agentic-qe 2.2.2 → 2.3.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.claude/agents/qe-api-contract-validator.md +43 -12
- package/.claude/agents/qe-chaos-engineer.md +53 -23
- package/.claude/agents/qe-code-complexity.md +42 -12
- package/.claude/agents/qe-coverage-analyzer.md +52 -24
- package/.claude/agents/qe-deployment-readiness.md +43 -12
- package/.claude/agents/qe-flaky-test-hunter.md +59 -16
- package/.claude/agents/qe-fleet-commander.md +2 -2
- package/.claude/agents/qe-performance-tester.md +54 -24
- package/.claude/agents/qe-production-intelligence.md +43 -12
- package/.claude/agents/qe-quality-analyzer.md +2 -2
- package/.claude/agents/qe-quality-gate.md +43 -12
- package/.claude/agents/qe-regression-risk-analyzer.md +54 -10
- package/.claude/agents/qe-requirements-validator.md +43 -12
- package/.claude/agents/qe-security-scanner.md +53 -23
- package/.claude/agents/qe-test-data-architect.md +43 -12
- package/.claude/agents/qe-test-executor.md +2 -2
- package/.claude/agents/qe-test-generator.md +55 -22
- package/.claude/agents/qe-visual-tester.md +43 -12
- package/.claude/agents/qx-partner.md +44 -12
- package/.claude/agents/subagents/qe-code-reviewer.md +31 -0
- package/.claude/agents/subagents/qe-coverage-gap-analyzer.md +31 -0
- package/.claude/agents/subagents/qe-data-generator.md +31 -0
- package/.claude/agents/subagents/qe-flaky-investigator.md +31 -0
- package/.claude/agents/subagents/qe-integration-tester.md +31 -0
- package/.claude/agents/subagents/qe-performance-validator.md +31 -0
- package/.claude/agents/subagents/qe-security-auditor.md +31 -0
- package/.claude/agents/subagents/qe-test-data-architect-sub.md +31 -0
- package/.claude/agents/subagents/qe-test-implementer.md +31 -0
- package/.claude/agents/subagents/qe-test-refactorer.md +31 -0
- package/.claude/agents/subagents/qe-test-writer.md +31 -0
- package/.claude/skills/agentic-quality-engineering/SKILL.md +90 -0
- package/CHANGELOG.md +54 -0
- package/README.md +1 -1
- package/dist/agents/BaseAgent.d.ts +2 -1
- package/dist/agents/BaseAgent.d.ts.map +1 -1
- package/dist/agents/BaseAgent.js +8 -4
- package/dist/agents/BaseAgent.js.map +1 -1
- package/dist/cli/init/claude-config.d.ts.map +1 -1
- package/dist/cli/init/claude-config.js +50 -30
- package/dist/cli/init/claude-config.js.map +1 -1
- package/dist/cli/init/helpers.d.ts +5 -0
- package/dist/cli/init/helpers.d.ts.map +1 -1
- package/dist/cli/init/helpers.js +54 -0
- package/dist/cli/init/helpers.js.map +1 -1
- package/dist/cli/init/index.d.ts.map +1 -1
- package/dist/cli/init/index.js +6 -0
- package/dist/cli/init/index.js.map +1 -1
- package/dist/core/memory/HNSWVectorMemory.js +1 -1
- package/dist/mcp/server-instructions.d.ts +1 -1
- package/dist/mcp/server-instructions.js +1 -1
- package/package.json +1 -1
|
@@ -68,8 +68,11 @@ Coordination:
|
|
|
68
68
|
</memory_namespace>
|
|
69
69
|
|
|
70
70
|
<learning_protocol>
|
|
71
|
-
|
|
72
|
-
|
|
71
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
72
|
+
|
|
73
|
+
### Query Past Learnings BEFORE Starting Task
|
|
74
|
+
|
|
75
|
+
```typescript
|
|
73
76
|
mcp__agentic_qe__learning_query({
|
|
74
77
|
agentId: "qe-performance-tester",
|
|
75
78
|
taskType: "performance-testing",
|
|
@@ -79,45 +82,72 @@ mcp__agentic_qe__learning_query({
|
|
|
79
82
|
})
|
|
80
83
|
```
|
|
81
84
|
|
|
82
|
-
|
|
83
|
-
|
|
85
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
86
|
+
|
|
87
|
+
**1. Store Learning Experience:**
|
|
88
|
+
```typescript
|
|
84
89
|
mcp__agentic_qe__learning_store_experience({
|
|
85
90
|
agentId: "qe-performance-tester",
|
|
86
91
|
taskType: "performance-testing",
|
|
87
|
-
reward: 0.
