cciwon-code-review-cli 2.0.1 → 2.0.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (111) hide show
  1. package/bin/code-review.js +1 -1
  2. package/lib/chat-mode.js +7 -2
  3. package/package.json +1 -1
  4. package/unsloth_compiled_cache/.locks/.lock.AqlmLoraLinear_peft_forward.py +0 -0
  5. package/unsloth_compiled_cache/.locks/.lock.AwqLoraLinear_peft_forward.py +0 -0
  6. package/unsloth_compiled_cache/.locks/.lock.BatchNorm1d.py +0 -0
  7. package/unsloth_compiled_cache/.locks/.lock.BatchNorm2d.py +0 -0
  8. package/unsloth_compiled_cache/.locks/.lock.BatchNorm3d.py +0 -0
  9. package/unsloth_compiled_cache/.locks/.lock.Conv1d.py +0 -0
  10. package/unsloth_compiled_cache/.locks/.lock.Conv2d.py +0 -0
  11. package/unsloth_compiled_cache/.locks/.lock.Conv3d.py +0 -0
  12. package/unsloth_compiled_cache/.locks/.lock.ConvTranspose1d.py +0 -0
  13. package/unsloth_compiled_cache/.locks/.lock.ConvTranspose2d.py +0 -0
  14. package/unsloth_compiled_cache/.locks/.lock.ConvTranspose3d.py +0 -0
  15. package/unsloth_compiled_cache/.locks/.lock.GPTQLoraLinear_peft_forward.py +0 -0
  16. package/unsloth_compiled_cache/.locks/.lock.GroupNorm.py +0 -0
  17. package/unsloth_compiled_cache/.locks/.lock.LayerNorm.py +0 -0
  18. package/unsloth_compiled_cache/.locks/.lock.Linear4bit_peft_forward.py +0 -0
  19. package/unsloth_compiled_cache/.locks/.lock.Linear8bitLt_peft_forward.py +0 -0
  20. package/unsloth_compiled_cache/.locks/.lock.Linear_peft_forward.py +0 -0
  21. package/unsloth_compiled_cache/.locks/.lock.LoraParallelLinear_peft_forward.py +0 -0
  22. package/unsloth_compiled_cache/.locks/.lock.RMSNorm.py +0 -0
  23. package/unsloth_compiled_cache/.locks/.lock.UnslothBCOTrainer.py +0 -0
  24. package/unsloth_compiled_cache/.locks/.lock.UnslothCPOTrainer.py +0 -0
  25. package/unsloth_compiled_cache/.locks/.lock.UnslothDPOTrainer.py +0 -0
  26. package/unsloth_compiled_cache/.locks/.lock.UnslothGKDTrainer.py +0 -0
  27. package/unsloth_compiled_cache/.locks/.lock.UnslothGRPOTrainer.py +0 -0
  28. package/unsloth_compiled_cache/.locks/.lock.UnslothKTOTrainer.py +0 -0
  29. package/unsloth_compiled_cache/.locks/.lock.UnslothNashMDTrainer.py +0 -0
  30. package/unsloth_compiled_cache/.locks/.lock.UnslothORPOTrainer.py +0 -0
  31. package/unsloth_compiled_cache/.locks/.lock.UnslothOnlineDPOTrainer.py +0 -0
  32. package/unsloth_compiled_cache/.locks/.lock.UnslothPPOTrainer.py +0 -0
  33. package/unsloth_compiled_cache/.locks/.lock.UnslothPRMTrainer.py +0 -0
  34. package/unsloth_compiled_cache/.locks/.lock.UnslothRLOOTrainer.py +0 -0
  35. package/unsloth_compiled_cache/.locks/.lock.UnslothRewardTrainer.py +0 -0
  36. package/unsloth_compiled_cache/.locks/.lock.UnslothSFTTrainer.py +0 -0
  37. package/unsloth_compiled_cache/.locks/.lock.UnslothXPOTrainer.py +0 -0
  38. package/unsloth_compiled_cache/.locks/.lock.unsloth_compiled_module_qwen3_moe.py +0 -0
  39. package/unsloth_compiled_cache/.locks/.lock.unsloth_compiled_module_siglip.py +0 -0
  40. package/unsloth_compiled_cache/AqlmLoraLinear_peft_forward.py +88 -0
  41. package/unsloth_compiled_cache/AwqLoraLinear_peft_forward.py +87 -0
  42. package/unsloth_compiled_cache/BatchNorm1d.py +117 -0
  43. package/unsloth_compiled_cache/BatchNorm2d.py +117 -0
  44. package/unsloth_compiled_cache/BatchNorm3d.py +117 -0
  45. package/unsloth_compiled_cache/Conv1d.py +70 -0
  46. package/unsloth_compiled_cache/Conv2d.py +70 -0
  47. package/unsloth_compiled_cache/Conv3d.py +70 -0
  48. package/unsloth_compiled_cache/ConvTranspose1d.py +97 -0
  49. package/unsloth_compiled_cache/ConvTranspose2d.py +106 -0
  50. package/unsloth_compiled_cache/ConvTranspose3d.py +98 -0
  51. package/unsloth_compiled_cache/GPTQLoraLinear_peft_forward.py +95 -0
  52. package/unsloth_compiled_cache/GroupNorm.py +70 -0
  53. package/unsloth_compiled_cache/LayerNorm.py +72 -0
  54. package/unsloth_compiled_cache/Linear4bit_peft_forward.py +115 -0
  55. package/unsloth_compiled_cache/Linear8bitLt_peft_forward.py +113 -0
  56. package/unsloth_compiled_cache/Linear_peft_forward.py +104 -0
  57. package/unsloth_compiled_cache/LoraParallelLinear_peft_forward.py +91 -0
  58. package/unsloth_compiled_cache/RMSNorm.py +73 -0
  59. package/unsloth_compiled_cache/UnslothBCOTrainer.py +2026 -0
  60. package/unsloth_compiled_cache/UnslothCPOTrainer.py +1806 -0
  61. package/unsloth_compiled_cache/UnslothDPOTrainer.py +2750 -0
  62. package/unsloth_compiled_cache/UnslothGKDTrainer.py +1157 -0
  63. package/unsloth_compiled_cache/UnslothGRPOTrainer.py +3607 -0
  64. package/unsloth_compiled_cache/UnslothKTOTrainer.py +2220 -0
  65. package/unsloth_compiled_cache/UnslothNashMDTrainer.py +1210 -0
  66. package/unsloth_compiled_cache/UnslothORPOTrainer.py +1730 -0
  67. package/unsloth_compiled_cache/UnslothOnlineDPOTrainer.py +2313 -0
  68. package/unsloth_compiled_cache/UnslothPPOTrainer.py +1504 -0
  69. package/unsloth_compiled_cache/UnslothPRMTrainer.py +979 -0
  70. package/unsloth_compiled_cache/UnslothRLOOTrainer.py +2674 -0
  71. package/unsloth_compiled_cache/UnslothRewardTrainer.py +1197 -0
  72. package/unsloth_compiled_cache/UnslothSFTTrainer.py +1416 -0
  73. package/unsloth_compiled_cache/UnslothXPOTrainer.py +1255 -0
  74. package/unsloth_compiled_cache/__pycache__/AqlmLoraLinear_peft_forward.cpython-312.pyc +0 -0
  75. package/unsloth_compiled_cache/__pycache__/AwqLoraLinear_peft_forward.cpython-312.pyc +0 -0
  76. package/unsloth_compiled_cache/__pycache__/BatchNorm1d.cpython-312.pyc +0 -0
  77. package/unsloth_compiled_cache/__pycache__/BatchNorm2d.cpython-312.pyc +0 -0
  78. package/unsloth_compiled_cache/__pycache__/BatchNorm3d.cpython-312.pyc +0 -0
  79. package/unsloth_compiled_cache/__pycache__/Conv1d.cpython-312.pyc +0 -0
  80. package/unsloth_compiled_cache/__pycache__/Conv2d.cpython-312.pyc +0 -0
  81. package/unsloth_compiled_cache/__pycache__/Conv3d.cpython-312.pyc +0 -0
  82. package/unsloth_compiled_cache/__pycache__/ConvTranspose1d.cpython-312.pyc +0 -0
  83. package/unsloth_compiled_cache/__pycache__/ConvTranspose2d.cpython-312.pyc +0 -0
  84. package/unsloth_compiled_cache/__pycache__/ConvTranspose3d.cpython-312.pyc +0 -0
  85. package/unsloth_compiled_cache/__pycache__/GPTQLoraLinear_peft_forward.cpython-312.pyc +0 -0
  86. package/unsloth_compiled_cache/__pycache__/GroupNorm.cpython-312.pyc +0 -0
  87. package/unsloth_compiled_cache/__pycache__/LayerNorm.cpython-312.pyc +0 -0
  88. package/unsloth_compiled_cache/__pycache__/Linear4bit_peft_forward.cpython-312.pyc +0 -0
  89. package/unsloth_compiled_cache/__pycache__/Linear8bitLt_peft_forward.cpython-312.pyc +0 -0
  90. package/unsloth_compiled_cache/__pycache__/Linear_peft_forward.cpython-312.pyc +0 -0
  91. package/unsloth_compiled_cache/__pycache__/LoraParallelLinear_peft_forward.cpython-312.pyc +0 -0
  92. package/unsloth_compiled_cache/__pycache__/RMSNorm.cpython-312.pyc +0 -0
  93. package/unsloth_compiled_cache/__pycache__/UnslothBCOTrainer.cpython-312.pyc +0 -0
  94. package/unsloth_compiled_cache/__pycache__/UnslothCPOTrainer.cpython-312.pyc +0 -0
  95. package/unsloth_compiled_cache/__pycache__/UnslothDPOTrainer.cpython-312.pyc +0 -0
  96. package/unsloth_compiled_cache/__pycache__/UnslothGKDTrainer.cpython-312.pyc +0 -0
  97. package/unsloth_compiled_cache/__pycache__/UnslothGRPOTrainer.cpython-312.pyc +0 -0
  98. package/unsloth_compiled_cache/__pycache__/UnslothKTOTrainer.cpython-312.pyc +0 -0
  99. package/unsloth_compiled_cache/__pycache__/UnslothNashMDTrainer.cpython-312.pyc +0 -0
  100. package/unsloth_compiled_cache/__pycache__/UnslothORPOTrainer.cpython-312.pyc +0 -0
  101. package/unsloth_compiled_cache/__pycache__/UnslothOnlineDPOTrainer.cpython-312.pyc +0 -0
  102. package/unsloth_compiled_cache/__pycache__/UnslothPPOTrainer.cpython-312.pyc +0 -0
  103. package/unsloth_compiled_cache/__pycache__/UnslothPRMTrainer.cpython-312.pyc +0 -0
  104. package/unsloth_compiled_cache/__pycache__/UnslothRLOOTrainer.cpython-312.pyc +0 -0
  105. package/unsloth_compiled_cache/__pycache__/UnslothRewardTrainer.cpython-312.pyc +0 -0
  106. package/unsloth_compiled_cache/__pycache__/UnslothSFTTrainer.cpython-312.pyc +0 -0
  107. package/unsloth_compiled_cache/__pycache__/UnslothXPOTrainer.cpython-312.pyc +0 -0
  108. package/unsloth_compiled_cache/__pycache__/unsloth_compiled_module_qwen3_moe.cpython-312.pyc +0 -0
  109. package/unsloth_compiled_cache/__pycache__/unsloth_compiled_module_siglip.cpython-312.pyc +0 -0
  110. package/unsloth_compiled_cache/unsloth_compiled_module_qwen3_moe.py +726 -0
  111. package/unsloth_compiled_cache/unsloth_compiled_module_siglip.py +534 -0
@@ -0,0 +1,2750 @@
1
+ """
2
+ 2025.12.6
3
+ 2025.12.7
4
+ 4.57.1
5
+ 0.24.0
6
+ __UNSLOTH_VERSIONING__
7
+ """
8
+
9
+ # Unsloth auto generated code
10
+ # Copyright 2023-present Daniel Han-Chen, Michael Han-Chen & the Unsloth team. All rights reserved.
11
+ #
12
+ # This program is free software: you can redistribute it and/or modify
13
+ # it under the terms of the GNU Lesser General Public License as published by
14
+ # the Free Software Foundation, either version 3 of the License, or
15
+ # (at your option) any later version.
16
+ #
17
+ # This program is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20
+ # GNU General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public License
23
+ # along with this program. If not, see <https://www.gnu.org/licenses/>.
24
+
25
+ from torch import Tensor
26
+ import torch
27
+ import torch.nn as nn
28
+ from torch.nn import functional as F
29
+ from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable
30
+ from trl.trainer.dpo_trainer import (Any, AutoProcessor, BaseImageProcessor, BaseTrainer, Callable, DPOConfig, DPOTrainer, DataCollator, DataCollatorForPreference, DataLoader, Dataset, EvalLoopOutput, F, FDivergenceConstants, FDivergenceType, FeatureExtractionMixin, IterableDataset, Literal, MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES, Optional, PartialState, Path, PeftConfig, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, RunningMoments, SyncRefModelCallback, TrainerCallback, Union, autocast, cap_exp, contextmanager, create_model_from_path, create_reference_model, dataclass, defaultdict, disable_dropout_in_model, empty_cache, flush_left, flush_right, get_peft_model, inspect, is_comet_available, is_liger_kernel_available, is_mlflow_available, is_peft_available, is_wandb_available, log_table_to_comet_experiment, logger, logging, maybe_apply_chat_template, maybe_extract_prompt, nn, nullcontext, pad, pad_to_length, pd, peft_module_casting_to_bf16, prepare_deepspeed, prepare_fsdp, prepare_model_for_kbit_training, random, selective_log_softmax, shift_tokens_right, textwrap, torch, tqdm, warnings, F, Optional, PeftModel, PreTrainedModel, is_peft_available, logger, torch)
31
+
32
+
33
+ import os
34
+ from typing import *
35
+ from dataclasses import dataclass, field
36
+ from packaging.version import Version
37
+ import torch
38
+ import numpy as np
39
+ from contextlib import nullcontext
40
+ from torch.nn import functional as F
41
+ import inspect
42
+ from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling
43
+ from transformers.training_args import ParallelMode
44
+
45
+ # Wrap trainer with padding to right and enable training mode
46
+ # Also patches W&B since multiple runs must use wandb.finish()
47
+ import functools
48
+ from types import MethodType
49
+ def prepare_for_training_mode(f):
50
+ @functools.wraps(f)
51
+ def wrapper(self, *args, **kwargs):
52
+ # Enable training mode
53
+ if hasattr(self, 'model') and hasattr(self.model, "for_training"):
54
+ self.model.for_training()
55
+ output = f(self, *args, **kwargs)
56
+ # Return inference mode
57
+ if hasattr(self, 'model') and hasattr(self.model, "for_inference"):
58
+ self.model.for_inference()
59
+ # Patch W&B to enable logging on future runs, otherwise it'll overwrite the first run
60
+ try:
61
+ import wandb
62
+ wandb.finish()
63
+ except:
64
+ pass
65
+ return output
66
+ return wrapper
67
+ pass
68
+
69
+ torch_compile_options = {
70
+ "epilogue_fusion" : True,
71
+ "max_autotune" : False,
72
+ "shape_padding" : True,
73
+ "trace.enabled" : False,
74
+ "triton.cudagraphs" : False,
75
+ }
76
+
77
+ @torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
78
+ def chunked_selective_log_softmax(logits, index):
79
+ # Split into 4 chunks only
80
+ chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0)
81
+ chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0)
82
+ all_per_token_logps = []
83
+ # Below loop does the same as selective_log_softmax(chunk_logits, chunk_index)
84
+ for chunk_logits, chunk_index in zip(chunked_logits, chunked_index):
85
+ chunk_logits = chunk_logits.to(torch.float32)
86
+ selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1)
87
+ logsumexp_values = torch.logsumexp(chunk_logits, dim = -1)
88
+ per_token_logps = selected_logits - logsumexp_values
89
+ all_per_token_logps.append(per_token_logps)
90
+ pass
91
+ all_per_token_logps = torch.concat(all_per_token_logps)
92
+ all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1]))
93
+ return all_per_token_logps
94
+
95
+ def calculate_pad_tokens_in_prompt(
96
+ input_ids: torch.Tensor,
97
+ logits_to_keep: int,
98
+ pad_token_id: int
99
+ ) -> torch.Tensor:
100
+ """
101
+ Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens
102
+ """
103
+ if logits_to_keep >= input_ids.shape[1]:
104
+ raise ValueError("logits_to_keep must be smaller than the sequence length.")
105
+
106
+ prompt_section = input_ids[:, :-logits_to_keep]
107
+
108
+ padding_mask = (prompt_section == pad_token_id)
109
+
110
+ pad_token_counts = padding_mask.sum(dim=1)
111
+
112
+ return pad_token_counts
113
+
114
+ def create_completion_attention_mask(
115
+ completion_input_ids: torch.Tensor,
116
+ left_pad_tokens_per_prompt: torch.Tensor,
117
+ max_left_pad: int,
118
+ pad_token_id: int
119
+ ) -> torch.Tensor:
120
+ """
121
+ Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad]
122
+
123
+ Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens
124
+ and pad are pad tokens, this function would make a completion mask that would 0 out the pad
125
+ and p tokens. so in this example [0,0,0,1,1,1,0,0,0]
126
+ """
127
+ batch_size, completion_len = completion_input_ids.shape
128
+ device = completion_input_ids.device
129
+
130
+ num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt
131
+
132
+ indices = torch.arange(completion_len, device=device).unsqueeze(0)
133
+ shift_mask = indices >= num_tokens_to_mask.unsqueeze(1)
134
+
135
+ non_padding_mask = (completion_input_ids != pad_token_id)
136
+
137
+ final_mask = shift_mask & non_padding_mask
138
+
139
+ return final_mask
140
+
141
+ def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor:
142
+ """
143
+ Moves all padding tokens in each sequence of a batch to the right.
144
+ """
145
+ mask = (tensor != pad_id)
146
+ # Must do stable=True since binary mark is unordered
147
+ sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True)
148
+ packed_tensor = torch.gather(tensor, 1, sorted_indices)
149
+ return packed_tensor
150
+
151
+ def align_logprobs_with_mask(
152
+ logprob_tensor: torch.Tensor,
153
+ attention_mask: torch.Tensor,
154
+ pad_value: float = 0.0
155
+ ) -> torch.Tensor:
156
+ """
157
+ Aligns a log probability tensor with a given attention mask.
