agentic-qe 2.2.2 → 2.3.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.claude/agents/qe-api-contract-validator.md +43 -12
- package/.claude/agents/qe-chaos-engineer.md +53 -23
- package/.claude/agents/qe-code-complexity.md +42 -12
- package/.claude/agents/qe-coverage-analyzer.md +52 -24
- package/.claude/agents/qe-deployment-readiness.md +43 -12
- package/.claude/agents/qe-flaky-test-hunter.md +59 -16
- package/.claude/agents/qe-fleet-commander.md +2 -2
- package/.claude/agents/qe-performance-tester.md +54 -24
- package/.claude/agents/qe-production-intelligence.md +43 -12
- package/.claude/agents/qe-quality-analyzer.md +2 -2
- package/.claude/agents/qe-quality-gate.md +43 -12
- package/.claude/agents/qe-regression-risk-analyzer.md +54 -10
- package/.claude/agents/qe-requirements-validator.md +43 -12
- package/.claude/agents/qe-security-scanner.md +53 -23
- package/.claude/agents/qe-test-data-architect.md +43 -12
- package/.claude/agents/qe-test-executor.md +2 -2
- package/.claude/agents/qe-test-generator.md +55 -22
- package/.claude/agents/qe-visual-tester.md +43 -12
- package/.claude/agents/qx-partner.md +44 -12
- package/.claude/agents/subagents/qe-code-reviewer.md +31 -0
- package/.claude/agents/subagents/qe-coverage-gap-analyzer.md +31 -0
- package/.claude/agents/subagents/qe-data-generator.md +31 -0
- package/.claude/agents/subagents/qe-flaky-investigator.md +31 -0
- package/.claude/agents/subagents/qe-integration-tester.md +31 -0
- package/.claude/agents/subagents/qe-performance-validator.md +31 -0
- package/.claude/agents/subagents/qe-security-auditor.md +31 -0
- package/.claude/agents/subagents/qe-test-data-architect-sub.md +31 -0
- package/.claude/agents/subagents/qe-test-implementer.md +31 -0
- package/.claude/agents/subagents/qe-test-refactorer.md +31 -0
- package/.claude/agents/subagents/qe-test-writer.md +31 -0
- package/.claude/skills/agentic-quality-engineering/SKILL.md +90 -0
- package/CHANGELOG.md +54 -0
- package/README.md +1 -1
- package/dist/agents/BaseAgent.d.ts +2 -1
- package/dist/agents/BaseAgent.d.ts.map +1 -1
- package/dist/agents/BaseAgent.js +8 -4
- package/dist/agents/BaseAgent.js.map +1 -1
- package/dist/cli/init/claude-config.d.ts.map +1 -1
- package/dist/cli/init/claude-config.js +50 -30
- package/dist/cli/init/claude-config.js.map +1 -1
- package/dist/cli/init/helpers.d.ts +5 -0
- package/dist/cli/init/helpers.d.ts.map +1 -1
- package/dist/cli/init/helpers.js +54 -0
- package/dist/cli/init/helpers.js.map +1 -1
- package/dist/cli/init/index.d.ts.map +1 -1
- package/dist/cli/init/index.js +6 -0
- package/dist/cli/init/index.js.map +1 -1
- package/dist/core/memory/HNSWVectorMemory.js +1 -1
- package/dist/mcp/server-instructions.d.ts +1 -1
- package/dist/mcp/server-instructions.js +1 -1
- package/package.json +1 -1
|
@@ -69,8 +69,11 @@ Coordination:
|
|
|
69
69
|
</memory_namespace>
|
|
70
70
|
|
|
71
71
|
<learning_protocol>
|
|
72
|
-
|
|
73
|
-
|
|
72
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
73
|
+
|
|
74
|
+
### Query Past Learnings BEFORE Starting Task
|
|
75
|
+
|
|
76
|
+
```typescript
|
|
74
77
|
mcp__agentic_qe__learning_query({
|
|
75
78
|
agentId: "qe-api-contract-validator",
|
|
76
79
|
taskType: "api-contract-validation",
|
|
@@ -80,12 +83,14 @@ mcp__agentic_qe__learning_query({
|
|
|
80
83
|
})
|
|
81
84
|
```
|
|
82
85
|
|
|
83
|
-
|
|
84
|
-
|
|
86
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
87
|
+
|
|
88
|
+
**1. Store Learning Experience:**
|
|
89
|
+
```typescript
|
|
85
90
|
mcp__agentic_qe__learning_store_experience({
|
|
86
91
|
agentId: "qe-api-contract-validator",
|
|
87
92
|
taskType: "api-contract-validation",
|
|
88
|
-
reward: 0.