|
|
92
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
88
93
|
outcome: {
|
|
89
|
-
testsExecuted:
|
|
90
|
-
bottlenecksFound:
|
|
91
|
-
slaViolations:
|
|
92
|
-
p95Latency:
|
|
93
|
-
throughput:
|
|
94
|
+
testsExecuted: <count>,
|
|
95
|
+
bottlenecksFound: <count>,
|
|
96
|
+
slaViolations: <count>,
|
|
97
|
+
p95Latency: <ms>,
|
|
98
|
+
throughput: <rps>
|
|
94
99
|
},
|
|
95
100
|
metadata: {
|
|
96
|
-
tool: "k6",
|
|
97
|
-
loadPattern: "ramp-up",
|
|
98
|
-
duration:
|
|
101
|
+
tool: "<k6|artillery|locust>",
|
|
102
|
+
loadPattern: "<ramp-up|steady|spike>",
|
|
103
|
+
duration: <seconds>
|
|
99
104
|
}
|
|
100
105
|
})
|
|
101
106
|
```
|
|
102
107
|
|
|
103
|
-
Store
|
|
104
|
-
```
|
|
108
|
+
**2. Store Task Artifacts:**
|
|
109
|
+
```typescript
|
|
110
|
+
mcp__agentic_qe__memory_store({
|
|
111
|
+
key: "aqe/performance/test-results/<task_id>",
|
|
112
|
+
value: {
|
|
113
|
+
bottlenecks: [...],
|
|
114
|
+
performanceReport: {...},
|
|
115
|
+
recommendations: [...]
|
|
116
|
+
},
|
|
117
|
+
namespace: "aqe",
|
|
118
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
119
|
+
})
|
|
120
|
+
```
|
|
121
|
+
|
|
122
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
123
|
+
```typescript
|
|
105
124
|
mcp__agentic_qe__learning_store_pattern({
|
|
106
|
-
pattern: "
|
|
107
|
-
confidence: 0.
|
|
125
|
+
pattern: "<description of successful performance strategy>",
|
|
126
|
+
confidence: <0.0-1.0>,
|
|
108
127
|
domain: "performance-testing",
|
|
109
128
|
metadata: {
|
|
110
|
-
|
|
111
|
-
|
|
129
|
+
detectionAccuracy: <rate>,
|
|
130
|
+
bottleneckTypes: ["<types>"]
|
|
112
131
|
}
|
|
113
132
|
})
|
|
114
133
|
```
|
|
115
134
|
|
|
116
|
-
Reward
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
135
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
136
|
+
| Reward | Criteria |
|
|
137
|
+
|--------|----------|
|
|
138
|
+
| 1.0 | Perfect: 0 SLA violations, 95%+ bottleneck detection, <1% error |
|
|
139
|
+
| 0.9 | Excellent: 0 violations, 90%+ detection, <2% error |
|
|
140
|
+
| 0.7 | Good: Minor violations, 80%+ detection, <5% error |
|
|
141
|
+
| 0.5 | Acceptable: Some violations, test completed |
|
|
142
|
+
| 0.3 | Partial: Tests ran with errors |
|
|
143
|
+
| 0.0 | Failed: Tests failed or major errors |
|
|
144
|
+
|
|
145
|
+
**When to Call Learning Tools:**
|
|
146
|
+
- ✅ **ALWAYS** after completing main task
|
|
147
|
+
- ✅ **ALWAYS** after detecting bottlenecks
|
|
148
|
+
- ✅ **ALWAYS** after generating performance recommendations
|
|
149
|
+
- ✅ When discovering new effective load patterns
|
|
150
|
+
- ✅ When achieving exceptional performance metrics
|
|
121
151
|
</learning_protocol>
|
|
122
152
|
|
|
123
153
|
<output_format>
|
|
@@ -72,8 +72,11 @@ Coordination:
|
|
|
72
72
|
</memory_namespace>
|
|
73
73
|
|
|
74
74
|
<learning_protocol>
|
|
75
|
-
|
|
76
|
-
|
|
75
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
76
|
+
|
|
77
|
+
### Query Past Learnings BEFORE Starting Task
|
|
78
|
+
|
|
79
|
+
```typescript
|
|
77
80
|
mcp__agentic_qe__learning_query({
|
|
78
81
|
agentId: "qe-production-intelligence",
|
|
79
82
|
taskType: "production-analysis",
|
|
@@ -83,12 +86,14 @@ mcp__agentic_qe__learning_query({
|
|
|
83
86
|
})
|
|
84
87
|
```
|
|
85
88
|
|
|
86
|
-
|
|
87
|
-
|
|
89
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
90
|
+
|
|
91
|
+
**1. Store Learning Experience:**
|
|
92
|
+
```typescript
|
|
88
93
|
mcp__agentic_qe__learning_store_experience({
|
|
89
94
|
agentId: "qe-production-intelligence",
|
|
90
95
|
taskType: "production-analysis",
|
|
91
|
-
reward: 0.
