agentic-team-templates 0.8.2 → 0.9.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,319 @@
1
+ # Product Metrics
2
+
3
+ Guidelines for defining, tracking, and acting on product metrics.
4
+
5
+ ## Metrics Hierarchy
6
+
7
+ ### North Star Metric
8
+
9
+ The single metric that best captures the core value your product delivers to customers.
10
+
11
+ ```text
12
+ North Star Metric
13
+ ├── Input Metrics (leading indicators you can influence)
14
+ │ ├── Activation rate
15
+ │ ├── Feature adoption
16
+ │ └── Engagement frequency
17
+ └── Output Metrics (lagging indicators that result)
18
+ ├── Retention
19
+ ├── Revenue
20
+ └── Customer satisfaction
21
+ ```
22
+
23
+ ### Examples by Business Model
24
+
25
+ | Model | North Star | Input Metrics |
26
+ |-------|------------|---------------|
27
+ | SaaS | Weekly Active Users | Activation, Feature Adoption |
28
+ | Marketplace | Transactions | Listings, Buyer Visits |
29
+ | E-commerce | Revenue | Traffic, Conversion, AOV |
30
+ | Consumer App | Daily Active Users | Session Length, Features Used |
31
+ | B2B Platform | Active Accounts | Users per Account, API Calls |
32
+
33
+ ## OKRs (Objectives and Key Results)
34
+
35
+ ### Structure
36
+
37
+ ```text
38
+ Objective: [Qualitative, inspiring, time-bound]
39
+ ├── KR1: [Metric] - Baseline: X → Target: Y
40
+ ├── KR2: [Metric] - Baseline: X → Target: Y
41
+ └── KR3: [Metric] - Baseline: X → Target: Y
42
+ ```
43
+
44
+ ### OKR Best Practices
45
+
46
+ | Practice | Rationale |
47
+ |----------|-----------|
48
+ | 3-5 Objectives per quarter | Focus enables execution |
49
+ | 2-4 Key Results per Objective | Measurable, not task lists |
50
+ | 70% achievement = success | Stretch goals drive innovation |
51
+ | Outcomes, not outputs | "Reduce churn to 5%" not "Launch retention feature" |
52
+ | Weekly check-ins | Track progress, identify blockers early |
53
+
54
+ ### OKR Examples
55
+
56
+ **Good:**
57
+ ```text
58
+ Objective: Become the preferred tool for enterprise teams
59
+
60
+ KR1: Increase enterprise NPS from 32 to 50
61
+ KR2: Reduce time-to-first-value from 14 days to 3 days
62
+ KR3: Grow enterprise accounts from 50 to 150
63
+ ```
64
+
65
+ **Bad:**
66
+ ```text
67
+ Objective: Build enterprise features
68
+
69
+ KR1: Launch SSO
70
+ KR2: Build admin dashboard
71
+ KR3: Create 10 case studies
72
+ ```
73
+ (These are outputs/tasks, not measurable outcomes)
74
+
75
+ ### OKR Scoring
76
+
77
+ | Score | Interpretation |
78
+ |-------|----------------|
79
+ | 0.0-0.3 | Failed to make progress |
80
+ | 0.4-0.6 | Made progress but fell short |
81
+ | 0.7-0.9 | Hit our stretch goal |
82
+ | 1.0 | Achieved everything (goal may have been too easy) |
83
+
84
+ ## Pirate Metrics (AARRR)
85
+
86
+ ### Framework
87
+
88
+ | Stage | Question | Example Metrics |
89
+ |-------|----------|-----------------|
90
+ | **A**cquisition | How do users find us? | Traffic, CAC, Channel Performance |
91
+ | **A**ctivation | Do users have a great first experience? | Signup Rate, Onboarding Completion |
92
+ | **R**etention | Do users come back? | D1/D7/D30 Retention, Churn Rate |
93