158
+ """
159
+
160
+ device = logprob_tensor.device
161
+ batch_size, logprob_seq_len = logprob_tensor.shape
162
+ mask_seq_len = attention_mask.shape[1]
163
+
164
+ padded_logprobs = torch.full(
165
+ attention_mask.shape,
166
+ fill_value=pad_value,
167
+ dtype=logprob_tensor.dtype,
168
+ device=device
169
+ )
170
+
171
+ left_pad_counts = torch.argmax(attention_mask, dim=1)
172
+
173
+ cols = torch.arange(logprob_seq_len, device=device)
174
+ dest_indices = left_pad_counts.unsqueeze(1) + cols
175
+
176
+ # Create destination row indices
177
+ # Shape: [batch_size, logprob_seq_len]
178
+ row_indices = torch.arange(batch_size, device=device).unsqueeze(1).expand_as(dest_indices)
179
+
180
+ # --- 4. Filter out-of-bounds indices and perform assignment ---
181
+ # Create a mask to identify only the indices that are within the bounds
182
+ # of the target tensor's sequence length.
183
+ valid_mask = dest_indices < mask_seq_len
184
+
185
+ # Use this mask to select only the valid row indices, column indices,
186
+ # and the corresponding values from the logprob tensor.
187
+ # This flattens the selected elements into 1D tensors.
188
+ valid_rows = row_indices[valid_mask]
189
+ valid_cols = dest_indices[valid_mask]
190
+ valid_vals = logprob_tensor[valid_mask]
191
+
192
+ # Place the valid values into their correct positions in the padded tensor
193
+ # using a single, efficient advanced indexing operation.
194
+ padded_logprobs[valid_rows, valid_cols] = valid_vals
195
+
196
+ return padded_logprobs
197
+ @dataclass
198
+ class UnslothDPOConfig(DPOConfig):
199
+ """
200
+
201
+ Configuration class for the [`DPOTrainer`].
202
+
203
+ This class includes only the parameters that are specific to DPO training. For a full list of training arguments,
204
+ please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may
205
+ differ from those in [`~transformers.TrainingArguments`].
206
+
207
+ Using [`~transformers.HfArgumentParser`] we can turn this class into
208
+ [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
209
+ command line.
210
+
211
+ Parameters:
212
+ > Parameters that control the model and reference model
213
+
214
+ model_init_kwargs (`dict[str, Any]`, *optional*):
215
+ Keyword arguments for `AutoModelForCausalLM.from_pretrained`, used when the `model` argument of the
216
+ [`DPOTrainer`] is provided as a string.
217
+ ref_model_init_kwargs (`dict[str, Any]`, *optional*):
218
+ Keyword arguments for `AutoModelForCausalLM.from_pretrained`, used when the `ref_model` argument of the
219
+ [`DPOTrainer`] is provided as a string.
220
+ model_adapter_name (`str`, *optional*):
221
+ Name of the train target PEFT adapter, when using LoRA with multiple adapters.
222
+ ref_adapter_name (`str`, *optional*):
223
+ Name of the reference PEFT adapter, when using LoRA with multiple adapters.
224
+ force_use_ref_model (`bool`, *optional*, defaults to `False`):
225
+ If you provide a PEFT model as the active model and wish to use a different model for the `ref_model`, set
226
+ this flag to `True`.
227
+ disable_dropout (`bool`, *optional*, defaults to `True`):
228
+ Whether to disable dropout in the model and reference model.
229
+ use_logits_to_keep (`bool`, *optional*, defaults to `False`):
230
+ If `True`, only a specified number of logits are computed in the forward pass. This can be useful for
231
+ saving memory and speeding up training by not computing the logits for all tokens, especially in scenarios
232
+ when working with very long prompts where labels are ignored (-100).
233
+
234
+ > Parameters that control the data preprocessing
235
+
236
+ dataset_num_proc (`int`, *optional*):
237
+ Number of processes to use for processing the dataset.
238
+ pad_token (`str`, *optional*):
239
+ Token used for padding. If `None`, it defaults to `processing_class.pad_token`, or if that is also `None`,
240
+ it falls back to `processing_class.eos_token`.
241
+ label_pad_token_id (`int`, *optional*, defaults to `-100`):
242
+ Padding value to use for labels.
243
+ max_prompt_length (`int` or `None`, *optional*, defaults to `512`):
244
+ Maximum length of the prompt.
245
+ max_completion_length (`int`, *optional*):
246
+ Maximum length of the completion.
247
+ max_length (`int` or `None`, *optional*, defaults to `1024`):
248
+ Maximum length of the full sequence (prompt + completion).
249
+ truncation_mode (`str`, *optional*, defaults to `"keep_end"`):
250
+ Truncation mode to use when the sequence exceeds `max_length`. Possible values are `"keep_end"` and
251
+ `"keep_start"`.
252
+ padding_free (`bool`, *optional*, defaults to `False`):
253
+ Whether to perform forward passes without padding by flattening all sequences in the batch into a single
254
+ continuous sequence. This reduces memory usage by eliminating padding overhead. Currently, this is only
255
+ supported with the `flash_attention_2` attention implementation, which can efficiently handle the flattened
256
+ batch structure.
257
+ precompute_ref_log_probs (`bool`, *optional*, defaults to `False`):
258
+ Whether to precompute the log probabilities from the reference model. Setting this to `True` allows
259
+ training without needing the reference model during training, which can help reduce GPU memory usage. If
260
+ set to `False` (default), the reference model will be used during training to compute log probabilities
261
+ on-the-fly.
262
+ precompute_ref_batch_size (`int`, *optional*):
263
+ Batch size to use when precomputing reference model log probabilities. This can be set higher than the
264
+ training batch size to speed up preprocessing. If `None`, defaults to `per_device_train_batch_size` for
265
+ training and `per_device_eval_batch_size` for evaluation.
266
+ tools (`Optional[list[Union[dict, Callable]]]`, *optional*):
267
+ List of tools (callable functions) that will be accessible to the model. If the template does not support
268
+ function calling, this argument will have no effect.
269
+
270
+ > Parameters that control the training
271
+
272
+ loss_type (`str` or `list[str]`, *optional*, defaults to `"sigmoid"`):
273
+ Type of loss to use. Possible values are:
274
+
275
+ - `"sigmoid"`: sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper.
276
+ - `"hinge"`: hinge loss on the normalized likelihood from the
277
+ [SLiC](https://huggingface.co/papers/2305.10425) paper.
278
+ - `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper.
279
+ - `"exo_pair"`: pairwise EXO loss from the [EXO](https://huggingface.co/papers/2402.00856) paper.
280
+ - `"nca_pair"`: pairwise NCA loss from the [NCA](https://huggingface.co/papers/2402.05369) paper.
281
+ - `"robust"`: unbiased estimate of the DPO loss that is robust to preference noise from the [Robust
282
+ DPO](https://huggingface.co/papers/2403.00409) paper.
283
+ - `"bco_pair"`: pairwise BCO loss from the [BCO](https://huggingface.co/papers/2404.04656) paper.
284
+ - `"sppo_hard"`: SPPO loss with hard label from the [SPPO](https://huggingface.co/papers/2405.00675)
285
+ paper.
286
+ - `"aot"`: AOT loss for paired datasets from the [AOT](https://huggingface.co/papers/2406.05882) paper.
287
+ - `"aot_pair"`: AOT loss for unpaired datasets from the [AOT](https://huggingface.co/papers/2406.05882)
288
+ paper.
289
+ - `"discopop"`: DiscoPOP (a.k.a Log-Ratio Modulated Loss, LRML) loss from the
290
+ [DiscoPOP](https://huggingface.co/papers/2406.08414) paper.
291
+ - `"apo_zero"`: APO-zero loss from the [APO](https://huggingface.co/papers/2408.06266) paper.
292
+ - `"apo_down"`: APO-down loss from the [APO](https://huggingface.co/papers/2408.06266) paper.
293
+ - `"sft"`: Negative log-likelihood loss (standard supervised fine-tuning loss).
294
+
295
+ Multiple loss types can be combined using comma separation (e.g., `["sigmoid", "bco_pair", "sft"]` for
296
+ [MPO](https://huggingface.co/papers/2411.10442)). The `loss_weights` parameter can be used to specify
297
+ corresponding weights for each loss type.
298
+
299
+ use_liger_loss (`bool`, *optional*, defaults to `False`):
300
+ Whether to use Liger loss.
301
+ base_model_attribute_name (`str`, *optional*, defaults to `"model"`):
302
+ Name of the attribute in the model that contains the base model. This is used to get the base model from
303
+ the model when the model does not have a `get_decoder` method in the case when `use_liger_loss` is `True`.
304
+ beta (`float`, *optional*, defaults to `0.1`):
305
+ Parameter controlling the deviation from the reference model. Higher β means less deviation from the
306
+ reference model. For the IPO loss (`loss_type="ipo"`), β is the regularization parameter denoted by τ in
307
+ the [paper](https://huggingface.co/papers/2310.12036).
308
+ f_divergence_type ([`FDivergenceType`] or `str`, *optional*, defaults to `FDivergenceType.REVERSE_KL`):
309
+ Type of f-divergence regularization function to compute divergence between policy and reference model.
310
+ f_alpha_divergence_coef (`float`, *optional*, defaults to `1.0`):
311
+ α coefficient in the α-divergence u^-α regularization function for DPO loss.
312
+ reference_free (`bool`, *optional*, defaults to `False`):
313
+ Whether to ignore the provided reference model and implicitly use a reference model that assigns equal
314
+ probability to all responses.
315
+ label_smoothing (`float`, *optional*, defaults to `0.0`):
316
+ Robust DPO label smoothing parameter from the [cDPO report](https://ericmitchell.ai/cdpo.pdf) and [Robust
317
+ DPO](https://huggingface.co/papers/2403.00409) paper that should be between `0.0` and `0.5`.
318
+ use_weighting (`bool`, *optional*, defaults to `False`):
319
+ Whether to weight the loss as done in the [WPO paper](https://huggingface.co/papers/2406.11827).
320
+ rpo_alpha (`float`, *optional*):
321
+ α parameter from the [RPO paper](https://huggingface.co/papers/2404.19733) (v3), which controls the
322
+ weighting of the NLL term in the loss. If `None`, no weighting is applied and the loss is the same as the
323
+ DPO loss. The paper recommends `rpo_alpha=1.0`.
324
+ ld_alpha (`float`, *optional*):
325
+ α parameter from the [LD-DPO paper](https://huggingface.co/papers/2409.06411), which controls the weighting
326
+ of the verbose token log-probabilities in responses. If `None`, no weighting is applied to the verbose
327
+ part, and the loss is equivalent to the standard DPO loss. The paper recommends setting `ld_alpha` between
328
+ `0.0` and `1.0`.
329
+ discopop_tau (`float`, *optional*, defaults to `0.05`):
330
+ τ/temperature parameter from the [DiscoPOP](https://huggingface.co/papers/2406.08414) paper, which controls
331
+ the shape of log ratio modulated loss. The paper recommends the default value `discopop_tau=0.05`.
332
+ loss_weights (`list[float]`, *optional*):
333
+ List of loss weights for multi-loss combinations. Used when combining multiple loss types. Example: `[0.8,
334
+ 0.2, 1.0]` for [MPO](https://huggingface.co/papers/2411.10442). If not provided, defaults to equal weights
335
+ (`1.0`) for all loss types.
336
+ sync_ref_model (`bool`, *optional*, defaults to `False`):
337
+ Whether to synchronize the reference model with the active model every `ref_model_sync_steps` steps, using
338
+ the `ref_model_mixup_alpha` parameter. This synchronization originates from the
339
+ [TR-DPO](https://huggingface.co/papers/2404.09656) paper.
340
+ ref_model_mixup_alpha (`float`, *optional*, defaults to `0.6`):
341
+ α parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which controls the mix
342
+ between the current policy and the previous reference policy during updates. The reference policy is
343
+ updated according to the equation: `π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you
344
+ must set `sync_ref_model=True`.
345
+ ref_model_sync_steps (`int`, *optional*, defaults to `512`):
346
+ τ parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which determines how
347
+ frequently the current policy is synchronized with the reference policy. To use this parameter, you must
348
+ set `sync_ref_model=True`.
349
+
350
+ > Parameters that control the logging
351
+
352
+ generate_during_eval (`bool`, *optional*, defaults to `False`):
353
+ Whether to generate and log completions from both the model and the reference model to W&B or Comet during
354
+ evaluation.
355
+
356
+ > Deprecated parameters
357
+
358
+ padding_value:
359
+
360
+ <Deprecated version="0.24.0">
361
+
362
+ This parameter is deprecated and will be removed in version 0.25.0. Use `pad_token` (`str`) instead.
363
+
364
+ </Deprecated>
365
+
366
+ """
367
+ vllm_sampling_params: Optional[Any] = field(
368
+ default = None,
369
+ metadata = {'help': 'vLLM SamplingParams'},
370
+ )
371
+ unsloth_num_chunks : Optional[int] = field(
372
+ default = -1,
373
+ metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
374
+ )
375
+ max_seq_length : Optional[int] = field(
376
+ default = None,
377
+ metadata = {'help': 'Maximum sequence length to truncate to.'},
378
+ )
379
+ def __init__(
380
+ self,
381
+ output_dir = None,
382
+ overwrite_output_dir = None,
383
+ do_train = False,
384
+ do_eval = False,
385
+ do_predict = False,
386
+ eval_strategy = 'no',
387
+ prediction_loss_only = False,
388
+ per_device_train_batch_size = 4,
389
+ per_device_eval_batch_size = 4,
390
+ per_gpu_train_batch_size = None,
391
+ per_gpu_eval_batch_size = None,
392
+ gradient_accumulation_steps = 2,
393
+ eval_accumulation_steps = 2,
394
+ eval_delay = 0,
395
+ torch_empty_cache_steps = 250,
396
+ learning_rate = 5e-05,
397
+ weight_decay = 0.01,
398
+ adam_beta1 = 0.9,
399
+ adam_beta2 = 0.999,
400
+ adam_epsilon = 1e-08,
401
+ max_grad_norm = 1.0,
402
+ num_train_epochs = 3.0,
403
+ max_steps = -1,
404
+ lr_scheduler_type = 'linear',
405
+ warmup_ratio = 0.1,
406
+ warmup_steps = 0,
407
+ log_level = 'passive',
408
+ log_level_replica = 'warning',
409
+ log_on_each_node = True,
410
+ logging_dir = None,
411
+ logging_strategy = 'steps',
412
+ logging_first_step = False,
413
+ logging_steps = 1,
414
+ logging_nan_inf_filter = False,
415
+ save_strategy = 'steps',
416
+ save_steps = 500,
417
+ save_total_limit = None,
418
+ save_safetensors = True,
419
+ save_on_each_node = False,
420
+ save_only_model = False,
421
+ restore_callback_states_from_checkpoint = False,
422
+ no_cuda = False,
423
+ use_cpu = False,
424
+ use_mps_device = False,
425
+ seed = 3407,
426
+ data_seed = 3407,
427
+ jit_mode_eval = False,
428
+ bf16 = False,
429
+ fp16 = False,
430
+ fp16_opt_level = 'O1',
431
+ half_precision_backend = 'auto',
432
+ bf16_full_eval = False,
433
+ fp16_full_eval = False,
434
+ tf32 = None,
435
+ local_rank = -1,
436
+ ddp_backend = None,
437
+ tpu_num_cores = None,
438
+ tpu_metrics_debug = False,
439
+ debug = '',
440
+ dataloader_drop_last = False,
441
+ eval_steps = None,
442
+ dataloader_num_workers = 0,
443
+ dataloader_prefetch_factor = None,
444
+ past_index = -1,
445
+ run_name = None,
446
+ disable_tqdm = None,
447
+ remove_unused_columns = True,
448
+ label_names = None,
449
+ load_best_model_at_end = False,
450
+ metric_for_best_model = None,
451
+ greater_is_better = None,
452
+ ignore_data_skip = False,
453
+ fsdp = None,
454
+ fsdp_min_num_params = 0,
455
+ fsdp_config = None,
456
+ fsdp_transformer_layer_cls_to_wrap = None,
457
+ accelerator_config = None,
458
+ parallelism_config = None,
459
+ deepspeed = None,
460
+ label_smoothing_factor = 0.0,
461
+ optim = 'adamw_8bit',
462
+ optim_args = None,
463
+ adafactor = False,
464
+ group_by_length = False,
465
+ length_column_name = 'length',
466
+ report_to = 'none',
467
+ project = 'huggingface',
468
+ trackio_space_id = 'trackio',
469
+ ddp_find_unused_parameters = None,
470
+ ddp_bucket_cap_mb = None,
471
+ ddp_broadcast_buffers = None,
472
+ dataloader_pin_memory = True,
473
+ dataloader_persistent_workers = False,
474
+ skip_memory_metrics = True,
475
+ use_legacy_prediction_loop = False,
476
+ push_to_hub = False,
477
+ resume_from_checkpoint = None,
478
+ hub_model_id = None,
479
+ hub_strategy = 'every_save',
480
+ hub_token = None,
481
+ hub_private_repo = None,
482
+ hub_always_push = False,
483
+ hub_revision = None,
484
+ gradient_checkpointing = True,
485
+ gradient_checkpointing_kwargs = None,
486
+ include_inputs_for_metrics = False,
487
+ eval_do_concat_batches = True,
488
+ fp16_backend = 'auto',
489
+ push_to_hub_model_id = None,
490
+ push_to_hub_organization = None,
491
+ push_to_hub_token = None,
492
+ mp_parameters = '',
493
+ auto_find_batch_size = False,
494
+ full_determinism = False,
495
+ torchdynamo = None,
496
+ ray_scope = 'last',
497
+ ddp_timeout = 1800,
498
+ torch_compile = False,
499
+ torch_compile_backend = None,
500
+ torch_compile_mode = None,
501
+ include_tokens_per_second = False,
502
+ include_num_input_tokens_seen = False,
503
+ neftune_noise_alpha = None,
504
+ optim_target_modules = None,
505
+ batch_eval_metrics = False,
506
+ eval_on_start = False,
507
+ use_liger_kernel = False,
508
+ liger_kernel_config = None,
509
+ eval_use_gather_object = False,
510
+ average_tokens_across_devices = True,
511
+ model_init_kwargs = None,
512
+ ref_model_init_kwargs = None,
513
+ model_adapter_name = None,
514
+ ref_adapter_name = None,
515
+ force_use_ref_model = False,
516
+ disable_dropout = True,
517
+ use_logits_to_keep = False,
518
+ dataset_num_proc = None,
519
+ pad_token = None,
520
+ label_pad_token_id = -100,
521
+ max_prompt_length = 512,
522
+ max_completion_length = None,
523
+ max_length = 1024,
524
+ truncation_mode = 'keep_end',
525
+ padding_free = False,
526
+ precompute_ref_log_probs = False,
527
+ precompute_ref_batch_size = None,
528
+ tools = None,
529
+ use_liger_loss = False,
530
+ base_model_attribute_name = 'model',
531
+ beta = 0.1,
532
+ f_alpha_divergence_coef = 1.0,
533
+ reference_free = False,
534
+ label_smoothing = 0.0,
535
+ use_weighting = False,
536
+ rpo_alpha = None,
537
+ ld_alpha = None,
538
+ discopop_tau = 0.05,
539
+ loss_weights = None,
540
+ sync_ref_model = False,
541
+ ref_model_mixup_alpha = 0.6,
542
+ ref_model_sync_steps = 512,
543
+ generate_during_eval = False,
544
+ padding_value = None,
545
+ vllm_sampling_params = None,
546
+ unsloth_num_chunks = -1,
547
