agentic-team-templates 0.19.0 → 0.20.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/package.json +1 -1
- package/src/index.js +20 -0
- package/src/index.test.js +4 -0
- package/templates/business/project-manager/.cursor/rules/overview.md +94 -0
- package/templates/business/project-manager/.cursor/rules/reporting.md +259 -0
- package/templates/business/project-manager/.cursor/rules/risk-management.md +255 -0
- package/templates/business/project-manager/.cursor/rules/scheduling.md +251 -0
- package/templates/business/project-manager/.cursor/rules/scope-management.md +227 -0
- package/templates/business/project-manager/.cursor/rules/stakeholder-management.md +254 -0
- package/templates/business/project-manager/CLAUDE.md +540 -0
- package/templates/business/supply-chain/.cursor/rules/cost-modeling.md +380 -0
- package/templates/business/supply-chain/.cursor/rules/demand-forecasting.md +285 -0
- package/templates/business/supply-chain/.cursor/rules/inventory-management.md +200 -0
- package/templates/business/supply-chain/.cursor/rules/logistics.md +296 -0
- package/templates/business/supply-chain/.cursor/rules/overview.md +102 -0
- package/templates/business/supply-chain/.cursor/rules/supplier-evaluation.md +298 -0
- package/templates/business/supply-chain/CLAUDE.md +590 -0
- package/templates/professional/executive-assistant/.cursor/rules/calendar.md +120 -0
- package/templates/professional/executive-assistant/.cursor/rules/confidentiality.md +81 -0
- package/templates/professional/executive-assistant/.cursor/rules/email.md +77 -0
- package/templates/professional/executive-assistant/.cursor/rules/meetings.md +107 -0
- package/templates/professional/executive-assistant/.cursor/rules/overview.md +96 -0
- package/templates/professional/executive-assistant/.cursor/rules/prioritization.md +105 -0
- package/templates/professional/executive-assistant/.cursor/rules/stakeholder-management.md +90 -0
- package/templates/professional/executive-assistant/.cursor/rules/travel.md +115 -0
- package/templates/professional/executive-assistant/CLAUDE.md +620 -0
- package/templates/professional/grant-writer/.cursor/rules/budgets.md +106 -0
- package/templates/professional/grant-writer/.cursor/rules/compliance.md +99 -0
- package/templates/professional/grant-writer/.cursor/rules/funding-research.md +80 -0
- package/templates/professional/grant-writer/.cursor/rules/narrative.md +135 -0
- package/templates/professional/grant-writer/.cursor/rules/overview.md +63 -0
- package/templates/professional/grant-writer/.cursor/rules/post-award.md +105 -0
- package/templates/professional/grant-writer/.cursor/rules/review-criteria.md +120 -0
- package/templates/professional/grant-writer/.cursor/rules/sustainability.md +110 -0
- package/templates/professional/grant-writer/CLAUDE.md +577 -0
|
@@ -0,0 +1,380 @@
|
|
|
1
|
+
# Cost Modeling
|
|
2
|
+
|
|
3
|
+
Guidelines for total cost analysis, landed cost calculation, and make-vs-buy decisions.
|
|
4
|
+
|
|
5
|
+
## Core Principle
|
|
6
|
+
|
|
7
|
+
**Unit price is never the full cost.** Every sourcing, manufacturing, and logistics decision must be evaluated on total cost of ownership. Hidden costs in quality, risk, inventory carrying, and administration often exceed the visible price difference between options.
|
|
8
|
+
|
|
9
|
+
## Total Cost of Ownership (TCO)
|
|
10
|
+
|
|
11
|
+
### TCO Framework
|
|
12
|
+
|
|
13
|
+
```text
|
|
14
|
+
TCO = Direct Costs + Indirect Costs + Hidden Costs
|
|
15
|
+
|
|
16
|
+
Direct Costs:
|
|
17
|
+
├── Purchase price (unit cost x volume)
|
|
18
|
+
├── Transportation and freight
|
|
19
|
+
├── Customs duties and taxes
|
|
20
|
+
└── Packaging
|
|
21
|
+
|
|
22
|
+
Indirect Costs:
|
|
23
|
+
├── Ordering and procurement costs
|
|
24
|
+
├── Receiving and inspection costs
|
|
25
|
+
├── Inventory carrying costs (15-30% of value/year)
|
|
26
|
+
├── Quality costs (rework, scrap, returns)
|
|
27
|
+
└── Administration and management overhead
|
|
28
|
+
|
|
29
|
+
Hidden Costs:
|
|
30
|
+
├── Risk costs (disruption, single-source premium)
|
|
31
|
+
├── Currency fluctuation exposure
|
|
32
|
+
├── Opportunity cost of tied-up capital
|
|
33
|
+
├── Compliance and regulatory costs
|
|
34
|
+
└── Supplier management overhead
|
|
35
|
+
```
|
|
36
|
+
|
|
37
|
+
### Inventory Carrying Cost Components
|
|
38
|
+
|
|
39
|
+
```text
|
|
40
|
+
Carrying Cost = 15-30% of average inventory value per year
|
|
41
|
+
|
|
42
|
+
Breakdown:
|
|
43
|
+
├── Cost of capital: 8-15% (weighted average cost of capital)
|
|
44
|
+
├── Storage and handling: 3-5%
|
|
45
|
+
├── Insurance: 1-2%
|
|
46
|
+
├── Obsolescence risk: 2-5%
|
|
47
|
+
├── Damage and shrinkage: 1-3%
|
|
48
|
+
└── Taxes: 0-2%
|
|
49
|
+
|
|
50
|
+
Example:
|
|
51
|
+
Average inventory value: $1,000,000
|
|
52
|
+
Carrying cost rate: 25%
|
|
53
|
+
Annual carrying cost: $250,000
|
|
54
|
+
|
|
55
|
+
Reducing inventory by $200K saves $50K/year in carrying costs.