+ | **R**evenue | How do we make money? | ARPU, LTV, Conversion to Paid |
94
+ | **R**eferral | Do users tell others? | NPS, Viral Coefficient, Referrals |
95
+
96
+ ### Funnel Analysis
97
+
98
+ ```text
99
+ Visitors → Signups → Activated → Retained → Paid
100
+ 100,000 10,000 6,000 4,000 1,000
101
+ 10% 60% 67% 25%
102
+ ```
103
+
104
+ ### Identifying Funnel Problems
105
+
106
+ | Pattern | Diagnosis | Focus Area |
107
+ |---------|-----------|------------|
108
+ | Low visitor-to-signup | Messaging/positioning issue | Acquisition |
109
+ | Low signup-to-activated | Onboarding friction | Activation |
110
+ | Low activated-to-retained | Core value not delivered | Product/Value |
111
+ | Low retained-to-paid | Pricing or value perception | Monetization |
112
+
113
+ ## Metric Definitions
114
+
115
+ ### Retention Metrics
116
+
117
+ | Metric | Formula | Use Case |
118
+ |--------|---------|----------|
119
+ | D1 Retention | Users active on Day 1 / New users | Early activation signal |
120
+ | D7 Retention | Users active on Day 7 / New users | Short-term retention |
121
+ | D30 Retention | Users active on Day 30 / New users | Medium-term retention |
122
+ | Weekly Retention | Users active this week / Users active last week | Cohort health |
123
+ | Logo Churn | Accounts lost / Total accounts | B2B health |
124
+ | Revenue Churn | MRR lost / Total MRR | Revenue health |
125
+ | Net Revenue Retention | (Start MRR + Expansion - Churn) / Start MRR | Growth efficiency |
126
+
127
+ ### Engagement Metrics
128
+
129
+ | Metric | Formula | Use Case |
130
+ |--------|---------|----------|
131
+ | DAU/MAU | Daily Active / Monthly Active | Stickiness |
132
+ | Session Length | Time in app per session | Depth of engagement |
133
+ | Sessions per Day | Sessions / DAU | Frequency |
134
+ | Feature Adoption | Users using feature / Total users | Feature success |
135
+ | Time to Value | Time from signup to "aha moment" | Onboarding efficiency |
136
+
137
+ ### Revenue Metrics
138
+
139
+ | Metric | Formula | Use Case |
140
+ |--------|---------|----------|
141
+ | MRR | Monthly recurring revenue | Revenue health |
142
+ | ARR | MRR × 12 | Annual planning |
143
+ | ARPU | Revenue / Users | Revenue efficiency |
144
+ | LTV | ARPU × Average lifetime | Customer value |
145
+ | CAC | Acquisition cost / New customers | Acquisition efficiency |
146
+ | LTV:CAC | LTV / CAC | Unit economics (target: 3:1+) |
147
+
148
+ ## Instrumentation Standards
149
+
150
+ ### Event Naming Convention
151
+
152
+ ```text
153
+ object_action
154
+
155
+ Examples:
156
+ - user_signed_up
157
+ - feature_used
158
+ - subscription_upgraded
159
+ - report_exported
160
+ ```
161
+
162
+ ### Event Properties
163
+
164
+ ```javascript
165
+ analytics.track('feature_used', {
166
+ // Required
167
+ feature_name: 'search',
168
+ timestamp: '2025-01-28T12:00:00Z',
169
+
170
+ // User context
171
+ user_id: '123',
172
+ account_id: 'abc',
173
+ user_role: 'admin',
174
+
175
+ // Session context
176
+ session_id: 'xyz',
177
+ platform: 'web',
178
+
179
+ // Feature-specific
180
+ query: 'product roadmap',
181
+ results_count: 15,
182
+ time_to_results_ms: 234
183
+ });
184
+ ```
185