+ max_seq_length = None,
548
+ **kwargs,
549
+ ):
550
+ if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
551
+ if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
552
+ if output_dir is None and save_strategy == 'steps' and save_steps == 500:
553
+ output_dir = 'unsloth_training_checkpoints'
554
+ save_strategy = 'no'
555
+ if dataset_num_proc is None:
556
+ from multiprocessing import cpu_count
557
+ dataset_num_proc = min(max(cpu_count()+4, 2), 64)
558
+
559
+ super().__init__(
560
+ output_dir = output_dir,
561
+ overwrite_output_dir = overwrite_output_dir,
562
+ do_train = do_train,
563
+ do_eval = do_eval,
564
+ do_predict = do_predict,
565
+ eval_strategy = eval_strategy,
566
+ prediction_loss_only = prediction_loss_only,
567
+ per_device_train_batch_size = per_device_train_batch_size,
568
+ per_device_eval_batch_size = per_device_eval_batch_size,
569
+ per_gpu_train_batch_size = per_gpu_train_batch_size,
570
+ per_gpu_eval_batch_size = per_gpu_eval_batch_size,
571
+ gradient_accumulation_steps = gradient_accumulation_steps,
572
+ eval_accumulation_steps = eval_accumulation_steps,
573
+ eval_delay = eval_delay,
574
+ torch_empty_cache_steps = torch_empty_cache_steps,
575
+ learning_rate = learning_rate,
576
+ weight_decay = weight_decay,
577
+ adam_beta1 = adam_beta1,
578
+ adam_beta2 = adam_beta2,
579
+ adam_epsilon = adam_epsilon,
580
+ max_grad_norm = max_grad_norm,
581
+ num_train_epochs = num_train_epochs,
582
+ max_steps = max_steps,
583
+ lr_scheduler_type = lr_scheduler_type,
584
+ warmup_ratio = warmup_ratio,
585
+ warmup_steps = warmup_steps,
586
+ log_level = log_level,
587
+ log_level_replica = log_level_replica,
588
+ log_on_each_node = log_on_each_node,
589
+ logging_dir = logging_dir,
590
+ logging_strategy = logging_strategy,
591
+ logging_first_step = logging_first_step,
592
+ logging_steps = logging_steps,
593
+ logging_nan_inf_filter = logging_nan_inf_filter,
594
+ save_strategy = save_strategy,
595
+ save_steps = save_steps,
596
+ save_total_limit = save_total_limit,
597
+ save_safetensors = save_safetensors,
598
+ save_on_each_node = save_on_each_node,
599
+ save_only_model = save_only_model,
600
+ restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
601
+ no_cuda = no_cuda,
602
+ use_cpu = use_cpu,
603
+ use_mps_device = use_mps_device,
604
+ seed = seed,
605
+ data_seed = data_seed,
606
+ jit_mode_eval = jit_mode_eval,
607
+ bf16 = bf16,
608
+ fp16 = fp16,
609
+ fp16_opt_level = fp16_opt_level,
610
+ half_precision_backend = half_precision_backend,
611
+ bf16_full_eval = bf16_full_eval,
612
+ fp16_full_eval = fp16_full_eval,
613
+ tf32 = tf32,
614
+ local_rank = local_rank,
615
+ ddp_backend = ddp_backend,
616
+ tpu_num_cores = tpu_num_cores,
617
+ tpu_metrics_debug = tpu_metrics_debug,
618
+ debug = debug,
619
+ dataloader_drop_last = dataloader_drop_last,
620
+ eval_steps = eval_steps,
621
+ dataloader_num_workers = dataloader_num_workers,
622
+ dataloader_prefetch_factor = dataloader_prefetch_factor,
623
+ past_index = past_index,
624
+ run_name = run_name,
625
+ disable_tqdm = disable_tqdm,
626
+ remove_unused_columns = remove_unused_columns,
627
+ label_names = label_names,
628
+ load_best_model_at_end = load_best_model_at_end,
629
+ metric_for_best_model = metric_for_best_model,
630
+ greater_is_better = greater_is_better,
631
+ ignore_data_skip = ignore_data_skip,
632
+ fsdp = fsdp,
633
+ fsdp_min_num_params = fsdp_min_num_params,
634
+ fsdp_config = fsdp_config,
635
+ fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
636
+ accelerator_config = accelerator_config,
637
+ parallelism_config = parallelism_config,
638
+ deepspeed = deepspeed,
639
+ label_smoothing_factor = label_smoothing_factor,
640
+ optim = optim,
641
+ optim_args = optim_args,
642
+ adafactor = adafactor,
643
+ group_by_length = group_by_length,
644
+ length_column_name = length_column_name,
645
+ report_to = report_to,
646
+ project = project,
647
+ trackio_space_id = trackio_space_id,
648
+ ddp_find_unused_parameters = ddp_find_unused_parameters,
649
+ ddp_bucket_cap_mb = ddp_bucket_cap_mb,
650
+ ddp_broadcast_buffers = ddp_broadcast_buffers,
651
+ dataloader_pin_memory = dataloader_pin_memory,
652
+ dataloader_persistent_workers = dataloader_persistent_workers,
653
+ skip_memory_metrics = skip_memory_metrics,
654
+ use_legacy_prediction_loop = use_legacy_prediction_loop,
655
+ push_to_hub = push_to_hub,
656
+ resume_from_checkpoint = resume_from_checkpoint,
657
+ hub_model_id = hub_model_id,
658
+ hub_strategy = hub_strategy,
659
+ hub_token = hub_token,
660
+ hub_private_repo = hub_private_repo,
661
+ hub_always_push = hub_always_push,
662
+ hub_revision = hub_revision,
663
+ gradient_checkpointing = gradient_checkpointing,
664
+ gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
665
+ include_inputs_for_metrics = include_inputs_for_metrics,
666
+ eval_do_concat_batches = eval_do_concat_batches,
667
+ fp16_backend = fp16_backend,
668
+ push_to_hub_model_id = push_to_hub_model_id,
669
+ push_to_hub_organization = push_to_hub_organization,
670
+ push_to_hub_token = push_to_hub_token,
671
+ mp_parameters = mp_parameters,
672
+ auto_find_batch_size = auto_find_batch_size,
673
+ full_determinism = full_determinism,
674
+ torchdynamo = torchdynamo,
675
+ ray_scope = ray_scope,
676
+ ddp_timeout = ddp_timeout,
677
+ torch_compile = torch_compile,
678
+ torch_compile_backend = torch_compile_backend,
679
+ torch_compile_mode = torch_compile_mode,
680
+ include_tokens_per_second = include_tokens_per_second,
681
+ include_num_input_tokens_seen = include_num_input_tokens_seen,
682
+ neftune_noise_alpha = neftune_noise_alpha,
683
+ optim_target_modules = optim_target_modules,
684
+ batch_eval_metrics = batch_eval_metrics,
685
+ eval_on_start = eval_on_start,
686
+ use_liger_kernel = use_liger_kernel,
687
+ liger_kernel_config = liger_kernel_config,
688
+ eval_use_gather_object = eval_use_gather_object,
689
+ average_tokens_across_devices = average_tokens_across_devices,
690
+ model_init_kwargs = model_init_kwargs,
691
+ ref_model_init_kwargs = ref_model_init_kwargs,
692
+ model_adapter_name = model_adapter_name,
693
+ ref_adapter_name = ref_adapter_name,
694
+ force_use_ref_model = force_use_ref_model,
695
+ disable_dropout = disable_dropout,
696
+ use_logits_to_keep = use_logits_to_keep,
697
+ dataset_num_proc = dataset_num_proc,
698
+ pad_token = pad_token,
699
+ label_pad_token_id = label_pad_token_id,
700
+ max_prompt_length = max_prompt_length,
701
+ max_completion_length = max_completion_length,
702
+ max_length = max_length,
703
+ truncation_mode = truncation_mode,
704
+ padding_free = padding_free,
705
+ precompute_ref_log_probs = precompute_ref_log_probs,
706
+ precompute_ref_batch_size = precompute_ref_batch_size,
707
+ tools = tools,
708
+ use_liger_loss = use_liger_loss,
709
+ base_model_attribute_name = base_model_attribute_name,
710
+ beta = beta,
711
+ f_alpha_divergence_coef = f_alpha_divergence_coef,
712
+ reference_free = reference_free,
713
+ label_smoothing = label_smoothing,
714
+ use_weighting = use_weighting,
715
+ rpo_alpha = rpo_alpha,
716
+ ld_alpha = ld_alpha,
717
+ discopop_tau = discopop_tau,
718
+ loss_weights = loss_weights,
719
+ sync_ref_model = sync_ref_model,
720
+ ref_model_mixup_alpha = ref_model_mixup_alpha,
721
+ ref_model_sync_steps = ref_model_sync_steps,
722
+ generate_during_eval = generate_during_eval,
723
+ padding_value = padding_value,**kwargs)
724
+ self.vllm_sampling_params = vllm_sampling_params
725
+ self.unsloth_num_chunks = unsloth_num_chunks
726
+ self.max_seq_length = max_seq_length
727
+ pass
728
+
729
+ class _UnslothDPOTrainer(BaseTrainer):
730
+ """"""
731
+
732
+ _tag_names = ["trl", "dpo"]
733
+ _name = "DPO"
734
+ _paper = {
735
+ "title": "Direct Preference Optimization: Your Language Model is Secretly a Reward Model",
736
+ "id": "2305.18290",
737
+ # docstyle-ignore
738
+ "citation": textwrap.dedent("""\
739
+ @inproceedings{rafailov2023direct,
740
+ title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
741
+ author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
742
+ year = 2023,
743
+ booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
744
+ url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
745
+ editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
746
+ }"""),
747
+ }
748
+
749
+ def __init__(
750
+ self,
751
+ model: Union[str, nn.Module, PreTrainedModel],
752
+ ref_model: Optional[Union[PreTrainedModel, nn.Module, str]] = None,
753
+ args: Optional[DPOConfig] = None,
754
+ data_collator: Optional[DataCollator] = None, # type: ignore
755
+ train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
756
+ eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None,
757
+ processing_class: Optional[
758
+ Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
759
+ ] = None,
760
+ compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None,
761
+ callbacks: Optional[list[TrainerCallback]] = None,
762
+ optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
763
+ optimizer_cls_and_kwargs: Optional[tuple[type[torch.optim.Optimizer], dict[str, Any]]] = None,
764
+ preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
765
+ peft_config: Optional["PeftConfig"] = None,
766
+ ):
767
+ # Args
768
+ if args is None:
769
+ model_name = model if isinstance(model, str) else model.config._name_or_path
770
+ model_name = model_name.split("/")[-1]
771
+ args = DPOConfig(f"{model_name}-DPO")
772
+
773
+ # Model and reference model
774
+ if isinstance(model, str):
775
+ model = create_model_from_path(model, **args.model_init_kwargs or {})
776
+ else:
777
+ if args.model_init_kwargs is not None:
778
+ logger.warning(
779
+ "You passed `model_init_kwargs` to the `DPOConfig`, but your model is already instantiated. "
780
+ "The `model_init_kwargs` will be ignored."
781
+ )
782
+ model_id = model.config._name_or_path
783
+ if isinstance(ref_model, str):
784
+ ref_model = create_model_from_path(ref_model, **args.ref_model_init_kwargs or {})
785
+ else:
786
+ if args.ref_model_init_kwargs is not None:
787
+ logger.warning(
788
+ "You passed `ref_model_init_kwargs` to the `DPOConfig`, but your model is already instantiated. "
789
+ "The `ref_model_init_kwargs` will be ignored."
790
+ )
791
+ if ref_model is model:
792
+ raise ValueError(
793
+ "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the "
794
+ "same as `model`, you can simply omit the `ref_model` argument and it will be created for you."
795
+ )
796
+
797
+ # Processing class
798
+ if processing_class is None:
799
+ processing_class = AutoProcessor.from_pretrained(model_id)
800
+
801
+ # Handle pad token for processors or tokenizers
802
+ if isinstance(processing_class, ProcessorMixin):
803
+ tokenizer = processing_class.tokenizer
804
+ self._is_vlm = True
805
+ elif isinstance(processing_class, PreTrainedTokenizerBase):
806
+ tokenizer = processing_class
807
+ self._is_vlm = False
808
+ else:
809
+ raise TypeError("The `processing_class` must be either a `PreTrainedTokenizerBase` or a `ProcessorMixin`")
810
+
811
+ # Get the pad token: if not provided, use the one from the processing class or the eos token
812
+ # if the processing class does not have a pad token.
813
+ if args.padding_value is not None: # deprecated, will be removed in 0.26.0.
814
+ warnings.warn(
815
+ "The `padding_value` argument is deprecated and will be removed in version 0.26.0. Please use "
816
+ "`pad_token` (str) instead."
817
+ )
818
+ self.pad_token_id = args.padding_value
819
+ else:
820
+ pad_token = args.pad_token or tokenizer.pad_token or tokenizer.eos_token
821
+ self.pad_token_id = tokenizer.convert_tokens_to_ids(pad_token)
822
+ if self.pad_token_id is None:
823
+ raise ValueError(
824
+ f"The specified `pad_token` ('{pad_token}') is not found in the vocabulary of the given "
825
+ f"`processing_class` ({processing_class.__class__.__name__}). Ensure that the `pad_token` exists "
826
+ "in the vocabulary before using it as a padding token."
827
+ )
828
+
829
+ # PEFT configuration and model wrapping
830
+ model = self._prepare_peft_model(model, ref_model, peft_config, args)
831
+
832
+ if args.generate_during_eval and not (is_wandb_available() or is_comet_available() or is_mlflow_available()):
833
+ raise ValueError(
834
+ "`generate_during_eval=True` requires Weights and Biases, MLFlow or Comet to be installed."
835
+ " Please install `wandb`, `mlflow` or `comet-ml` to resolve."
836
+ )
837
+
838
+ self.is_encoder_decoder = model.config.is_encoder_decoder
839
+ self.is_vision_model = model.config.model_type in MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES.keys()
840
+ self.is_peft_model = is_peft_available() and isinstance(model, PeftModel)
841
+ self.model_adapter_name = args.model_adapter_name
842
+ self.ref_adapter_name = args.ref_adapter_name
843
+ self.reference_free = args.reference_free
844
+
845
+ if ref_model:
846
+ self.ref_model = ref_model
847
+ elif self.is_peft_model or args.precompute_ref_log_probs:
848
+ # The `model` with adapters turned off will be used as the reference model
849
+ self.ref_model = None
850
+ else:
851
+ self.ref_model = create_reference_model(model)
852
+
853
+ # Disable dropout in the model and reference model
854
+ if args.disable_dropout:
855
+ disable_dropout_in_model(model)
856
+ if self.ref_model is not None:
857
+ disable_dropout_in_model(self.ref_model)
858
+
859
+ # Liger kernel
860
+ if args.use_liger_loss:
861
+ if not is_liger_kernel_available():
862
+ raise ImportError(
863
+ "You set `use_liger_loss=True` but the liger kernel is not available. "
864
+ "Please install liger-kernel first: `pip install liger-kernel`"
865
+ )
866
+ if args.loss_type not in ["sigmoid", "apo_zero", "apo_down", "sppo_hard", "nca_pair"]:
867
+ raise ValueError(
868
+ "You set `use_liger_loss=True` but the loss type is not from `[sigmoid, apo_zero, apo_down, sppo_hard, nca_pair`. "
869
+ "Please set `loss_type='[sigmoid | apo_zero | apo_down | sppo_hard | nca_pair]'` to use the liger kernel."
870
+ )
871
+ self.dpo_loss_fn = LigerFusedLinearDPOLoss(
872
+ ignore_index=args.label_pad_token_id,
873
+ beta=args.beta,
874
+ use_ref_model=not args.reference_free,
875
+ average_log_prob=False,
876
+ loss_type=args.loss_type,
877
+ )
878
+ # The trainer estimates the number of FLOPs [floating-point operations] using the number of elements in the
879
+ # input tensor associated with the key "input_ids". However, in DPO, the sampled data does not include the
880
+ # "input_ids" key. Instead, the available keys are "prompt_input_ids", "chosen_input_ids", and
881
+ # "rejected_input_ids". As a result, the trainer issues the warning: "Could not estimate the number of tokens
882
+ # of the input, floating-point operations will not be computed." To suppress this warning, we set the
883
+ # "estimate_tokens" key in the model's "warnings_issued" dictionary to True. This acts as a flag to indicate
884
+ # that the warning has already been issued.
885
+ model.warnings_issued["estimate_tokens"] = True
886
+
887
+ # Data collator
888
+ if data_collator is None:
889
+ data_collator = DataCollatorForPreference(pad_token_id=self.pad_token_id)
890
+
891
+ self.generate_during_eval = args.generate_during_eval
892
+ self.label_pad_token_id = args.label_pad_token_id
893
+ self.max_prompt_length = args.max_prompt_length
894
+ self.max_completion_length = args.max_completion_length
895
+ self.max_length = args.max_length
896
+ self.truncation_mode = args.truncation_mode
897
+ self.precompute_ref_log_probs = args.precompute_ref_log_probs
898
+ self.use_logits_to_keep = args.use_logits_to_keep
899
+
900
+ if args.padding_free:
901
+ if model.config._attn_implementation != "flash_attention_2":
902
+ logger.warning(
903
+ "Padding-free training is enabled, but the attention implementation is not set to "
904
+ "'flash_attention_2'. Padding-free training flattens batches into a single sequence, and "
905
+ "'flash_attention_2' is the only known attention mechanism that reliably supports this. Using "
906
+ "other implementations may lead to unexpected behavior. To ensure compatibility, set "
907
+ "`attn_implementation='flash_attention_2'` in the model configuration, or verify that your "
908
+ "attention mechanism can handle flattened sequences."
909
+ )
910
+ if args.per_device_train_batch_size == 1:
911
+ logger.warning(
912
+ "You are using a per_device_train_batch_size of 1 with padding-free training. Using a batch size "
913
+ "of 1 anihilate the benefits of padding-free training. Please consider increasing the batch size "
914
+ "to at least 2."
915
+ )
916
+ self.padding_free = args.padding_free
917
+
918
+ # Since ref_logs are precomputed on the first call to get_train/eval_dataloader
919
+ # keep track of first called to avoid computation of future calls
920
+ self._precomputed_train_ref_log_probs = False
921
+ self._precomputed_eval_ref_log_probs = False
922
+
923
+ self.beta = args.beta
924
+ self.label_smoothing = args.label_smoothing
925
+ self.loss_type = args.loss_type if isinstance(args.loss_type, list) else [args.loss_type]
926
+ self.loss_weights = args.loss_weights
927
+ self.aux_loss_enabled = getattr(model.config, "output_router_logits", False)
928
+ self.use_weighting = args.use_weighting
929
+ self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0)
930
+ if self.aux_loss_enabled and self.aux_loss_coef == 0.0:
931
+ logger.warning(
932
+ "You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to "
933
+ "`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value "
934
+ "greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary "
935
+ "loss.",
936
+ )
937
+ for loss_type in self.loss_type:
938
+ if (
939
+ loss_type in ["hinge", "ipo", "bco_pair", "sppo_hard", "nca_pair", "apo_zero", "apo_down"]
940
+ and args.label_smoothing > 0
941
+ ):
942
+ logger.warning(
943
+ f"You are using the {loss_type} loss type that does not support label smoothing. The "
944
+ "`label_smoothing` parameter will be ignored. Set `label_smoothing` to `0.0` to remove this "
945
+ "warning.",
946
+ )
947
+ if loss_type == "kto_pair":
948
+ raise ValueError("Support for kto_pair has been removed in DPOTrainer. Please use KTOTrainer.")