|
|
56
|
+
```
|
|
57
|
+
|
|
58
|
+
### TCO Comparison Template
|
|
59
|
+
|
|
60
|
+
```markdown
|
|
61
|
+
## TCO Analysis: [Item/Category]
|
|
62
|
+
### Analysis Period: [Annual]
|
|
63
|
+
|
|
64
|
+
| Cost Element | Option A (Domestic) | Option B (Offshore) | Option C (Nearshore) |
|
|
65
|
+
|-------------|--------------------|--------------------|---------------------|
|
|
66
|
+
| **Direct Costs** | | | |
|
|
67
|
+
| Unit price | $10.00 | $7.00 | $8.50 |
|
|
68
|
+
| Annual volume | 100,000 | 100,000 | 100,000 |
|
|
69
|
+
| Subtotal | $1,000,000 | $700,000 | $850,000 |
|
|
70
|
+
| | | | |
|
|
71
|
+
| **Logistics** | | | |
|
|
72
|
+
| Freight per unit | $0.20 | $1.50 | $0.80 |
|
|
73
|
+
| Customs duties | $0.00 | $0.70 | $0.25 |
|
|
74
|
+
| Insurance | $0.02 | $0.10 | $0.05 |
|
|
75
|
+
| Subtotal | $22,000 | $230,000 | $110,000 |
|
|
76
|
+
| | | | |
|
|
77
|
+
| **Inventory** | | | |
|
|
78
|
+
| Pipeline inventory (days) | 5 | 45 | 15 |
|
|
79
|
+
| Safety stock (days) | 7 | 21 | 10 |
|
|
80
|
+
| Carrying cost | $8,200 | $45,100 | $17,100 |
|
|
81
|
+
| | | | |
|
|
82
|
+
| **Quality** | | | |
|
|
83
|
+
| Defect rate | 0.2% | 1.5% | 0.5% |
|
|
84
|
+
| Quality cost/unit | $0.05 | $0.40 | $0.12 |
|
|
85
|
+
| Subtotal | $5,000 | $40,000 | $12,000 |
|
|
86
|
+
| | | | |
|
|
87
|
+
| **Administration** | | | |
|
|
88
|
+
| Procurement overhead | $5,000 | $25,000 | $15,000 |
|
|
89
|
+
| Travel for audits | $2,000 | $20,000 | $8,000 |
|
|
90
|
+
| | | | |
|
|
91
|
+
| **Risk Premium** | | | |
|
|
92
|
+
| Disruption risk | $5,000 | $35,000 | $15,000 |
|
|
93
|
+
| Currency risk | $0 | $15,000 | $5,000 |
|
|
94
|
+
| | | | |
|
|
95
|
+
| **Total TCO** | **$1,047,200** | **$1,110,100** | **$1,032,100** |
|
|
96
|
+
| **TCO per unit** | **$10.47** | **$11.10** | **$10.32** |
|
|
97
|
+
|
|
98
|
+
### Recommendation
|
|
99
|
+
Option C (Nearshore) has lowest TCO despite not having lowest unit price.
|
|
100
|
+
Option B saves $3/unit on price but adds $4.10/unit in logistics, quality, and risk costs.
|
|
101
|
+
```
|
|
102
|
+
|
|
103
|
+
## Landed Cost Calculation
|
|
104
|
+
|
|
105
|
+
### Formula
|
|
106
|
+
|
|
107
|
+
```text
|
|
108
|
+
Landed Cost = Product Cost
|
|
109
|
+
+ International Freight
|
|
110
|
+
+ Insurance (typically 0.3-0.5% of CIF value)
|
|
111
|
+
+ Customs Duties (value x duty rate based on HS code)
|
|
112
|
+
+ Customs Brokerage Fees (flat per entry)
|
|
113
|
+
+ Domestic Transportation
|
|
114
|
+
+ Handling and Warehousing
|
|
115
|
+
+ Regulatory Compliance Costs
|
|
116
|
+
```
|
|
117
|
+
|
|
118
|
+
### Duty Calculation
|
|
119
|
+
|
|
120
|
+
```text
|
|
121
|
+
Duty = Customs Value x Duty Rate
|
|
122
|
+
|
|
123
|
+
Customs Value (CIF basis for most countries):
|
|
124
|
+
= Product Cost + Freight to Port + Insurance
|
|
125
|
+
|
|
126
|
+
Example:
|
|
127
|
+
Product cost: $50,000
|
|
128
|
+
Ocean freight: $3,000
|
|
129
|
+
Insurance: $265
|
|
130
|
+
CIF value: $53,265
|
|
131
|
+
Duty rate (HS 8471.30): 0% (computers)
|
|
132
|
+
|
|
133
|
+
vs.