|
|
96
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
92
97
|
outcome: {
|
|
93
98
|
incidentsAnalyzed: 12,
|
|
94
99
|
testsGenerated: 47,
|
|
@@ -103,8 +108,23 @@ mcp__agentic_qe__learning_store_experience({
|
|
|
103
108
|
})
|
|
104
109
|
```
|
|
105
110
|
|
|
106
|
-
Store
|
|
107
|
-
```
|
|
111
|
+
**2. Store Task Artifacts:**
|
|
112
|
+
```typescript
|
|
113
|
+
mcp__agentic_qe__memory_store({
|
|
114
|
+
key: "aqe/production/test-scenarios/<task_id>",
|
|
115
|
+
value: {
|
|
116
|
+
incidents: [],
|
|
117
|
+
testScenarios: [],
|
|
118
|
+
insights: [],
|
|
119
|
+
anomalies: []
|
|
120
|
+
},
|
|
121
|
+
namespace: "aqe",
|
|
122
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
123
|
+
})
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
127
|
+
```typescript
|
|
108
128
|
mcp__agentic_qe__learning_store_pattern({
|
|
109
129
|
pattern: "Peak hour network failures in specific regions indicate infrastructure capacity issues - correlate with RUM data for comprehensive test generation",
|
|
110
130
|
confidence: 0.95,
|
|
@@ -116,11 +136,22 @@ mcp__agentic_qe__learning_store_pattern({
|
|
|
116
136
|
})
|
|
117
137
|
```
|
|
118
138
|
|
|
119
|
-
Reward
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
139
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
140
|
+
| Reward | Criteria |
|
|
141
|
+
|--------|----------|
|
|
142
|
+
| 1.0 | Perfect execution (100% incident coverage, root causes identified, <5s) |
|
|
143
|
+
| 0.9 | Excellent (95%+ coverage, most root causes found, <10s) |
|
|
144
|
+
| 0.7 | Good (90%+ coverage, key root causes found, <20s) |
|
|
145
|
+
| 0.5 | Acceptable (80%+ coverage, completed successfully) |
|
|
146
|
+
| 0.3 | Partial: Task partially completed |
|
|
147
|
+
| 0.0 | Failed: Task failed or major errors |
|
|
148
|
+
|
|
149
|
+
**When to Call Learning Tools:**
|
|
150
|
+
- ✅ **ALWAYS** after completing production data analysis
|
|
151
|
+
- ✅ **ALWAYS** after detecting incidents or anomalies
|
|
152
|
+
- ✅ **ALWAYS** after generating test scenarios from RUM data
|
|
153
|
+
- ✅ When discovering new incident patterns
|
|
154
|
+
- ✅ When achieving exceptional root cause identification rates
|
|
124
155
|
</learning_protocol>
|
|
125
156
|
|
|
126
157
|
<output_format>
|
|
@@ -199,8 +199,7 @@ const finalization = await hookManager.executeSessionEndFinalization({
|
|
|
199
199
|
});
|
|
200
200
|
```
|
|
201
201
|
|
|
202
|
-
|
|
203
|
-
|
|
202
|
+
<learning_protocol>
|
|
204
203
|
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
205
204
|
|
|
206
205
|
### Required Learning Actions (Call AFTER Task Completion)
|
|
@@ -324,6 +323,7 @@ if (pastLearnings.success && pastLearnings.data) {
|
|
|
324
323
|
- ✅ **ALWAYS** after generating recommendations
|
|
325
324
|
- ✅ When discovering new effective strategies
|
|
326
325
|
- ✅ When achieving exceptional performance metrics
|
|
326
|
+
</learning_protocol>
|
|
327
327
|
|
|
328
328
|
## Analysis Workflow
|
|
329
329
|
|
|
@@ -68,8 +68,11 @@ Coordination:
|
|
|
68
68
|
</memory_namespace>
|
|
69
69
|
|
|
70
70
|
<learning_protocol>
|
|
71
|
-
|
|
72
|
-
|
|
71
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
72
|
+
|
|
73
|
+
### Query Past Learnings BEFORE Starting Task
|
|
74
|
+
|
|
75
|
+
```typescript
|
|
73
76
|
mcp__agentic_qe__learning_query({
|
|
74
77
|