949
+
950
+ self._stored_metrics = defaultdict(lambda: defaultdict(list))
951
+ self.f_divergence_type = args.f_divergence_type
952
+ self.f_divergence_params = {FDivergenceConstants.ALPHA_DIVERGENCE_COEF_KEY: args.f_alpha_divergence_coef}
953
+ self.dataset_num_proc = args.dataset_num_proc
954
+
955
+ # Dataset preparation
956
+ train_dataset = self._prepare_dataset(train_dataset, processing_class, args, "train")
957
+ if eval_dataset is not None:
958
+ if isinstance(eval_dataset, dict):
959
+ eval_dataset = {
960
+ key: self._prepare_dataset(dataset, processing_class, args, key)
961
+ for key, dataset in eval_dataset.items()
962
+ }
963
+ else:
964
+ eval_dataset = self._prepare_dataset(eval_dataset, processing_class, args, "eval")
965
+
966
+ super().__init__(
967
+ model=model,
968
+ args=args,
969
+ data_collator=data_collator,
970
+ train_dataset=train_dataset,
971
+ eval_dataset=eval_dataset,
972
+ processing_class=processing_class,
973
+ compute_metrics=compute_metrics,
974
+ callbacks=callbacks,
975
+ optimizers=optimizers,
976
+ optimizer_cls_and_kwargs=optimizer_cls_and_kwargs,
977
+ preprocess_logits_for_metrics=preprocess_logits_for_metrics,
978
+ )
979
+
980
+ # Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
981
+ # model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
982
+ # self.model_accepts_loss_kwargs to False to enable scaling.
983
+ self.model_accepts_loss_kwargs = False
984
+
985
+ # Add tags for models that have been loaded with the correct transformers version
986
+ if hasattr(self.model, "add_model_tags"):
987
+ self.model.add_model_tags(self._tag_names)
988
+
989
+ if not hasattr(self, "accelerator"):
990
+ raise AttributeError(
991
+ "Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`."
992
+ )
993
+
994
+ # Deepspeed Zero-3 does not support precompute_ref_log_probs
995
+ if self.is_deepspeed_enabled:
996
+ if self.accelerator.state.deepspeed_plugin.zero_stage == 3 and self.precompute_ref_log_probs:
997
+ raise ValueError(
998
+ "You cannot use `precompute_ref_log_probs=True` with Deepspeed ZeRO-3. Please set `precompute_ref_log_probs=False`."
999
+ )
1000
+
1001
+ if self.ref_model is None:
1002
+ if not (self.is_peft_model or self.precompute_ref_log_probs):
1003
+ raise ValueError(
1004
+ "No reference model and model is not a Peft model. Try setting `precompute_ref_log_probs=True`"
1005
+ )
1006
+ if args.sync_ref_model:
1007
+ raise ValueError(
1008
+ "You currently cannot use `ref_model=None` with TR-DPO method. Please provide `ref_model`."
1009
+ )
1010
+ else:
1011
+ if self.is_deepspeed_enabled:
1012
+ self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator)
1013
+ elif self.is_fsdp_enabled:
1014
+ self.ref_model = prepare_fsdp(self.ref_model, self.accelerator)
1015
+ else:
1016
+ self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
1017
+
1018
+ if args.sync_ref_model:
1019
+ if self.precompute_ref_log_probs:
1020
+ raise ValueError(
1021
+ "You cannot use `precompute_ref_log_probs=True` with TR-DPO method. Please set `precompute_ref_log_probs=False`."
1022
+ )
1023
+
1024
+ self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator))
1025
+
1026
+ if "bco_pair" in self.loss_type:
1027
+ self.running = RunningMoments(self.accelerator)
1028
+
1029
+ @property
1030
+ def padding_value(self):
1031
+ warnings.warn(
1032
+ "The `padding_value` property is deprecated and will be removed in version 0.26.0. Please use "
1033
+ "`pad_token_id` instead.",
1034
+ )
1035
+ return self.pad_token_id
1036
+
1037
+ @padding_value.setter
1038
+ def padding_value(self, value):
1039
+ warnings.warn(
1040
+ "The `padding_value` property is deprecated and will be removed in version 0.26.0. Please use "
1041
+ "`pad_token_id` instead.",
1042
+ )
1043
+ self.pad_token_id = value
1044
+
1045
+ def _prepare_peft_model(
1046
+ self, model: PreTrainedModel, ref_model: PreTrainedModel, peft_config: Any, args: DPOConfig
1047
+ ) -> PreTrainedModel:
1048
+ """Prepares a model for PEFT training."""
1049
+ # Initialize this variable to False. This helps tracking the case when `peft_module_casting_to_bf16`
1050
+ # has been called in order to properly call autocast if needed.
1051
+ self._peft_has_been_casted_to_bf16 = False
1052
+
1053
+ if not is_peft_available() and peft_config is not None:
1054
+ raise ValueError(
1055
+ "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models"
1056
+ )
1057
+ elif is_peft_available() and peft_config is not None:
1058
+ # if model is a peft model and we have a peft_config, we merge and unload it first
1059
+ if isinstance(model, PeftModel):
1060
+ model = model.merge_and_unload()
1061
+
1062
+ if ref_model is not None and not args.force_use_ref_model:
1063
+ raise ValueError(
1064
+ "You passed both a ref_model and a peft_config. For training PEFT adapters with DPO there is no need to pass a reference"
1065
+ " model. Please pass `ref_model=None` in case you want to train PEFT adapters, or pass a ref_model with `force_use_ref_model=True` in DPOTrainer's init."
1066
+ " if you want to use a different ref_model."
1067
+ )
1068
+
1069
+ if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False):
1070
+ _support_gc_kwargs = hasattr(
1071
+ args, "gradient_checkpointing_kwargs"
1072
+ ) and "gradient_checkpointing_kwargs" in list(
1073
+ inspect.signature(prepare_model_for_kbit_training).parameters
1074
+ )
1075
+
1076
+ prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing}
1077
+
1078
+ if _support_gc_kwargs:
1079
+ prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs
1080
+
1081
+ model = prepare_model_for_kbit_training(model, **prepare_model_kwargs)
1082
+
1083
+ else:
1084
+ model = self._prepare_gradient_checkpointing(model, args)
1085
+
1086
+ # get peft model with the given config
1087
+ model = get_peft_model(model, peft_config)
1088
+ if args.bf16 and getattr(model, "is_loaded_in_4bit", False):
1089
+ peft_module_casting_to_bf16(model)
1090
+ # If args.bf16 we need to explicitly call `generate` with torch amp autocast context manager
1091
+ self._peft_has_been_casted_to_bf16 = True
1092
+
1093
+ else:
1094
+ model = self._prepare_gradient_checkpointing(model, args)
1095
+
1096
+ return model
1097
+
1098
+ def _prepare_gradient_checkpointing(self, model: PreTrainedModel, args: DPOConfig):
1099
+ """Prepare the gradienting checkpointing for the model."""
1100
+ # For models that use gradient_checkpointing, we need to attach a hook that enables input
1101
+ # to explicitly have `requires_grad=True`, otherwise training will either silently
1102
+ # fail or completely fail.
1103
+ if args.gradient_checkpointing:
1104
+ # For backward compatibility with older versions of transformers
1105
+ if hasattr(model, "enable_input_require_grads"):
1106
+ model.enable_input_require_grads()
1107
+ else:
1108
+
1109
+ def make_inputs_require_grad(module, input, output):
1110
+ output.requires_grad_(True)
1111
+
1112
+ model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
1113
+
1114
+ return model
1115
+
1116
+ def _prepare_dataset(
1117
+ self,
1118
+ dataset: Union[Dataset, IterableDataset],
1119
+ processing_class: Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin],
1120
+ args: DPOConfig,
1121
+ dataset_name: str,
1122
+ ) -> Union[Dataset, IterableDataset]:
1123
+ # Build the kwargs for the `map` function
1124
+ map_kwargs = {}
1125
+ if isinstance(dataset, Dataset): # IterableDataset does not support num_proc nor writer_batch_size
1126
+ map_kwargs["num_proc"] = args.dataset_num_proc
1127
+ map_kwargs["writer_batch_size"] = 10
1128
+
1129
+ with PartialState().main_process_first():
1130
+ # Extract prompt if needed
1131
+ if isinstance(dataset, Dataset): # `IterableDataset.map` does not support `desc`
1132
+ map_kwargs["desc"] = f"Extracting prompt in {dataset_name} dataset"
1133
+ dataset = dataset.map(maybe_extract_prompt, **map_kwargs)
1134
+
1135
+ # Apply the chat template if needed
1136
+ if isinstance(dataset, Dataset): # `IterableDataset.map` does not support `desc`
1137
+ map_kwargs["desc"] = f"Applying chat template to {dataset_name} dataset"
1138
+ dataset = dataset.map(
1139
+ maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class, "tools": args.tools}, **map_kwargs
1140
+ )
1141
+
1142
+ # Tokenize the dataset
1143
+ if isinstance(dataset, Dataset): # `IterableDataset.map` does not support `desc`
1144
+ map_kwargs["desc"] = f"Tokenizing {dataset_name} dataset"
1145
+
1146
+ dataset = dataset.map(
1147
+ self.tokenize_row if not self.is_vision_model else self.process_row,
1148
+ remove_columns=["chosen", "rejected"],
1149
+ fn_kwargs={
1150
+ "processing_class": processing_class,
1151
+ "max_prompt_length": args.max_prompt_length,
1152
+ "max_completion_length": args.max_completion_length,
1153
+ # for enc-dec, we add the special tokens ([bos_token] + prompt + [eos_token]; completion + [eos_token])
1154
+ "add_special_tokens": False,
1155
+ },
1156
+ **map_kwargs,
1157
+ )
1158
+
1159
+ return dataset
1160
+
1161
+ @staticmethod
1162
+ def tokenize_row(
1163
+ features: dict[str, str],
1164
+ processing_class: PreTrainedTokenizerBase,
1165
+ max_prompt_length: Optional[int] = None,
1166
+ max_completion_length: Optional[int] = None,
1167
+ add_special_tokens: bool = True,
1168
+ ) -> dict[str, list[int]]:
1169
+ """
1170
+ Tokenize a row of the dataset.
1171
+
1172
+ Args:
1173
+ features (`dict[str, str]`):
1174
+ Row of the dataset, should contain the keys `"prompt"`, `"chosen"`, and `"rejected"`.
1175
+ processing_class ([`~transformers.PreTrainedTokenizerBase`]):
1176
+ Processing class used to process the data.
1177
+ max_prompt_length (`int` or `None`):
1178
+ Maximum length of the prompt sequence. If `None`, the prompt sequence is not truncated.
1179
+ max_completion_length (`int` or `None`):
1180
+ Maximum length of the completion sequences. If `None`, the completion sequences are not truncated.
1181
+ add_special_tokens (`bool`):
1182
+ Whether to add special tokens to the sequences. Typically used for encoder-decoder models. If `True`,
1183
+ the prompt sequence will have a bos token prepended and an eos token appended. In any case, the
1184
+ completion sequences will have an eos token appended.
1185
+
1186
+ Returns:
1187
+ `dict[str, list[int]]`:
1188
+ Tokenized sequences with the keys `"prompt_input_ids"`, `"chosen_input_ids"`, and
1189
+ `"rejected_input_ids".
1190
+
1191
+ Example:
1192
+ ```python
1193
+ >>> from transformers import GPT2Tokenizer
1194
+
1195
+ >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
1196
+ >>> features = {"prompt": "The sky is", "chosen": " blue", "rejected": " green"}
1197
+ >>> DPOTrainer.tokenize_row(
1198
+ ... features, tokenizer, max_prompt_length=3, max_completion_length=3, add_special_tokens=False
1199
+ ... )
1200
+ {'prompt_input_ids': [464, 6766, 318], 'chosen_input_ids': [4171, 50256], 'rejected_input_ids': [4077, 50256]}
1201
+ ```
1202
+ """
1203
+ tokenizer = processing_class # the processing class is a tokenizer
1204
+ prompt_input_ids = tokenizer(features["prompt"], add_special_tokens=False)["input_ids"]
1205
+ chosen_input_ids = tokenizer(features["chosen"], add_special_tokens=False)["input_ids"]
1206
+ rejected_input_ids = tokenizer(features["rejected"], add_special_tokens=False)["input_ids"]
1207
+
1208
+ # Add special tokens (typically for encoder-decoder models)
1209
+ if add_special_tokens:
1210
+ if tokenizer.bos_token_id is not None:
1211
+ prompt_input_ids = [tokenizer.bos_token_id] + prompt_input_ids
1212
+ if tokenizer.eos_token_id is not None:
1213
+ prompt_input_ids = prompt_input_ids + [tokenizer.eos_token_id]
1214
+ chosen_input_ids = chosen_input_ids + [tokenizer.eos_token_id]
1215
+ rejected_input_ids = rejected_input_ids + [tokenizer.eos_token_id]
1216
+
1217
+ # Truncate prompt and completion sequences
1218
+ if max_prompt_length is not None:
1219
+ prompt_input_ids = prompt_input_ids[-max_prompt_length:]
1220
+ if max_completion_length is not None:
1221
+ chosen_input_ids = chosen_input_ids[:max_completion_length]
1222
+ rejected_input_ids = rejected_input_ids[:max_completion_length]
1223
+
1224
+ return {
1225
+ "prompt_input_ids": prompt_input_ids,
1226
+ "chosen_input_ids": chosen_input_ids,
1227
+ "rejected_input_ids": rejected_input_ids,
1228
+ }
1229
+
1230
+ @staticmethod
1231
+ def process_row(
1232
+ features: dict[str, str],
1233
+ processing_class: PreTrainedTokenizerBase,
1234
+ max_prompt_length: Optional[int] = None,
1235
+ max_completion_length: Optional[int] = None,
1236
+ add_special_tokens: bool = True,
1237
+ ) -> dict[str, list[int]]:
1238
+ """
1239
+ Same as `tokenize_row` but for vision models. Please refer to `tokenize_row` for more information.
1240
+ """
1241
+ processor, tokenizer = processing_class, processing_class.tokenizer # the processing class is a processor
1242
+ processed_features = processor(images=features["images"], text=features["prompt"], add_special_tokens=False)
1243
+
1244
+ prompt_input_ids = processed_features["input_ids"][0]
1245
+ pixel_values = processed_features["pixel_values"][0]
1246
+ chosen_input_ids = tokenizer(features["chosen"], add_special_tokens=False)["input_ids"]
1247
+ rejected_input_ids = tokenizer(features["rejected"], add_special_tokens=False)["input_ids"]
1248
+
1249
+ # Add special tokens (typically for encoder-decoder models)
1250
+ if add_special_tokens:
1251
+ if tokenizer.bos_token_id is not None:
1252
+ prompt_input_ids = [tokenizer.bos_token_id] + prompt_input_ids
1253
+ if tokenizer.eos_token_id is not None:
1254
+ prompt_input_ids = prompt_input_ids + [tokenizer.eos_token_id]
1255
+ chosen_input_ids = chosen_input_ids + [tokenizer.eos_token_id]
1256
+ rejected_input_ids = rejected_input_ids + [tokenizer.eos_token_id]
1257
+
1258
+ # Truncate prompt and completion sequences
1259
+ if max_prompt_length is not None:
1260
+ prompt_input_ids = prompt_input_ids[-max_prompt_length:]
1261
+ if max_completion_length is not None:
1262
+ chosen_input_ids = chosen_input_ids[:max_completion_length]
1263
+ rejected_input_ids = rejected_input_ids[:max_completion_length]
1264
+
1265
+ output = {
1266
+ "prompt_input_ids": prompt_input_ids,
1267
+ "pixel_values": pixel_values,
1268
+ "chosen_input_ids": chosen_input_ids,
1269
+ "rejected_input_ids": rejected_input_ids,
1270
+ }
1271
+
1272
+ if "pixel_attention_mask" in processed_features:
1273
+ output["pixel_attention_mask"] = processed_features["pixel_attention_mask"][0]
1274
+ if "image_sizes" in processed_features:
1275
+ output["image_sizes"] = processed_features["image_sizes"][0]
1276
+ if "token_type_ids" in processed_features:
1277
+ output["token_type_ids"] = processed_features["token_type_ids"][0]
1278
+
1279
+ return output
1280
+
1281
+ def _set_signature_columns_if_needed(self):
1282
+ # If `self.args.remove_unused_columns` is True, non-signature columns are removed.
1283
+ # By default, this method sets `self._signature_columns` to the model's expected inputs.
1284
+ # In DPOTrainer, we preprocess data, so using the model's signature columns doesn't work.
1285
+ # Instead, we set them to the columns expected by `DataCollatorForPreference`, hence the override.
1286
+ if self._signature_columns is None:
1287
+ self._signature_columns = [
1288
+ "prompt_input_ids",
1289
+ "chosen_input_ids",
1290
+ "rejected_input_ids",
1291
+ "image_sizes",
1292
+ "token_type_ids",
1293
+ "ref_chosen_logps",
1294
+ "ref_rejected_logps",
1295
+ ]
1296
+
1297
+ def get_train_dataloader(self) -> DataLoader:
1298
+ """
1299
+ Returns the training [`~torch.utils.data.DataLoader`].
1300
+
1301
+ Subclass of transformers.src.transformers.trainer.get_train_dataloader to precompute `ref_log_probs`.