+
186
+ ### Standard Events to Track
187
+
188
+ | Event | When to Fire | Key Properties |
189
+ |-------|--------------|----------------|
190
+ | `user_signed_up` | Registration complete | signup_method, referrer |
191
+ | `user_activated` | Completed activation criteria | time_to_activate |
192
+ | `feature_used` | Core feature interaction | feature_name, context |
193
+ | `upgrade_started` | Began upgrade flow | plan_from, plan_to |
194
+ | `upgrade_completed` | Payment successful | plan, revenue |
195
+ | `support_contacted` | Reached out for help | channel, topic |
196
+
197
+ ## Dashboards
198
+
199
+ ### Executive Dashboard
200
+
201
+ ```text
202
+ ┌─────────────────────────────────────────────────────────┐
203
+ │ NORTH STAR: Weekly Active Users │
204
+ │ ████████████████████████░░░░░░ 45,000 / 50,000 (90%) │
205
+ └─────────────────────────────────────────────────────────┘
206
+
207
+ ┌─────────────────────────┬─────────────────────────┐
208
+ │ Revenue │ Retention │
209
+ │ MRR: $125K (+8%) │ D30: 42% (+3pp) │
210
+ │ ARR: $1.5M │ Churn: 4.2% (-0.5pp) │
211
+ └─────────────────────────┴─────────────────────────┘
212
+
213
+ ┌─────────────────────────────────────────────────────────┐
214
+ │ OKR Progress │
215
+ │ Q1 Obj 1: ████████░░ 80% │
216
+ │ Q1 Obj 2: █████░░░░░ 50% │
217
+ │ Q1 Obj 3: ███████░░░ 70% │
218
+ └─────────────────────────────────────────────────────────┘
219
+ ```
220
+
221
+ ### Product Dashboard
222
+
223
+ ```text
224
+ ┌─────────────────────────────────────────────────────────┐
225
+ │ Funnel (Last 7 Days) │
226
+ │ Visitors → Signups → Activated → Retained → Paid │
227
+ │ 100K → 10K → 6K → 4K → 1K │
228
+ │ 10% 60% 67% 25% │
229
+ └─────────────────────────────────────────────────────────┘
230
+
231
+ ┌─────────────────────────┬─────────────────────────┐
232
+ │ Feature Adoption │ Recent Experiments │
233
+ │ Search: 78% │ New onboarding: +12% │
234
+ │ Export: 45% │ Pricing test: -3% │
235
+ │ Integrations: 23% │ Dark mode: neutral │
236
+ └─────────────────────────┴─────────────────────────┘
237
+ ```
238
+
239
+ ## Experimentation
240
+
241
+ ### A/B Test Framework
242
+
243
+ ```markdown
244
+ ## Experiment: [Name]
245
+
246
+ ### Hypothesis
247
+ If we [change], then [metric] will [improve/decrease] because [reason].
248
+
249
+ ### Metrics
250
+ - Primary: [Metric to optimize]
251
+ - Secondary: [Metrics to monitor]
252
+ - Guardrails: [Metrics that shouldn't regress]
253
+
254
+ ### Variants
255
+ - Control: [Current experience]
256
+ - Treatment: [New experience]
257
+
258
+ ### Sample Size & Duration
259
+ - Minimum detectable effect: [X%]
260
+ - Required sample: [N users per variant]
261
+ - Estimated duration: [X weeks]
262
+
263
+ ### Results
264
+ | Metric | Control | Treatment | Lift | Significance |
265
+ |--------|---------|-----------|------|--------------|
266
+ | Primary | X | Y | +Z% | p < 0.05 |
267
+
268
+ ### Decision
269
+ [Ship / Iterate / Kill] - [Reasoning]
270
+ ```
271
+
272
+ ### Statistical Significance
273
+
274
+ | Confidence Level | When to Use |
275
+ |------------------|-------------|
276
+ | 90% | Exploratory tests, low-risk changes |