agentId: "qe-quality-gate",
|
|
75
78
|
taskType: "quality-gate-evaluation",
|
|
@@ -79,12 +82,14 @@ mcp__agentic_qe__learning_query({
|
|
|
79
82
|
})
|
|
80
83
|
```
|
|
81
84
|
|
|
82
|
-
|
|
83
|
-
|
|
85
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
86
|
+
|
|
87
|
+
**1. Store Learning Experience:**
|
|
88
|
+
```typescript
|
|
84
89
|
mcp__agentic_qe__learning_store_experience({
|
|
85
90
|
agentId: "qe-quality-gate",
|
|
86
91
|
taskType: "quality-gate-evaluation",
|
|
87
|
-
reward: 0.
|
|
92
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
88
93
|
outcome: {
|
|
89
94
|
gateResult: "pass",
|
|
90
95
|
riskLevel: "low",
|
|
@@ -100,8 +105,23 @@ mcp__agentic_qe__learning_store_experience({
|
|
|
100
105
|
})
|
|
101
106
|
```
|
|
102
107
|
|
|
103
|
-
Store
|
|
104
|
-
```
|
|
108
|
+
**2. Store Task Artifacts:**
|
|
109
|
+
```typescript
|
|
110
|
+
mcp__agentic_qe__memory_store({
|
|
111
|
+
key: "aqe/quality/decisions/<task_id>",
|
|
112
|
+
value: {
|
|
113
|
+
decision: "PASS/FAIL",
|
|
114
|
+
riskScore: 0,
|
|
115
|
+
violations: [],
|
|
116
|
+
reasoning: ""
|
|
117
|
+
},
|
|
118
|
+
namespace: "aqe",
|
|
119
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
120
|
+
})
|
|
121
|
+
```
|
|
122
|
+
|
|
123
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
124
|
+
```typescript
|
|
105
125
|
mcp__agentic_qe__learning_store_pattern({
|
|
106
126
|
pattern: "Risk-based evaluation with ML scoring reduces false positives by 40% while maintaining 98% accuracy",
|
|
107
127
|
confidence: 0.95,
|
|
@@ -113,11 +133,22 @@ mcp__agentic_qe__learning_store_pattern({
|
|
|
113
133
|
})
|
|
114
134
|
```
|
|
115
135
|
|
|
116
|
-
Reward
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
136
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
137
|
+
| Reward | Criteria |
|
|
138
|
+
|--------|----------|
|
|
139
|
+
| 1.0 | Perfect (100% accurate decisions, 0 false positives, <2s) |
|
|
140
|
+
| 0.9 | Excellent (98%+ accuracy, <1% false positives, <5s) |
|
|
141
|
+
| 0.7 | Good (95%+ accuracy, <3% false positives) |
|
|
142
|
+
| 0.5 | Acceptable (90%+ accuracy, completed) |
|
|
143
|
+
| 0.3 | Partial: Task partially completed |
|
|
144
|
+
| 0.0 | Failed: Task failed or major errors |
|
|
145
|
+
|
|
146
|
+
**When to Call Learning Tools:**
|
|
147
|
+
- ✅ **ALWAYS** after completing quality gate evaluation
|
|
148
|
+
- ✅ **ALWAYS** after making PASS/FAIL decisions
|
|
149
|
+
- ✅ **ALWAYS** after detecting policy violations
|
|
150
|
+
- ✅ When discovering new effective threshold patterns
|
|
151
|
+
- ✅ When achieving exceptional accuracy rates
|
|
121
152
|
</learning_protocol>
|
|
122
153
|
|
|
123
154
|
<output_format>
|
|
@@ -70,8 +70,11 @@ Coordination:
|
|
|
70
70
|
</memory_namespace>
|
|
71
71
|
|
|
72
72
|
<learning_protocol>
|
|
73
|
-
|
|
74
|
-
|
|
73
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
74
|
+
|
|
75
|
+
### Query Past Learnings BEFORE Starting Task
|
|
76
|
+
|
|
77
|
+
```typescript
|
|
75
78
|
mcp__agentic_qe__learning_query({
|
|
76
79
|
agentId: "qe-regression-risk-analyzer",
|
|
77
80
|
taskType: "regression-risk-analysis",
|
|
@@ -81,12 +84,14 @@ mcp__agentic_qe__learning_query({
|
|
|
81
84
|
})
|
|
82
85
|
```
|
|
83
86
|
|
|
84
|
-
|
|
85
|
-
|
|
87
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
88
|
+
|
|
89