1302
+ """
1303
+
1304
+ if self.precompute_ref_log_probs and not self._precomputed_train_ref_log_probs:
1305
+ batch_size = self.args.precompute_ref_batch_size or self.args.per_device_train_batch_size
1306
+ dataloader_params = {
1307
+ "batch_size": batch_size,
1308
+ "collate_fn": self.data_collator,
1309
+ "num_workers": self.args.dataloader_num_workers,
1310
+ "pin_memory": self.args.dataloader_pin_memory,
1311
+ "shuffle": False,
1312
+ }
1313
+
1314
+ # prepare dataloader
1315
+ data_loader = self.accelerator.prepare(DataLoader(self.train_dataset, **dataloader_params))
1316
+
1317
+ ref_chosen_logps = []
1318
+ ref_rejected_logps = []
1319
+ for padded_batch in tqdm(iterable=data_loader, desc="Train dataset reference log probs"):
1320
+ ref_chosen_logp, ref_rejected_logp = self.compute_ref_log_probs(padded_batch)
1321
+ ref_chosen_logp, ref_rejected_logp = self.accelerator.gather_for_metrics(
1322
+ (ref_chosen_logp, ref_rejected_logp)
1323
+ )
1324
+ ref_chosen_logps.append(ref_chosen_logp.cpu())
1325
+ ref_rejected_logps.append(ref_rejected_logp.cpu())
1326
+
1327
+ # Unnecessary cache clearing to avoid OOM
1328
+ empty_cache()
1329
+ self.accelerator.free_memory()
1330
+
1331
+ all_ref_chosen_logps = torch.cat(ref_chosen_logps).float().numpy()
1332
+ all_ref_rejected_logps = torch.cat(ref_rejected_logps).float().numpy()
1333
+
1334
+ self.train_dataset = self.train_dataset.add_column(name="ref_chosen_logps", column=all_ref_chosen_logps)
1335
+ self.train_dataset = self.train_dataset.add_column(
1336
+ name="ref_rejected_logps", column=all_ref_rejected_logps
1337
+ )
1338
+
1339
+ self._precomputed_train_ref_log_probs = True
1340
+
1341
+ return super().get_train_dataloader()
1342
+
1343
+ def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
1344
+ """
1345
+ Returns the evaluation [`~torch.utils.data.DataLoader`].
1346
+
1347
+ Subclass of transformers.src.transformers.trainer.get_eval_dataloader to precompute `ref_log_probs`.
1348
+
1349
+ Args:
1350
+ eval_dataset (`torch.utils.data.Dataset`, *optional*):
1351
+ If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted
1352
+ by the `model.forward()` method are automatically removed. It must implement `__len__`.
1353
+ """
1354
+ if eval_dataset is None and self.eval_dataset is None:
1355
+ raise ValueError("Trainer: evaluation requires an eval_dataset.")
1356
+ eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
1357
+
1358
+ if self.precompute_ref_log_probs and not self._precomputed_eval_ref_log_probs:
1359
+ batch_size = self.args.precompute_ref_batch_size or self.args.per_device_eval_batch_size
1360
+ dataloader_params = {
1361
+ "batch_size": batch_size,
1362
+ "collate_fn": self.data_collator,
1363
+ "num_workers": self.args.dataloader_num_workers,
1364
+ "pin_memory": self.args.dataloader_pin_memory,
1365
+ "shuffle": False,
1366
+ }
1367
+
1368
+ # prepare dataloader
1369
+ data_loader = self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params))
1370
+
1371
+ ref_chosen_logps = []
1372
+ ref_rejected_logps = []
1373
+ for padded_batch in tqdm(iterable=data_loader, desc="Eval dataset reference log probs"):
1374
+ ref_chosen_logp, ref_rejected_logp = self.compute_ref_log_probs(padded_batch)
1375
+ ref_chosen_logp, ref_rejected_logp = self.accelerator.gather_for_metrics(
1376
+ (ref_chosen_logp, ref_rejected_logp)
1377
+ )
1378
+ ref_chosen_logps.append(ref_chosen_logp.cpu())
1379
+ ref_rejected_logps.append(ref_rejected_logp.cpu())
1380
+
1381
+ all_ref_chosen_logps = torch.cat(ref_chosen_logps).float().numpy()
1382
+ all_ref_rejected_logps = torch.cat(ref_rejected_logps).float().numpy()
1383
+
1384
+ eval_dataset = eval_dataset.add_column(name="ref_chosen_logps", column=all_ref_chosen_logps)
1385
+ eval_dataset = eval_dataset.add_column(name="ref_rejected_logps", column=all_ref_rejected_logps)
1386
+
1387
+ # Save calculated ref_chosen_logps and ref_rejected_logps to the eval_dataset for subsequent runs
1388
+ if self.eval_dataset is not None:
1389
+ self.eval_dataset = eval_dataset
1390
+ self._precomputed_eval_ref_log_probs = True
1391
+
1392
+ return super().get_eval_dataloader(eval_dataset=eval_dataset)
1393
+
1394
+ @contextmanager
1395
+ def null_ref_context(self):
1396
+ """Context manager for handling null reference model (that is, peft adapter manipulation)."""
1397
+ with (
1398
+ self.accelerator.unwrap_model(self.model).disable_adapter()
1399
+ if self.is_peft_model and not self.ref_adapter_name
1400
+ else nullcontext()
1401
+ ):
1402
+ if self.ref_adapter_name:
1403
+ self.model.set_adapter(self.ref_adapter_name)
1404
+ yield
1405
+ if self.ref_adapter_name:
1406
+ self.model.set_adapter(self.model_adapter_name or "default")
1407
+
1408
+ def compute_ref_log_probs(self, batch: dict[str, torch.LongTensor]) -> tuple[torch.Tensor, torch.Tensor]:
1409
+ """Computes log probabilities of the reference model for a single padded batch of a DPO specific dataset."""
1410
+ compte_ref_context_manager = (
1411
+ autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext()
1412
+ )
1413
+ with torch.no_grad(), compte_ref_context_manager:
1414
+ if self.ref_model is None:
1415
+ with self.null_ref_context():
1416
+ ref_model_output = self.concatenated_forward(self.model, batch, is_ref_model=True)
1417
+ else:
1418
+ ref_model_output = self.concatenated_forward(self.ref_model, batch, is_ref_model=True)
1419
+ return ref_model_output["chosen_logps"], ref_model_output["rejected_logps"]
1420
+
1421
+ @staticmethod
1422
+ def concatenated_inputs(
1423
+ batch: dict[str, Union[list, torch.LongTensor]], padding_value: int
1424
+ ) -> dict[str, torch.LongTensor]:
1425
+ """
1426
+ Concatenate the `chosen` and `rejected` inputs from the batch into a single tensor for both the prompt and
1427
+ completion sequences.
1428
+
1429
+ Args:
1430
+ batch (`dict[str, Union[list, torch.LongTensor]]`):
1431
+ A batch of input data. The batch must contain the following keys:
1432
+
1433
+ - `"prompt_input_ids"`: Tensor of shape `(batch_size, prompt_length)` representing the prompt input
1434
+ IDs.
1435
+ - `"chosen_input_ids"`: Tensor of shape `(batch_size, chosen_length)` representing the chosen
1436
+ completion input IDs.
1437
+ - `"rejected_input_ids"`: Tensor of shape `(batch_size, rejected_length)` representing the rejected
1438
+ completion input IDs.
1439
+ - `"prompt_pixel_values"` (optional): Tensor for pixel values, if available.
1440
+ - `"prompt_pixel_attention_mask"` (optional): Tensor for pixel attention masks, if available.
1441
+
1442
+ padding_value (`int`):
1443
+ The padding value to use for the concatenated completion sequences (`chosen_input_ids` and
1444
+ `rejected_input_ids`).
1445
+
1446
+ Returns:
1447
+ `dict[str, torch.LongTensor]`: A dictionary containing:
1448
+
1449
+ - `"prompt_input_ids"`: Concatenated prompt input IDs of shape `(2 * batch_size, prompt_length)`.
1450
+ - `"completion_input_ids"`: Concatenated chosen and rejected completion input IDs of shape `(2 *
1451
+ batch_size, max_completion_length)`.
1452
+ - `"prompt_attention_mask"`: Concatenated prompt attention masks of shape `(2 * batch_size,
1453
+ prompt_length)`.
1454
+ - `"completion_attention_mask"`: Concatenated chosen and rejected attention masks of shape `(2 *
1455
+ batch_size, max_completion_length)`.
1456
+ - `"pixel_values"` (optional): Concatenated pixel values if `"prompt_pixel_values"` are present.
1457
+ - `"pixel_attention_mask"` (optional): Concatenated pixel attention masks if
1458
+ `"prompt_pixel_attention_mask"` are present.
1459
+
1460
+ Notes:
1461
+ The completion input IDs and attention masks are padded to the maximum completion length of the chosen or
1462
+ rejected sequences.
1463
+ """
1464
+ output = {}
1465
+
1466
+ # For the prompt, the input_ids are the same for both the chosen and rejected responses
1467
+ output["prompt_input_ids"] = torch.cat([batch["prompt_input_ids"], batch["prompt_input_ids"]], dim=0)
1468
+ output["prompt_attention_mask"] = torch.cat(
1469
+ [batch["prompt_attention_mask"], batch["prompt_attention_mask"]], dim=0
1470
+ )
1471
+ if "pixel_values" in batch:
1472
+ output["pixel_values"] = torch.cat([batch["pixel_values"], batch["pixel_values"]], dim=0)
1473
+
1474
+ if "pixel_attention_mask" in batch:
1475
+ output["pixel_attention_mask"] = torch.cat(
1476
+ [batch["pixel_attention_mask"], batch["pixel_attention_mask"]], dim=0
1477
+ )
1478
+ if "image_sizes" in batch:
1479
+ output["image_sizes"] = torch.cat([batch["image_sizes"], batch["image_sizes"]], dim=0)
1480
+ if "token_type_ids" in batch:
1481
+ output["token_type_ids"] = torch.cat((batch["token_type_ids"], batch["token_type_ids"]))
1482
+
1483
+ # Concatenate the chosen and rejected completions
1484
+ max_completion_length = max(batch["chosen_input_ids"].shape[1], batch["rejected_input_ids"].shape[1])
1485
+ output["completion_input_ids"] = torch.cat(
1486
+ (
1487
+ pad_to_length(batch["chosen_input_ids"], max_completion_length, pad_value=padding_value),
1488
+ pad_to_length(batch["rejected_input_ids"], max_completion_length, pad_value=padding_value),
1489
+ ),
1490
+ )
1491
+ output["completion_attention_mask"] = torch.cat(
1492
+ (
1493
+ pad_to_length(batch["chosen_attention_mask"], max_completion_length, pad_value=0),
1494
+ pad_to_length(batch["rejected_attention_mask"], max_completion_length, pad_value=0),
1495
+ ),
1496
+ )
1497
+
1498
+ return output
1499
+
1500
+ def dpo_loss(
1501
+ self,
1502
+ chosen_logps: torch.FloatTensor,
1503
+ rejected_logps: torch.FloatTensor,
1504
+ ref_chosen_logps: torch.FloatTensor,
1505
+ ref_rejected_logps: torch.FloatTensor,
1506
+ loss_type: str = "sigmoid",
1507
+ model_output: dict[str, torch.FloatTensor] = None,
1508
+ ) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
1509
+ """
1510
+ Compute the DPO loss for a batch of policy and reference model log probabilities.
1511
+
1512
+ Args:
1513
+ chosen_logps (`torch.FloatTensor`):
1514
+ Log probabilities of the model for the chosen responses. Shape: `(batch_size,)`.
1515
+ rejected_logps (`torch.FloatTensor`):
1516
+ Log probabilities of the model for the rejected responses. Shape: `(batch_size,)`.
1517
+ ref_chosen_logps (`torch.FloatTensor`):
1518
+ Log probabilities of the reference model for the chosen responses. Shape: `(batch_size,)`.
1519
+ ref_rejected_logps (`torch.FloatTensor`):
1520
+ Log probabilities of the reference model for the rejected responses. Shape: `(batch_size,)`.
1521
+ loss_type (`str`, defaults to `"sigmoid"`):
1522
+ The type of loss to compute. One of:
1523
+ - `"sigmoid"`: Sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper.
1524
+ - `"hinge"`: Hinge loss on the normalized likelihood from the
1525
+ [SLiC](https://huggingface.co/papers/2305.10425) paper.
1526
+ - `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper.
1527
+ - `"exo_pair"`: Pairwise EXO loss from the [EXO](https://huggingface.co/papers/2402.00856) paper.
1528
+ - `"nca_pair"`: Pairwise NCA loss from the [NCA](https://huggingface.co/papers/2402.05369) paper.
1529
+ - `"robust"`: Unbiased estimate of the DPO loss that is robust to preference noise from the [Robust
1530
+ DPO](https://huggingface.co/papers/2403.00409) paper.
1531
+ - `"bco_pair"`: Pairwise BCO loss from the [BCO](https://huggingface.co/papers/2404.04656) paper.
1532
+ - `"sppo_hard"`: SPPO loss with hard label from the [SPPO](https://huggingface.co/papers/2405.00675)
1533
+ paper.
1534
+ - `"aot"`: AOT loss for paired datasets from the [AOT](https://huggingface.co/papers/2406.05882) paper.
1535
+ - `"aot_pair"`: AOT loss for unpaired datasets from the [AOT](https://huggingface.co/papers/2406.05882)
1536
+ paper.
1537
+ - `"discopop"`: DiscoPOP (a.k.a Log-Ratio Modulated Loss, LRML) loss from the
1538
+ [DiscoPOP](https://huggingface.co/papers/2406.08414) paper.
1539
+ - `"apo_zero"`: APO-zero loss from the [APO](https://huggingface.co/papers/2408.06266) paper.
1540
+ - `"apo_down"`: APO-down loss from the [APO](https://huggingface.co/papers/2408.06266) paper.
1541
+ - `"sft"`: Negative log-likelihood loss (standard supervised fine-tuning loss).
1542
+ model_output (`dict[str, torch.FloatTensor]`, *optional*):
1543
+ The output of the model's forward pass. This is used to compute auxiliary losses if enabled.
1544
+
1545
+ Returns:
1546
+ A tuple of three tensors: `(losses, chosen_rewards, rejected_rewards)`. The losses tensor contains the DPO
1547
+ loss for each example in the batch. The `chosen_rewards` and `rejected_rewards` tensors contain the rewards
1548
+ for the chosen and rejected responses, respectively.
1549
+ """
1550
+ device = self.accelerator.device
1551
+
1552
+ # Get the log ratios for the chosen and rejected responses
1553
+ chosen_logratios = chosen_logps.to(device) - (not self.reference_free) * ref_chosen_logps.to(device)
1554
+ rejected_logratios = rejected_logps.to(device) - (not self.reference_free) * ref_rejected_logps.to(device)
1555
+
1556
+ if self.f_divergence_type == FDivergenceType.ALPHA_DIVERGENCE:
1557
+ # The alpha-divergence formula: (1 - u^-alpha) / alpha
1558
+ # The divergence difference between the chosen and rejected sample is:
1559
+ # (1 - u[w]^-alpha) / alpha - (1 - u[l]^-alpha) / alpha
1560
+ # = (u[l]^-alpha - u[w]^-alpha) / alpha
1561
+ # where u[w] and u[l] are the policy/reference probability ratios
1562
+ # for the chosen and rejected samples, respectively.
1563
+ alpha_coef = FDivergenceConstants.ALPHA_DIVERGENCE_COEF_DEFAULT
1564
+ if self.f_divergence_params and FDivergenceConstants.ALPHA_DIVERGENCE_COEF_KEY in self.f_divergence_params:
1565
+ alpha_coef = float(self.f_divergence_params[FDivergenceConstants.ALPHA_DIVERGENCE_COEF_KEY])
1566
+ logits = (cap_exp(rejected_logratios * -alpha_coef) - cap_exp(chosen_logratios * -alpha_coef)) / alpha_coef
1567
+ else:
1568
+ logratios = chosen_logps - rejected_logps
1569
+ if self.reference_free:
1570
+ ref_logratios = torch.tensor([0], dtype=logratios.dtype, device=logratios.device)
1571
+ else:
1572
+ ref_logratios = ref_chosen_logps - ref_rejected_logps
1573
+
1574
+ logratios = logratios.to(self.accelerator.device)
1575
+ ref_logratios = ref_logratios.to(self.accelerator.device)
1576
+ logits = logratios - ref_logratios
1577
+
1578
+ if self.f_divergence_type == FDivergenceType.JS_DIVERGENCE:
1579
+ # The js-divergence formula: log(2 * u / (1 + u))
1580
+ # The divergence difference between the chosen and rejected sample is:
1581
+ # log(2 * u[w] / (1 + u[w])) - log(2 * u[l] / (1 + u[l]))
1582
+ # = log(u[w]) - log(u[l]) - (log(1 + u[w]) - log(1 + u[l]))
1583
+ # where u[w] and u[l] are the policy/reference probability ratios
1584
+ # for the chosen and rejected samples, respectively.
1585
+ logits -= F.softplus(chosen_logratios) - F.softplus(rejected_logratios)
1586
+
1587
+ # The beta is a temperature parameter for the DPO loss, typically something in the range of 0.1 to 0.5.
1588
+ # We ignore the reference model as beta -> 0. The label_smoothing parameter encodes our uncertainty about the
1589
+ # labels and calculates a conservative DPO loss.
1590
+ if loss_type == "sigmoid":
1591
+ losses = (
1592
+ -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
1593
+ - F.logsigmoid(-self.beta * logits) * self.label_smoothing
1594
+ )
1595
+
1596
+ elif loss_type == "robust":
1597
+ losses = (
1598
+ -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
1599
+ + F.logsigmoid(-self.beta * logits) * self.label_smoothing
1600
+ ) / (1 - 2 * self.label_smoothing)
1601
+
1602
+ elif loss_type == "exo_pair":
1603
+ # eqn (16) of the EXO paper: https://huggingface.co/papers/2402.00856
1604
+ import math
1605
+
1606
+ if self.label_smoothing == 0:
1607
+ self.label_smoothing = 1e-3
1608
+ losses = (self.beta * logits).sigmoid() * (
1609
+ F.logsigmoid(self.beta * logits) - math.log(1 - self.label_smoothing)
1610
+ ) + (-self.beta * logits).sigmoid() * (F.logsigmoid(-self.beta * logits) - math.log(self.label_smoothing))
1611
+
1612
+ elif loss_type == "hinge":
1613
+ losses = torch.relu(1 - self.beta * logits)
1614
+
1615
+ elif loss_type == "ipo":
1616
+ # eqn (17) of the paper where beta is the regularization parameter for the IPO loss, denoted by tau in the paper.
1617
+ losses = (logits - 1 / (2 * self.beta)) ** 2
1618
+
1619
+ elif loss_type == "bco_pair":
1620
+ chosen_logratios = chosen_logps - ref_chosen_logps
1621
+ rejected_logratios = rejected_logps - ref_rejected_logps
1622
+ chosen_rewards = self.beta * chosen_logratios
1623
+ rejected_rewards = self.beta * rejected_logratios
1624
+ rewards = torch.cat((chosen_rewards, rejected_rewards), 0).mean().detach()
1625
+ self.running.update(rewards)
1626
+ delta = self.running.mean
1627
+ losses = -F.logsigmoid((self.beta * chosen_logratios) - delta) - F.logsigmoid(
1628
+ -(self.beta * rejected_logratios - delta)
1629
+ )
1630
+
1631
+ elif loss_type == "sppo_hard":
1632
+ # In the paper (https://huggingface.co/papers/2405.00675), SPPO employs a soft probability approach,
1633
+ # estimated using the PairRM score. The probability calculation is conducted outside of the trainer class.
1634
+ # The version described here is the hard probability version, where P in Equation (4.7) of Algorithm 1 is
1635
+ # set to 1 for the winner and 0 for the loser.