|
|
93
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
89
94
|
outcome: {
|
|
90
95
|
contractsValidated: 12,
|
|
91
96
|
breakingChangesDetected: 2,
|
|
@@ -102,8 +107,23 @@ mcp__agentic_qe__learning_store_experience({
|
|
|
102
107
|
})
|
|
103
108
|
```
|
|
104
109
|
|
|
105
|
-
Store
|
|
106
|
-
```
|
|
110
|
+
**2. Store Task Artifacts:**
|
|
111
|
+
```typescript
|
|
112
|
+
mcp__agentic_qe__memory_store({
|
|
113
|
+
key: "aqe/contracts/validation-result/<task_id>",
|
|
114
|
+
value: {
|
|
115
|
+
breakingChanges: [],
|
|
116
|
+
compatibilityReport: {},
|
|
117
|
+
consumerImpact: [],
|
|
118
|
+
semverRecommendation: ""
|
|
119
|
+
},
|
|
120
|
+
namespace: "aqe",
|
|
121
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
122
|
+
})
|
|
123
|
+
```
|
|
124
|
+
|
|
125
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
126
|
+
```typescript
|
|
107
127
|
mcp__agentic_qe__learning_store_pattern({
|
|
108
128
|
pattern: "Comprehensive diff analysis detects 38% more backward compatibility issues than schema-only validation for REST APIs with complex nested objects",
|
|
109
129
|
confidence: 0.93,
|
|
@@ -116,11 +136,22 @@ mcp__agentic_qe__learning_store_pattern({
|
|
|
116
136
|
})
|
|
117
137
|
```
|
|
118
138
|
|
|
119
|
-
Reward
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
139
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
140
|
+
| Reward | Criteria |
|
|
141
|
+
|--------|----------|
|
|
142
|
+
| 1.0 | Perfect execution (All breaking changes detected, 0 false positives, 100% semver compliance) |
|
|
143
|
+
| 0.9 | Excellent (All breaking changes detected, <5% false positives) |
|
|
144
|
+
| 0.7 | Good (Most breaking changes detected, <10% false positives) |
|
|
145
|
+
| 0.5 | Acceptable (Major breaking changes detected, completed successfully) |
|
|
146
|
+
| 0.3 | Partial: Task partially completed |
|
|
147
|
+
| 0.0 | Failed: Task failed or major errors |
|
|
148
|
+
|
|
149
|
+
**When to Call Learning Tools:**
|
|
150
|
+
- ✅ **ALWAYS** after completing contract validation
|
|
151
|
+
- ✅ **ALWAYS** after detecting breaking changes
|
|
152
|
+
- ✅ **ALWAYS** after analyzing consumer impact
|
|
153
|
+
- ✅ When discovering new effective validation patterns
|
|
154
|
+
- ✅ When achieving exceptional detection accuracy
|
|
124
155
|
</learning_protocol>
|
|
125
156
|
|
|
126
157
|
<output_format>
|
|
@@ -69,8 +69,11 @@ Coordination:
|
|
|
69
69
|
</memory_namespace>
|
|
70
70
|
|
|
71
71
|
<learning_protocol>
|
|
72
|
-
|
|
73
|
-
|
|
72
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
73
|
+
|
|
74
|
+
### Query Past Learnings BEFORE Starting Task
|
|
75
|
+
|
|
76
|
+
```typescript
|
|
74
77
|
mcp__agentic_qe__learning_query({
|
|
75
78
|
agentId: "qe-chaos-engineer",
|
|
76
79
|
taskType: "chaos-testing",
|
|
@@ -80,44 +83,71 @@ mcp__agentic_qe__learning_query({
|
|
|
80
83
|
})
|
|
81
84
|
```
|
|
82
85
|
|
|
83
|
-
|
|
84
|
-
|
|
86
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
87
|
+
|
|
88
|
+
**1. Store Learning Experience:**
|
|
89
|
+
```typescript
|
|
85
90
|
mcp__agentic_qe__learning_store_experience({
|
|
86
91
|
agentId: "qe-chaos-engineer",
|
|
87
92
|
taskType: "chaos-testing",
|
|
88
|
-
reward: 0.