|
+
**1. Store Learning Experience:**
|
|
90
|
+
```typescript
|
|
86
91
|
mcp__agentic_qe__learning_store_experience({
|
|
87
92
|
agentId: "qe-regression-risk-analyzer",
|
|
88
93
|
taskType: "regression-risk-analysis",
|
|
89
|
-
reward: 0.
|
|
94
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
90
95
|
outcome: {
|
|
91
96
|
riskScore: 78.3,
|
|
92
97
|
testsSelected: 47,
|
|
@@ -100,11 +105,50 @@ mcp__agentic_qe__learning_store_experience({
|
|
|
100
105
|
})
|
|
101
106
|
```
|
|
102
107
|
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
+
**2. Store Task Artifacts:**
|
|
109
|
+
```typescript
|
|
110
|
+
mcp__agentic_qe__memory_store({
|
|
111
|
+
key: "aqe/regression/test-selection/<task_id>",
|
|
112
|
+
value: {
|
|
113
|
+
riskScore: 0,
|
|
114
|
+
selectedTests: [],
|
|
115
|
+
impactAnalysis: {},
|
|
116
|
+
blastRadius: []
|
|
117
|
+
},
|
|
118
|
+
namespace: "aqe",
|
|
119
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
120
|
+
})
|
|
121
|
+
```
|
|
122
|
+
|
|
123
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
124
|
+
```typescript
|
|
125
|
+
mcp__agentic_qe__learning_store_pattern({
|
|
126
|
+
pattern: "ML-enhanced test selection reduces CI time by 96% while maintaining 95% defect detection",
|
|
127
|
+
confidence: 0.95,
|
|
128
|
+
domain: "regression-analysis",
|
|
129
|
+
metadata: {
|
|
130
|
+
selectionAccuracy: 0.95,
|
|
131
|
+
timeReduction: 0.963
|
|
132
|
+
}
|
|
133
|
+
})
|
|
134
|
+
```
|
|
135
|
+
|
|
136
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
137
|
+
| Reward | Criteria |
|
|
138
|
+
|--------|----------|
|
|
139
|
+
| 1.0 | Perfect (99%+ accuracy, 70%+ reduction, 0 false negatives) |
|
|
140
|
+
| 0.9 | Excellent (95%+ accuracy, 60%+ reduction, <1% false negatives) |
|
|
141
|
+
| 0.7 | Good (90%+ accuracy, 50%+ reduction) |
|
|
142
|
+
| 0.5 | Acceptable (85%+ accuracy, 40%+ reduction) |
|
|
143
|
+
| 0.3 | Partial: Task partially completed |
|
|
144
|
+
| 0.0 | Failed: Task failed or major errors |
|
|
145
|
+
|
|
146
|
+
**When to Call Learning Tools:**
|
|
147
|
+
- ✅ **ALWAYS** after completing regression risk analysis
|
|
148
|
+
- ✅ **ALWAYS** after selecting test suite
|
|
149
|
+
- ✅ **ALWAYS** after calculating blast radius
|
|
150
|
+
- ✅ When discovering new effective selection patterns
|
|
151
|
+
- ✅ When achieving exceptional accuracy and reduction rates
|
|
108
152
|
</learning_protocol>
|
|
109
153
|
|
|
110
154
|
<output_format>
|
|
@@ -71,8 +71,11 @@ Coordination:
|
|
|
71
71
|
</memory_namespace>
|
|
72
72
|
|
|
73
73
|
<learning_protocol>
|
|
74
|
-
|
|
75
|
-
|
|
74
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
75
|
+
|
|
76
|
+
### Query Past Learnings BEFORE Starting Task
|
|
77
|
+
|
|
78
|
+
```typescript
|
|
76
79
|
mcp__agentic_qe__learning_query({
|
|
77
80
|
agentId: "qe-requirements-validator",
|
|
78
81
|
taskType: "requirements-validation",
|
|
@@ -82,12 +85,14 @@ mcp__agentic_qe__learning_query({
|
|
|
82
85
|
})
|
|
83
86
|
```
|
|
84
87
|
|
|
85
|
-
|
|
86
|
-
|
|
88
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
89
|
+
|
|
90
|
+
**1. Store Learning Experience:**
|
|
91
|
+
```typescript
|
|
87
92
|
mcp__agentic_qe__learning_store_experience({
|
|
88
93
|
agentId: "qe-requirements-validator",
|
|
89
94
|
taskType: "requirements-validation",
|
|
90
|
-
reward: 0.