1636
+ a = chosen_logps - ref_chosen_logps
1637
+ b = rejected_logps - ref_rejected_logps
1638
+ losses = (a - 0.5 / self.beta) ** 2 + (b + 0.5 / self.beta) ** 2
1639
+
1640
+ elif loss_type == "nca_pair":
1641
+ chosen_rewards = (chosen_logps - ref_chosen_logps) * self.beta
1642
+ rejected_rewards = (rejected_logps - ref_rejected_logps) * self.beta
1643
+ losses = (
1644
+ -F.logsigmoid(chosen_rewards)
1645
+ - 0.5 * F.logsigmoid(-chosen_rewards)
1646
+ - 0.5 * F.logsigmoid(-rejected_rewards)
1647
+ )
1648
+
1649
+ elif loss_type == "aot_pair":
1650
+ chosen_logratios = chosen_logps - ref_chosen_logps
1651
+ rejected_logratios = rejected_logps - ref_rejected_logps
1652
+ chosen_logratios_sorted, _ = torch.sort(chosen_logratios, dim=0)
1653
+ rejected_logratios_sorted, _ = torch.sort(rejected_logratios, dim=0)
1654
+ delta = chosen_logratios_sorted - rejected_logratios_sorted
1655
+ losses = (
1656
+ -F.logsigmoid(self.beta * delta) * (1 - self.label_smoothing)
1657
+ - F.logsigmoid(-self.beta * delta) * self.label_smoothing
1658
+ )
1659
+
1660
+ elif loss_type == "aot":
1661
+ logratios = chosen_logps - rejected_logps
1662
+ ref_logratios = ref_chosen_logps - ref_rejected_logps
1663
+ logratios_sorted, _ = torch.sort(logratios, dim=0)
1664
+ ref_logratios_sorted, _ = torch.sort(ref_logratios, dim=0)
1665
+ delta = logratios_sorted - ref_logratios_sorted
1666
+ losses = (
1667
+ -F.logsigmoid(self.beta * delta) * (1 - self.label_smoothing)
1668
+ - F.logsigmoid(-self.beta * delta) * self.label_smoothing
1669
+ )
1670
+
1671
+ elif loss_type == "apo_zero":
1672
+ # Eqn (7) of the APO paper (https://huggingface.co/papers/2408.06266)
1673
+ # Use this loss when you believe the chosen outputs are better than your model's default output
1674
+ losses_chosen = 1 - F.sigmoid(self.beta * chosen_logratios) # Increase chosen likelihood
1675
+ losses_rejected = F.sigmoid(self.beta * rejected_logratios) # Decrease rejected likelihood
1676
+ losses = losses_chosen + losses_rejected
1677
+
1678
+ elif loss_type == "apo_down":
1679
+ # Eqn (8) of the APO paper (https://huggingface.co/papers/2408.06266)
1680
+ # Use this loss when you believe the chosen outputs are worse than your model's default output.
1681
+ # Decrease chosen likelihood and decrease rejected likelihood more
1682
+ losses_chosen = F.sigmoid(self.beta * chosen_logratios)
1683
+ losses_rejected = 1 - F.sigmoid(self.beta * (chosen_logratios - rejected_logratios))
1684
+ losses = losses_chosen + losses_rejected
1685
+
1686
+ elif loss_type == "discopop":
1687
+ # Eqn (5) of the DiscoPOP paper (https://huggingface.co/papers/2406.08414)
1688
+ # This loss was discovered with LLM discovery
1689
+ logratios = chosen_logps - rejected_logps
1690
+ ref_logratios = ref_chosen_logps - ref_rejected_logps
1691
+ logits = logratios - ref_logratios
1692
+ logits = logits * self.beta
1693
+ # Modulate the mixing coefficient based on the log ratio magnitudes
1694
+ log_ratio_modulation = torch.sigmoid(logits / self.args.discopop_tau)
1695
+ logistic_component = -F.logsigmoid(logits)
1696
+ exp_component = torch.exp(-logits)
1697
+ # Blend between logistic and exponential component based on log ratio modulation
1698
+ losses = logistic_component * (1 - log_ratio_modulation) + exp_component * log_ratio_modulation
1699
+
1700
+ elif loss_type == "sft":
1701
+ # SFT loss is the negative log likelihood loss on chosen responses
1702
+ # This acts as the generation loss component in MPO
1703
+ sft_loss = model_output["nll_loss"]
1704
+ # Create losses tensor with same shape as other losses (per-sample)
1705
+ batch_size = chosen_logps.shape[0]
1706
+ losses = sft_loss.expand(batch_size)
1707
+ # For SFT, we don't have preference rewards, so use zeros
1708
+ chosen_rewards = torch.zeros_like(chosen_logps)
1709
+ rejected_rewards = torch.zeros_like(rejected_logps)
1710
+
1711
+ else:
1712
+ raise ValueError(
1713
+ f"Unknown loss type: {self.loss_type}. Should be one of ['sigmoid', 'hinge', 'ipo', 'exo_pair', "
1714
+ "'nca_pair', 'robust', 'bco_pair', 'sppo_hard', 'aot', 'aot_pair', 'discopop', 'apo_zero', "
1715
+ "'apo_down', 'sft']"
1716
+ )
1717
+
1718
+ chosen_rewards = self.beta * (chosen_logps.to(device) - ref_chosen_logps.to(device)).detach()
1719
+ rejected_rewards = self.beta * (rejected_logps.to(device) - ref_rejected_logps.to(device)).detach()
1720
+
1721
+ return losses, chosen_rewards, rejected_rewards
1722
+
1723
+ def _compute_loss_liger(
1724
+ self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]]
1725
+ ) -> dict[str, torch.Tensor]:
1726
+ unwrapped_model = self.accelerator.unwrap_model(model)
1727
+ concatenated_batch = self.concatenated_inputs(batch, padding_value=self.pad_token_id)
1728
+
1729
+ model_kwargs = {}
1730
+ if self.aux_loss_enabled:
1731
+ model_kwargs["output_router_logits"] = True
1732
+
1733
+ # Add the pixel values and attention masks for vision models
1734
+ if "pixel_values" in concatenated_batch:
1735
+ model_kwargs["pixel_values"] = concatenated_batch["pixel_values"]
1736
+ if "pixel_attention_mask" in concatenated_batch:
1737
+ model_kwargs["pixel_attention_mask"] = concatenated_batch["pixel_attention_mask"]
1738
+ if "image_sizes" in concatenated_batch:
1739
+ model_kwargs["image_sizes"] = concatenated_batch["image_sizes"]
1740
+
1741
+ prompt_attention_mask = concatenated_batch["prompt_attention_mask"]
1742
+ completion_attention_mask = concatenated_batch["completion_attention_mask"]
1743
+
1744
+ if self.is_encoder_decoder:
1745
+ # 1. Get encoder outputs
1746
+ encoder_outputs = unwrapped_model.get_encoder()(
1747
+ concatenated_batch["prompt_input_ids"],
1748
+ attention_mask=concatenated_batch["prompt_attention_mask"],
1749
+ return_dict=True,
1750
+ )
1751
+ # 2. Prepare decoder inputs
1752
+ decoder_input_ids = shift_tokens_right(
1753
+ concatenated_batch["completion_input_ids"],
1754
+ unwrapped_model.config.decoder_start_token_id,
1755
+ )
1756
+ # 3. Get decoder outputs
1757
+ decoder_outputs = unwrapped_model.get_decoder()(
1758
+ input_ids=decoder_input_ids,
1759
+ attention_mask=concatenated_batch["completion_attention_mask"],
1760
+ encoder_hidden_states=encoder_outputs.last_hidden_state,
1761
+ encoder_attention_mask=concatenated_batch["prompt_attention_mask"],
1762
+ use_cache=False,
1763
+ )
1764
+ hidden_states = decoder_outputs.last_hidden_state
1765
+
1766
+ ref_hidden_states = None
1767
+ if not self.reference_free and self.ref_model is not None:
1768
+ unwrapped_ref_model = self.accelerator.unwrap_model(self.ref_model)
1769
+ ref_encoder_outputs = unwrapped_ref_model.get_encoder()(
1770
+ concatenated_batch["prompt_input_ids"],
1771
+ attention_mask=concatenated_batch["prompt_attention_mask"],
1772
+ return_dict=True,
1773
+ )
1774
+ ref_decoder_outputs = unwrapped_ref_model.get_decoder()(
1775
+ input_ids=decoder_input_ids,
1776
+ attention_mask=concatenated_batch["completion_attention_mask"],
1777
+ encoder_hidden_states=ref_encoder_outputs.last_hidden_state,
1778
+ encoder_attention_mask=concatenated_batch["prompt_attention_mask"],
1779
+ use_cache=False,
1780
+ )
1781
+ ref_hidden_states = ref_decoder_outputs.last_hidden_state
1782
+ elif not self.reference_free:
1783
+ with self.null_ref_context():
1784
+ ref_encoder_outputs = unwrapped_model.get_encoder()(
1785
+ concatenated_batch["prompt_input_ids"],
1786
+ attention_mask=concatenated_batch["prompt_attention_mask"],
1787
+ return_dict=True,
1788
+ )
1789
+ ref_decoder_outputs = unwrapped_model.get_decoder()(
1790
+ input_ids=decoder_input_ids,
1791
+ attention_mask=concatenated_batch["completion_attention_mask"],
1792
+ encoder_hidden_states=ref_encoder_outputs.last_hidden_state,
1793
+ encoder_attention_mask=concatenated_batch["prompt_attention_mask"],
1794
+ use_cache=False,
1795
+ )
1796
+ ref_hidden_states = ref_decoder_outputs.last_hidden_state
1797
+
1798
+ labels = concatenated_batch["completion_input_ids"]
1799
+ loss_mask = completion_attention_mask.bool()
1800
+ else:
1801
+ # For decoder-only models
1802
+ input_ids = torch.cat(
1803
+ (concatenated_batch["prompt_input_ids"], concatenated_batch["completion_input_ids"]), dim=1
1804
+ )
1805
+ attention_mask = torch.cat(
1806
+ (concatenated_batch["prompt_attention_mask"], concatenated_batch["completion_attention_mask"]),
1807
+ dim=1,
1808
+ )
1809
+ # Mask the prompt but not the completion for the loss
1810
+ loss_mask = torch.cat(
1811
+ (torch.zeros_like(prompt_attention_mask), completion_attention_mask),
1812
+ dim=1,
1813
+ )
1814
+
1815
+ # Flush and truncate
1816
+ if self.max_length is not None and self.max_length < attention_mask.size(1):
1817
+ if self.truncation_mode == "keep_start":
1818
+ # Flush left to reduce the memory usage
1819
+ # [[0, 0, x, x, x, x], -> [[x, x, x, x],
1820
+ # [0, x, x, x, 0, 0]] [x, x, x, 0]]
1821
+ attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
1822
+ attention_mask = attention_mask[:, : self.max_length]
1823
+ input_ids = input_ids[:, : self.max_length]
1824
+ loss_mask = loss_mask[:, : self.max_length]
1825
+ elif self.truncation_mode == "keep_end":
1826
+ # Flush right before truncating left, then flush left
1827
+ # [[0, 0, x, x, x, x], -> [[0, 0, x, x],
1828
+ # [0, x, x, x, 0, 0]] [0, x, x, x]]
1829
+ attention_mask, input_ids, loss_mask = flush_right(attention_mask, input_ids, loss_mask)
1830
+ input_ids = input_ids[:, -self.max_length :]
1831
+ attention_mask = attention_mask[:, -self.max_length :]
1832
+ loss_mask = loss_mask[:, -self.max_length :]
1833
+ attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
1834
+ else:
1835
+ raise ValueError(
1836
+ f"Unknown truncation mode: '{self.truncation_mode}'. Should be one of ['keep_end', "
1837
+ "'keep_start']."
1838
+ )
1839
+ else:
1840
+ # Flush left to reduce the memory usage
1841
+ # [[0, 0, x, x, x, x], -> [[x, x, x, x],
1842
+ # [0, x, x, x, 0, 0]] [x, x, x, 0]]
1843
+ attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
1844
+
1845
+ # Add logits_to_keep optimization
1846
+ if self.use_logits_to_keep:
1847
+ first_compute_index = loss_mask.nonzero(as_tuple=True)[1].min()
1848
+ logits_to_keep = (loss_mask.shape[1] - first_compute_index).item() + 1
1849
+ model_kwargs["logits_to_keep"] = logits_to_keep
1850
+
1851
+ model_kwargs["output_hidden_states"] = True
1852
+
1853
+ # Add padding-free training support
1854
+ if self.padding_free:
1855
+ input_ids = input_ids[attention_mask.bool()].unsqueeze(0)
1856
+ loss_mask = loss_mask[attention_mask.bool()].unsqueeze(0)
1857
+ position_ids = attention_mask.cumsum(1)[attention_mask.bool()].unsqueeze(0) - 1
1858
+ model_kwargs["position_ids"] = position_ids
1859
+ else:
1860
+ model_kwargs["attention_mask"] = attention_mask
1861
+
1862
+ # Get the base model outputs (before LM head)
1863
+ if hasattr(unwrapped_model, "get_decoder") and unwrapped_model.get_decoder() is not None:
1864
+ base_model = unwrapped_model.get_decoder()
1865
+ else:
1866
+ base_attr = getattr(unwrapped_model, "base_model_prefix", self.args.base_model_attribute_name)
1867
+ base_model = getattr(unwrapped_model, base_attr, unwrapped_model)
1868
+
1869
+ outputs = base_model(
1870
+ input_ids,
1871
+ use_cache=False,
1872
+ **model_kwargs,
1873
+ )
1874
+ hidden_states = outputs.last_hidden_state[:, :-1]
1875
+
1876
+ # Get reference hidden states if needed
1877
+ ref_hidden_states = None
1878
+ if not self.reference_free and self.ref_model is not None:
1879
+ unwrapped_ref_model = self.accelerator.unwrap_model(self.ref_model)
1880
+ if hasattr(unwrapped_ref_model, "get_decoder") and unwrapped_ref_model.get_decoder() is not None:
1881
+ ref_base_model = unwrapped_ref_model.get_decoder()
1882
+ else:
1883
+ ref_attr = getattr(unwrapped_ref_model, "base_model_prefix", self.args.base_model_attribute_name)
1884
+ ref_base_model = getattr(unwrapped_ref_model, ref_attr, unwrapped_ref_model)
1885
+
1886
+ ref_outputs = ref_base_model(
1887
+ input_ids,
1888
+ use_cache=False,
1889
+ **model_kwargs,
1890
+ )
1891
+ ref_hidden_states = ref_outputs.last_hidden_state[:, :-1]
1892
+ elif not self.reference_free:
1893
+ if hasattr(unwrapped_model, "get_decoder") and unwrapped_model.get_decoder() is not None:
1894
+ ref_base_model = unwrapped_model.get_decoder()
1895
+ else:
1896
+ ref_attr = getattr(unwrapped_model, "base_model_prefix", self.args.base_model_attribute_name)
1897
+ ref_base_model = getattr(unwrapped_model, ref_attr, unwrapped_model)
1898
+ with self.null_ref_context():
1899
+ ref_outputs = ref_base_model(
1900
+ input_ids,
1901
+ use_cache=False,
1902
+ **model_kwargs,
1903
+ )
1904
+ ref_hidden_states = ref_outputs.last_hidden_state[:, :-1]
1905
+
1906
+ masked_input_ids = torch.where(loss_mask != 0, input_ids, self.label_pad_token_id)
1907
+ labels = masked_input_ids[:, 1:] # Shift right for casual LM
1908
+
1909
+ # Get the LM head
1910
+ lm_head = unwrapped_model.get_output_embeddings()
1911
+
1912
+ # Get reference model weights if needed
1913
+ ref_weight = None
1914
+ ref_bias = None
1915
+ if not self.reference_free:
1916
+ if self.ref_model is not None:
1917
+ unwrapped_ref_model = self.accelerator.unwrap_model(self.ref_model)
1918
+ ref_lm_head = unwrapped_ref_model.get_output_embeddings()
1919
+ else:
1920
+ with self.null_ref_context():
1921
+ ref_lm_head = unwrapped_model.get_output_embeddings()
1922
+ ref_weight = ref_lm_head.weight
1923
+ ref_bias = ref_lm_head.bias if hasattr(ref_lm_head, "bias") else None
1924
+
1925
+ # Compute loss using Liger kernel
1926
+ loss_output = self.dpo_loss_fn(
1927
+ lm_head.weight,
1928
+ hidden_states,
1929
+ labels,
1930
+ bias=lm_head.bias if hasattr(lm_head, "bias") else None,
1931
+ ref_input=ref_hidden_states if not self.reference_free else None,
1932
+ ref_weight=ref_weight if not self.reference_free else None,
1933
+ ref_bias=ref_bias if not self.reference_free else None,
1934
+ )
1935
+ (
1936
+ loss,
1937
+ (chosen_logps, rejected_logps, chosen_logits_mean, rejected_logits_mean, nll_loss, *aux_outputs),
1938
+ ) = loss_output
1939
+
1940
+ output = {
1941
+ "loss": loss,
1942
+ "chosen_logps": chosen_logps,
1943
+ "rejected_logps": rejected_logps,
1944
+ "mean_chosen_logits": chosen_logits_mean,
1945
+ "mean_rejected_logits": rejected_logits_mean,
1946
+ "nll_loss": nll_loss,
1947
+ "chosen_rewards": aux_outputs[0],
1948
+ "rejected_rewards": aux_outputs[1],
1949
+ }
1950
+ if self.aux_loss_enabled:
1951
+ output["aux_loss"] = outputs.aux_loss
1952
+
1953
+ return output
1954
+
1955
+ def concatenated_forward(
1956
+ self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]], is_ref_model: bool = False
1957
+ ) -> dict[str, torch.Tensor]:
1958
+ """
1959
+ Runs the given model on the given batch of inputs, concatenating the chosen and rejected inputs together.
1960
+
1961
+ We do this to avoid doing two forward passes, because it's faster for FSDP.
1962
+
1963
+ Args:
1964
+ model:
1965
+ Model to run the forward pass on.
1966
+ batch:
1967
+ Batch of input data.
1968
+ is_ref_model:
1969
+ Whether this method is being called for the reference model. If `True`, length desensitization is not
1970
+ applied.
