_is_truncated = self.accelerator.gather(is_truncated)
|
|
2605
|
+
self._metrics[mode]["completions/clipped_ratio"].append(agg_is_truncated.float().mean().item())
|
|
2606
|
+
term_completion_lengths = agg_completion_lengths[~agg_is_truncated]
|
|
2607
|
+
if len(term_completion_lengths) == 0: # edge case where no terminated sequences are found
|
|
2608
|
+
term_completion_lengths = torch.zeros(1, device=device)
|
|
2609
|
+
self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item())
|
|
2610
|
+
self._metrics[mode]["completions/min_terminated_length"].append(term_completion_lengths.float().min().item())
|
|
2611
|
+
self._metrics[mode]["completions/max_terminated_length"].append(term_completion_lengths.float().max().item())
|
|
2612
|
+
|
|
2613
|
+
return prompt_ids, completion_ids, total_completion_tokens, logprobs, forward_kwargs
|
|
2614
|
+
|
|
2615
|
+
def _generate_and_score_completions(
|
|
2616
|
+
self, inputs: list[dict[str, Union[torch.Tensor, Any]]]
|
|
2617
|
+
) -> dict[str, Union[torch.Tensor, Any]]:
|
|
2618
|
+
device = self.accelerator.device
|
|
2619
|
+
mode = "train" if self.model.training else "eval"
|
|
2620
|
+
|
|
2621
|
+
prompts = [x["prompt"] for x in inputs]
|
|
2622
|
+
|
|
2623
|
+
if "images" in inputs[0]:
|
|
2624
|
+
images = [example.get("images") for example in inputs]
|
|
2625
|
+
elif "image" in inputs[0]:
|
|
2626
|
+
images = [[example.get("image")] if example.get("image") is not None else None for example in inputs]
|
|
2627
|
+
else:
|
|
2628
|
+
images = None
|
|
2629
|
+
# Transformers requires at least one image in the batch, otherwise it throws an error
|
|
2630
|
+
if images is not None and all(img_list == [] for img_list in images):
|
|
2631
|
+
images = None
|
|
2632
|
+
|
|
2633
|
+
(
|
|
2634
|
+
prompt_ids_list,
|
|
2635
|
+
completion_ids_list,
|
|
2636
|
+
num_items_in_batch,
|
|
2637
|
+
sampling_per_token_logps_list,
|
|
2638
|
+
forward_kwargs,
|
|
2639
|
+
) = self._generate(prompts, images)
|
|
2640
|
+
|
|
2641
|
+
# Convert lists of token IDs to padded tensors
|
|
2642
|
+
prompt_ids = [torch.tensor(ids, device=device) for ids in prompt_ids_list]
|
|
2643
|
+
prompt_mask = [torch.ones_like(ids, dtype=torch.long) for ids in prompt_ids]
|
|
2644
|
+
prompt_ids = pad(prompt_ids, padding_value=self.pad_token_id, padding_side="left")
|
|
2645
|
+
prompt_mask = pad(prompt_mask, padding_value=0, padding_side="left")
|
|
2646
|
+
completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids_list]
|
|
2647
|
+
completion_mask = [torch.ones_like(ids, dtype=torch.long) for ids in completion_ids]
|
|
2648
|
+
completion_ids = pad(completion_ids, padding_value=self.pad_token_id, padding_side="right")
|
|
2649
|
+
completion_mask = pad(completion_mask, padding_value=0, padding_side="right")
|
|
2650
|
+
if sampling_per_token_logps_list is not None:
|
|
2651
|
+
sampling_per_token_logps = [torch.tensor(logps, device=device) for logps in sampling_per_token_logps_list]
|
|
2652
|
+
sampling_per_token_logps = pad(sampling_per_token_logps, padding_value=0.0, padding_side="right")
|
|
2653
|
+
else:
|
|
2654
|
+
sampling_per_token_logps = None
|
|
2655
|
+
|
|
2656
|
+
# If mask_truncated_completions is enabled, zero out truncated completions in completion_mask
|
|
2657
|
+
if self.mask_truncated_completions:
|
|
2658
|
+
eos_and_pad = [self.eos_token_id, self.pad_token_id]
|
|
2659
|
+
is_truncated = torch.tensor([ids[-1] not in eos_and_pad for ids in completion_ids_list], device=device)
|
|
2660
|
+
completion_mask = completion_mask * (~is_truncated).unsqueeze(1).int()
|
|
2661
|
+
|
|
2662
|
+
# Concatenate prompt_mask with completion_mask for logit computation
|
|
2663
|
+
prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1) # (B, P+C)
|
|
2664
|
+
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) # (B, P+C)
|
|
2665
|
+
# If token_type_ids are used, extend them with zeros for the completion part
|
|
2666
|
+
if "token_type_ids" in forward_kwargs:
|
|
2667
|
+
token_type_ids = forward_kwargs["token_type_ids"]
|
|
2668
|
+
forward_kwargs["token_type_ids"] = torch.cat(
|
|
2669
|
+
[token_type_ids, token_type_ids.new_zeros(completion_ids.shape)], dim=1
|
|
2670
|
+
)
|
|
2671
|
+
|
|
2672
|
+
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
|
|
2673
|
+
|
|
2674
|
+
batch_size = self.args.per_device_train_batch_size if mode == "train" else self.args.per_device_eval_batch_size
|
|
2675
|
+
try:
|
|
2676
|
+
# TRL 0.23.1 and below path
|
|
2677
|
+
if not has_images:
|
|
2678
|
+
# Left pad prompt before calculation old and ref hidden states
|
|
2679
|
+
prompt_completion_ids = left_pack_padding(prompt_completion_ids, self.processing_class.pad_token_id)
|
|
2680
|
+
self.model.for_training()
|
|
2681
|
+
except:
|
|
2682
|
+
# TRL 0.24.0 and below path
|
|
2683
|
+
if images is None:
|
|
2684
|
+
# Left pad prompt before calculation old and ref hidden states
|
|
2685
|
+
prompt_completion_ids = left_pack_padding(prompt_completion_ids, self.processing_class.pad_token_id)
|
|
2686
|
+
self.model.for_training()
|
|
2687
|
+
|
|
2688
|
+
num_images = [len(img_list) for img_list in images] if images is not None else None
|
|
2689
|
+
|
|
2690
|
+
with torch.no_grad():
