@promptbook/markdown-utils 0.81.0-9 → 0.81.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +25 -8
- package/esm/index.es.js +141 -59
- package/esm/index.es.js.map +1 -1
- package/esm/typings/books/index.d.ts +38 -0
- package/esm/typings/src/_packages/core.index.d.ts +12 -4
- package/esm/typings/src/_packages/markdown-utils.index.d.ts +2 -2
- package/esm/typings/src/_packages/node.index.d.ts +0 -2
- package/esm/typings/src/_packages/templates.index.d.ts +2 -2
- package/esm/typings/src/_packages/types.index.d.ts +2 -0
- package/esm/typings/src/_packages/utils.index.d.ts +2 -0
- package/esm/typings/src/_packages/wizzard.index.d.ts +44 -0
- package/esm/typings/src/cli/cli-commands/make.d.ts +1 -1
- package/esm/typings/src/cli/cli-commands/run.d.ts +2 -2
- package/esm/typings/src/collection/constructors/createCollectionFromDirectory.d.ts +11 -0
- package/esm/typings/src/collection/constructors/createCollectionFromUrl.d.ts +1 -1
- package/esm/typings/src/commands/index.d.ts +1 -1
- package/esm/typings/src/config.d.ts +3 -3
- package/esm/typings/src/conversion/compilePipeline.d.ts +1 -4
- package/esm/typings/src/conversion/{precompilePipeline.d.ts → parsePipeline.d.ts} +3 -3
- package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +3 -3
- package/esm/typings/src/conversion/validation/validatePipeline.d.ts +7 -7
- package/esm/typings/src/errors/utils/getErrorReportUrl.d.ts +1 -1
- package/esm/typings/src/formfactors/generator/GeneratorFormfactorDefinition.d.ts +9 -4
- package/esm/typings/src/formfactors/image-generator/ImageGeneratorFormfactorDefinition.d.ts +24 -0
- package/esm/typings/src/formfactors/index.d.ts +31 -9
- package/esm/typings/src/high-level-abstractions/_common/HighLevelAbstraction.d.ts +1 -1
- package/esm/typings/src/high-level-abstractions/index.d.ts +3 -3
- package/esm/typings/src/high-level-abstractions/quick-chatbot/QuickChatbotHla.d.ts +3 -0
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsConfigurationFromEnv.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsForTestingAndScriptsAndPlayground.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/register/{$provideLlmToolsForCli.d.ts → $provideLlmToolsForWizzardOrCli.d.ts} +2 -2
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsFromEnv.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/anthropic-claude-models.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/createAnthropicClaudeExecutionTools.d.ts +2 -2
- package/esm/typings/src/llm-providers/anthropic-claude/playground/playground.d.ts +2 -2
- package/esm/typings/src/llm-providers/anthropic-claude/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +2 -0
- package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/google/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/google/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/openai/playground/playground.d.ts +1 -1
- package/esm/typings/src/llm-providers/openai/register-configuration.d.ts +2 -0
- package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +2 -0
- package/esm/typings/src/llm-providers/vercel/playground/playground.d.ts +1 -1
- package/esm/typings/src/other/templates/getBookTemplates.d.ts +22 -0
- package/esm/typings/src/personas/preparePersona.d.ts +4 -4
- package/esm/typings/src/pipeline/PipelineString.d.ts +0 -3
- package/esm/typings/src/pipeline/book-notation.d.ts +14 -0
- package/esm/typings/src/pipeline/isValidPipelineString.d.ts +13 -0
- package/esm/typings/src/pipeline/isValidPipelineString.test.d.ts +4 -0
- package/esm/typings/src/pipeline/validatePipelineString.d.ts +14 -0
- package/esm/typings/src/prepare/isPipelinePrepared.d.ts +3 -1
- package/esm/typings/src/prepare/preparePipeline.d.ts +2 -0
- package/esm/typings/src/prepare/prepareTasks.d.ts +1 -1