277
+ | 95% | Standard product decisions |
278
+ | 99% | High-stakes changes, revenue impact |
279
+
280
+ ### Experiment Anti-Patterns
281
+
282
+ | Anti-Pattern | Problem | Solution |
283
+ |--------------|---------|----------|
284
+ | Peeking | Stopping early inflates false positives | Set duration upfront, stick to it |
285
+ | Multiple testing | Increases false positive rate | Adjust for multiple comparisons |
286
+ | Underpowered | Can't detect real effects | Calculate sample size before starting |
287
+ | Metric gaming | Optimizing wrong behavior | Include guardrail metrics |
288
+
289
+ ## Metric Reviews
290
+
291
+ ### Weekly Metrics Review
292
+
293
+ ```markdown
294
+ ## Weekly Metrics Review: [Date]
295
+
296
+ ### North Star
297
+ - Current: [Value]
298
+ - WoW Change: [+/-X%]
299
+ - Status: [On Track / At Risk / Off Track]
300
+
301
+ ### Key Changes
302
+ 1. [Metric 1] [increased/decreased] by [X%] because [reason]
303
+ 2. [Metric 2] [increased/decreased] by [X%] because [reason]
304
+
305
+ ### Experiments Update
306
+ - [Experiment 1]: [Status] - [Key finding]
307
+ - [Experiment 2]: [Status] - [Key finding]
308
+
309
+ ### Actions
310
+ - [ ] [Action item 1] - Owner: [Name]
311
+ - [ ] [Action item 2] - Owner: [Name]
312
+ ```
313
+
314
+ ### Monthly Metrics Deep Dive
315
+
316
+ - Cohort analysis: How are different user groups performing?
317
+ - Segment analysis: Which segments are growing/shrinking?
318
+ - Feature impact: How did recent launches affect metrics?
319
+ - Competitive benchmarking: How do we compare to industry?
@@ -0,0 +1,95 @@
1
+ # Product Management
2
+
3
+ Principal-level guidelines for outcome-driven product management.
4
+
5
+ ## Scope
6
+
7
+ This ruleset applies to:
8
+
9
+ - Product strategy and vision
10
+ - Customer discovery and research
11
+ - Feature prioritization and roadmapping
12
+ - Requirements documentation (PRDs, user stories)
13
+ - OKRs and product metrics
14
+ - Stakeholder alignment and communication
15
+ - Go-to-market coordination
16
+
17
+ ## Core Philosophy
18
+
19
+ **Products exist to solve customer problems in ways that drive business outcomes.** Every decision should trace back to validated customer needs and measurable business impact.
20
+
21
+ ## Fundamental Principles
22
+
23
+ ### 1. Outcomes Over Outputs
24
+
25
+ Measure success by customer and business impact, not features shipped.
26
+
27
+ ```markdown
28
+ ❌ Wrong: "We shipped 15 features this quarter"
29
+ ✅ Right: "We reduced time-to-value from 14 days to 3 days"
30
+ ```
31
+
32
+ ### 2. Continuous Discovery
33
+
34
+ Never stop learning from customers. Minimum one customer conversation per week.
35
+
36
+ ### 3. Evidence-Based Decisions
37
+
38
+ Use data and research to inform priorities, not HiPPO (Highest Paid Person's Opinion).
39
+
40
+ ### 4. Cross-Functional Collaboration
41
+
42
+ Great products emerge from empowered teams of product, engineering, and design working together—not handoffs.
43
+
44
+ ### 5. Strategic Clarity
45
+
46
+ Every feature connects to a user need, which connects to a product goal, which connects to a company objective.