|
|
2691
|
+
# If the generation and optimization steps are misaligned—i.e., if generation does not occur at the end of
|
|
2692
|
+
# a full optimizer step (when gradient_accumulation_steps is not a multiple of generate_every)—then the
|
|
2693
|
+
# samples may come from an earlier version of the model. In that case, we need to track old_per_token_logps
|
|
2694
|
+
# for importance sampling. If the steps are aligned, importance sampling isn't necessary and we set
|
|
2695
|
+
# old_per_token_logps to None.
|
|
2696
|
+
# When using vLLM, we always compute old_per_token_logps for importance sampling, it was shown that the
|
|
2697
|
+
# distribution mismatch between vLLM and the training model can be large and harm the training.
|
|
2698
|
+
generate_every = self.args.steps_per_generation * self.num_iterations # generation frequency
|
|
2699
|
+
|
|
2700
|
+
if self.args.gradient_accumulation_steps % generate_every != 0 or (
|
|
2701
|
+
self.use_vllm
|
|
2702
|
+
):
|
|
2703
|
+
old_per_token_logps, _ = self._get_per_token_logps_and_entropies(
|
|
2704
|
+
self.model,
|
|
2705
|
+
prompt_completion_ids,
|
|
2706
|
+
attention_mask,
|
|
2707
|
+
logits_to_keep,
|
|
2708
|
+
batch_size,
|
|
2709
|
+
num_images=num_images,
|
|
2710
|
+
**forward_kwargs, # may contain pixel_values, image_grid_thw, pixel_attention_mask and image_sizes
|
|
2711
|
+
)
|
|
2712
|
+
else:
|
|
2713
|
+
old_per_token_logps = None
|
|
2714
|
+
|
|
2715
|
+
# Compute the importance sampling ratio when using vLLM, to correct for potential distribution mismatch
|
|
2716
|
+
if self.use_vllm and self.vllm_importance_sampling_correction:
|
|
2717
|
+
importance_sampling_ratio = torch.exp(old_per_token_logps - sampling_per_token_logps)
|
|
2718
|
+
importance_sampling_ratio = torch.clamp(
|
|
2719
|
+
importance_sampling_ratio, max=self.vllm_importance_sampling_cap
|
|
2720
|
+
)
|
|
2721
|
+
|
|
2722
|
+
# Compute the per-token log probabilities for the reference model
|
|
2723
|
+
if self.beta != 0.0:
|
|
2724
|
+
if self.ref_model is not None:
|
|
2725
|
+
ref_per_token_logps, _ = self._get_per_token_logps_and_entropies(
|
|
2726
|
+
self.ref_model,
|
|
2727
|
+
prompt_completion_ids,
|
|
2728
|
+
attention_mask,
|
|
2729
|
+
logits_to_keep,
|
|
2730
|
+
batch_size=batch_size,
|
|
2731
|
+
num_images=num_images,
|
|
2732
|
+
**forward_kwargs, # may contain pixel_values, image_grid_thw, pixel_attention_mask and image_sizes
|
|
2733
|
+
)
|
|
2734
|
+
else:
|
|
2735
|
+
with self.accelerator.unwrap_model(self.model).disable_adapter():
|
|
2736
|
+
ref_per_token_logps, _ = self._get_per_token_logps_and_entropies(
|
|
2737
|
+
self.model,
|
|
2738
|
+
prompt_completion_ids,
|
|
2739
|
+
attention_mask,
|
|
2740
|
+
logits_to_keep,
|
|
2741
|
+
batch_size=batch_size,
|
|
2742
|
+
num_images=num_images,
|
|
2743
|
+
**forward_kwargs, # may contain pixel_values, image_grid_thw, pixel_attention_mask and image_sizes
|
|
2744
|
+
)
|
|
2745
|
+
else:
|
|
2746
|
+
ref_per_token_logps = None
|
|
2747
|
+
|
|
2748
|
+
# Decode
|
|
2749
|
+
prompts_text = self.processing_class.batch_decode(prompt_ids, skip_special_tokens=True)
|
|
2750
|
+
completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
|
|
2751
|
+
if is_conversational(inputs[0]):
|
|
2752
|
+
completions = []
|
|
2753
|
+
for prompt, completion in zip(prompts, completions_text):
|
|
2754
|
+
bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else ""
|
|
2755
|
+
completions.append([{"role": "assistant", "content": bootstrap + completion}])
|
|
2756
|
+
else:
|
|
2757
|
+
completions = completions_text
|
|
2758
|
+
|
|
2759
|
+
# Calculate rewards for each reward function. rewards_per_func aggregates rewards across all processes. This is
|
|
2760
|
+
# important because rewards will be normalized per group, and completions are distributed. We will later slice
|
|
2761
|
+
# rewards_per_func to extract each process's subset.
|
|
2762
|
+
rewards_per_func = self._calculate_rewards(inputs, prompts, completions, completion_ids_list)
|
|
2763
|
+
|
|
2764
|
+
# Apply weights to each reward function's output and sum
|
|
2765
|
+
rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1)
|
|
2766
|
+
|
|
2767
|
+
# Compute grouped-wise rewards
|
|
2768
|
+
mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1)
|
|
2769
|
+
|
|
2770
|
+
# Normalize the rewards to compute the advantages
|
|
2771
|
+
mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
|
|
2772
|
+
advantages = rewards - mean_grouped_rewards
|
|
2773
|
+
|
|
2774
|
+
if self.scale_rewards in ["group", "none"]:
|
|
2775
|
+
# If self.scale_rewards = "none", we'll still log group level std
|
|
2776
|
+
std_rewards = rewards.view(-1, self.num_generations).std(dim=1)
|
|
2777
|
+
std_rewards = std_rewards.repeat_interleave(self.num_generations, dim=0)
|
|
2778
|
+
elif self.scale_rewards == "batch":
|
|
2779
|
+
# Compute global std
|
|
2780
|
+
std_rewards = rewards.std().expand_as(rewards)
|
|
2781
|
+
else:
|
|
2782
|
+
raise ValueError(
|
|
2783
|
+
f"Invalid value for scale_rewards: {self.scale_rewards}. Must be one of 'batch', 'group', or 'none'."
|
|
2784
|
+
)
|
|
2785
|
+
|
|
2786
|
+
is_std_zero = torch.isclose(std_rewards, torch.zeros_like(std_rewards))
|
|
2787
|
+
if self.scale_rewards != "none":
|
|
2788
|
+
advantages = advantages / (std_rewards + 1e-4)
|
|
2789
|
+
|
|
2790
|
+
# Slice to keep only the local part of the data
|
|
2791
|
+
process_slice = slice(
|
|
2792
|
+
self.accelerator.process_index * len(prompts),
|
|
2793
|
+
(self.accelerator.process_index + 1) * len(prompts),
|
|
2794
|
+
)
|
|
2795
|
+
all_process_advantages = advantages.clone() # keep the aggregated advantages for logging
|
|
2796
|
+
advantages = advantages[process_slice]
|
|
2797
|
+
|
|
2798
|
+
# Calculate mean reward per function, but only for samples where the function was applied (non-NaN values)
|
|
2799
|
+
for i, reward_func_name in enumerate(self.reward_func_names):
|
|
2800
|
+
mean_rewards = torch.nanmean(rewards_per_func[:, i]).item()
|
|
2801
|
+
self._metrics[mode][f"rewards/{reward_func_name}/mean"].append(mean_rewards)
|
|
2802
|
+
std_func_rewards = nanstd(rewards_per_func[:, i]).item()
|
|
2803
|
+
self._metrics[mode][f"rewards/{reward_func_name}/std"].append(std_func_rewards)
|
|
2804
|
+
self._metrics[mode]["reward"].append(mean_grouped_rewards.mean().item())
|
|
2805
|
+
self._metrics[mode]["reward_std"].append(std_rewards.mean().item())
|
|
2806
|
+
self._metrics[mode]["frac_reward_zero_std"].append(is_std_zero.float().mean().item())
|
|
2807
|
+
|
|
2808
|
+
# Log prompt and completion texts
|
|
2809
|
+
self._logs["prompt"].extend(gather_object(prompts_text))
|
|
2810
|
+
self._logs["completion"].extend(gather_object(completions_text))
|
|
2811
|
+
for i, name in enumerate(self.reward_func_names):
|
|
2812
|
+
self._logs["rewards"][name].extend(rewards_per_func[:, i].tolist())
|
|
2813
|
+
self._logs["advantages"].extend(all_process_advantages.tolist())
|
|
2814
|
+
|
|
2815
|
+
if images is not None:
|
|
2816
|
+
self._logs["images"].extend(gather_object(images))
|
|
2817
|
+
|
|
2818
|
+
if self.use_vllm and self.vllm_importance_sampling_correction:
|
|
2819
|
+
delta = torch.abs(old_per_token_logps - sampling_per_token_logps)
|
|
2820
|
+
delta = delta[completion_mask.bool()]
|
|
2821
|
+
mean_delta = torch.mean(delta) if delta.numel() > 0 else torch.tensor(0.0, device=device)
|
|
2822
|
+
max_delta = torch.max(delta) if delta.numel() > 0 else torch.tensor(0.0, device=device)
|
|