- package/esm/typings/src/scrapers/_common/Converter.d.ts +1 -0
- package/esm/typings/src/scrapers/_common/Scraper.d.ts +1 -1
- package/esm/typings/src/scrapers/_common/ScraperIntermediateSource.d.ts +3 -0
- package/esm/typings/src/scrapers/_common/register/ScraperAndConverterMetadata.d.ts +2 -0
- package/esm/typings/src/scrapers/_common/utils/scraperFetch.d.ts +3 -0
- package/esm/typings/src/scrapers/document/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/document/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/document-legacy/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/document-legacy/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/markdown/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/markdown/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/PdfScraper.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/createPdfScraper.d.ts +1 -1
- package/esm/typings/src/scrapers/pdf/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +2 -1
- package/esm/typings/src/scrapers/website/createWebsiteScraper.d.ts +3 -1
- package/esm/typings/src/scrapers/website/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/website/register-metadata.d.ts +1 -0
- package/esm/typings/src/scripting/javascript/JavascriptEvalExecutionTools.test.d.ts +1 -1
- package/esm/typings/src/scripting/javascript/utils/preserve.d.ts +2 -1
- package/esm/typings/src/types/typeAliases.d.ts +8 -2
- package/esm/typings/src/utils/markdown/flattenMarkdown.d.ts +1 -1
- package/esm/typings/src/utils/markdown/{removeContentComments.d.ts → removeMarkdownComments.d.ts} +2 -2
- package/esm/typings/src/utils/organization/$sideEffect.d.ts +9 -0
- package/esm/typings/src/utils/serialization/checkSerializableAsJson.d.ts +1 -1
- package/esm/typings/src/utils/serialization/isSerializableAsJson.d.ts +2 -2
- package/esm/typings/src/utils/validators/filePath/isRootPath.d.ts +12 -0
- package/esm/typings/src/utils/validators/filePath/isRootPath.test.d.ts +4 -0
- package/esm/typings/src/utils/validators/filePath/isValidFilePath.d.ts +3 -0
- package/esm/typings/src/wizzard/$getCompiledBook.d.ts +16 -0
- package/esm/typings/src/wizzard/wizzard.d.ts +51 -7
- package/package.json +1 -1
- package/umd/index.umd.js +141 -59
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/other/templates/getBookTemplate.d.ts +0 -21
- package/esm/typings/src/scripting/javascript/utils/unknownToString.d.ts +0 -8
- /package/esm/typings/src/conversion/{precompilePipeline.test.d.ts → parsePipeline.test.d.ts} +0 -0
- /package/esm/typings/src/utils/markdown/{removeContentComments.test.d.ts → removeMarkdownComments.test.d.ts} +0 -0
package/umd/index.umd.js
CHANGED
|
@@ -24,7 +24,7 @@
|
|
|
24
24
|
* @generated
|
|
25
25
|
* @see https://github.com/webgptorg/promptbook
|
|
26
26
|
*/
|
|
27
|
-
var PROMPTBOOK_ENGINE_VERSION = '0.81.0-
|
|
27
|
+
var PROMPTBOOK_ENGINE_VERSION = '0.81.0-24';
|
|
28
28
|
/**
|
|
29
29
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
30
30
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -360,7 +360,27 @@
|
|
|
360
360
|
* TODO: [🏢] Make this logic part of `JsonFormatDefinition` or `isValidJsonString`
|
|
361
361
|
*/
|
|
362
362
|
|
|
363
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"}];
|
|
363
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book.md",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book.md`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book.md"}];
|
|
364
|
+
|
|
365
|
+
/**
|
|
366
|
+
* Function `validatePipelineString` will validate the if the string is a valid pipeline string
|
|
367
|
+
* It does not check if the string is fully logically correct, but if it is a string that can be a pipeline string or the string looks completely different.