1971
+ """
1972
+ num_examples = batch["prompt_input_ids"].shape[0]
1973
+
1974
+ concatenated_batch = self.concatenated_inputs(batch, padding_value=self.pad_token_id)
1975
+
1976
+ model_kwargs = {"use_cache": False}
1977
+ if self.aux_loss_enabled:
1978
+ model_kwargs["output_router_logits"] = True
1979
+
1980
+ # Add the pixel values and attention masks for vision models
1981
+ if "pixel_values" in concatenated_batch:
1982
+ model_kwargs["pixel_values"] = concatenated_batch["pixel_values"]
1983
+ if "pixel_attention_mask" in concatenated_batch:
1984
+ model_kwargs["pixel_attention_mask"] = concatenated_batch["pixel_attention_mask"]
1985
+ if "image_sizes" in concatenated_batch:
1986
+ model_kwargs["image_sizes"] = concatenated_batch["image_sizes"]
1987
+
1988
+ prompt_input_ids = concatenated_batch["prompt_input_ids"]
1989
+ prompt_attention_mask = concatenated_batch["prompt_attention_mask"]
1990
+ completion_input_ids = concatenated_batch["completion_input_ids"]
1991
+ completion_attention_mask = concatenated_batch["completion_attention_mask"]
1992
+ if self.is_encoder_decoder:
1993
+ labels = completion_input_ids
1994
+ labels[completion_attention_mask == 0] = self.label_pad_token_id
1995
+ outputs = model(
1996
+ input_ids=prompt_input_ids,
1997
+ attention_mask=prompt_attention_mask,
1998
+ labels=labels, # we need the labels for the logits to be returned
1999
+ **model_kwargs,
2000
+ )
2001
+ logits = outputs.logits
2002
+ loss_mask = completion_attention_mask.bool()
2003
+ else:
2004
+ # Concatenate the prompt and completion inputs
2005
+ input_ids = torch.cat((prompt_input_ids, completion_input_ids), dim=1)
2006
+ attention_mask = torch.cat((prompt_attention_mask, completion_attention_mask), dim=1)
2007
+ if "token_type_ids" in concatenated_batch:
2008
+ prompt_token_type_ids = concatenated_batch["token_type_ids"]
2009
+ token_type_ids = pad_to_length(prompt_token_type_ids, input_ids.shape[1], 0)
2010
+ # Mask the prompt but not the completion for the loss
2011
+ loss_mask = torch.cat(
2012
+ (torch.zeros_like(prompt_attention_mask), completion_attention_mask),
2013
+ dim=1,
2014
+ )
2015
+
2016
+ # Flush and truncate
2017
+ if self.max_length is not None and self.max_length < attention_mask.size(1):
2018
+ if self.truncation_mode == "keep_start":
2019
+ # Flush left to reduce the memory usage
2020
+ # [[0, 0, x, x, x, x], -> [[x, x, x, x],
2021
+ # [0, x, x, x, 0, 0]] [x, x, x, 0]]
2022
+ if "token_type_ids" in concatenated_batch:
2023
+ attention_mask, input_ids, loss_mask, token_type_ids = flush_left(
2024
+ attention_mask, input_ids, loss_mask, token_type_ids
2025
+ )
2026
+ else:
2027
+ attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
2028
+ attention_mask = attention_mask[:, : self.max_length]
2029
+ input_ids = input_ids[:, : self.max_length]
2030
+ loss_mask = loss_mask[:, : self.max_length]
2031
+ elif self.truncation_mode == "keep_end":
2032
+ # Flush right before truncating left, then flush left
2033
+ # [[0, 0, x, x, x, x], -> [[0, 0, x, x],
2034
+ # [0, x, x, x, 0, 0]] [0, x, x, x]]
2035
+ if "token_type_ids" in concatenated_batch:
2036
+ attention_mask, input_ids, loss_mask, token_type_ids = flush_left(
2037
+ attention_mask, input_ids, loss_mask, token_type_ids
2038
+ )
2039
+ token_type_ids = token_type_ids[:, -self.max_length :]
2040
+ else:
2041
+ attention_mask, input_ids, loss_mask = flush_right(attention_mask, input_ids, loss_mask)
2042
+ input_ids = input_ids[:, -self.max_length :]
2043
+ attention_mask = attention_mask[:, -self.max_length :]
2044
+ loss_mask = loss_mask[:, -self.max_length :]
2045
+ if "token_type_ids" in concatenated_batch:
2046
+ attention_mask, input_ids, loss_mask, token_type_ids = flush_left(
2047
+ attention_mask, input_ids, loss_mask, token_type_ids
2048
+ )
2049
+ else:
2050
+ attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
2051
+ else:
2052
+ raise ValueError(
2053
+ f"Unknown truncation mode: '{self.truncation_mode}'. Should be one of ['keep_end', "
2054
+ "'keep_start']."
2055
+ )
2056
+ else:
2057
+ # Flush left to reduce the memory usage
2058
+ # [[0, 0, x, x, x, x], -> [[x, x, x, x],
2059
+ # [0, x, x, x, 0, 0]] [x, x, x, 0]]
2060
+ if "token_type_ids" in concatenated_batch:
2061
+ attention_mask, input_ids, loss_mask, token_type_ids = flush_left(
2062
+ attention_mask, input_ids, loss_mask, token_type_ids
2063
+ )
2064
+ else:
2065
+ attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
2066
+
2067
+ if "token_type_ids" in concatenated_batch:
2068
+ model_kwargs["token_type_ids"] = token_type_ids
2069
+
2070
+ if self.use_logits_to_keep:
2071
+ # Compute logits_to_keep based on loss_mask pattern:
2072
+ # [[0, 0, 0, x, x, x, x],
2073
+ # [0, 0, 0, x, x, x, 0]]
2074
+ # ^ start computing logits from here ([:, -(7-3+1):])
2075
+ first_compute_index = loss_mask.nonzero(as_tuple=True)[1].min()
2076
+ logits_to_keep = (loss_mask.shape[1] - first_compute_index).item() + 1 # +1 for the first label
2077
+ model_kwargs["logits_to_keep"] = logits_to_keep
2078
+
2079
+ model_kwargs["output_hidden_states"] = True
2080
+
2081
+ if self.padding_free:
2082
+ # Flatten the input_ids, position_ids, and loss_mask
2083
+ # input_ids = [[a, b, c, 0], -> input_ids = [[a, b, c, d, e, f, g]]
2084
+ # [d, e, f, g]] position_ids = [[0, 1, 2, 0, 1, 2, 3]]
2085
+ input_ids = input_ids[attention_mask.bool()].unsqueeze(0)
2086
+ loss_mask = loss_mask[attention_mask.bool()].unsqueeze(0)
2087
+ position_ids = attention_mask.cumsum(1)[attention_mask.bool()].unsqueeze(0) - 1
2088
+ model_kwargs["position_ids"] = position_ids
2089
+ else:
2090
+ model_kwargs["attention_mask"] = attention_mask
2091
+
2092
+ outputs = model(input_ids, **model_kwargs)
2093
+ logits = outputs.logits
2094
+
2095
+ # Offset the logits by one to align with the labels
2096
+ labels = torch.roll(input_ids, shifts=-1, dims=1)
2097
+ loss_mask = torch.roll(loss_mask, shifts=-1, dims=1).bool()
2098
+
2099
+ if self.use_logits_to_keep:
2100
+ # Align labels with logits
2101
+ # logits: -, -, [x2, x3, x4, x5, x6]
2102
+ # ^ --------- ^ after logits[:, :-1, :]
2103
+ # labels: [y0, y1, y2, y3, y4, y5, y6]
2104
+ # ^ --------- ^ with logits_to_keep=4, [:, -4:]
2105
+ # loss_mask: [0, 0, 0, 1, 1, 1, 1]
2106
+ labels = labels[:, -logits_to_keep:]
2107
+ loss_mask = loss_mask[:, -logits_to_keep:]
2108
+
2109
+ if logits.shape[:2] != labels.shape[:2]:
2110
+ # for LLaVA, the returned logits include the image tokens (placed before the text tokens)
2111
+ seq_len = labels.shape[1]
2112
+ logits = logits[:, -seq_len:]
2113
+
2114
+ # Compute the log probabilities of the labels
2115
+ labels[~loss_mask] = 0 # dummy token; we'll ignore the losses on these tokens later
2116
+ per_token_logps = selective_log_softmax(logits, labels)
2117
+ per_token_logps[~loss_mask] = 0
2118
+ per_token_logps = torch.roll(per_token_logps, shifts=1, dims=1)
2119
+
2120
+ if self.padding_free:
2121
+ # Unflatten the per_token_logps (shape: [1, sum_seq_len] -> [batch_size, seq_len])
2122
+ batch_size, seq_len = attention_mask.shape
2123
+ per_token_logps_ = torch.zeros(
2124
+ batch_size, seq_len, device=outputs.logits.device, dtype=outputs.logits.dtype
2125
+ )
2126
+ per_token_logps_[attention_mask.bool()] = per_token_logps
2127
+ per_token_logps = per_token_logps_
2128
+
2129
+ all_logps = per_token_logps[:, 1:].sum(-1)
2130
+
2131
+ output = {}
2132
+
2133
+ if self.use_weighting:
2134
+ with torch.no_grad():
2135
+ # Eq (2) of the WPO paper: https://huggingface.co/papers/2406.11827
2136
+ logprobs = F.log_softmax(logits, dim=-1)
2137
+ weights_adjustment_factor = torch.logsumexp(2 * logprobs, dim=-1) # same as sum(probs**2) in log space
2138
+ per_token_logps_adjusted = per_token_logps - weights_adjustment_factor
2139
+ all_weights = (per_token_logps_adjusted * loss_mask).sum(-1) / loss_mask.sum(-1)
2140
+ chosen_weights = all_weights[:num_examples]
2141
+ rejected_weights = all_weights[num_examples:]
2142
+ output["policy_weights"] = torch.clamp(torch.exp(chosen_weights + rejected_weights), max=1)
2143
+
2144
+ if self.args.rpo_alpha is not None or "sft" in self.loss_type:
2145
+ # Only use the chosen logits for the RPO loss or SFT loss
2146
+ chosen_logits = logits[:num_examples, :-1] if not self.is_encoder_decoder else logits[:num_examples]
2147
+ chosen_labels = labels[:num_examples, :-1] if not self.is_encoder_decoder else labels[:num_examples]
2148
+
2149
+ # Compute the log probabilities of the labels
2150
+ output["nll_loss"] = F.cross_entropy(
2151
+ torch.flatten(chosen_logits, end_dim=1), torch.flatten(chosen_labels, end_dim=1), ignore_index=0
2152
+ )
2153
+
2154
+ if "ipo" in self.loss_type:
2155
+ all_logps = all_logps / loss_mask.sum(-1)
2156
+
2157
+ if self.args.ld_alpha is not None and not is_ref_model:
2158
+ # Compute response lengths based on loss_mask
2159
+ completion_lengths = loss_mask.sum(dim=1)
2160
+
2161
+ chosen_lengths = completion_lengths[:num_examples]
2162
+ rejected_lengths = completion_lengths[num_examples:]
2163
+ public_lengths = torch.min(chosen_lengths, rejected_lengths) # l_p in the paper
2164
+ public_lengths = torch.cat([public_lengths, public_lengths], dim=0)
2165
+
2166
+ seq_len = per_token_logps.size(1)
2167
+ position_ids = torch.arange(seq_len, device=per_token_logps.device).expand_as(per_token_logps)
2168
+
2169
+ ld_mask = position_ids < public_lengths.unsqueeze(1)
2170
+ mask = position_ids < completion_lengths.unsqueeze(1)
2171
+
2172
+ front_mask = (ld_mask & mask).float()
2173
+ rear_mask = (~ld_mask & mask).float()
2174
+ front_logps = (per_token_logps * front_mask).sum(dim=1)
2175
+ rear_logps = (per_token_logps * rear_mask).sum(dim=1)
2176
+
2177
+ all_logps = front_logps + self.args.ld_alpha * rear_logps
2178
+
2179
+ output["chosen_logps"] = all_logps[:num_examples]
2180
+ output["rejected_logps"] = all_logps[num_examples:]
2181
+
2182
+ # Compute the mean logits
2183
+ if self.padding_free:
2184
+ # position_ids contains a sequence of range identifiers (e.g., [[0, 1, 2, 0, 1, 2, 3, ...]]).
2185
+ # There are 2*num_examples ranges in total: the first half corresponds to the chosen tokens,
2186
+ # and the second half to the rejected tokens.
2187
+ # To find the start of the rejected tokens, we look for the num_examples+1-th zero in pos_id.
2188
+ split_idx = (position_ids == 0).nonzero(as_tuple=True)[1][num_examples]
2189
+ mean_chosen_logits = logits[0, :split_idx][loss_mask[0, :split_idx]].mean()
2190
+ mean_rejected_logits = logits[0, split_idx:][loss_mask[0, split_idx:]].mean()
2191
+ else:
2192
+ mean_chosen_logits = logits[:num_examples][loss_mask[:num_examples]].mean()
2193
+ mean_rejected_logits = logits[num_examples:][loss_mask[num_examples:]].mean()
2194
+
2195
+ output["mean_chosen_logits"] = mean_chosen_logits
2196
+ output["mean_rejected_logits"] = mean_rejected_logits
2197
+
2198
+ if self.aux_loss_enabled:
2199
+ output["aux_loss"] = outputs.aux_loss
2200
+
2201
+ return output
2202
+
2203
+ def get_batch_loss_metrics(
2204
+ self,
2205
+ model: Union[PreTrainedModel, nn.Module],
2206
+ batch: dict[str, Union[list, torch.LongTensor]],
2207
+ train_eval: Literal["train", "eval"] = "train",
2208
+ ) -> tuple[torch.Tensor, dict[str, float]]:
2209
+ """Compute the DPO loss and other metrics for the given batch of inputs for train or test."""
2210
+ metrics = {}
2211
+
2212
+ if self.args.use_liger_loss:
2213
+ model_output = self._compute_loss_liger(model, batch)
2214
+ losses = model_output["loss"]
2215
+ chosen_rewards = model_output["chosen_rewards"]
2216
+ rejected_rewards = model_output["rejected_rewards"]
2217
+ else:
2218
+ model_output = self.concatenated_forward(model, batch)
2219
+
2220
+ # if ref_chosen_logps and ref_rejected_logps in batch use them, otherwise use the reference model
2221
+ if "ref_chosen_logps" in batch and "ref_rejected_logps" in batch:
2222
+ ref_chosen_logps = batch["ref_chosen_logps"]
2223
+ ref_rejected_logps = batch["ref_rejected_logps"]
2224
+ else:
2225
+ ref_chosen_logps, ref_rejected_logps = self.compute_ref_log_probs(batch)
2226
+
2227
+ # Initialize combined losses
2228
+ losses = 0
2229
+ chosen_rewards = 0
2230
+ rejected_rewards = 0
2231
+
2232
+ # Compute losses for each loss type
2233
+ for idx, loss_type in enumerate(self.loss_type):
2234
+ # Compute individual loss using standard DPO loss function
2235
+ _losses, _chosen_rewards, _rejected_rewards = self.dpo_loss(
2236
+ model_output["chosen_logps"],
2237
+ model_output["rejected_logps"],
2238
+ ref_chosen_logps,
2239
+ ref_rejected_logps,
2240
+ loss_type,
2241
+ model_output,
2242
+ )
2243
+
2244
+ # Add weighted contributions
2245
+ weight = self.loss_weights[idx] if self.loss_weights else 1.0
2246
+ losses = losses + _losses * weight
2247
+ chosen_rewards = chosen_rewards + _chosen_rewards * weight
2248
+ rejected_rewards = rejected_rewards + _rejected_rewards * weight
2249
+
2250
+ reward_accuracies = (chosen_rewards > rejected_rewards).float()
2251
+
2252
+ if self.args.rpo_alpha is not None:
2253
+ losses = losses + self.args.rpo_alpha * model_output["nll_loss"] # RPO loss from V3 of the paper
2254
+
2255
+ if self.use_weighting:
2256
+ losses = losses * model_output["policy_weights"]
2257
+
2258
+ if self.aux_loss_enabled:
2259
+ losses = losses + self.aux_loss_coef * model_output["aux_loss"]
2260
+
2261
+ prefix = "eval_" if train_eval == "eval" else ""
2262
+ metrics[f"{prefix}rewards/chosen"] = self.accelerator.gather_for_metrics(chosen_rewards).mean().item()
2263
+ metrics[f"{prefix}rewards/rejected"] = self.accelerator.gather_for_metrics(rejected_rewards).mean().item()
2264
+ metrics[f"{prefix}rewards/accuracies"] = self.accelerator.gather_for_metrics(reward_accuracies).mean().item()
2265
+ metrics[f"{prefix}rewards/margins"] = (
2266
+ self.accelerator.gather_for_metrics(chosen_rewards - rejected_rewards).mean().item()
2267
+ )
2268
+ metrics[f"{prefix}logps/chosen"] = (
2269
+ self.accelerator.gather_for_metrics(model_output["chosen_logps"]).detach().mean().item()
2270
+ )
2271
+ metrics[f"{prefix}logps/rejected"] = (
2272
+ self.accelerator.gather_for_metrics(model_output["rejected_logps"]).detach().mean().item()
2273
+ )
2274
+ metrics[f"{prefix}logits/chosen"] = (
2275
+ self.accelerator.gather_for_metrics(model_output["mean_chosen_logits"]).detach().mean().item()
2276
+ )
2277
+ metrics[f"{prefix}logits/rejected"] = (
2278
+ self.accelerator.gather_for_metrics(model_output["mean_rejected_logits"]).detach().mean().item()
2279
+ )
2280
+ if self.args.rpo_alpha is not None or "sft" in self.loss_type:
2281
+ metrics[f"{prefix}nll_loss"] = (
2282
+ self.accelerator.gather_for_metrics(model_output["nll_loss"]).detach().mean().item()
2283
+ )
2284
+ if self.aux_loss_enabled:
2285
+ metrics[f"{prefix}aux_loss"] = (
2286
+ self.accelerator.gather_for_metrics(model_output["aux_loss"]).detach().mean().item()
2287
+ )
2288
+
2289
+ return losses.mean(), metrics
2290
+
2291
+ def compute_loss(
2292
+ self,
2293
+ model: Union[PreTrainedModel, nn.Module],
2294
+ inputs: dict[str, Union[torch.Tensor, Any]],
2295
+ return_outputs=False,
2296
+ num_items_in_batch=None,
2297
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, float]]]:
2298
+ compute_loss_context_manager = (
2299
+ autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext()
2300
+ )
2301
+ with compute_loss_context_manager:
2302
+ loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="train")
2303
+
2304
+ # Make sure to move the loss to the device the original accumulating loss is at back in the `Trainer` class:
2305
+ loss = loss.to(self.args.device)
2306
+ # force log the metrics
2307
+ self.store_metrics(metrics, train_eval="train")
2308
+
2309
+ if return_outputs:
2310
+ return loss, metrics
2311
+
2312
+ return loss
2313
+
2314
+ def generate_from_model_and_ref(self, model, batch: dict[str, torch.LongTensor]) -> tuple[str, str]:
2315
+ """Generate samples from the model and reference model for the given batch of inputs."""
2316
+
2317
+ # If one uses `generate_during_eval` with peft + bf16, we need to explicitly call generate with
2318
+ # the torch amp context manager as some hidden states are silently casted to full precision.