2823
|
+
self._metrics[mode]["sampling/sampling_logp_difference/mean"].append(
|
|
2824
|
+
self.accelerator.gather(mean_delta).mean().item()
|
|
2825
|
+
)
|
|
2826
|
+
self._metrics[mode]["sampling/sampling_logp_difference/max"].append(
|
|
2827
|
+
self.accelerator.gather(max_delta).max().item()
|
|
2828
|
+
)
|
|
2829
|
+
|
|
2830
|
+
flat_is_ratio = importance_sampling_ratio[completion_mask.bool()]
|
|
2831
|
+
min_importance_sampling_ratio = (
|
|
2832
|
+
torch.min(flat_is_ratio) if flat_is_ratio.numel() > 0 else torch.tensor(0.0, device=device)
|
|
2833
|
+
)
|
|
2834
|
+
mean_importance_sampling_ratio = (
|
|
2835
|
+
torch.mean(flat_is_ratio) if flat_is_ratio.numel() > 0 else torch.tensor(0.0, device=device)
|
|
2836
|
+
)
|
|
2837
|
+
max_importance_sampling_ratio = (
|
|
2838
|
+
torch.max(flat_is_ratio) if flat_is_ratio.numel() > 0 else torch.tensor(0.0, device=device)
|
|
2839
|
+
)
|
|
2840
|
+
self._metrics[mode]["sampling/importance_sampling_ratio/min"].append(
|
|
2841
|
+
nanmin(self.accelerator.gather(min_importance_sampling_ratio)).item()
|
|
2842
|
+
)
|
|
2843
|
+
self._metrics[mode]["sampling/importance_sampling_ratio/mean"].append(
|
|
2844
|
+
self.accelerator.gather(mean_importance_sampling_ratio).nanmean().item()
|
|
2845
|
+
)
|
|
2846
|
+
self._metrics[mode]["sampling/importance_sampling_ratio/max"].append(
|
|
2847
|
+
nanmax(self.accelerator.gather(max_importance_sampling_ratio)).item()
|
|
2848
|
+
)
|
|
2849
|
+
|
|
2850
|
+
output = {
|
|
2851
|
+
"prompt_ids": prompt_ids,
|
|
2852
|
+
"prompt_mask": prompt_mask,
|
|
2853
|
+
"completion_ids": completion_ids,
|
|
2854
|
+
"completion_mask": completion_mask,
|
|
2855
|
+
"advantages": advantages,
|
|
2856
|
+
"num_items_in_batch": num_items_in_batch,
|
|
2857
|
+
}
|
|
2858
|
+
if old_per_token_logps is not None:
|
|
2859
|
+
output["old_per_token_logps"] = old_per_token_logps
|
|
2860
|
+
if self.use_vllm and self.vllm_importance_sampling_correction:
|
|
2861
|
+
output["importance_sampling_ratio"] = importance_sampling_ratio
|
|
2862
|
+
if ref_per_token_logps is not None:
|
|
2863
|
+
output["ref_per_token_logps"] = ref_per_token_logps
|
|
2864
|
+
if "pixel_values" in forward_kwargs:
|
|
2865
|
+
output["pixel_values"] = forward_kwargs["pixel_values"]
|
|
2866
|
+
if "image_grid_thw" in forward_kwargs:
|
|
2867
|
+
output["image_grid_thw"] = forward_kwargs["image_grid_thw"]
|
|
2868
|
+
if "pixel_attention_mask" in forward_kwargs:
|
|
2869
|
+
output["pixel_attention_mask"] = forward_kwargs["pixel_attention_mask"]
|
|
2870
|
+
if "image_sizes" in forward_kwargs:
|
|
2871
|
+
output["image_sizes"] = forward_kwargs["image_sizes"]
|
|
2872
|
+
if "token_type_ids" in forward_kwargs:
|
|
2873
|
+
output["token_type_ids"] = forward_kwargs["token_type_ids"]
|
|
2874
|
+
if images is not None:
|
|
2875
|
+
output["num_images"] = num_images
|
|
2876
|
+
return output
|
|
2877
|
+
|
|
2878
|
+
def compute_liger_loss(self, unwrapped_model, inputs):
|
|
2879
|
+
# Compute the per-token log probabilities for the model
|
|
2880
|
+
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
|
|
2881
|
+
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
|
|
2882
|
+
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
|
|
2883
|
+
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
|
|
2884
|
+
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
|
|
2885
|
+
|
|
2886
|
+
# Get the last hidden state of the model
|
|
2887
|
+
last_hidden_state = self._get_last_hidden_state(
|
|
2888
|
+
unwrapped_model,
|
|
2889
|
+
input_ids,
|
|
2890
|
+
attention_mask,
|
|
2891
|
+
logits_to_keep,
|
|
2892
|
+
inputs.get("pixel_values"),
|
|
2893
|
+
inputs.get("image_grid_thw"),
|
|
2894
|
+
inputs.get("pixel_attention_mask"),
|
|
2895
|
+
inputs.get("image_sizes"),
|
|
2896
|
+
)
|
|
2897
|
+
|
|
2898
|
+
# compute loss and metrics using liger grpo loss
|
|
2899
|
+
loss, metrics = self.liger_grpo_loss(
|
|
2900
|
+
_input=last_hidden_state,
|
|
2901
|
+
lin_weight=unwrapped_model.lm_head.weight,
|
|
2902
|
+
selected_token_ids=completion_ids,
|
|
2903
|
+
attention_mask=completion_mask,
|
|
2904
|
+
advantages=inputs["advantages"],
|
|
2905
|
+
bias=unwrapped_model.lm_head.bias,
|
|
2906
|
+
old_per_token_logps=inputs.get("old_per_token_logps"),
|
|
2907
|
+
ref_per_token_logps=inputs.get("ref_per_token_logps"),
|
|
2908
|
+
)
|
|
2909
|
+
# Extract metrics from the liger_grpo_loss output
|
|
2910
|
+
# KL divergence is the first metric when beta is non-zero
|
|
2911
|
+
mean_kl = metrics[0] if self.beta != 0.0 else None
|
|
2912
|
+
clip_ratio = metrics[-1]
|
|
2913
|
+
|
|
2914
|
+
mode = "train" if self.model.training else "eval"
|
|
2915
|
+
if self.beta != 0.0:
|
|
2916
|
+
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).mean().item())
|
|
2917
|
+
self._metrics[mode]["clip_ratio"].append(self.accelerator.gather(clip_ratio).mean().item())
|
|
2918
|
+
return loss / self.current_gradient_accumulation_steps
|
|
2919
|
+
|
|
2920
|
+
def compute_loss(
|
|
2921
|
+
self, model, inputs, return_outputs = False, num_items_in_batch = None
|
|
2922
|
+
):
|
|
2923
|
+
if return_outputs:
|
|
2924
|
+
raise ValueError("The GRPOTrainer does not support returning outputs")
|
|
2925
|
+
# Compute the per-token log probabilities for the model
|
|
2926
|
+
|
|
2927
|
+
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
|
|
2928
|
+
completion_ids, completion_mask = (
|
|
2929
|
+
inputs["completion_ids"],
|
|
2930
|
+
inputs["completion_mask"],
|
|
2931
|
+
)
|
|
2932
|
+
pixel_values, image_grid_thw = (
|
|
2933
|
+
inputs.get("pixel_values", None),
|
|
2934
|
+
inputs.get("image_grid_thw", None),
|
|
2935
|
+
)
|
|
2936
|
+
pixel_attention_mask, image_sizes = (
|
|
2937
|
+
inputs.get("pixel_attention_mask", None),
|
|
2938
|
+
inputs.get("image_sizes", None),
|
|
2939
|
+
)
|
|
2940
|
+
num_items_in_batch = inputs.get("num_items_in_batch", None)
|
|
2941
|
+
sampling_per_token_logps = inputs.get("sampling_per_token_logps", None)
|
|
2942
|
+
current_gradient_accumulation_steps = self.current_gradient_accumulation_steps
|
|
2943
|
+
num_processes = self.accelerator.num_processes
|
|
2944
|
+
|
|
2945
|
+
input_ids = torch.cat([prompt_ids, completion_ids], dim = 1)
|
|
2946
|
+
bsz, qlen = input_ids.shape
|
|
2947
|
+
attention_mask = torch.cat([prompt_mask, completion_mask], dim = 1)
|
|
2948
|
+
# attention_mask = None
|
|
2949
|
+
logits_to_keep = completion_ids.size(
|
|
2950
|
+
1
|
|
2951
|
+
) # we only need to compute the logits for the completion tokens
|
|
2952
|
+
_input_ids = input_ids
|
|
2953
|
+
_logits_to_keep = logits_to_keep
|
|
2954
|
+
|
|
2955
|
+
get_logps_func = (
|
|
2956
|
+
lambda model,
|
|
2957
|
+
input_ids,
|
|
2958
|
+
attention_mask,
|
|
2959
|
+
logits_to_keep,
|
|
2960
|
+
batch_size = None,
|
|
2961
|
+
compute_entropy = False,
|
|
2962
|
+
compute_efficient = False: self._get_per_token_logps(
|
|
2963
|
+
model, input_ids, attention_mask, logits_to_keep, compute_efficient
|
|
2964
|
+
)
|
|
2965
|
+
if hasattr(self, "_get_per_token_logps")
|
|
2966
|
+
else self._get_per_token_logps_and_entropies(
|
|
2967
|
+
model,
|
|
2968
|
+
input_ids,
|
|
2969
|
+
attention_mask,
|
|
2970
|
+
logits_to_keep,
|
|
2971
|
+
batch_size,
|
|
2972
|
+
compute_entropy,
|
|
2973
|
+
compute_efficient,
|
|
2974
|
+
)[0]
|
|
2975
|
+
) # logps
|
|
2976
|
+
|
|
2977
|
+
per_token_logps = get_logps_func(
|
|
2978
|
+
model, input_ids, attention_mask, logits_to_keep, compute_efficient = True
|
|
2979
|
+
)