|
|
368
|
+
*
|
|
369
|
+
* @param {string} pipelineString the candidate for a pipeline string
|
|
370
|
+
* @returns {PipelineString} the same string as input, but validated as valid
|
|
371
|
+
* @throws {ParseError} if the string is not a valid pipeline string
|
|
372
|
+
* @public exported from `@promptbook/core`
|
|
373
|
+
*/
|
|
374
|
+
function validatePipelineString(pipelineString) {
|
|
375
|
+
if (isValidJsonString(pipelineString)) {
|
|
376
|
+
throw new ParseError('Expected a book, but got a JSON string');
|
|
377
|
+
}
|
|
378
|
+
// <- TODO: Implement the validation + add tests when the pipeline logic considered as invalid
|
|
379
|
+
return pipelineString;
|
|
380
|
+
}
|
|
381
|
+
/**
|
|
382
|
+
* TODO: [🧠][🈴] Where is the best location for this file
|
|
383
|
+
*/
|
|
364
384
|
|
|
365
385
|
/**
|
|
366
386
|
* Prettify the html code
|
|
@@ -419,7 +439,7 @@
|
|
|
419
439
|
if (bookVersion !== "undefined") {
|
|
420
440
|
commands.push("BOOK VERSION ".concat(bookVersion));
|
|
421
441
|
}
|
|
422
|
-
// TODO: [main]
|
|
442
|
+
// TODO: [main] !!5 This increases size of the bundle and is probbably not necessary
|
|
423
443
|
pipelineString = prettifyMarkdown(pipelineString);
|
|
424
444
|
try {
|
|
425
445
|
for (var _g = __values(parameters.filter(function (_a) {
|
|
@@ -567,12 +587,12 @@
|
|
|
567
587
|
pipelineString += '```' + contentLanguage;
|
|
568
588
|
pipelineString += '\n';
|
|
569
589
|
pipelineString += spaceTrim__default["default"](content);
|
|
570
|
-
// <- TODO: [main]
|
|
590
|
+
// <- TODO: [main] !!3 Escape
|
|
571
591
|
// <- TODO: [🧠] Some clear strategy how to spaceTrim the blocks
|
|
572
592
|
pipelineString += '\n';
|
|
573
593
|
pipelineString += '```';
|
|
574
594
|
pipelineString += '\n\n';
|
|
575
|
-
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main]
|
|
595
|
+
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main] !!3 If the parameter here has description, add it and use taskParameterJsonToString
|
|
576
596
|
}
|
|
577
597
|
}
|
|
578
598
|
catch (e_3_1) { e_3 = { error: e_3_1 }; }
|
|
@@ -582,7 +602,7 @@
|
|
|
582
602
|
}
|
|
583
603
|
finally { if (e_3) throw e_3.error; }
|
|
584
604
|
}
|
|
585
|
-
return pipelineString;
|
|
605
|
+
return validatePipelineString(pipelineString);
|
|
586
606
|
}
|
|
587
607
|
/**
|
|
588
608
|
* @private internal utility of `pipelineJsonToString`
|
|
@@ -654,7 +674,7 @@
|
|
|
654
674
|
*
|
|
655
675
|
* @public exported from `@promptbook/core`
|
|
656
676
|
*/
|
|
657
|
-
var
|
|
677
|
+
var DEFAULT_BOOK_TITLE = "\u2728 Untitled Book";
|
|
658
678
|
// <- TODO: [🧠] Better system for generator warnings - not always "code" and "by `@promptbook/cli`"
|
|
659
679
|
/**
|
|
660
680
|
* The maximum number of iterations for a loops
|
|
@@ -806,7 +826,7 @@
|
|
|
806
826
|
/**
|
|
807
827
|
* Make error report URL for the given error
|
|
808
828
|
*
|
|
809
|
-
* @private
|
|
829
|
+
* @private private within the repository
|
|
810
830
|
*/
|
|
811
831
|
function getErrorReportUrl(error) {
|
|
812
832
|
var report = {
|
|
@@ -927,7 +947,7 @@
|
|
|
927
947
|
if (!(error instanceof Error)) {
|
|
928
948
|
throw error;
|
|
929
949
|
}
|
|
930
|
-
throw new UnexpectedError(spaceTrim__default["default"](function (block) { return "\n `".concat(name, "` is not serializable\n\n ").concat(block(error.