2319
+ generate_context_manager = (
2320
+ autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext()
2321
+ )
2322
+
2323
+ with generate_context_manager:
2324
+ policy_output = model.generate(
2325
+ input_ids=batch["prompt_input_ids"],
2326
+ attention_mask=batch["prompt_attention_mask"],
2327
+ max_length=self.max_length,
2328
+ do_sample=True,
2329
+ pad_token_id=self.pad_token_id,
2330
+ )
2331
+
2332
+ # if ref_output in batch use that otherwise use the reference model
2333
+ if "ref_output" in batch:
2334
+ ref_output = batch["ref_output"]
2335
+ else:
2336
+ if self.ref_model is None:
2337
+ with self.null_ref_context():
2338
+ ref_output = self.model.generate(
2339
+ input_ids=batch["prompt_input_ids"],
2340
+ attention_mask=batch["prompt_attention_mask"],
2341
+ max_length=self.max_length,
2342
+ do_sample=True,
2343
+ pad_token_id=self.pad_token_id,
2344
+ )
2345
+ else:
2346
+ ref_output = self.ref_model.generate(
2347
+ input_ids=batch["prompt_input_ids"],
2348
+ attention_mask=batch["prompt_attention_mask"],
2349
+ max_length=self.max_length,
2350
+ do_sample=True,
2351
+ pad_token_id=self.pad_token_id,
2352
+ )
2353
+
2354
+ policy_output = pad_to_length(policy_output, self.max_length, self.pad_token_id)
2355
+ policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True)
2356
+
2357
+ ref_output = pad_to_length(ref_output, self.max_length, self.pad_token_id)
2358
+ ref_output_decoded = self.processing_class.batch_decode(ref_output, skip_special_tokens=True)
2359
+
2360
+ return policy_output_decoded, ref_output_decoded
2361
+
2362
+ def prediction_step(
2363
+ self,
2364
+ model: Union[PreTrainedModel, nn.Module],
2365
+ inputs: dict[str, Union[torch.Tensor, Any]],
2366
+ prediction_loss_only: bool,
2367
+ ignore_keys: Optional[list[str]] = None,
2368
+ ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
2369
+ if ignore_keys is None:
2370
+ if hasattr(model, "config"):
2371
+ ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", [])
2372
+ else:
2373
+ ignore_keys = []
2374
+
2375
+ prediction_context_manager = (
2376
+ autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext()
2377
+ )
2378
+
2379
+ with torch.no_grad(), prediction_context_manager:
2380
+ loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="eval")
2381
+
2382
+ # force log the metrics
2383
+ self.store_metrics(metrics, train_eval="eval")
2384
+
2385
+ if prediction_loss_only:
2386
+ return loss.detach(), None, None
2387
+
2388
+ # logits for the chosen and rejected samples from model
2389
+ logits_dict = {
2390
+ "eval_logits/chosen": metrics["eval_logits/chosen"],
2391
+ "eval_logits/rejected": metrics["eval_logits/rejected"],
2392
+ }
2393
+ logits = [v for k, v in logits_dict.items() if k not in ignore_keys]
2394
+ logits = torch.tensor(logits, device=self.accelerator.device)
2395
+ labels = torch.zeros(logits.shape[0], device=self.accelerator.device)
2396
+
2397
+ return (loss.detach(), logits, labels)
2398
+
2399
+ def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None:
2400
+ for key, value in metrics.items():
2401
+ self._stored_metrics[train_eval][key].append(value)
2402
+
2403
+ def evaluation_loop(
2404
+ self,
2405
+ dataloader: DataLoader,
2406
+ description: str,
2407
+ prediction_loss_only: Optional[bool] = None,
2408
+ ignore_keys: Optional[list[str]] = None,
2409
+ metric_key_prefix: str = "eval",
2410
+ ) -> EvalLoopOutput:
2411
+ """
2412
+ Overriding built-in evaluation loop to store metrics for each batch. Prediction/evaluation loop, shared by
2413
+ `Trainer.evaluate()` and `Trainer.predict()`.
2414
+
2415
+ Works both with or without labels.
2416
+ """
2417
+
2418
+ # Sample and save to game log if requested (for one batch to save time)
2419
+ if self.generate_during_eval:
2420
+ # Generate random indices within the range of the total number of samples
2421
+ num_samples = len(dataloader.dataset)
2422
+ random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size)
2423
+
2424
+ # Use dataloader.dataset.select to get the random batch without iterating over the DataLoader
2425
+ random_batch_dataset = dataloader.dataset.select(random_indices)
2426
+ random_batch = self.data_collator(random_batch_dataset)
2427
+ random_batch = self._prepare_inputs(random_batch)
2428
+
2429
+ policy_output_decoded, ref_output_decoded = self.generate_from_model_and_ref(self.model, random_batch)
2430
+
2431
+ table = pd.DataFrame(
2432
+ columns=["Prompt", "Policy", "Ref Model"],
2433
+ data=[
2434
+ [prompt, pol[len(prompt) :], ref[len(prompt) :]]
2435
+ for prompt, pol, ref in zip(
2436
+ random_batch_dataset["prompt"], policy_output_decoded, ref_output_decoded
2437
+ )
2438
+ ],
2439
+ )
2440
+ if "wandb" in self.args.report_to and self.accelerator.is_main_process:
2441
+ wandb.log({"game_log": wandb.Table(data=table)})
2442
+
2443
+ if "comet_ml" in self.args.report_to:
2444
+ log_table_to_comet_experiment(
2445
+ name="game_log.csv",
2446
+ table=table,
2447
+ )
2448
+
2449
+ if "mlflow" in self.args.report_to and self.accelerator.is_main_process:
2450
+ mlflow.log_table(data=table, artifact_file="game_log.json")
2451
+
2452
+ # Base evaluation
2453
+ initial_output = super().evaluation_loop(
2454
+ dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix
2455
+ )
2456
+
2457
+ return initial_output
2458
+
2459
+ def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
2460
+ """
2461
+ Log `logs` on the various objects watching training, including stored metrics.
2462
+
2463
+ Args:
2464
+ logs (`dict[str, float]`):
2465
+ The values to log.
2466
+ start_time (`float`, *optional*):
2467
+ Start time of the training.
2468
+ """
2469
+ # logs either has 'loss' or 'eval_loss'
2470
+ train_eval = "train" if "loss" in logs else "eval"
2471
+ # Add averaged stored metrics to logs
2472
+ for key, metrics in self._stored_metrics[train_eval].items():
2473
+ logs[key] = torch.tensor(metrics).mean().item()
2474
+ del self._stored_metrics[train_eval]
2475
+ return super().log(logs, start_time)
2476
+
2477
+ # Ensure the model card is saved along with the checkpoint
2478
+ def _save_checkpoint(self, model, trial):
2479
+ if self.args.hub_model_id is None:
2480
+ model_name = Path(self.args.output_dir).name
2481
+ else:
2482
+ model_name = self.args.hub_model_id.split("/")[-1]
2483
+ self.create_model_card(model_name=model_name)
2484
+ super()._save_checkpoint(model, trial)
2485
+ class UnslothDPOTrainer(_UnslothDPOTrainer):
2486
+ """
2487
+
2488
+ Trainer for Direct Preference Optimization (DPO) method.
2489
+
2490
+ This class is a wrapper around the [`transformers.Trainer`] class and inherits all of its attributes and methods.
2491
+
2492
+ Args:
2493
+ model (`Union[str, PreTrainedModel]`):
2494
+ Model to be trained. Can be either:
2495
+
2496
+ - A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a
2497
+ path to a *directory* containing model weights saved using
2498
+ [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
2499
+ using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in
2500
+ `args.model_init_kwargs`.
2501
+ - A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
2502
+ ref_model ([`PreTrainedModelWrapper`]):
2503
+ Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation
2504
+ and loss. If no reference model is provided, the trainer will create a reference model with the same
2505
+ architecture as the model to be optimized.
2506
+ args ([`DPOConfig`], *optional*):
2507
+ Configuration for this trainer. If `None`, a default configuration is used.
2508
+ data_collator ([`~transformers.DataCollator`], *optional*):
2509
+ Function to use to form a batch from a list of elements of the processed `train_dataset` or `eval_dataset`.
2510
+ Will default to [`DataCollatorForPreference`].
2511
+ train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
2512
+ Dataset to use for training. DPO supports [preference](#preference) type and. The format of the samples can
2513
+ be either:
2514
+
2515
+ - [Standard](dataset_formats#standard): Each sample contains plain text.
2516
+ - [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role
2517
+ and content).
2518
+ eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
2519
+ Dataset to use for evaluation. It must meet the same requirements as `train_dataset`.
2520
+ processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*):
2521
+ Processing class used to process the data. If `None`, the processing class is loaded from the model's name
2522
+ with [`~transformers.AutoTokenizer.from_pretrained`].
2523
+ compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
2524
+ The function that will be used to compute metrics at evaluation. Must take a [`EvalPrediction`] and return
2525
+ a dictionary string to metric values. *Note* When passing TrainingArgs with `batch_eval_metrics` set to
2526
+ `True`, your compute_metrics function must take a boolean `compute_result` argument. This will be triggered
2527
+ after the last eval batch to signal that the function needs to calculate and return the global summary
2528
+ statistics rather than accumulating the batch-level statistics.
2529
+ callbacks (list of [`~transformers.TrainerCallback`], *optional*):
2530
+ List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed
2531
+ in [here](https://huggingface.co/docs/transformers/main_classes/callback).
2532
+
2533
+ If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`]
2534
+ method.
2535
+ optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`):
2536
+ A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your
2537
+ model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
2538
+ optimizer_cls_and_kwargs (`Tuple[Type[torch.optim.Optimizer], Dict[str, Any]]`, *optional*):
2539
+ A tuple containing the optimizer class and keyword arguments to use. Overrides `optim` and `optim_args` in
2540
+ `args`. Incompatible with the `optimizers` argument.
2541
+ preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *optional*):
2542
+ A function that preprocess the logits right before caching them at each evaluation step. Must take two
2543
+ tensors, the logits and the labels, and return the logits once processed as desired. The modifications made
2544
+ by this function will be reflected in the predictions received by `compute_metrics`.
2545
+
2546
+ Note that the labels (second parameter) will be `None` if the dataset does not have them.
2547
+ peft_config ([`~peft.PeftConfig`], *optional*):
2548
+ PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
2549
+
2550
+ """
2551
+ def __init__(
2552
+ self,
2553
+ model,
2554
+ ref_model = None,
2555
+ args = None,
2556
+ data_collator = None,
2557
+ train_dataset = None,
2558
+ eval_dataset = None,
2559
+ processing_class = None,
2560
+ compute_metrics = None,
2561
+ callbacks = None,
2562
+ optimizer_cls_and_kwargs = None,
2563
+ preprocess_logits_for_metrics = None,
2564
+ peft_config = None,
2565
+ **kwargs
2566
+ ):
2567
+ if args is None: args = UnslothDPOConfig()
2568
+ use_bf16 = getattr(args, 'bf16', False)
2569
+ if type(use_bf16) is not bool: use_bf16 = False
2570
+ use_fp16 = getattr(args, 'fp16', False)
2571
+ if type(use_fp16) is not bool: use_fp16 = False
2572
+ force_float32 = False
2573
+ full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1'
2574
+ if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'):
2575
+ print('Unsloth: Switching to float32 training since model cannot work with float16')
2576
+ force_float32 = True
2577
+ mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
2578
+ dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None)
2579
+ if dtype is None: dtype = model.get_input_embeddings().weight.dtype
2580
+ from unsloth_zoo.utils import _get_dtype
2581
+ dtype = _get_dtype(dtype)
2582
+ float16 = dtype == torch.float16
2583
+ if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
2584
+ if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
2585
+ if force_float32:
2586
+ # Forced float32 training
2587
+ args.fp16 = False
2588
+ args.bf16 = False
2589
+ os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
2590
+ if hasattr(args, 'mixed_precision'): args.mixed_precision = 'no'
2591
+ # args.mixed_precision is a new argument which needs to be set now
2592
+ elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
2593
+ # Mixed precision training
2594
+ args.fp16 = float16
2595
+ args.bf16 = not float16
2596
+ os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
2597
+ if hasattr(args, 'mixed_precision'): args.mixed_precision = 'fp16' if float16 else 'bf16'
2598
+ # args.mixed_precision is a new argument which needs to be set now
2599
+ elif mixed_precision_dtype == 'bfloat16':
2600
+ # Both False since bfloat16 full finetuning doesn't do any autocasting.
2601
+ args.fp16 = False
2602
+ args.bf16 = False
2603
+ os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
2604
+ if hasattr(args, 'mixed_precision'): args.mixed_precision = 'no'
2605
+ # args.mixed_precision is a new argument which needs to be set now
2606
+
2607
+ if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
2608
+ args.eval_strategy = 'steps'
2609
+ if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
2610
+ ga_steps = getattr(args, 'gradient_accumulation_steps', None)
2611
+ if ga_steps is not None and ga_steps > 1:
2612
+ from transformers import __version__ as transformers_version
2613
+ if Version(transformers_version) <= Version('4.45.2'):
2614
+ print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
2615
+ '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
2616
+ if getattr(args, 'eval_strategy', 'no') != 'no':
2617
+ eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
2618
+ if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
2619
+ if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
2620
+ fp16_full_eval = getattr(args, 'fp16_full_eval', False)
2621
+ if type(fp16_full_eval) is not bool: fp16_full_eval = False
2622
+ bf16_full_eval = getattr(args, 'bf16_full_eval', False)
2623
+ if type(bf16_full_eval) is not bool: bf16_full_eval = False
2624
+ if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
2625
+ if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
2626
+ if force_float32:
2627
+ args.bf16_full_eval = False
2628
+ args.fp16_full_eval = False
2629
+ elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
2630
+ args.bf16_full_eval = True
2631
+ args.fp16_full_eval = False
2632
+ elif not bf16_full_eval and not fp16_full_eval:
2633
+ args.bf16_full_eval = args.bf16
2634
+ args.fp16_full_eval = args.fp16
2635
+ _output_logits = False
2636
+ if locals().get('compute_metrics', None) is not None: _output_logits = True
2637
+ if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
2638
+ if _output_logits:
2639
+ os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
2640
+ if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
2641
+ pass
2642
+ else:
2643
+ model_max_seq_length = getattr(model, 'max_seq_length', None)
2644
+ args_max_seq_length = getattr(args, 'max_seq_length', None)
2645
+ if args_max_seq_length is None and model_max_seq_length is not None:
2646
+ max_seq_length = model.max_seq_length
2647
+ if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
2648
+ if model is not None and hasattr(model, 'for_training'):
2649
+ model.for_training(use_gradient_checkpointing=getattr(args, 'gradient_checkpointing', True))
2650
+ if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
2651
+ if 'processing_class' in locals():
2652
+ if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
2653
+ if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
2654
+ __tokenizer = processing_class if 'processing_class' in locals() else tokenizer
2655
+ from unsloth_zoo.vision_utils import UnslothVisionDataCollator
2656
+ if not isinstance(data_collator, UnslothVisionDataCollator):
2657
+ if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
2658
+ data_collator = TransformersDataCollatorForLanguageModeling(
2659
+ __tokenizer,
2660
+ mlm = False,
2661
+ mlm_probability = 0.0,
2662
+ pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
2663
+ )
2664
+ elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
2665
+ data_collator = DataCollatorForSeq2Seq(
2666
+ __tokenizer,
2667
+ pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
2668
+ )
2669
+ else:
2670
+ if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
2671
+ if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
2672
+ if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
2673
+ if not isinstance(data_collator, UnslothVisionDataCollator):
2674
+ if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
2675
+ if isinstance(data_collator, DataCollatorForSeq2Seq):
2676
+ data_collator = DataCollatorForSeq2Seq(
2677
+ __tokenizer.tokenizer,
2678
+ pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
2679
+ )
2680
+ else:
2681
+ data_collator = TransformersDataCollatorForLanguageModeling(
2682
+ __tokenizer.tokenizer,
2683
+ mlm = False,
2684
+ mlm_probability = 0.0,
2685
+ pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
2686
+ )
2687
+ other_metrics = []
2688
+
2689
+ from unsloth_zoo.logging_utils import PatchRLStatistics
2690
+ PatchRLStatistics('dpo_trainer', other_metrics)
2691
+ if hasattr(train_dataset, 'column_names'):
2692
+ column_names = set(train_dataset.column_names)
2693
+ check = ['chosen', 'rejected', 'prompt', 'chosen_input_ids', 'chosen_attention_mask',
2694
+ 'chosen_labels', 'rejected_input_ids', 'rejected_attention_mask', 'rejected_labels',
2695
+ 'prompt_input_ids', 'prompt_attention_mask']
2696
+ if all(x in column_names for x in check):
2697
+ train_dataset = train_dataset.remove_columns(['chosen', 'rejected', 'prompt'])
2698
+ del check, column_names
2699
+
2700
+ # [TODO] Fix up DataParallel multiplying batch sizes
2701
+ # [TODO] DDP works, but DP seems to not work? [TODO]
2702
+ if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1:
2703
+ if getattr(args, "_n_gpu", 1) != 1:
2704
+ args._n_gpu = 1
2705
+ if "model" in locals() and hasattr(model, "for_training"):
2706
+ model.for_training(use_gradient_checkpointing=getattr(args, 'gradient_checkpointing', True))
2707
+ super().__init__(
2708
+ model = model,
2709
+ ref_model = ref_model,
2710
+ args = args,
2711
+ data_collator = data_collator,
2712
+ train_dataset = train_dataset,
2713
+ eval_dataset = eval_dataset,
2714
+ processing_class = processing_class,
2715
+ compute_metrics = compute_metrics,
2716
+ callbacks = callbacks,
2717
+ optimizer_cls_and_kwargs = optimizer_cls_and_kwargs,
2718
+ preprocess_logits_for_metrics = preprocess_logits_for_metrics,
2719
+ peft_config = peft_config,**kwargs)
2720
+ if "model" in locals() and hasattr(model, "for_inference"):
2721
+ model.for_inference()
2722
+ if hasattr(self, 'neftune_hook_handle'):
2723
+ self.neftune_hook_handle.remove()
2724
+ if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
2725
+ if getattr(args, 'neftune_noise_alpha', None) is not None:
2726
+ model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
2727
+ pass
2728
+ if hasattr(self, 'accelerator'):
2729
+ scaler = self.accelerator.scaler
2730
+ current_model = model
2731
+ while hasattr(current_model, 'model'):
2732
+ current_model.accelerator_scaler = scaler
2733
+ current_model = current_model.model
2734
+ current_model.accelerator_scaler = scaler
2735
+ pass
2736
+ if hasattr(self, 'train'):
2737
+ self.train = MethodType(prepare_for_training_mode(self.__class__.train), self)
2738
+ pass
2739
+
2740
+ pass
2741
+
2742
+
2743
+ if hasattr(logger, "addFilter"):
2744
+ import logging
2745
+ class HideLoggingMessage(logging.Filter):
2746
+ def __init__(self, text): self.text = text
2747
+ def filter(self, x): return not (self.text in x.getMessage())
2748
+ pass
2749
+ logger.addFilter(HideLoggingMessage("`use_cache=True`"))
2750
+