|
|
93
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
89
94
|
outcome: {
|
|
90
|
-
experimentsRun:
|
|
91
|
-
vulnerabilitiesFound:
|
|
92
|
-
recoveryTime:
|
|
93
|
-
executionTime:
|
|
95
|
+
experimentsRun: <count>,
|
|
96
|
+
vulnerabilitiesFound: <count>,
|
|
97
|
+
recoveryTime: <seconds>,
|
|
98
|
+
executionTime: <ms>
|
|
94
99
|
},
|
|
95
100
|
metadata: {
|
|
96
|
-
blastRadiusManagement:
|
|
97
|
-
faultTypes: ["
|
|
98
|
-
controlledRollback:
|
|
101
|
+
blastRadiusManagement: <boolean>,
|
|
102
|
+
faultTypes: ["<types>"],
|
|
103
|
+
controlledRollback: <boolean>
|
|
99
104
|
}
|
|
100
105
|
})
|
|
101
106
|
```
|
|
102
107
|
|
|
103
|
-
Store
|
|
104
|
-
```
|
|
108
|
+
**2. Store Task Artifacts:**
|
|
109
|
+
```typescript
|
|
110
|
+
mcp__agentic_qe__memory_store({
|
|
111
|
+
key: "aqe/chaos/experiment-results/<task_id>",
|
|
112
|
+
value: {
|
|
113
|
+
experiments: [...],
|
|
114
|
+
vulnerabilities: [...],
|
|
115
|
+
resilience: {...}
|
|
116
|
+
},
|
|
117
|
+
namespace: "aqe",
|
|
118
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
119
|
+
})
|
|
120
|
+
```
|
|
121
|
+
|
|
122
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
123
|
+
```typescript
|
|
105
124
|
mcp__agentic_qe__learning_store_pattern({
|
|
106
|
-
pattern: "
|
|
107
|
-
confidence: 0.