|
|
95
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
91
96
|
outcome: {
|
|
92
97
|
requirementsValidated: 12,
|
|
93
98
|
testabilityScore: 8.5,
|
|
@@ -102,8 +107,23 @@ mcp__agentic_qe__learning_store_experience({
|
|
|
102
107
|
})
|
|
103
108
|
```
|
|
104
109
|
|
|
105
|
-
Store
|
|
106
|
-
```
|
|
110
|
+
**2. Store Task Artifacts:**
|
|
111
|
+
```typescript
|
|
112
|
+
mcp__agentic_qe__memory_store({
|
|
113
|
+
key: "aqe/requirements/validated/<task_id>",
|
|
114
|
+
value: {
|
|
115
|
+
validatedRequirements: [],
|
|
116
|
+
bddScenarios: [],
|
|
117
|
+
riskScores: {},
|
|
118
|
+
traceabilityMatrix: []
|
|
119
|
+
},
|
|
120
|
+
namespace: "aqe",
|
|
121
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
122
|
+
})
|
|
123
|
+
```
|
|
124
|
+
|
|
125
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
126
|
+
```typescript
|
|
107
127
|
mcp__agentic_qe__learning_store_pattern({
|
|
108
128
|
pattern: "Vague performance requirements converted to specific percentile-based metrics (p50/p95/p99) with measurable thresholds",
|
|
109
129
|
confidence: 0.95,
|
|
@@ -115,11 +135,22 @@ mcp__agentic_qe__learning_store_pattern({
|
|
|
115
135
|
})
|
|
116
136
|
```
|
|
117
137
|
|
|
118
|
-
Reward
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
138
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
139
|
+
| Reward | Criteria |
|
|
140
|
+
|--------|----------|
|
|
141
|
+
| 1.0 | Perfect execution (All requirements testable, 100% INVEST, <3s) |
|
|
142
|
+
| 0.9 | Excellent (95%+ testable, 95%+ INVEST compliance, <5s) |
|
|
143
|
+
| 0.7 | Good (90%+ testable, 90%+ INVEST compliance, <10s) |
|
|
144
|
+
| 0.5 | Acceptable (80%+ testable, 80%+ INVEST compliance) |
|
|
145
|
+
| 0.3 | Partial: Task partially completed |
|
|
146
|
+
| 0.0 | Failed: Task failed or major errors |
|
|
147
|
+
|
|
148
|
+
**When to Call Learning Tools:**
|
|
149
|
+
- ✅ **ALWAYS** after completing requirements validation
|
|
150
|
+
- ✅ **ALWAYS** after generating BDD scenarios
|
|
151
|
+
- ✅ **ALWAYS** after identifying testability issues
|
|
152
|
+
- ✅ When discovering new requirement enhancement patterns
|
|
153
|
+
- ✅ When achieving exceptional testability scores
|
|
123
154
|
</learning_protocol>
|
|
124
155
|
|
|
125
156
|
<output_format>
|
|
@@ -94,8 +94,11 @@ Coordination:
|
|
|
94
94
|
</memory_namespace>
|
|
95
95
|
|
|
96
96
|
<learning_protocol>
|
|
97
|
-
|
|
98
|
-
|
|
97
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
98
|
+
|
|
99
|
+
### Query Past Learnings BEFORE Starting Task
|
|
100
|
+
|
|
101
|
+
```typescript
|
|
99
102
|
mcp__agentic_qe__learning_query({
|
|
100
103
|
agentId: "qe-security-scanner",
|
|
101
104
|
taskType: "security-scanning",
|
|
@@ -105,44 +108,71 @@ mcp__agentic_qe__learning_query({
|
|
|
105
108
|
})
|
|
106
109
|
```
|
|
107
110
|
|
|
108
|
-
|
|
109
|
-
|
|
111
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
112
|
+
|
|
113
|
+
**1. Store Learning Experience:**
|
|
114
|
+
```typescript
|
|
110
115
|
mcp__agentic_qe__learning_store_experience({
|
|
111
116
|
agentId: "qe-security-scanner",
|
|
112
117
|
taskType: "security-scanning",
|
|
113
|
-
reward: 0.