47
+
48
+ ## Project Structure
49
+
50
+ ```text
51
+ product/
52
+ ├── strategy/
53
+ │ ├── vision.md # Product vision and mission
54
+ │ ├── strategy.md # 1-2 year strategic plan
55
+ │ └── competitive-analysis.md
56
+ ├── discovery/
57
+ │ ├── opportunity-tree.md # Opportunity solution tree
58
+ │ ├── interviews/ # Customer interview notes
59
+ │ ├── personas/ # User personas
60
+ │ └── research/ # Research findings
61
+ ├── roadmap/
62
+ │ ├── roadmap.md # Current roadmap
63
+ │ ├── okrs.md # Quarterly OKRs
64
+ │ └── archive/ # Historical roadmaps
65
+ ├── requirements/
66
+ │ ├── prds/ # Product requirements documents
67
+ │ ├── user-stories/ # User story backlog
68
+ │ └── specs/ # Detailed specifications
69
+ ├── analytics/
70
+ │ ├── metrics.md # Key metrics definitions
71
+ │ ├── dashboards/ # Dashboard configs
72
+ │ └── experiments/ # A/B test documentation
73
+ └── communication/
74
+ ├── stakeholder-updates/ # Status updates
75
+ ├── release-notes/ # Customer-facing notes
76
+ └── presentations/ # Roadmap presentations
77
+ ```
78
+
79
+ ## Decision Framework
80
+
81
+ When evaluating any product decision:
82
+
83
+ 1. **Customer Impact**: Does this solve a validated customer problem?
84
+ 2. **Business Alignment**: Does this support company objectives?
85
+ 3. **Feasibility**: Can we build this with available resources?
86
+ 4. **Evidence**: What data supports this decision?
87
+ 5. **Opportunity Cost**: What are we NOT doing if we choose this?
88
+
89
+ ## Communication Standards
90
+
91
+ - Use data to support assertions
92
+ - Lead with the "why" before the "what"
93
+ - Tailor detail level to audience
94
+ - Document decisions and rationale
95
+ - Share context, not just conclusions
@@ -0,0 +1,240 @@
1
+ # Prioritization
2
+
3
+ Frameworks and best practices for evidence-based prioritization.
4
+
5
+ ## Core Principle
6
+
7
+ **Prioritization is about making trade-offs explicit.** Every "yes" is an implicit "no" to something else. Use frameworks to make these trade-offs visible and defensible.
8
+
9
+ ## RICE Framework
10
+
11
+ ### Formula
12
+
13
+ ```text
14
+ RICE Score = (Reach × Impact × Confidence) / Effort
15
+ ```
16
+
17
+ ### Components
18
+
19
+ | Factor | Description | Measurement |
20
+ |--------|-------------|-------------|
21
+ | **Reach** | Users affected in time period | Number (per quarter) |
22
+ | **Impact** | Effect on each user | Scale: 0.25 - 3 |
23
+ | **Confidence** | Certainty in estimates | Percentage: 50% - 100% |
24
+ | **Effort** | Resources required | Person-months |
25
+
26
+ ### Impact Scale
27
+
28
+ | Score | Label | Criteria |
29
+ |-------|-------|----------|
30
+ | 3 | Massive | Core workflow, high frequency, users would churn without it |
31
+ | 2 | High | Important workflow, meaningful improvement |
32
+ | 1 | Medium | Nice improvement, noticeable but not critical |
33
+ | 0.5 | Low | Minor improvement, some users benefit |
34
+ | 0.25 | Minimal | Edge case, rarely noticed |
35
+
36
+ ### Confidence Scoring
37
+
38
+ | Score | Label | Criteria |
39
+ |-------|-------|----------|
40
+ | 100% | High | Validated with data, multiple sources confirm |
41
+ | 80% | Good | Strong signals from research, some data |
42
+ | 60% | Medium | Reasonable assumptions, limited validation |
43
+ | 50% | Low | Gut feel, minimal evidence |
44
+
45
+ ### RICE Scoring Template