|
|
125
|
+
pattern: "<description of successful resilience strategy>",
|
|
126
|
+
confidence: <0.0-1.0>,
|
|
108
127
|
domain: "resilience",
|
|
109
128
|
metadata: {
|
|
110
|
-
resiliencePatterns: ["
|
|
111
|
-
predictionAccuracy:
|
|
129
|
+
resiliencePatterns: ["<patterns>"],
|
|
130
|
+
predictionAccuracy: <rate>
|
|
112
131
|
}
|
|
113
132
|
})
|
|
114
133
|
```
|
|
115
134
|
|
|
116
|
-
Reward
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
135
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
136
|
+
| Reward | Criteria |
|
|
137
|
+
|--------|----------|
|
|
138
|
+
| 1.0 | Perfect: All vulnerabilities found, <1s recovery, safe blast radius |
|
|
139
|
+
| 0.9 | Excellent: 95%+ vulnerabilities, <5s recovery, controlled |
|
|
140
|
+
| 0.7 | Good: 90%+ vulnerabilities, <10s recovery, safe |
|
|
141
|
+
| 0.5 | Acceptable: Key vulnerabilities found, completed safely |
|
|
142
|
+
| 0.3 | Partial: Some experiments ran but incomplete |
|
|
143
|
+
| 0.0 | Failed: Experiment failed or unsafe condition |
|
|
144
|
+
|
|
145
|
+
**When to Call Learning Tools:**
|
|
146
|
+
- ✅ **ALWAYS** after completing main task
|
|
147
|
+
- ✅ **ALWAYS** after running chaos experiments
|
|
148
|
+
- ✅ **ALWAYS** after discovering vulnerabilities
|
|
149
|
+
- ✅ When discovering new resilience patterns
|
|
150
|
+
- ✅ When achieving exceptional recovery metrics
|
|
121
151
|
</learning_protocol>
|
|
122
152
|
|
|
123
153
|
<output_format>
|
|
@@ -65,8 +65,11 @@ Coordination:
|
|
|
65
65
|
</memory_namespace>
|
|
66
66
|
|
|
67
67
|
<learning_protocol>
|
|
68
|
-
|
|
69
|
-
|
|
68
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
69
|
+
|
|
70
|
+
### Query Past Learnings BEFORE Starting Task
|
|
71
|
+
|
|
72
|
+
```typescript
|
|
70
73
|
mcp__agentic_qe__learning_query({
|
|
71
74
|
agentId: "qe-code-complexity",
|
|
72
75
|
taskType: "complexity-analysis",
|
|
@@ -76,12 +79,14 @@ mcp__agentic_qe__learning_query({
|
|
|
76
79
|
})
|
|
77
80
|
```
|
|
78
81
|
|
|
79
|
-
|
|
80
|
-
|
|
82
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
83
|
+
|
|
84
|
+
**1. Store Learning Experience:**
|
|
85
|
+
```typescript
|
|
81
86
|
mcp__agentic_qe__learning_store_experience({
|
|
82
87
|
agentId: "qe-code-complexity",
|
|
83
88
|
taskType: "complexity-analysis",
|
|
84
|
-
reward: 0.
|
|
89
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
85
90
|
outcome: {
|
|
86
91
|
hotspotsDetected: 7,
|
|
87
92
|
complexityScore: 68,
|
|
@@ -96,8 +101,22 @@ mcp__agentic_qe__learning_store_experience({
|
|
|
96
101
|
})
|
|
97
102
|
```
|
|
98
103
|
|
|
99
|
-
Store
|
|
100
|
-
```
|
|
104
|
+
**2. Store Task Artifacts:**
|
|
105
|
+
```typescript
|
|
106
|
+
mcp__agentic_qe__memory_store({
|
|
107
|
+
key: "aqe/complexity/results/<task_id>",
|
|
108
|
+
value: {
|
|
109
|
+
hotspotsDetected: [],
|
|
110
|
+
complexityMetrics: {},
|
|
111
|
+
recommendations: []
|
|
112
|
+
},
|
|
113
|
+
namespace: "aqe",
|
|
114
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
115
|
+
})
|
|
116
|
+
```
|
|
117
|
+
|
|
118
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
119
|
+
```typescript
|
|
101
120
|
mcp__agentic_qe__learning_store_pattern({
|
|
102
121
|
pattern: "Combined cyclomatic and cognitive complexity analysis with severity-based prioritization yields highly actionable refactoring recommendations",
|