|
|
134
|
+
|
|
135
|
+
Product cost: $50,000
|
|
136
|
+
Ocean freight: $3,000
|
|
137
|
+
Insurance: $265
|
|
138
|
+
CIF value: $53,265
|
|
139
|
+
Duty rate (HS 6204.62): 16.6% (women's trousers)
|
|
140
|
+
Duty: $8,842
|
|
141
|
+
```
|
|
142
|
+
|
|
143
|
+
### Free Trade Agreement Impact
|
|
144
|
+
|
|
145
|
+
| Agreement | Countries | Typical Savings |
|
|
146
|
+
|-----------|-----------|-----------------|
|
|
147
|
+
| USMCA | US, Mexico, Canada | 0-25% duty elimination |
|
|
148
|
+
| EU FTAs | EU + partner countries | Variable |
|
|
149
|
+
| CPTPP | 11 Pacific Rim nations | 0-15% duty reduction |
|
|
150
|
+
| RCEP | 15 Asia-Pacific nations | Variable |
|
|
151
|
+
|
|
152
|
+
```text
|
|
153
|
+
Requirements for FTA Duty Preference:
|
|
154
|
+
├── Product qualifies under rules of origin
|
|
155
|
+
├── Certificate of origin obtained from supplier
|
|
156
|
+
├── Goods shipped directly (no transshipment to non-member)
|
|
157
|
+
├── Documentation retained for audit (5-7 years)
|
|
158
|
+
└── Country-specific requirements met
|
|
159
|
+
```
|
|
160
|
+
|
|
161
|
+
## Make-vs-Buy Analysis
|
|
162
|
+
|
|
163
|
+
### Decision Framework
|
|
164
|
+
|
|
165
|
+
```text
|
|
166
|
+
Strategic Importance
|
|
167
|
+
Low High
|
|
168
|
+
Complexity High Outsource Strategic
|
|
169
|
+
(Find expert) Insource
|
|
170
|
+
(Core competency)
|
|
171
|
+
Low Outsource Consider
|
|
172
|
+
(Commodity) Both
|
|
173
|
+
(Case by case)
|
|
174
|
+
```
|
|
175
|
+
|
|
176
|
+
### Cost Comparison Template
|
|
177
|
+
|
|
178
|
+
```markdown
|
|
179
|
+
## Make vs Buy: [Component/Process]
|
|
180
|
+
|
|
181
|
+
### Make (In-House)
|
|
182
|
+
| Cost Element | Annual Cost |
|
|
183
|
+
|-------------|------------|
|
|
184
|
+
| Direct materials | $X |
|
|
185
|
+
| Direct labor | $X |
|
|
186
|
+
| Equipment depreciation | $X |
|
|
187
|
+
| Facility allocation | $X |
|
|
188
|
+
| Utilities | $X |
|
|
189
|
+
| Quality/inspection | $X |
|
|
190
|
+
| Overhead allocation | $X |
|
|
191
|
+
| **Total Make Cost** | **$X** |
|
|
192
|
+
| **Per Unit** | **$X** |
|
|
193
|
+
|
|
194
|
+
### Buy (Outsource)
|
|
195
|
+
| Cost Element | Annual Cost |
|
|
196
|
+
|-------------|------------|
|
|
197
|
+
| Purchase price | $X |
|
|
198
|
+
| Freight | $X |
|
|
199
|
+
| Incoming inspection | $X |
|
|
200
|
+
| Inventory carrying | $X |
|
|
201
|
+
| Supplier management | $X |
|
|
202
|
+
| Quality risk | $X |
|
|
203
|
+
| **Total Buy Cost** | **$X** |
|
|
204
|
+
| **Per Unit** | **$X** |
|
|
205
|
+
|
|
206
|
+
### Non-Financial Factors
|
|
207
|
+
| Factor | Make | Buy |
|
|
208
|
+
|--------|------|-----|
|
|
209
|
+
| Lead time | [X days] | [Y days] |
|
|
210
|
+
| Quality control | Direct | Indirect |
|
|
211
|
+
| Flexibility | [Assessment] | [Assessment] |
|
|
212
|
+
| IP protection | High | Medium-Low |
|
|
213
|
+
| Scalability | Capital-limited | Supplier-limited |
|
|
214
|
+
| Focus | Diverts resources | Frees resources |
|
|
215
|
+
|
|
216
|
+
### Recommendation
|
|
217
|
+
[Make/Buy] because [rationale including both cost and strategic factors]
|
|
218
|
+
```
|
|
219
|
+
|
|
220
|
+
## Cost Breakdown Structure
|
|
221
|
+
|
|
222
|
+
### Product Cost Decomposition
|
|
223
|
+
|
|
224
|
+
```text
|
|
225
|
+
Total Product Cost
|
|
226
|
+
├── Raw Materials (40-60% typical)
|
|
227
|
+
│ ├── Primary materials
|
|
228
|
+
│ ├── Secondary materials
|
|
229
|
+
│ └── Packaging materials
|
|
230
|
+