|
|
118
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
114
119
|
outcome: {
|
|
115
|
-
vulnerabilitiesFound:
|
|
116
|
-
criticalVulnerabilities:
|
|
117
|
-
complianceScore: 0.
|
|
118
|
-
falsePositives:
|
|
120
|
+
vulnerabilitiesFound: <count>,
|
|
121
|
+
criticalVulnerabilities: <count>,
|
|
122
|
+
complianceScore: <0.0-1.0>,
|
|
123
|
+
falsePositives: <count>
|
|
119
124
|
},
|
|
120
125
|
metadata: {
|
|
121
|
-
scanType: "sast
|
|
122
|
-
tools: ["
|
|
123
|
-
duration:
|
|
126
|
+
scanType: "<sast|dast|combined>",
|
|
127
|
+
tools: ["<tools_used>"],
|
|
128
|
+
duration: <ms>
|
|
124
129
|
}
|
|
125
130
|
})
|
|
126
131
|
```
|
|
127
132
|
|
|
128
|
-
Store
|
|
129
|
-
```
|
|
133
|
+
**2. Store Task Artifacts:**
|
|
134
|
+
```typescript
|
|
135
|
+
mcp__agentic_qe__memory_store({
|
|
136
|
+
key: "aqe/security/scan-results/<task_id>",
|
|
137
|
+
value: {
|
|
138
|
+
vulnerabilities: [...],
|
|
139
|
+
complianceReport: {...},
|
|
140
|
+
remediations: [...]
|
|
141
|
+
},
|
|
142
|
+
namespace: "aqe",
|
|
143
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
144
|
+
})
|
|
145
|
+
```
|
|
146
|
+
|
|
147
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
148
|
+
```typescript
|
|
130
149
|
mcp__agentic_qe__learning_store_pattern({
|
|
131
|
-
pattern: "
|
|
132
|
-
confidence: 0.
|
|
150
|
+
pattern: "<description of successful security strategy>",
|
|
151
|
+
confidence: <0.0-1.0>,
|
|
133
152
|
domain: "security-scanning",
|
|
134
153
|
metadata: {
|
|
135
|
-
|
|
136
|
-
falsePositiveRate: "
|
|
154
|
+
detectionRate: "<percentage>",
|
|
155
|
+
falsePositiveRate: "<percentage>"
|
|
137
156
|
}
|
|
138
157
|
})
|
|
139
158
|
```
|
|
140
159
|
|
|
141
|
-
Reward
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
160
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
161
|
+
| Reward | Criteria |
|
|
162
|
+
|--------|----------|
|
|
163
|
+
| 1.0 | Perfect: 0 critical vulnerabilities, 95%+ compliance, <5% false positives |
|
|
164
|
+
| 0.9 | Excellent: 0 critical, 90%+ compliance, <10% false positives |
|
|
165
|
+
| 0.7 | Good: Few critical, 80%+ compliance, <15% false positives |
|
|
166
|
+
| 0.5 | Acceptable: Some vulnerabilities found, scan completed |
|
|
167
|
+
| 0.3 | Partial: Scan completed with errors |
|
|
168
|
+
| 0.0 | Failed: Scan failed or major errors |
|
|
169
|
+
|
|
170
|
+
**When to Call Learning Tools:**
|
|
171
|
+
- ✅ **ALWAYS** after completing main task
|
|
172
|
+
- ✅ **ALWAYS** after detecting vulnerabilities
|
|
173
|
+
- ✅ **ALWAYS** after generating remediation recommendations
|
|
174
|
+
- ✅ When discovering new effective scanning patterns
|
|
175
|
+
- ✅ When achieving exceptional detection rates
|
|
146
176
|
</learning_protocol>
|
|
147
177
|
|
|
148
178
|
<output_format>
|
|
@@ -70,8 +70,11 @@ Coordination:
|
|
|
70
70
|
</memory_namespace>
|
|
71
71
|
|
|
72
72
|
<learning_protocol>
|
|
73
|
-
|
|
74
|
-
|
|
73
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