|
103
122
|
confidence: 0.95,
|
|
@@ -109,11 +128,22 @@ mcp__agentic_qe__learning_store_pattern({
|
|
|
109
128
|
})
|
|
110
129
|
```
|
|
111
130
|
|
|
112
|
-
Reward
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
131
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
132
|
+
| Reward | Criteria |
|
|
133
|
+
|--------|----------|
|
|
134
|
+
| 1.0 | Perfect execution (All hotspots found, actionable recommendations, <5s) |
|
|
135
|
+
| 0.9 | Excellent (95%+ hotspots found, high-quality recommendations, <10s) |
|
|
136
|
+
| 0.7 | Good (90%+ hotspots found, useful recommendations, <20s) |
|
|
137
|
+
| 0.5 | Acceptable (80%+ hotspots found, completed successfully) |
|
|
138
|
+
| 0.3 | Partial: Task partially completed |
|
|
139
|
+
| 0.0 | Failed: Task failed or major errors |
|
|
140
|
+
|
|
141
|
+
**When to Call Learning Tools:**
|
|
142
|
+
- ✅ **ALWAYS** after completing complexity analysis
|
|
143
|
+
- ✅ **ALWAYS** after detecting hotspots
|
|
144
|
+
- ✅ **ALWAYS** after generating refactoring recommendations
|
|
145
|
+
- ✅ When discovering new effective analysis patterns
|
|
146
|
+
- ✅ When achieving exceptional quality scores
|
|
117
147
|
</learning_protocol>
|
|
118
148
|
|
|
119
149
|
<output_format>
|
|
@@ -69,8 +69,11 @@ Coordination:
|
|
|
69
69
|
</memory_namespace>
|
|
70
70
|
|
|
71
71
|
<learning_protocol>
|
|
72
|
-
|
|
73
|
-
|
|
72
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
73
|
+
|
|
74
|
+
### Query Past Learnings BEFORE Starting Task
|
|
75
|
+
|
|
76
|
+
```typescript
|
|
74
77
|
mcp__agentic_qe__learning_query({
|
|
75
78
|
agentId: "qe-coverage-analyzer",
|
|
76
79
|
taskType: "coverage-analysis",
|
|
@@ -80,46 +83,71 @@ mcp__agentic_qe__learning_query({
|
|
|
80
83
|
})
|
|
81
84
|
```
|
|
82
85
|
|
|
83
|
-
|
|
84
|
-
|
|
86
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
87
|
+
|
|
88
|
+
**1. Store Learning Experience:**
|
|
89
|
+
```typescript
|
|
85
90
|
mcp__agentic_qe__learning_store_experience({
|
|
86
91
|
agentId: "qe-coverage-analyzer",
|
|
87
92
|
taskType: "coverage-analysis",
|
|
88
|
-
reward: 0.
|
|
93
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
89
94
|
outcome: {
|
|
90
|
-
gapsDetected:
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
95
|
+
gapsDetected: <count>,
|
|
96
|
+
coverageAchieved: <percentage>,
|
|
97
|
+
algorithm: "<algorithm_used>",
|
|
98
|
+
executionTime: <ms>
|
|
94
99
|
},
|
|
95
100
|
metadata: {
|
|
96
101
|
complexity: "O(log n)",
|
|
97
|
-
memoryReduction: "
|
|
98
|
-
accuracyLoss: "<
|
|
102
|
+
memoryReduction: "<percentage>",
|
|
103
|
+
accuracyLoss: "<percentage>"
|
|
99
104
|
}
|
|
100
105
|
})
|
|
101
106
|
```
|
|
102
107
|
|
|
103
|
-
Store
|
|
104
|
-
```
|
|
108
|
+
**2. Store Task Artifacts:**
|
|
109
|
+
```typescript
|
|
110
|
+
mcp__agentic_qe__memory_store({
|
|
111
|
+
key: "aqe/coverage-analysis/results/<task_id>",
|
|
112
|
+
value: {
|
|
113
|
+
gapsDetected: [...],
|
|
114
|
+
coverageReport: {...},
|
|
115
|
+
recommendations: [...]
|
|
116
|
+
},
|
|
117
|
+
namespace: "aqe",
|
|
118
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
119
|
+
})
|
|
120
|
+
```
|
|
121
|
+
|
|
122
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
123
|
+
```typescript
|
|
105
124
|
mcp__agentic_qe__learning_store_pattern({
|
|
106
|
-
pattern: "
|
|
107
|
-
confidence: 0.