├── Direct Labor (10-25% typical)
|
|
231
|
+
│ ├── Production labor
|
|
232
|
+
│ ├── Assembly labor
|
|
233
|
+
│ └── Quality inspection
|
|
234
|
+
├── Manufacturing Overhead (15-25% typical)
|
|
235
|
+
│ ├── Equipment depreciation
|
|
236
|
+
│ ├── Facility costs
|
|
237
|
+
│ ├── Utilities
|
|
238
|
+
│ ├── Maintenance
|
|
239
|
+
│ └── Indirect labor
|
|
240
|
+
├── SGA (5-15% typical)
|
|
241
|
+
│ ├── Sales and marketing
|
|
242
|
+
│ ├── Administration
|
|
243
|
+
│ └── R&D allocation
|
|
244
|
+
└── Profit Margin (5-15% typical)
|
|
245
|
+
```
|
|
246
|
+
|
|
247
|
+
### Should-Cost Modeling
|
|
248
|
+
|
|
249
|
+
```text
|
|
250
|
+
Purpose: Estimate what a product SHOULD cost based on component analysis.
|
|
251
|
+
Use: Validate supplier quotes, negotiate from an informed position.
|
|
252
|
+
|
|
253
|
+
Steps:
|
|
254
|
+
1. Decompose product into raw materials
|
|
255
|
+
2. Price each material at market rates
|
|
256
|
+
3. Estimate labor based on process times and local rates
|
|
257
|
+
4. Apply overhead using industry benchmarks
|
|
258
|
+
5. Add reasonable margin
|
|
259
|
+
6. Compare to supplier quote
|
|
260
|
+
|
|
261
|
+
If quote significantly exceeds should-cost:
|
|
262
|
+
├── Supplier is overpricing → Negotiate
|
|
263
|
+
├── Your model is missing something → Investigate
|
|
264
|
+
└── Supplier has inefficiency → Discuss improvement
|
|
265
|
+
```
|
|
266
|
+
|
|
267
|
+
## Target Costing
|
|
268
|
+
|
|
269
|
+
### Process
|
|
270
|
+
|
|
271
|
+
```text
|
|
272
|
+
Step 1: Determine market price (what customers will pay)
|
|
273
|
+
Step 2: Subtract required margin
|
|
274
|
+
Step 3: Result = target cost (maximum allowable cost)
|
|
275
|
+
Step 4: Design product to meet target cost
|
|
276
|
+
Step 5: If current cost > target, identify cost reduction opportunities
|
|
277
|
+
|
|
278
|
+
Market Price: $100
|
|
279
|
+
Required Margin (20%): -$20
|
|
280
|
+
Target Cost: $80
|
|
281
|
+
Current Estimated Cost: $92
|
|
282
|
+
Gap to Close: $12 (15% reduction needed)
|
|
283
|
+
|
|
284
|
+
Cost Reduction Actions:
|
|
285
|
+
├── Material substitution: -$4
|
|
286
|
+
├── Design simplification: -$3
|
|
287
|
+
├── Process improvement: -$3
|
|
288
|
+
├── Supplier negotiation: -$2
|
|
289
|
+
└── Total reduction: $12 ✓
|
|
290
|
+
```
|
|
291
|
+
|
|
292
|
+
## Financial Impact Analysis
|
|
293
|
+
|
|
294
|
+
### Net Present Value for Supply Chain Investments
|
|
295
|
+
|
|
296
|
+
```text
|
|
297
|
+
NPV = -Initial Investment + SUM(Annual Savings / (1 + r)^t)
|
|
298
|
+
|
|
299
|
+
Example: Warehouse Automation
|
|
300
|
+
Investment: $500,000
|
|
301
|
+
Annual labor savings: $150,000
|
|
302
|
+
Annual error reduction: $30,000
|
|
303
|
+
Discount rate: 10%
|
|
304
|
+
Horizon: 5 years
|
|
305
|
+
|
|
306
|
+
NPV = -500,000 + 180,000/(1.1)^1 + 180,000/(1.1)^2 + ... + 180,000/(1.1)^5
|
|
307
|
+
NPV = -500,000 + 682,344
|
|
308
|
+
NPV = $182,344 (positive = invest)
|
|
309
|
+
|
|
310
|
+
Payback period: $500,000 / $180,000 = 2.8 years
|
|
311
|
+
```
|
|
312
|
+
|
|
313
|
+
### Cost Savings Tracking
|
|
314
|
+
|
|
315
|
+
```markdown
|
|
316
|
+
## Cost Savings Report: [Quarter/Year]
|
|
317
|
+
|
|
318
|
+
### By Category
|
|
319
|
+
| Category | Target | Actual | Variance |
|
|
320
|
+
|----------|--------|--------|----------|
|
|
321
|
+
| Procurement savings | $200K | $185K | -$15K |
|
|
322
|
+
| Freight optimization | $75K | $92K | +$17K |
|
|
323
|
+
| Inventory reduction | $50K | $45K | -$5K |