|
|
2980
|
+
# Compute the KL divergence between the model and the reference model
|
|
2981
|
+
# _prepare_inputs doesn't return reference log probs anymore. We need to calculate it ourselves.
|
|
2982
|
+
# https://github.com/huggingface/trl/blob/05bc43e960396581e458195b8388efe6b82cae1f/trl/trainer/grpo_trainer.py#L1328
|
|
2983
|
+
# if self.beta != 0.0:
|
|
2984
|
+
# with torch.inference_mode(), model.disable_adapter():
|
|
2985
|
+
# ref_per_token_logps = per_token_logps = get_logps_func(model, input_ids, attention_mask, logits_to_keep)
|
|
2986
|
+
# else:
|
|
2987
|
+
# ref_per_token_logps = None
|
|
2988
|
+
ref_hidden_states = inputs.get("ref_per_token_logps", None)
|
|
2989
|
+
# per_token_kl = torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
|
|
2990
|
+
# x - x.detach() allows for preserving gradients from x
|
|
2991
|
+
advantages = inputs["advantages"]
|
|
2992
|
+
# per_token_loss = torch.exp(per_token_logps - per_token_logps.detach()) * advantages.unsqueeze(1)
|
|
2993
|
+
# per_token_loss = -(per_token_loss - self.beta * per_token_kl)
|
|
2994
|
+
# loss = ((per_token_loss * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean()
|
|
2995
|
+
old_hidden_states = inputs.get("old_per_token_logps", None)
|
|
2996
|
+
|
|
2997
|
+
input_ids = input_ids[:, -logits_to_keep:]
|
|
2998
|
+
|
|
2999
|
+
# Get logit softcapping and logit scale
|
|
3000
|
+
logit_softcapping = getattr(model.config, "final_logit_softcapping", 0) # Gemma
|
|
3001
|
+
if logit_softcapping is None:
|
|
3002
|
+
logit_softcapping = 0
|
|
3003
|
+
logit_scale_multiply = getattr(model.config, "logit_scale", 0) # Cohere
|
|
3004
|
+
if logit_scale_multiply is None:
|
|
3005
|
+
logit_scale_multiply = 0
|
|
3006
|
+
logit_scale_divide = getattr(model.config, "logits_scaling", 0) # Granite
|
|
3007
|
+
if logit_scale_divide is None:
|
|
3008
|
+
logit_scale_divide = 0
|
|
3009
|
+
|
|
3010
|
+
if per_token_logps is not None:
|
|
3011
|
+
if ref_hidden_states is not None:
|
|
3012
|
+
ref_hidden_states = ref_hidden_states[
|
|
3013
|
+
:, :-1, :
|
|
3014
|
+
] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
|
|
3015
|
+
if old_hidden_states is not None:
|
|
3016
|
+
old_hidden_states = old_hidden_states[
|
|
3017
|
+
:, :-1, :
|
|
3018
|
+
] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
|
|
3019
|
+
per_token_logps = per_token_logps[
|
|
3020
|
+
:, :-1, :
|
|
3021
|
+
] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
|
|
3022
|
+
|
|
3023
|
+
loss, completion_length, mean_kl, delta, flat_is_ratio = (
|
|
3024
|
+
grpo_compute_loss_slow(
|
|
3025
|
+
ref_hidden_states,
|
|
3026
|
+
per_token_logps,
|
|
3027
|
+
old_hidden_states,
|
|
3028
|
+
input_ids,
|
|
3029
|
+
completion_mask,
|
|
3030
|
+
self.beta,
|
|
3031
|
+
advantages,
|
|
3032
|
+
pixel_values = pixel_values,
|
|
3033
|
+
image_grid_thw = image_grid_thw,
|
|
3034
|
+
loss_type = self.args.loss_type,
|
|
3035
|
+
importance_sampling_level = self.importance_sampling_level,
|
|
3036
|
+
epsilon_low = self.epsilon_low,
|
|
3037
|
+
epsilon_high = self.epsilon_high,
|
|
3038
|
+
max_completion_length = self.args.max_completion_length,
|
|
3039
|
+
delta = self.args.delta,
|
|
3040
|
+
temperature = self.args.temperature,
|
|
3041
|
+
logit_softcapping = logit_softcapping,
|
|
3042
|
+
logit_scale_multiply = logit_scale_multiply,
|
|
3043
|
+
logit_scale_divide = logit_scale_divide,
|
|
3044
|
+
num_items_in_batch = num_items_in_batch,
|
|
3045
|
+
current_gradient_accumulation_steps = current_gradient_accumulation_steps,
|
|
3046
|
+
num_processes = num_processes,
|
|
3047
|
+
sampling_per_token_logps = sampling_per_token_logps,
|
|
3048
|
+
)
|
|
3049
|
+
)
|
|
3050
|
+
else:
|
|
3051
|
+
if hasattr(self.args, "loss_type"):
|
|
3052
|
+
loss, completion_length, mean_kl, delta, flat_is_ratio = (
|
|
3053
|
+
grpo_accumulated_loss(
|
|
3054
|
+
trainer = self,
|
|
3055
|
+
input_ids = _input_ids,
|
|
3056
|
+
pixel_values = pixel_values,
|
|
3057
|
+
image_grid_thw = image_grid_thw,
|
|
3058
|
+
logits_to_keep = logits_to_keep,
|
|
3059
|
+
completion_mask = completion_mask,
|
|
3060
|
+
advantages = advantages,
|
|
3061
|
+
old_hidden_states = old_hidden_states,
|
|
3062
|
+
ref_hidden_states = ref_hidden_states,
|
|
3063
|
+
n_chunks = self.args.unsloth_num_chunks,
|
|
3064
|
+
loss_type = self.args.loss_type,
|
|
3065
|
+
importance_sampling_level = self.importance_sampling_level,
|
|
3066
|
+
epsilon_low = self.epsilon_low,
|
|
3067
|
+
epsilon_high = self.epsilon_high,
|
|
3068
|
+
max_completion_length = self.args.max_completion_length,
|
|
3069
|
+
delta = self.args.delta,
|
|
3070
|
+
temperature = self.args.temperature,
|
|
3071
|
+
logit_softcapping = logit_softcapping,
|
|
3072
|
+
logit_scale_multiply = logit_scale_multiply,
|
|
3073
|
+
logit_scale_divide = logit_scale_divide,
|
|
3074
|
+
attention_mask = attention_mask,
|
|
3075
|
+
num_items_in_batch = num_items_in_batch,
|
|
3076
|
+
current_gradient_accumulation_steps = current_gradient_accumulation_steps,
|
|
3077
|
+
num_processes = num_processes,
|
|
3078
|
+
sampling_per_token_logps = sampling_per_token_logps,
|
|
3079
|
+
)
|
|
3080
|
+
)
|
|
3081
|
+
else:
|
|
3082
|
+
# to ensure backwards compatibility with trl 0.15.2 and maybe even 0.17
|
|
3083
|
+
loss, completion_length, mean_kl = grpo_accumulated_loss(
|
|
3084
|
+
trainer = self,
|
|
3085
|
+
input_ids = _input_ids,
|
|
3086
|
+
logits_to_keep = logits_to_keep,
|
|
3087
|
+
completion_mask = completion_mask,
|
|
3088
|
+
advantages = advantages,
|
|
3089
|
+
old_hidden_states = old_hidden_states,
|
|
3090
|
+
ref_hidden_states = ref_hidden_states,
|
|
3091
|
+
n_chunks = self.args.unsloth_num_chunks,