|
|
125
|
+
pattern: "<description of successful strategy>",
|
|
126
|
+
confidence: <0.0-1.0>,
|
|
108
127
|
domain: "coverage-analysis",
|
|
109
128
|
metadata: {
|
|
110
|
-
performanceMetrics: {
|
|
111
|
-
|
|
112
|
-
memoryReduction: "90%"
|
|
113
|
-
}
|
|
129
|
+
performanceMetrics: {...},
|
|
130
|
+
codebaseSize: "<small|medium|large>"
|
|
114
131
|
}
|
|
115
132
|
})
|
|
116
133
|
```
|
|
117
134
|
|
|
118
|
-
Reward
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
135
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
136
|
+
| Reward | Criteria |
|
|
137
|
+
|--------|----------|
|
|
138
|
+
| 1.0 | Perfect: 95%+ coverage, <2s analysis, 0 errors |
|
|
139
|
+
| 0.9 | Excellent: 90%+ coverage, <5s analysis |
|
|
140
|
+
| 0.7 | Good: 80%+ coverage, <10s analysis |
|
|
141
|
+
| 0.5 | Acceptable: Coverage analyzed, completed successfully |
|
|
142
|
+
| 0.3 | Partial: Partial analysis, some errors |
|
|
143
|
+
| 0.0 | Failed: Analysis failed or major errors |
|
|
144
|
+
|
|
145
|
+
**When to Call Learning Tools:**
|
|
146
|
+
- ✅ **ALWAYS** after completing main task
|
|
147
|
+
- ✅ **ALWAYS** after detecting coverage gaps
|
|
148
|
+
- ✅ **ALWAYS** after generating recommendations
|
|
149
|
+
- ✅ When discovering new effective analysis patterns
|
|
150
|
+
- ✅ When achieving exceptional performance metrics
|
|
123
151
|
</learning_protocol>
|
|
124
152
|
|
|
125
153
|
<output_format>
|
|
@@ -72,8 +72,11 @@ Coordination:
|
|
|
72
72
|
</memory_namespace>
|
|
73
73
|
|
|
74
74
|
<learning_protocol>
|
|
75
|
-
|
|
76
|
-
|
|
75
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
76
|
+
|
|
77
|
+
### Query Past Learnings BEFORE Starting Task
|
|
78
|
+
|
|
79
|
+
```typescript
|
|
77
80
|
mcp__agentic_qe__learning_query({
|
|
78
81
|
agentId: "qe-deployment-readiness",
|
|
79
82
|
taskType: "deployment-readiness-check",
|
|
@@ -83,12 +86,14 @@ mcp__agentic_qe__learning_query({
|
|
|
83
86
|
})
|
|
84
87
|
```
|
|
85
88
|
|
|
86
|
-
|
|
87
|
-
|
|
89
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
90
|
+
|
|
91
|
+
**1. Store Learning Experience:**
|
|
92
|
+
```typescript
|
|
88
93
|
mcp__agentic_qe__learning_store_experience({
|
|
89
94
|
agentId: "qe-deployment-readiness",
|
|
90
95
|
taskType: "deployment-readiness-check",
|
|
91
|
-
reward: 0.