|
|
324
|
+
| Process improvement | $30K | $38K | +$8K |
|
|
325
|
+
| **Total** | **$355K** | **$360K** | **+$5K** |
|
|
326
|
+
|
|
327
|
+
### Savings Classification
|
|
328
|
+
- Hard savings (P&L impact): $280K
|
|
329
|
+
- Soft savings (cost avoidance): $60K
|
|
330
|
+
- Productivity gains (time savings): $20K
|
|
331
|
+
```
|
|
332
|
+
|
|
333
|
+
## Common Pitfalls
|
|
334
|
+
|
|
335
|
+
### 1. Comparing Unit Prices Instead of TCO
|
|
336
|
+
|
|
337
|
+
```markdown
|
|
338
|
+
Wrong: "Supplier A is $2 cheaper per unit, switch immediately"
|
|
339
|
+
Right: "Supplier A is $2 cheaper per unit but requires 4x more safety stock
|
|
340
|
+
and has 3x the defect rate. TCO analysis shows they are 8% MORE expensive."
|
|
341
|
+
```
|
|
342
|
+
|
|
343
|
+
### 2. Ignoring the Cost of Tied-Up Capital
|
|
344
|
+
|
|
345
|
+
```markdown
|
|
346
|
+
Wrong: "Buy 6 months of inventory to get the volume discount"
|
|
347
|
+
Right: "Volume discount saves $20K but carrying cost on extra inventory is $35K.
|
|
348
|
+
Net cost increase of $15K."
|
|
349
|
+
```
|
|
350
|
+
|
|
351
|
+
### 3. Double-Counting Cost Savings
|
|
352
|
+
|
|
353
|
+
```markdown
|
|
354
|
+
Wrong: Count same savings in both procurement and operations budgets
|
|
355
|
+
Right: Define clear ownership of each savings initiative; avoid overlap
|
|
356
|
+
```
|
|
357
|
+
|
|
358
|
+
### 4. Assuming Current Costs are the Baseline
|
|
359
|
+
|
|
360
|
+
```markdown
|
|
361
|
+
Wrong: "We saved 5% vs last year's price"
|
|
362
|
+
Right: "We saved 5% vs last year, but market prices dropped 8%.
|
|
363
|
+
We actually underperformed the market by 3%."
|
|
364
|
+
```
|
|
365
|
+
|
|
366
|
+
### 5. Excluding Risk from Cost Models
|
|
367
|
+
|
|
368
|
+
```markdown
|
|
369
|
+
Wrong: Compare options based on expected cost only
|
|
370
|
+
Right: Include risk-adjusted costs. A disruption probability of 5% with $500K impact
|
|
371
|
+
adds $25K expected annual cost to the option.
|
|
372
|
+
```
|
|
373
|
+
|
|
374
|
+
### 6. Static Models for Dynamic Decisions
|
|
375
|
+
|
|
376
|
+
```markdown
|
|
377
|
+
Wrong: Run cost model once and treat it as permanent truth
|
|
378
|
+
Right: Update models quarterly with current rates, volumes, and market conditions.
|
|
379
|
+
Decisions made on stale data are unreliable.
|
|
380
|
+
```
|
|
@@ -0,0 +1,285 @@
|
|
|
1
|
+
# Demand Forecasting
|
|
2
|
+
|
|
3
|
+
Guidelines for accurate demand planning using statistical, causal, and collaborative methods.
|
|
4
|
+
|
|
5
|
+
## Core Principle
|
|
6
|
+
|
|
7
|
+
**All forecasts are wrong; the goal is to be less wrong and to plan for the uncertainty.** A good forecasting process combines quantitative methods with market intelligence and measures accuracy rigorously.
|
|
8
|
+
|
|
9
|
+
## Time Series Methods
|
|
10
|
+
|
|
11
|
+
### Simple Moving Average
|
|
12
|
+
|
|
13
|
+
```text
|
|
14
|
+
Forecast = (Sum of last N periods) / N
|
|
15
|
+
|
|
16
|
+
Best for: Stable demand with no trend or seasonality
|
|
17
|
+
Typical N: 3-6 months for monthly data
|
|
18
|
+
|
|
19
|
+
Example (3-month moving average):
|
|
20
|
+
Jan: 100, Feb: 110, Mar: 105
|
|
21
|
+
April forecast = (100 + 110 + 105) / 3 = 105
|
|
22
|
+
```
|
|
23
|
+
|
|
24
|
+
### Weighted Moving Average
|
|
25
|
+
|
|
26
|
+
```text
|
|
27
|
+
Forecast = (W1 x D1 + W2 x D2 + ... + Wn x Dn) / (W1 + W2 + ... + Wn)
|
|
28
|
+
|
|
29
|
+
Assign higher weights to more recent periods.