46
+
47
+ ```markdown
48
+ ## Feature: [Name]
49
+
50
+ ### Reach
51
+ - Time period: [Quarter]
52
+ - Users affected: [Number]
53
+ - Source: [Analytics/Research/Estimate]
54
+
55
+ ### Impact
56
+ - Score: [0.25/0.5/1/2/3]
57
+ - Rationale: [Why this score]
58
+
59
+ ### Confidence
60
+ - Score: [50%/60%/80%/100%]
61
+ - Evidence: [What supports our estimates]
62
+ - Gaps: [What we don't know]
63
+
64
+ ### Effort
65
+ - Estimate: [Person-months]
66
+ - Breakdown: [Engineering X, Design Y, QA Z]
67
+
68
+ ### RICE Score
69
+ [Reach] × [Impact] × [Confidence] / [Effort] = [Score]
70
+ ```
71
+
72
+ ### Example RICE Comparison
73
+
74
+ | Feature | Reach | Impact | Confidence | Effort | RICE |
75
+ |---------|-------|--------|------------|--------|------|
76
+ | Search improvements | 50,000 | 2 | 80% | 3 | 26,667 |
77
+ | New dashboard | 10,000 | 2 | 60% | 4 | 3,000 |
78
+ | Export to CSV | 5,000 | 1 | 100% | 0.5 | 10,000 |
79
+ | Dark mode | 30,000 | 0.5 | 80% | 2 | 6,000 |
80
+
81
+ **Priority order: Search → Export → Dark Mode → Dashboard**
82
+
83
+ ## Alternative Frameworks
84
+
85
+ ### Value vs. Effort Matrix
86
+
87
+ ```text
88
+ High Value │ Quick Wins │ Big Bets
89
+ │ (Do First) │ (Plan Carefully)
90
+ │───────────────┼──────────────────
91
+ │ Fill-Ins │ Time Sinks
92
+ Low Value │ (Maybe Later) │ (Avoid)
93
+ └───────────────┴──────────────────
94
+ Low Effort High Effort
95
+ ```
96
+
97
+ ### Kano Model
98
+
99
+ | Category | Definition | Priority |
100
+ |----------|------------|----------|
101
+ | Must-Have | Expected, causes dissatisfaction if missing | High |
102
+ | Performance | More is better, linear satisfaction | Medium-High |
103
+ | Delighters | Unexpected, creates positive surprise | Strategic |
104
+ | Indifferent | Users don't care either way | Low |
105
+ | Reverse | Causes dissatisfaction if present | Remove |
106
+
107
+ ### MoSCoW Method
108
+
109
+ | Priority | Description | Commitment |
110
+ |----------|-------------|------------|
111
+ | **Must** | Non-negotiable for release | 100% |
112
+ | **Should** | Important but not critical | High effort |
113
+ | **Could** | Nice to have | If time permits |
114
+ | **Won't** | Not this time | Explicitly excluded |
115
+
116
+ ### ICE Scoring
117
+
118
+ ```text
119
+ ICE Score = Impact × Confidence × Ease
120
+ ```
121
+
122
+ Simpler than RICE, good for quick prioritization:
123
+ - **Impact**: 1-10 scale
124
+ - **Confidence**: 1-10 scale
125
+ - **Ease**: 1-10 scale (inverse of effort)
126
+
127
+ ## Stakeholder Management
128
+
129
+ ### Handling Prioritization Requests
130
+
131
+ ```markdown
132
+ ## Request Triage Framework
133
+
134
+ 1. **Acknowledge**: "I understand this is important. Let me make sure I understand the problem."
135
+
136
+ 2. **Understand**:
137
+ - What problem does this solve?
138
+ - Who is affected?
139
+ - What's the impact of not doing this?
140
+ - What's the urgency?
141
+
142
+ 3. **Evaluate**:
143
+ - Score against current prioritization framework
144
+ - Compare to existing roadmap items
145
+ - Identify trade-offs
146
+
147
+ 4. **Respond**:
148
+ - If high priority: "This scores well. Here's how it compares to current work..."
149
+ - If low priority: "I understand the need. Here's why other items currently rank higher..."
150
+ - If unclear: "I need more information to evaluate this properly..."