|
|
96
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
92
97
|
outcome: {
|
|
93
98
|
checksCompleted: 12,
|
|
94
99
|
riskLevel: "LOW",
|
|
@@ -103,8 +108,23 @@ mcp__agentic_qe__learning_store_experience({
|
|
|
103
108
|
})
|
|
104
109
|
```
|
|
105
110
|
|
|
106
|
-
Store
|
|
107
|
-
```
|
|
111
|
+
**2. Store Task Artifacts:**
|
|
112
|
+
```typescript
|
|
113
|
+
mcp__agentic_qe__memory_store({
|
|
114
|
+
key: "aqe/deployment/decision/<task_id>",
|
|
115
|
+
value: {
|
|
116
|
+
decision: "GO/NO-GO",
|
|
117
|
+
riskScore: 0,
|
|
118
|
+
confidence: 0,
|
|
119
|
+
checklist: []
|
|
120
|
+
},
|
|
121
|
+
namespace: "aqe",
|
|
122
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
123
|
+
})
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
127
|
+
```typescript
|
|
108
128
|
mcp__agentic_qe__learning_store_pattern({
|
|
109
129
|
pattern: "Multi-factor risk assessment with Bayesian confidence scoring predicts deployment success with 94% accuracy",
|
|
110
130
|
confidence: 0.95,
|
|
@@ -116,11 +136,22 @@ mcp__agentic_qe__learning_store_pattern({
|
|
|
116
136
|
})
|
|
117
137
|
```
|
|
118
138
|
|
|
119
|
-
Reward
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
139
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
140
|
+
| Reward | Criteria |
|
|
141
|
+
|--------|----------|
|
|
142
|
+
| 1.0 | Perfect execution (All checks passed, 0 risks, 100% ready, <5s) |
|
|
143
|
+
| 0.9 | Excellent (98%+ checks passed, low risk, 95%+ ready, <10s) |
|
|
144
|
+
| 0.7 | Good (95%+ checks passed, medium risk, 90%+ ready, <20s) |
|
|
145
|
+
| 0.5 | Acceptable (90%+ checks passed, acceptable risk) |
|
|
146
|
+
| 0.3 | Partial: Task partially completed |
|
|
147
|
+
| 0.0 | Failed: Task failed or major errors |
|
|
148
|
+
|
|
149
|
+
**When to Call Learning Tools:**
|
|
150
|
+
- ✅ **ALWAYS** after completing deployment readiness assessment
|
|
151
|
+
- ✅ **ALWAYS** after making GO/NO-GO decisions
|
|
152
|
+
- ✅ **ALWAYS** after calculating risk scores
|
|
153
|
+
- ✅ When discovering new effective risk patterns
|
|
154
|
+
- ✅ When achieving exceptional readiness scores
|
|
124
155
|
</learning_protocol>
|
|
125
156
|
|
|
126
157
|
<output_format>
|
|
@@ -68,8 +68,11 @@ Coordination:
|
|
|
68
68
|
</memory_namespace>
|
|
69
69
|
|
|
70
70
|
<learning_protocol>
|
|
71
|
-
|
|
72
|
-
|
|
71
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
72
|
+
|
|
73
|
+
### Query Past Learnings BEFORE Starting Task
|
|
74
|
+
|
|
75
|
+
```typescript
|
|
73
76
|
mcp__agentic_qe__learning_query({
|
|
74
77
|
agentId: "qe-flaky-test-hunter",
|
|
75
78
|
taskType: "flaky-detection",
|
|
@@ -79,30 +82,70 @@ mcp__agentic_qe__learning_query({
|
|
|
79
82
|
})
|
|
80
83
|
```
|
|
81
84
|
|
|
82
|
-
|
|
83
|
-
|
|
85
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
86
|
+
|
|
87
|
+
**1. Store Learning Experience:**
|
|
88
|
+
```typescript
|
|
84
89
|
mcp__agentic_qe__learning_store_experience({
|
|
85
90
|
agentId: "qe-flaky-test-hunter",
|
|
86
91
|
taskType: "flaky-detection",
|
|
87
|
-
reward: 0.
|
|
92
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
88
93
|
outcome: {
|
|
89
|
-
flakyTestsDetected:
|
|
90
|
-
reliability: 0.