|
|
30
|
+
|
|
31
|
+
Example:
|
|
32
|
+
Weights: Current month 3, Previous 2, Two months ago 1
|
|
33
|
+
Jan: 100 (w=1), Feb: 110 (w=2), Mar: 105 (w=3)
|
|
34
|
+
April forecast = (100x1 + 110x2 + 105x3) / 6 = 106.7
|
|
35
|
+
```
|
|
36
|
+
|
|
37
|
+
### Exponential Smoothing
|
|
38
|
+
|
|
39
|
+
```text
|
|
40
|
+
Simple Exponential Smoothing:
|
|
41
|
+
F(t+1) = alpha x A(t) + (1 - alpha) x F(t)
|
|
42
|
+
|
|
43
|
+
alpha (smoothing constant): 0.1-0.3 for stable demand, 0.4-0.6 for volatile
|
|
44
|
+
|
|
45
|
+
Holt's Method (trend):
|
|
46
|
+
Level: L(t) = alpha x A(t) + (1 - alpha) x (L(t-1) + T(t-1))
|
|
47
|
+
Trend: T(t) = beta x (L(t) - L(t-1)) + (1 - beta) x T(t-1)
|
|
48
|
+
Forecast: F(t+m) = L(t) + m x T(t)
|
|
49
|
+
|
|
50
|
+
Holt-Winters (trend + seasonality):
|
|
51
|
+
Adds seasonal component S(t) with gamma parameter
|
|
52
|
+
Best for data with both trend and seasonal patterns
|
|
53
|
+
```
|
|
54
|
+
|
|
55
|
+
### Method Selection Guide
|
|
56
|
+
|
|
57
|
+
| Pattern | Recommended Method |
|
|
58
|
+
|---------|-------------------|
|
|
59
|
+
| Flat, stable | Simple moving average or simple exponential smoothing |
|
|
60
|
+
| Upward/downward trend | Holt's double exponential smoothing |
|
|
61
|
+
| Trend + seasonality | Holt-Winters or ARIMA with seasonal component |
|
|
62
|
+
| Complex patterns | ARIMA, Prophet, or machine learning |
|
|
63
|
+
| New product (no history) | Analogous product comparison or judgment |
|
|
64
|
+
|
|
65
|
+
## Causal Models
|
|
66
|
+
|
|
67
|
+
### Regression-Based Forecasting
|
|
68
|
+
|
|
69
|
+
```text
|
|
70
|
+
Demand = f(Price, Promotions, Season, Economic Indicators, ...)
|
|
71
|
+
|
|
72
|
+
Example:
|
|
73
|
+
Demand = 5000 - 200(Price) + 1500(Promo) + 300(Season_Q4)
|
|
74
|
+
|
|
75
|
+
Use when:
|
|
76
|
+
- External factors clearly drive demand
|
|
77
|
+
- Sufficient historical data with variable changes
|
|
78
|
+
- Need to model "what if" scenarios
|
|
79
|
+
```
|
|
80
|
+
|
|
81
|
+
### Common Causal Variables
|
|
82
|
+
|
|
83
|
+
| Variable | Impact Direction | Data Source |
|
|
84
|
+
|----------|-----------------|-------------|
|
|
85
|
+
| Price changes | Inverse (usually) | Internal pricing |
|
|
86
|
+
| Promotions | Positive (temporary) | Marketing calendar |
|
|
87
|
+
| Competitor actions | Variable | Market intelligence |
|
|
88
|
+
| Economic indicators | Directional | Government data |
|
|
89
|
+
| Weather | Product-specific | Weather services |
|
|
90
|
+
| Calendar events | Seasonal spikes | Fixed calendar |
|
|
91
|
+
|
|
92
|
+
## Collaborative Forecasting
|
|
93
|
+
|
|
94
|
+
### CPFR Process
|
|
95
|
+
|
|
96
|
+
```text
|
|
97
|
+
Step 1: Statistical Baseline
|
|
98
|
+
Generate automated forecast from historical data
|
|
99
|
+
|
|
100
|
+
Step 2: Sales Input
|
|
101
|
+
Account managers adjust for known opportunities/risks
|
|
102
|
+
|
|
103
|
+
Step 3: Marketing Input
|
|
104
|
+
Add promotional lifts, new product launches, campaigns
|
|
105
|
+
|
|
106
|
+
Step 4: Finance Overlay
|
|
107
|
+
Align with revenue targets and budget constraints
|
|
108
|
+
|
|
109
|
+
Step 5: Supply Chain Adjustment
|
|
110
|
+
Adjust for capacity constraints and lead times
|
|
111
|
+
|
|
112
|
+
Step 6: Consensus Review
|
|
113
|
+
Executive sign-off on final demand plan
|
|
114
|
+
```
|
|
115
|
+
|
|
116
|
+
### Best Practices for Forecast Collaboration
|
|
117
|
+
|
|
118
|
+
```markdown
|
|
119
|
+
Do:
|
|
120
|
+
- Start with a statistical baseline; adjust with intelligence
|
|
121
|
+
- Track who makes adjustments and whether they improve accuracy
|
|
122
|
+
- Keep adjustment reasons documented
|
|
123
|
+
- Review forecast value add (did human adjustments help or hurt?)