|
|
3092
|
+
temperature = self.args.temperature,
|
|
3093
|
+
logit_softcapping = logit_softcapping,
|
|
3094
|
+
logit_scale_multiply = logit_scale_multiply,
|
|
3095
|
+
logit_scale_divide = logit_scale_divide,
|
|
3096
|
+
attention_mask = attention_mask,
|
|
3097
|
+
)
|
|
3098
|
+
|
|
3099
|
+
if "train" in self._metrics:
|
|
3100
|
+
mode = "eval" if self.control.should_evaluate else "train"
|
|
3101
|
+
self._metrics[mode]["completion_length"].append(completion_length.item())
|
|
3102
|
+
self._metrics[mode]["kl"].append(mean_kl.item())
|
|
3103
|
+
else:
|
|
3104
|
+
self._metrics["completion_length"].append(completion_length.item())
|
|
3105
|
+
self._metrics["kl"].append(mean_kl.item())
|
|
3106
|
+
|
|
3107
|
+
if self.use_vllm and delta is not None:
|
|
3108
|
+
mean_delta = (
|
|
3109
|
+
torch.mean(delta)
|
|
3110
|
+
if delta.numel() > 0
|
|
3111
|
+
else torch.tensor(0.0, device = self.model.device)
|
|
3112
|
+
)
|
|
3113
|
+
max_delta = (
|
|
3114
|
+
torch.max(delta)
|
|
3115
|
+
if delta.numel() > 0
|
|
3116
|
+
else torch.tensor(0.0, device = self.model.device)
|
|
3117
|
+
)
|
|
3118
|
+
self._metrics[mode]["sampling/sampling_logp_difference/mean"].append(
|
|
3119
|
+
self.accelerator.gather(mean_delta).mean().item()
|
|
3120
|
+
)
|
|
3121
|
+
self._metrics[mode]["sampling/sampling_logp_difference/max"].append(
|
|
3122
|
+
self.accelerator.gather(max_delta).max().item()
|
|
3123
|
+
)
|
|
3124
|
+
|
|
3125
|
+
min_importance_sampling_ratio = (
|
|
3126
|
+
torch.min(flat_is_ratio)
|
|
3127
|
+
if flat_is_ratio.numel() > 0
|
|
3128
|
+
else torch.tensor(0.0, device = self.model.device)
|
|
3129
|
+
)
|
|
3130
|
+
mean_importance_sampling_ratio = (
|
|
3131
|
+
torch.mean(flat_is_ratio)
|
|
3132
|
+
if flat_is_ratio.numel() > 0
|
|
3133
|
+
else torch.tensor(0.0, device = self.model.device)
|
|
3134
|
+
)
|
|
3135
|
+
max_importance_sampling_ratio = (
|
|
3136
|
+
torch.max(flat_is_ratio)
|
|
3137
|
+
if flat_is_ratio.numel() > 0
|
|
3138
|
+
else torch.tensor(0.0, device = self.model.device)
|
|
3139
|
+
)
|
|
3140
|
+
self._metrics[mode]["sampling/importance_sampling_ratio/min"].append(
|
|
3141
|
+
nanmin(self.accelerator.gather(min_importance_sampling_ratio)).item()
|
|
3142
|
+
)
|
|
3143
|
+
self._metrics[mode]["sampling/importance_sampling_ratio/mean"].append(
|
|
3144
|
+
self.accelerator.gather(mean_importance_sampling_ratio).nanmean().item()
|
|
3145
|
+
)
|
|
3146
|
+
self._metrics[mode]["sampling/importance_sampling_ratio/max"].append(
|
|
3147
|
+
nanmax(self.accelerator.gather(max_importance_sampling_ratio)).item()
|
|
3148
|
+
)
|
|
3149
|
+
|
|
3150
|
+
return loss
|
|
3151
|
+
|
|
3152
|
+
def _compute_loss(self, model, inputs):
|
|
3153
|
+
# Compute the per-token log probabilities for the model
|
|
3154
|
+
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
|
|
3155
|
+
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
|
|
3156
|
+
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
|
|
3157
|
+
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
|
|
3158
|
+
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
|
|
3159
|
+
|
|
3160
|
+
# Compute the per_token_logps and the entropy at each position in the completion
|
|
3161
|
+
per_token_logps, entropies = self._get_per_token_logps_and_entropies(
|
|
3162
|
+
model,
|
|
3163
|
+
input_ids,
|
|
3164
|
+
attention_mask,
|
|
3165
|
+
logits_to_keep,
|
|
3166
|
+
compute_entropy=True,
|
|
3167
|
+
pixel_values=inputs.get("pixel_values"),
|
|
3168
|
+
image_grid_thw=inputs.get("image_grid_thw"),
|
|
3169
|
+
num_images=inputs.get("num_images"),
|
|
3170
|
+
pixel_attention_mask=inputs.get("pixel_attention_mask"),
|
|
3171
|
+
image_sizes=inputs.get("image_sizes"),
|
|
3172
|
+
token_type_ids=inputs.get("token_type_ids"),
|
|
3173
|
+
)
|
|
3174
|
+
|
|
3175
|
+
if self.top_entropy_quantile < 1.0:
|
|
3176
|
+
entropy_mask = self.get_high_entropy_mask(entropies, completion_mask, 1 - self.top_entropy_quantile)
|
|
3177
|
+
else:
|
|
3178
|
+
entropy_mask = None
|
|
3179
|
+
|
|
3180
|
+
# Compute the KL divergence between the model and the reference model
|
|
3181
|
+
if self.beta != 0.0:
|
|
3182
|
+
ref_per_token_logps = inputs["ref_per_token_logps"]
|
|
3183
|
+
per_token_kl = (
|
|
3184
|
+
torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
|
|
3185
|
+
)
|
|
3186
|
+
|
|
3187
|
+
# Compute the loss
|
|
3188
|
+
advantages = inputs["advantages"]
|
|
3189
|
+
# When num_iterations == 1 and steps_per_generation <= gradient_accumulation_steps,
|
|
3190
|
+
# old_per_token_logps == per_token_logps. In this case we can skip its computation
|
|
3191
|
+
# (see _generate_and_score_completions) and instead use per_token_logps.detach().
|
|
3192
|
+
# The exception is when using vLLM, where we always compute old_per_token_logps
|
|
3193
|
+
# for importance sampling
|
|
3194
|
+
old_per_token_logps = inputs.get("old_per_token_logps")
|
|
3195
|
+
old_per_token_logps = per_token_logps.detach() if old_per_token_logps is None else old_per_token_logps
|
|
3196
|
+
|
|
3197
|
+
log_ratio = per_token_logps - old_per_token_logps
|
|
3198
|
+
if self.importance_sampling_level == "token":
|
|
3199
|
+
log_importance_weights = log_ratio
|
|
3200
|
+
elif self.importance_sampling_level == "sequence":
|
|
3201
|
+
log_importance_weights = (log_ratio * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)
|
|
3202
|
+
log_importance_weights = log_importance_weights.unsqueeze(-1)
|
|
3203
|
+
else:
|
|
3204
|
+
raise ValueError(
|
|
3205
|
+
f"Unknown importance sampling level: {self.importance_sampling_level}. Possible values are 'token' "
|
|
3206
|
+
"and 'sequence'."