|
|
91
|
-
autoStabilized:
|
|
92
|
-
executionTime:
|
|
94
|
+
flakyTestsDetected: <count>,
|
|
95
|
+
reliability: <0.0-1.0>,
|
|
96
|
+
autoStabilized: <count>,
|
|
97
|
+
executionTime: <ms>
|
|
98
|
+
},
|
|
99
|
+
metadata: {
|
|
100
|
+
algorithm: "<statistical|ml|hybrid>",
|
|
101
|
+
confidenceLevel: <0.0-1.0>
|
|
102
|
+
}
|
|
103
|
+
})
|
|
104
|
+
```
|
|
105
|
+
|
|
106
|
+
**2. Store Task Artifacts:**
|
|
107
|
+
```typescript
|
|
108
|
+
mcp__agentic_qe__memory_store({
|
|
109
|
+
key: "aqe/flaky-detection/results/<task_id>",
|
|
110
|
+
value: {
|
|
111
|
+
flakyTests: [...],
|
|
112
|
+
rootCauses: {...},
|
|
113
|
+
stabilizationFixes: [...]
|
|
93
114
|
},
|
|
115
|
+
namespace: "aqe",
|
|
116
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
117
|
+
})
|
|
118
|
+
```
|
|
119
|
+
|
|
120
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
121
|
+
```typescript
|
|
122
|
+
mcp__agentic_qe__learning_store_pattern({
|
|
123
|
+
pattern: "<description of successful detection strategy>",
|
|
124
|
+
confidence: <0.0-1.0>,
|
|
125
|
+
domain: "flaky-detection",
|
|
94
126
|
metadata: {
|
|
95
|
-
|
|
96
|
-
|
|
127
|
+
detectionAccuracy: <rate>,
|
|
128
|
+
commonCauses: ["<causes>"]
|
|
97
129
|
}
|
|
98
130
|
})
|
|
99
131
|
```
|
|
100
132
|
|
|
101
|
-
Reward
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
133
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
134
|
+
| Reward | Criteria |
|
|
135
|
+
|--------|----------|
|
|
136
|
+
| 1.0 | Perfect: 100% accuracy, 0 false positives, <5s analysis |
|
|
137
|
+
| 0.9 | Excellent: 98%+ accuracy, <2% false positives |
|
|
138
|
+
| 0.7 | Good: 95%+ accuracy, <5% false positives |
|
|
139
|
+
| 0.5 | Acceptable: 90%+ accuracy, completed |
|
|
140
|
+
| 0.3 | Partial: Some flaky tests detected with errors |
|
|
141
|
+
| 0.0 | Failed: Detection failed or major errors |
|
|
142
|
+
|
|
143
|
+
**When to Call Learning Tools:**
|
|
144
|
+
- ✅ **ALWAYS** after completing main task
|
|
145
|
+
- ✅ **ALWAYS** after detecting flaky tests
|
|
146
|
+
- ✅ **ALWAYS** after generating stabilization recommendations
|
|
147
|
+
- ✅ When discovering new root cause patterns
|
|
148
|
+
- ✅ When achieving exceptional detection accuracy
|
|
106
149
|
</learning_protocol>
|
|
107
150
|
|
|
108
151
|
<output_format>
|
|
@@ -499,8 +499,7 @@ const allocation = await this.neuralManager.predict({
|
|
|
499
499
|
});
|
|
500
500
|
```
|
|
501
501
|
|
|
502
|
-
|
|
503
|
-
|
|
502
|
+
<learning_protocol>
|
|
504
503
|
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
505
504
|
|
|
506
505
|
### Required Learning Actions (Call AFTER Task Completion)
|
|
@@ -612,6 +611,7 @@ if (pastLearnings.success && pastLearnings.data) {
|
|
|
612
611
|
- ✅ **ALWAYS** after optimizing topology
|
|
613
612
|
- ✅ When discovering new effective coordination strategies
|
|
614
613
|
- ✅ When achieving exceptional fleet performance metrics
|
|
614
|
+
</learning_protocol>
|
|
615
615
|
|
|
616
616
|
## Hierarchical Coordination Patterns
|
|
617
617
|
|