|
|
124
|
+
|
|
125
|
+
Don't:
|
|
126
|
+
- Let politics override data
|
|
127
|
+
- Accept "stretch targets" as forecasts
|
|
128
|
+
- Ignore statistical signals in favor of gut feel
|
|
129
|
+
- Adjust forecasts without documented rationale
|
|
130
|
+
```
|
|
131
|
+
|
|
132
|
+
## Forecast Accuracy Metrics
|
|
133
|
+
|
|
134
|
+
### Key Formulas
|
|
135
|
+
|
|
136
|
+
```text
|
|
137
|
+
MAPE (Mean Absolute Percentage Error):
|
|
138
|
+
MAPE = (1/n) x SUM(|Actual - Forecast| / Actual) x 100
|
|
139
|
+
Lower is better. <10% is excellent, 10-20% is good.
|
|
140
|
+
|
|
141
|
+
Weighted MAPE (for product mix):
|
|
142
|
+
wMAPE = SUM(|Actual - Forecast|) / SUM(Actual) x 100
|
|
143
|
+
Better for products with varying volumes.
|
|
144
|
+
|
|
145
|
+
Bias (Tracking Signal):
|
|
146
|
+
Bias = SUM(Actual - Forecast) / SUM(|Actual - Forecast|)
|
|
147
|
+
Range: -1 to +1
|
|
148
|
+
Near 0 = balanced. Positive = under-forecasting. Negative = over-forecasting.
|
|
149
|
+
|
|
150
|
+
MAD (Mean Absolute Deviation):
|
|
151
|
+
MAD = (1/n) x SUM(|Actual - Forecast|)
|
|
152
|
+
Useful for safety stock calculations.
|
|
153
|
+
```
|
|
154
|
+
|
|
155
|
+
### Accuracy Reporting Template
|
|
156
|
+
|
|
157
|
+
```markdown
|
|
158
|
+
## Forecast Accuracy Report: [Month/Quarter]
|
|
159
|
+
|
|
160
|
+
### Summary
|
|
161
|
+
| Metric | This Period | Last Period | Trend |
|
|
162
|
+
|--------|------------|------------|-------|
|
|
163
|
+
| MAPE | 15% | 18% | Improving |
|
|
164
|
+
| Bias | +0.05 | +0.12 | Improving |
|
|
165
|
+
| Items within 20% accuracy | 78% | 72% | Improving |
|
|
166
|
+
|
|
167
|
+
### By Product Category
|
|
168
|
+
| Category | MAPE | Bias | Volume |
|
|
169
|
+
|----------|------|------|--------|
|
|
170
|
+
| Category A | 8% | -0.02 | 50K |
|
|
171
|
+
| Category B | 22% | +0.15 | 20K |
|
|
172
|
+
| Category C | 35% | +0.30 | 5K |
|
|
173
|
+
|
|
174
|
+
### Root Causes of Error
|
|
175
|
+
1. [Cause 1]: Unplanned promotion in Category B
|
|
176
|
+
2. [Cause 2]: Supplier delay shifted demand to next period
|
|
177
|
+
3. [Cause 3]: New product launch exceeded expectations
|
|
178
|
+
|
|
179
|
+
### Actions
|
|
180
|
+
- [ ] Improve promotion calendar integration
|
|
181
|
+
- [ ] Add supplier delay adjustment to model
|
|
182
|
+
```
|
|
183
|
+
|
|
184
|
+
## Demand Sensing
|
|
185
|
+
|
|
186
|
+
### Near-Term Signal Integration
|
|
187
|
+
|
|
188
|
+
| Signal | Latency | Adjustment Window | Method |
|
|
189
|
+
|--------|---------|-------------------|--------|
|
|
190
|
+
| POS/sell-through data | Daily | 1-7 days | Proportional adjustment |
|
|
191
|
+
| Order pipeline | Real-time | 1-14 days | Direct input |
|
|
192
|
+
| Web traffic/search | Daily | 7-21 days | Correlation model |
|
|
193
|
+
| Weather forecast | 3-10 days | Product-specific | Regression adjustment |
|
|
194
|
+
| Social media trends | Variable | 7-30 days | Sentiment scoring |
|
|
195
|
+
| Economic releases | Monthly | 30-90 days | Index adjustment |
|
|
196
|
+
|
|
197
|
+
### Demand Sensing vs Traditional Forecasting
|
|
198
|
+
|
|
199
|
+
```text
|
|
200
|
+
Traditional Forecasting:
|
|
201
|
+
Monthly buckets → Updated monthly → 1-18 month horizon → Statistical models
|
|
202
|
+
|
|
203
|
+
Demand Sensing:
|
|