151
+
152
+ 5. **Document**: Record request, evaluation, and decision
153
+ ```
154
+
155
+ ### Saying No Constructively
156
+
157
+ ```markdown
158
+ ## Framework for Declining Requests
159
+
160
+ "I appreciate you bringing this to me. Here's my perspective:
161
+
162
+ **Acknowledge the need**: I understand that [stakeholder's concern] is important because [reason].
163
+
164
+ **Explain current priorities**: Right now, we're focused on [current priorities] because [business rationale]. These are expected to deliver [expected outcomes].
165
+
166
+ **Show the trade-off**: If we were to prioritize [their request], we would need to delay [current work], which would impact [consequences].
167
+
168
+ **Offer alternatives**:
169
+ - Option A: We could address a smaller version of this in [timeframe]
170
+ - Option B: Here's a workaround that might help in the meantime
171
+ - Option C: Let's revisit this in [timeframe] when [conditions]
172
+
173
+ **Stay open**: I'm happy to discuss further or reconsider if new information emerges."
174
+ ```
175
+
176
+ ### Prioritization Governance
177
+
178
+ | Decision Type | Who Decides | Input From |
179
+ |---------------|-------------|------------|
180
+ | Quarterly themes | Product Leadership + Executives | All stakeholders |
181
+ | Monthly priorities | Product Manager | Engineering, Design, Stakeholders |
182
+ | Sprint items | Product Trio | Engineering Team |
183
+ | Day-to-day tasks | Engineering Team | Product Manager |
184
+
185
+ ## Special Cases
186
+
187
+ ### When to Override Scores
188
+
189
+ | Scenario | Action |
190
+ |----------|--------|
191
+ | Security vulnerability | Immediate priority regardless of score |
192
+ | Regulatory compliance | Non-negotiable timeline |
193
+ | Technical debt blocking features | Elevate priority |
194
+ | Strategic partnership requirement | Weigh relationship value |
195
+ | Quick win during downtime | Opportunistic execution |
196
+
197
+ ### Technical Debt Prioritization
198
+
199
+ Allocate 15-20% of capacity to technical debt. Prioritize by:
200
+
201
+ 1. **Blocking**: Prevents new features
202
+ 2. **Slowing**: Significantly increases development time
203
+ 3. **Risk**: Security or stability concerns
204
+ 4. **Maintainability**: Code that's hard to understand/modify
205
+
206
+ ### Bug Prioritization
207
+
208
+ | Severity | Criteria | Response |
209
+ |----------|----------|----------|
210
+ | P0 | System down, data loss, security breach | Drop everything |
211
+ | P1 | Major feature broken, many users affected | Fix this sprint |
212
+ | P2 | Feature impaired, workaround exists | Plan for near term |
213
+ | P3 | Minor issue, few users affected | Backlog |
214
+ | P4 | Cosmetic, edge case | If time permits |
215
+
216
+ ## Maintaining Prioritization Health
217
+
218
+ ### Weekly Review
219
+
220
+ - [ ] Review new requests against backlog
221
+ - [ ] Re-score items with new information
222
+ - [ ] Archive completed/obsolete items
223
+ - [ ] Communicate any changes to stakeholders
224
+
225
+ ### Quarterly Review
226
+
227
+ - [ ] Reassess all backlog items
228
+ - [ ] Update confidence scores with new data
229
+ - [ ] Align with new company/product OKRs
230
+ - [ ] Archive items that no longer fit strategy
231
+
232
+ ### Common Pitfalls
233
+
234
+ | Pitfall | Symptom | Solution |
235
+ |---------|---------|----------|
236
+ | Recency bias | Latest request always wins | Use consistent scoring |
237
+ | HiPPO | Exec requests skip the queue | Score all requests equally |
238
+ | Analysis paralysis | Nothing gets prioritized | Set decision deadlines |
239
+ | Stale backlog | Old items never reviewed | Regular backlog grooming |
240
+ | Inconsistent scoring | Different people score differently | Calibration sessions |