|
|
3207
|
+
)
|
|
3208
|
+
# From here, log_importance_weights (and all subsequent tensors, coef_1, coef_2, etc.) shape depends on
|
|
3209
|
+
# importance_sampling_level: "token" level: (B, T); "sequence" level: (B, 1)
|
|
3210
|
+
|
|
3211
|
+
coef_1 = torch.exp(log_importance_weights)
|
|
3212
|
+
coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high)
|
|
3213
|
+
|
|
3214
|
+
# Two-sided clipping
|
|
3215
|
+
if self.args.delta is not None:
|
|
3216
|
+
coef_1 = torch.clamp(coef_1, max=self.args.delta)
|
|
3217
|
+
|
|
3218
|
+
per_token_loss1 = coef_1 * advantages.unsqueeze(1)
|
|
3219
|
+
per_token_loss2 = coef_2 * advantages.unsqueeze(1)
|
|
3220
|
+
per_token_loss = -torch.min(per_token_loss1, per_token_loss2)
|
|
3221
|
+
if entropy_mask is not None:
|
|
3222
|
+
per_token_loss = per_token_loss * entropy_mask
|
|
3223
|
+
|
|
3224
|
+
if self.use_vllm and self.vllm_importance_sampling_correction:
|
|
3225
|
+
per_token_loss = per_token_loss * inputs["importance_sampling_ratio"]
|
|
3226
|
+
|
|
3227
|
+
if self.beta != 0.0:
|
|
3228
|
+
per_token_loss = per_token_loss + self.beta * per_token_kl
|
|
3229
|
+
|
|
3230
|
+
if self.loss_type == "grpo":
|
|
3231
|
+
loss = ((per_token_loss * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)).mean()
|
|
3232
|
+
loss = loss / self.current_gradient_accumulation_steps
|
|
3233
|
+
elif self.loss_type == "bnpo":
|
|
3234
|
+
loss = (per_token_loss * completion_mask).sum() / completion_mask.sum().clamp(min=1.0)
|
|
3235
|
+
loss = loss / self.current_gradient_accumulation_steps
|
|
3236
|
+
elif self.loss_type == "dr_grpo":
|
|
3237
|
+
loss = (per_token_loss * completion_mask).sum() / (per_token_loss.size(0) * self.max_completion_length)
|
|
3238
|
+
loss = loss / self.current_gradient_accumulation_steps
|
|
3239
|
+
elif self.loss_type == "dapo":
|
|
3240
|
+
normalizer = inputs["num_items_in_batch"] / self.accelerator.num_processes
|
|
3241
|
+
loss = (per_token_loss * completion_mask).sum() / normalizer
|
|
3242
|
+
else:
|
|
3243
|
+
raise ValueError(f"Unknown loss type: {self.loss_type}")
|
|
3244
|
+
|
|
3245
|
+
# Log the metrics
|
|
3246
|
+
mode = "train" if self.model.training else "eval"
|
|
3247
|
+
|
|
3248
|
+
completion_token_count = completion_mask.sum().clamp(min=1.0)
|
|
3249
|
+
|
|
3250
|
+
def masked_batch_mean(x):
|
|
3251
|
+
if x.shape[1] == 1: # when importance_sampling_level == "sequence"
|
|
3252
|
+
return x.mean()
|
|
3253
|
+
else:
|
|
3254
|
+
return (x * completion_mask).sum() / completion_token_count
|
|
3255
|
+
|
|
3256
|
+
if self.beta != 0.0:
|
|
3257
|
+
mean_kl = masked_batch_mean(per_token_kl)
|
|
3258
|
+
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).nanmean().item())
|
|
3259
|
+
|
|
3260
|
+
mean_entropy = masked_batch_mean(entropies)
|
|
3261
|
+
self._metrics[mode]["entropy"].append(self.accelerator.gather(mean_entropy).nanmean().item())
|
|
3262
|
+
|
|
3263
|
+
# Compute the clipped probability ratios
|
|
3264
|
+
is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0)
|
|
3265
|
+
is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0)
|
|
3266
|
+
is_region_clipped = is_low_clipped | is_high_clipped
|
|
3267
|
+
|
|
3268
|
+
low_clip = masked_batch_mean(is_low_clipped.float())
|
|
3269
|
+
high_clip = masked_batch_mean(is_high_clipped.float())
|
|
3270
|
+
clip_ratio = masked_batch_mean(is_region_clipped.float())
|
|
3271
|
+
|
|
3272
|
+
gathered_low_clip = self.accelerator.gather(low_clip)
|
|
3273
|
+
self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item())
|
|
3274
|
+
self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item())
|
|
3275
|
+
gathered_high_clip = self.accelerator.gather(high_clip)
|
|
3276
|
+
self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item())
|
|
3277
|
+
self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item())
|
|
3278
|
+
gathered_clip_ratio = self.accelerator.gather(clip_ratio)
|
|
3279
|
+
self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item())
|
|
3280
|
+
return loss
|
|
3281
|
+
|
|
3282
|
+
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None):
|
|
3283
|
+
inputs = self._prepare_inputs(inputs)
|
|
3284
|
+
with torch.no_grad():
|
|
3285
|
+
with self.compute_loss_context_manager():
|
|
3286
|
+
loss = self.compute_loss(model, inputs)
|
|
3287
|
+
loss = loss.mean().detach()
|
|
3288
|
+
return loss, None, None
|
|
3289
|
+
|
|
3290
|
+
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
|
|
3291
|
+
mode = "train" if self.model.training else "eval"
|
|
3292
|
+
metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()} # average the metrics
|
|
3293
|
+
|
|
3294
|
+
# This method can be called both in training and evaluation. When called in evaluation, the keys in `logs`
|
|
3295
|
+
# start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format.
|
|
3296
|
+
if mode == "eval":
|
|
3297
|
+
metrics = {f"eval_{key}": val for key, val in metrics.items()}
|
|
3298
|
+
|
|
3299
|
+
logs = {**logs, **metrics}
|
|
3300
|
+
super().log(logs, start_time)
|
|
3301
|
+
self._metrics[mode].clear()
|
|
3302
|
+
|
|
3303
|
+
if self.accelerator.is_main_process and self.log_completions:
|
|
3304
|
+
if is_rich_available():
|
|
3305
|
+
print_prompt_completions_sample(
|
|
3306
|
+
self._logs["prompt"],
|
|
3307
|
+
self._logs["completion"],
|
|
3308
|
+
self._logs["rewards"],
|
|
3309
|
+
self._logs["advantages"],
|
|
3310
|
+
self.state.global_step,
|
|
3311
|
+
self.num_completions_to_print,
|
|
3312
|
+
)
|
|
3313
|
+
|
|
3314
|
+
if self.args.report_to and "wandb" in self.args.report_to and wandb.run is not None:
|
|
3315
|
+
import pandas as pd
|
|
3316
|
+
|
|
3317
|
+
table = {
|
|
3318
|
+
"step": [str(self.state.global_step)] * len(self._logs["prompt"]),
|
|
3319
|
+
"prompt": self._logs["prompt"],
|
|
3320
|
+
"completion": self._logs["completion"],
|
|
3321
|
+
**self._logs["rewards"],
|
|
3322
|
+
"advantage": self._logs["advantages"],
|
|
3323
|
+
}
|
|
3324
|
+
|
|
3325
|
+
if self._logs["images"]:
|
|
3326
|
+
table["images"] = []
|
|
3327
|
+
for image_list in self._logs["images"]:
|
|
3328
|
+
# Convert images to wandb Image objects for proper visualization
|
|
3329
|
+
table["images"].append([wandb.Image(image) for image in image_list])
|
|
3330
|
+
|
|
3331
|
+
df = pd.DataFrame(table)
|
|
3332
|
+
if self.wandb_log_unique_prompts:
|
|
3333
|
+
df = df.drop_duplicates(subset=["prompt"])
|
|
3334
|
+
wandb.log({"completions": wandb.Table(dataframe=df)})
|
|
3335
|
+
|
|
3336
|
+
# Ensure the model card is saved along with the checkpoint
|
|
3337
|
+
def _save_checkpoint(self, model, trial):
|
|
3338
|
+
if self.args.hub_model_id is None:
|
|
3339
|
+
model_name = Path(self.args.output_dir).name
|
|
3340
|
+
else:
|
|
3341
|
+
model_name = self.args.hub_model_id.split("/")[-1]
|
|
3342
|
+
self.create_model_card(model_name=model_name)
|
|
3343
|
+
super()._save_checkpoint(model, trial)
|
|
3344
|
+
class UnslothGRPOTrainer(_UnslothGRPOTrainer):
|
|
3345
|
+
"""
|
|
3346
|
+
|
|
3347
|
+
Trainer for the Group Relative Policy Optimization (GRPO) method. This algorithm was initially proposed in the
|
|
3348
|
+
paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language
|
|
3349
|
+
Models](https://huggingface.co/papers/2402.03300).