204
|
+
Daily/weekly buckets → Updated daily → 1-6 week horizon → Real-time signals
|
|
205
|
+
|
|
206
|
+
Use both: Traditional for planning horizon, Sensing for execution horizon
|
|
207
|
+
```
|
|
208
|
+
|
|
209
|
+
## New Product Forecasting
|
|
210
|
+
|
|
211
|
+
### Methods When No History Exists
|
|
212
|
+
|
|
213
|
+
| Method | Description | Accuracy |
|
|
214
|
+
|--------|-------------|----------|
|
|
215
|
+
| Analogous products | Base on similar past launches | Medium |
|
|
216
|
+
| Market sizing | TAM → SAM → SOM approach | Low-Medium |
|
|
217
|
+
| Test market | Pilot in limited geography | Medium-High |
|
|
218
|
+
| Pre-orders/waitlist | Measure actual interest | High |
|
|
219
|
+
| Expert judgment | Delphi method with stakeholders | Low-Medium |
|
|
220
|
+
|
|
221
|
+
### New Product Forecast Template
|
|
222
|
+
|
|
223
|
+
```markdown
|
|
224
|
+
## New Product Forecast: [Product Name]
|
|
225
|
+
|
|
226
|
+
### Analogous Products
|
|
227
|
+
| Product | Launch Year | Y1 Sales | Similarity Score |
|
|
228
|
+
|---------|-------------|----------|-----------------|
|
|
229
|
+
| [Product A] | 2023 | 50K | High |
|
|
230
|
+
| [Product B] | 2024 | 30K | Medium |
|
|
231
|
+
|
|
232
|
+
### Market Sizing
|
|
233
|
+
- TAM: [Total addressable market]
|
|
234
|
+
- SAM: [Serviceable addressable market]
|
|
235
|
+
- SOM: [Serviceable obtainable market]
|
|
236
|
+
- Year 1 Target: [Conservative estimate]
|
|
237
|
+
|
|
238
|
+
### Assumptions
|
|
239
|
+
1. [Assumption 1]
|
|
240
|
+
2. [Assumption 2]
|
|
241
|
+
|
|
242
|
+
### Scenarios
|
|
243
|
+
| Scenario | Y1 Units | Confidence |
|
|
244
|
+
|----------|----------|------------|
|
|
245
|
+
| Pessimistic | [X] | 90% we beat this |
|
|
246
|
+
| Base | [Y] | 50% probability |
|
|
247
|
+
| Optimistic | [Z] | 10% we reach this |
|
|
248
|
+
```
|
|
249
|
+
|
|
250
|
+
## Common Pitfalls
|
|
251
|
+
|
|
252
|
+
### 1. Forecasting at the Wrong Level
|
|
253
|
+
|
|
254
|
+
```markdown
|
|
255
|
+
Wrong: Forecast total demand, then allocate to SKUs
|
|
256
|
+
Right: Forecast at the level decisions are made (SKU-location for replenishment)
|
|
257
|
+
```
|
|
258
|
+
|
|
259
|
+
### 2. Not Separating Base Demand from Events
|
|
260
|
+
|
|
261
|
+
```markdown
|
|
262
|
+
Wrong: Include promotional spikes in base demand history
|
|
263
|
+
Right: Decompose history into base demand + promotional lift + one-time events
|
|
264
|
+
```
|
|
265
|
+
|
|
266
|
+
### 3. Confusing Forecasts with Targets
|
|
267
|
+
|
|
268
|
+
```markdown
|
|
269
|
+
Wrong: "Sales target is $10M so forecast $10M"
|
|
270
|
+
Right: "Statistical forecast is $8M; achieving $10M requires these additional actions..."
|
|
271
|
+
```
|
|
272
|
+
|
|
273
|
+
### 4. Ignoring Forecast Uncertainty
|
|
274
|
+
|
|
275
|
+
```markdown
|
|
276
|
+
Wrong: "Forecast is 1,000 units" (point estimate only)
|
|
277
|
+
Right: "Forecast is 1,000 units +/- 200 (80% confidence interval)"
|
|
278
|
+
```
|
|
279
|
+
|
|
280
|
+
### 5. Over-Fitting Models to Historical Noise
|
|
281
|
+
|
|
282
|
+
```markdown
|
|
283
|
+
Wrong: Complex model that perfectly fits history but fails on new data
|
|
284
|
+
Right: Simple model validated with holdout data; prioritize out-of-sample accuracy
|
|
285
|
+
```
|