74
|
+
|
|
75
|
+
### Query Past Learnings BEFORE Starting Task
|
|
76
|
+
|
|
77
|
+
```typescript
|
|
75
78
|
mcp__agentic_qe__learning_query({
|
|
76
79
|
agentId: "qe-test-data-architect",
|
|
77
80
|
taskType: "test-data-generation",
|
|
@@ -81,12 +84,14 @@ mcp__agentic_qe__learning_query({
|
|
|
81
84
|
})
|
|
82
85
|
```
|
|
83
86
|
|
|
84
|
-
|
|
85
|
-
|
|
87
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
88
|
+
|
|
89
|
+
**1. Store Learning Experience:**
|
|
90
|
+
```typescript
|
|
86
91
|
mcp__agentic_qe__learning_store_experience({
|
|
87
92
|
agentId: "qe-test-data-architect",
|
|
88
93
|
taskType: "test-data-generation",
|
|
89
|
-
reward: 0.
|
|
94
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
90
95
|
outcome: {
|
|
91
96
|
recordsGenerated: 1000,
|
|
92
97
|
schemasProcessed: 5,
|
|
@@ -103,8 +108,23 @@ mcp__agentic_qe__learning_store_experience({
|
|
|
103
108
|
})
|
|
104
109
|
```
|
|
105
110
|
|
|
106
|
-
Store
|
|
107
|
-
```
|
|
111
|
+
**2. Store Task Artifacts:**
|
|
112
|
+
```typescript
|
|
113
|
+
mcp__agentic_qe__memory_store({
|
|
114
|
+
key: "aqe/test-data/generated/<task_id>",
|
|
115
|
+
value: {
|
|
116
|
+
generatedData: [],
|
|
117
|
+
schemaAnalysis: {},
|
|
118
|
+
validationResults: {},
|
|
119
|
+
patterns: []
|
|
120
|
+
},
|
|
121
|
+
namespace: "aqe",
|
|
122
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
123
|
+
})
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
127
|
+
```typescript
|
|
108
128
|
mcp__agentic_qe__learning_store_pattern({
|
|
109
129
|
pattern: "Realistic synthesis with production pattern analysis generates 45% more realistic test data than faker-based generation for financial applications",
|
|
110
130
|
confidence: 0.91,
|
|
@@ -117,11 +137,22 @@ mcp__agentic_qe__learning_store_pattern({
|
|
|
117
137
|
})
|
|
118
138
|
```
|
|
119
139
|
|
|
120
|
-
Reward
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
140
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
141
|
+
| Reward | Criteria |
|
|
142
|
+
|--------|----------|
|
|
143
|
+
| 1.0 | Perfect execution (100% constraint compliance, 95%+ edge case coverage, realistic data) |
|
|
144
|
+
| 0.9 | Excellent (100% constraint compliance, 90%+ edge case coverage) |
|
|
145
|
+
| 0.7 | Good (95%+ constraint compliance, 80%+ edge case coverage) |
|
|
146
|
+
| 0.5 | Acceptable (90%+ constraint compliance, completed successfully) |
|
|
147
|
+
| 0.3 | Partial: Task partially completed |
|
|
148
|
+
| 0.0 | Failed: Task failed or major errors |
|
|
149
|
+
|
|
150
|
+
**When to Call Learning Tools:**
|
|
151
|
+
- ✅ **ALWAYS** after completing test data generation
|
|
152
|
+
- ✅ **ALWAYS** after processing schemas
|
|
153
|
+
- ✅ **ALWAYS** after validating constraints
|
|
154
|
+
- ✅ When discovering new effective generation patterns
|
|
155
|
+
- ✅ When achieving exceptional compliance rates
|
|
125
156
|
</learning_protocol>
|
|
126
157
|
|
|
127
158
|
<output_format>
|