|
|
3350
|
+
|
|
3351
|
+
Example:
|
|
3352
|
+
|
|
3353
|
+
```python
|
|
3354
|
+
from datasets import load_dataset
|
|
3355
|
+
from trl import GRPOTrainer
|
|
3356
|
+
|
|
3357
|
+
dataset = load_dataset("trl-lib/tldr", split="train")
|
|
3358
|
+
def reward_func(completions, **kwargs):
|
|
3359
|
+
# Dummy reward function that rewards completions with more unique letters.
|
|
3360
|
+
return [float(len(set(completion))) for completion in completions]
|
|
3361
|
+
trainer = GRPOTrainer(
|
|
3362
|
+
model="Qwen/Qwen2-0.5B-Instruct",
|
|
3363
|
+
reward_funcs=reward_func,
|
|
3364
|
+
train_dataset=dataset,
|
|
3365
|
+
)
|
|
3366
|
+
|
|
3367
|
+
trainer.train()
|
|
3368
|
+
```
|
|
3369
|
+
|
|
3370
|
+
Args:
|
|
3371
|
+
model (`Union[str, PreTrainedModel]`):
|
|
3372
|
+
Model to be trained. Can be either:
|
|
3373
|
+
|
|
3374
|
+
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a
|
|
3375
|
+
path to a *directory* containing model weights saved using
|
|
3376
|
+
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
|
|
3377
|
+
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in
|
|
3378
|
+
`args.model_init_kwargs`.
|
|
3379
|
+
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
|
|
3380
|
+
reward_funcs (`Union[RewardFunc, list[RewardFunc]]`):
|
|
3381
|
+
Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward
|
|
3382
|
+
functions with the prompts and completions and sum the rewards. Can be either:
|
|
3383
|
+
|
|
3384
|
+
- A single reward function, such as:
|
|
3385
|
+
- A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a
|
|
3386
|
+
path to a *directory* containing model weights saved using
|
|
3387
|
+
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
|
|
3388
|
+
using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the
|
|
3389
|
+
keyword arguments in `args.model_init_kwargs`.
|
|
3390
|
+
- A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported.
|
|
3391
|
+
- A custom reward function: The function is provided with the prompts and the generated completions,
|
|
3392
|
+
plus any additional columns in the dataset. It should return a list of rewards. Custom reward
|
|
3393
|
+
functions can also return `None` when the reward is not applicable to those samples. This is useful
|
|
3394
|
+
for multi-task training where different reward functions apply to different types of samples. When a
|
|
3395
|
+
reward function returns `None` for a sample, that reward function is excluded from the reward
|
|
3396
|
+
calculation for that sample. For more details, see [Using a custom reward
|
|
3397
|
+
function](#using-a-custom-reward-function).
|
|
3398
|
+
|
|
3399
|
+
The trainer's state is also passed to the reward function. The trainer's state is an instance of
|
|
3400
|
+
[`~transformers.TrainerState`] and can be accessed by accessing the `trainer_state` argument to the
|
|
3401
|
+
reward function's signature.
|
|
3402
|
+
- A list of reward functions, where each item can independently be any of the above types. Mixing different
|
|
3403
|
+
types within the list (e.g., a string model ID and a custom reward function) is allowed.
|
|
3404
|
+
args ([`GRPOConfig`], *optional*):
|
|
3405
|
+
Configuration for this trainer. If `None`, a default configuration is used.
|
|
3406
|
+
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
|
|
3407
|
+
Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is
|
|
3408
|
+
ignored. The format of the samples can be either:
|
|
3409
|
+
|
|
3410
|
+
- [Standard](dataset_formats#standard): Each sample contains plain text.
|
|
3411
|
+
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role
|
|
3412
|
+
and content).
|
|
3413
|
+
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
|
|
3414
|
+
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`.
|
|
3415
|
+
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.ProcessorMixin`], *optional*):
|
|
3416
|
+
Processing class used to process the data. The padding side must be set to "left". If `None`, the
|
|
3417
|
+
processing class is loaded from the model's name with [`~transformers.AutoProcessor.from_pretrained`]. A
|
|
3418
|
+
padding token, `tokenizer.pad_token`, must be set. If the processing class has not set a padding token,
|
|
3419
|
+
`tokenizer.eos_token` will be used as the default.
|
|
3420
|
+
reward_processing_classes ([`~transformers.PreTrainedTokenizerBase`] or `list[PreTrainedTokenizerBase]`, *optional*):
|
|
3421
|
+
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either:
|
|
3422
|
+
|
|
3423
|
+
- A single processing class: Used when `reward_funcs` contains only one reward function.
|
|
3424
|
+
- A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`.
|
|
3425
|
+
If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is
|
|
3426
|
+
`None`, the tokenizer for the model is automatically loaded using
|
|
3427
|
+
[`~transformers.AutoTokenizer.from_pretrained`]. For elements in `reward_funcs` that are custom reward
|
|
3428
|
+
functions (not [`~transformers.PreTrainedModel`]), the corresponding entries in `reward_processing_classes`
|
|
3429
|
+
are ignored.
|
|
3430
|
+
callbacks (list of [`~transformers.TrainerCallback`], *optional*):
|
|
3431
|
+
List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed
|
|
3432
|
+
in [here](https://huggingface.co/docs/transformers/main_classes/callback).
|
|
3433
|
+
|
|
3434
|
+
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`]
|
|
3435
|
+
method.
|
|
3436
|
+
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`):
|
|
3437
|
+
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your
|
|
3438
|
+
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
|
|
3439
|
+
peft_config ([`~peft.PeftConfig`], *optional*):
|
|
3440
|
+
PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
|
|
3441
|
+
|
|
3442
|
+
"""
|
|
3443
|
+
def __init__(
|
|
3444
|
+
self,
|
|
3445
|
+
model,
|
|
3446
|
+
reward_funcs,
|
|
3447
|
+
args = None,
|
|
3448
|
+
train_dataset = None,
|
|
3449
|
+
eval_dataset = None,
|
|
3450
|
+
processing_class = None,
|
|
3451
|
+
reward_processing_classes = None,
|
|
3452
|
+
callbacks = None,
|
|
3453
|
+
peft_config = None,
|
|
3454
|
+
**kwargs
|
|
3455
|
+
):
|
|
3456
|
+
if args is None: args = UnslothGRPOConfig()
|
|
3457
|
+
use_bf16 = getattr(args, 'bf16', False)
|
|
3458
|
+
if type(use_bf16) is not bool: use_bf16 = False
|
|
3459
|
+
use_fp16 = getattr(args, 'fp16', False)
|
|
3460
|
+
if type(use_fp16) is not bool: use_fp16 = False
|
|
3461
|
+
force_float32 = False
|
|
3462
|
+
full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1'
|
|
3463
|
+
if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'):
|
|
3464
|
+
print('Unsloth: Switching to float32 training since model cannot work with float16')
|
|
3465
|
+
force_float32 = True
|
|
3466
|
+
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
|
|
3467
|
+
dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None)
|
|
3468
|
+
if dtype is None: dtype = model.get_input_embeddings().weight.dtype
|
|
3469
|
+
from unsloth_zoo.utils import _get_dtype
|
|
3470
|
+
dtype = _get_dtype(dtype)
|
|
3471
|
+
float16 = dtype == torch.float16
|
|
3472
|
+
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
|
|
3473
|
+
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
|
|
3474
|
+
if force_float32:
|
|
3475
|
+
# Forced float32 training
|
|
3476
|
+
args.fp16 = False
|
|
3477
|
+
args.bf16 = False
|
|
3478
|
+
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
|
|
3479
|
+
if hasattr(args, 'mixed_precision'): args.mixed_precision = 'no'
|
|
3480
|
+
# args.mixed_precision is a new argument which needs to be set now
|
|
3481
|
+
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
|
|
3482
|
+
# Mixed precision training
|
|
3483
|
+
args.fp16 = float16
|
|
3484
|
+
args.bf16 = not float16
|
|
3485
|
+
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
|
|
3486
|
+
if hasattr(args, 'mixed_precision'): args.mixed_precision = 'fp16' if float16 else 'bf16'
|
|
3487
|
+
# args.mixed_precision is a new argument which needs to be set now
|
|
3488
|
+
elif mixed_precision_dtype == 'bfloat16':
|
|
3489
|
+
# Both False since bfloat16 full finetuning doesn't do any autocasting.
|
|
3490
|
+
args.fp16 = False
|
|
3491
|
+
args.bf16 = False
|
|
3492
|
+
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
|
|
3493
|
+
if hasattr(args, 'mixed_precision'): args.mixed_precision = 'no'
|
|
3494
|
+
# args.mixed_precision is a new argument which needs to be set now
|
|
3495
|
+
|
|
3496
|
+
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
|
|
3497
|
+
args.eval_strategy = 'steps'
|
|
3498
|
+
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
|
|
3499
|
+
ga_steps = getattr(args, 'gradient_accumulation_steps', None)
|
|
3500
|
+
if ga_steps is not None and ga_steps > 1:
|
|
3501
|
+
from transformers import __version__ as transformers_version
|
|
3502
|
+
if Version(transformers_version) <= Version('4.45.2'):
|
|
3503
|
+
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
|
|
3504
|
+
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
|
|
3505
|
+
if getattr(args, 'eval_strategy', 'no') != 'no':
|
|
3506
|
+
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
|
|
3507
|
+
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
|
|
3508
|
+
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
|
|
3509
|
+
fp16_full_eval = getattr(args, 'fp16_full_eval', False)
|
|
3510
|
+
if type(fp16_full_eval) is not bool: fp16_full_eval = False
|
|
3511
|
+
bf16_full_eval = getattr(args, 'bf16_full_eval', False)
|
|
3512
|
+
if type(bf16_full_eval) is not bool: bf16_full_eval = False
|
|
3513
|
+
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
|
|
3514
|
+
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
|
|
3515
|
+
if force_float32:
|
|
3516
|
+
args.bf16_full_eval = False
|
|
3517
|
+
args.fp16_full_eval = False
|
|
3518
|
+
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
|
|
3519
|
+
args.bf16_full_eval = True
|
|
3520
|
+
args.fp16_full_eval = False
|
|
3521
|
+
elif not bf16_full_eval and not fp16_full_eval:
|
|
3522
|
+
args.bf16_full_eval = args.bf16
|
|
3523
|
+
args.fp16_full_eval = args.fp16
|
|
3524
|
+
_output_logits = False
|
|
3525
|
+
if locals().get('compute_metrics', None) is not None: _output_logits = True
|
|
3526
|
+
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
|
|
3527
|
+
if _output_logits:
|
|
3528
|
+
os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
|
|
3529
|
+
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
|
|
3530
|
+
pass
|
|
3531
|
+
else:
|
|
3532
|
+
model_max_seq_length = getattr(model, 'max_seq_length', None)
|
|
3533
|
+
args_max_seq_length = getattr(args, 'max_seq_length', None)
|
|
3534
|
+
if args_max_seq_length is None and model_max_seq_length is not None:
|
|
3535
|
+
max_seq_length = model.max_seq_length
|
|
3536
|
+
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
|
|
3537
|
+
if model is not None and hasattr(model, 'for_training'):
|
|
3538
|
+
model.for_training(use_gradient_checkpointing=getattr(args, 'gradient_checkpointing', True))
|
|
3539
|
+
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
|
|
3540
|
+
if 'processing_class' in locals():
|
|
3541
|
+
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
|
|
3542
|
+
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
|
|
3543
|
+
other_metrics = []
|
|
3544
|
+
if not isinstance(reward_funcs, list): _reward_funcs = [reward_funcs]
|
|
3545
|
+
else: _reward_funcs = reward_funcs
|
|
3546
|
+
for reward_func in _reward_funcs:
|
|
3547
|
+
try:
|
|
3548
|
+
reward_func_name = reward_func.__name__
|
|
3549
|
+
if True:
|
|
3550
|
+
other_metrics.append(f'rewards/{reward_func_name}/mean')
|
|
3551
|
+
if True:
|
|
3552
|
+
other_metrics.append(f'rewards/{reward_func_name}/std')
|
|
3553
|
+
if False:
|
|
3554
|
+
other_metrics.append(f'rewards/{reward_func_name}')
|
|
3555
|
+
except: pass
|
|
3556
|
+
|
|
3557
|
+
from unsloth_zoo.logging_utils import PatchRLStatistics
|
|
3558
|
+
PatchRLStatistics('grpo_trainer', other_metrics)
|
|
3559
|
+
|
|
3560
|
+
# [TODO] Fix up DataParallel multiplying batch sizes
|
|
3561
|
+
# [TODO] DDP works, but DP seems to not work? [TODO]
|
|
3562
|
+
if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1:
|
|
3563
|
+
if getattr(args, "_n_gpu", 1) != 1:
|
|
3564
|
+
args._n_gpu = 1
|
|
3565
|
+
if "model" in locals() and hasattr(model, "for_training"):
|
|
3566
|
+
model.for_training(use_gradient_checkpointing=getattr(args, 'gradient_checkpointing', True))
|
|
3567
|
+
super().__init__(
|
|
3568
|
+
model = model,
|
|
3569
|
+
reward_funcs = reward_funcs,
|
|
3570
|
+
args = args,
|
|
3571
|
+
train_dataset = train_dataset,
|
|
3572
|
+
eval_dataset = eval_dataset,
|
|
3573
|
+
processing_class = processing_class,
|
|
3574
|
+
reward_processing_classes = reward_processing_classes,
|
|
3575
|
+
callbacks = callbacks,
|
|
3576
|
+
peft_config = peft_config,**kwargs)
|
|
3577
|
+
if "model" in locals() and hasattr(model, "for_inference"):
|
|
3578
|
+
model.for_inference()
|
|
3579
|
+
if hasattr(self, 'neftune_hook_handle'):
|
|
3580
|
+
self.neftune_hook_handle.remove()
|
|
3581
|
+
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
|
|
3582
|
+
if getattr(args, 'neftune_noise_alpha', None) is not None:
|
|
3583
|
+
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
|
|
3584
|
+
pass
|
|
3585
|
+
if hasattr(self, 'accelerator'):
|
|
3586
|
+
scaler = self.accelerator.scaler
|
|
3587
|
+
current_model = model
|
|
3588
|
+
while hasattr(current_model, 'model'):
|
|
3589
|
+
current_model.accelerator_scaler = scaler
|
|
3590
|
+
current_model = current_model.model
|
|
3591
|
+
current_model.accelerator_scaler = scaler
|
|
3592
|
+
pass
|
|
3593
|
+
if hasattr(self, 'train'):
|
|
3594
|
+
self.train = MethodType(prepare_for_training_mode(self.__class__.train), self)
|
|
3595
|
+
pass
|
|
3596
|
+
|
|
3597
|
+
pass
|
|
3598
|
+
|
|
3599
|
+
|
|
3600
|
+
if hasattr(logger, "addFilter"):
|
|
3601
|
+
import logging
|
|
3602
|
+
class HideLoggingMessage(logging.Filter):
|
|
3603
|
+
def __init__(self, text): self.text = text
|
|
3604
|
+
def filter(self, x): return not (self.text in x.getMessage())
|
|
3605
|
+
pass
|
|
3606
|
+
logger.addFilter(HideLoggingMessage("`use_cache=True`"))
|
|
3607
|
+
|