|
|
950
|
+
throw new UnexpectedError(spaceTrim__default["default"](function (block) { return "\n `".concat(name, "` is not serializable\n\n ").concat(block(error.stack || error.message), "\n\n Additional message for `").concat(name, "`:\n ").concat(block(message || '(nothing)'), "\n "); }));
|
|
931
951
|
}
|
|
932
952
|
/*
|
|
933
953
|
TODO: [0] Is there some more elegant way to check circular references?
|
|
@@ -957,7 +977,7 @@
|
|
|
957
977
|
}
|
|
958
978
|
/**
|
|
959
979
|
* TODO: Can be return type more type-safe? like `asserts options.value is JsonValue`
|
|
960
|
-
* TODO: [🧠][main]
|
|
980
|
+
* TODO: [🧠][main] !!3 In-memory cache of same values to prevent multiple checks
|
|
961
981
|
* Note: [🐠] This is how `checkSerializableAsJson` + `isSerializableAsJson` together can just retun true/false or rich error message
|
|
962
982
|
*/
|
|
963
983
|
|
|
@@ -969,7 +989,6 @@
|
|
|
969
989
|
function deepClone(objectValue) {
|
|
970
990
|
return JSON.parse(JSON.stringify(objectValue));
|
|
971
991
|
/*
|
|
972
|
-
!!!!!!!!
|
|
973
992
|
TODO: [🧠] Is there a better implementation?
|
|
974
993
|
> const propertyNames = Object.getOwnPropertyNames(objectValue);
|
|
975
994
|
> for (const propertyName of propertyNames) {
|
|
@@ -1135,7 +1154,7 @@
|
|
|
1135
1154
|
if ( /* version === '1.0.0' || */version === '2.0.0' || version === '3.0.0') {
|
|
1136
1155
|
return false;
|
|
1137
1156
|
}
|
|
1138
|
-
// <- TODO: [main]
|
|
1157
|
+
// <- TODO: [main] !!3 Check isValidPromptbookVersion against PROMPTBOOK_ENGINE_VERSIONS
|
|
1139
1158
|
return true;
|
|
1140
1159
|
}
|
|
1141
1160
|
|
|
@@ -1235,9 +1254,6 @@
|
|
|
1235
1254
|
if (!url.startsWith('https://')) {
|
|
1236
1255
|
return false;
|
|
1237
1256
|
}
|
|
1238
|
-
if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.book.md') || url.endsWith('.ptbk'))) {
|
|
1239
|
-
return false;
|
|
1240
|
-
}
|
|
1241
1257
|
if (url.includes('#')) {
|
|
1242
1258
|
// TODO: [🐠]
|
|
1243
1259
|
return false;
|
|
@@ -1268,11 +1284,11 @@
|
|
|
1268
1284
|
*/
|
|
1269
1285
|
function validatePipeline(pipeline) {
|
|
1270
1286
|
if (IS_PIPELINE_LOGIC_VALIDATED) {
|
|
1271
|
-
|
|
1287
|
+
validatePipeline_InnerFunction(pipeline);
|
|
1272
1288
|
}
|
|
1273
1289
|
else {
|
|
1274
1290
|
try {
|
|
1275
|
-
|
|
1291
|
+
validatePipeline_InnerFunction(pipeline);
|
|
1276
1292
|
}
|
|
1277
1293
|
catch (error) {
|
|
1278
1294
|
if (!(error instanceof PipelineLogicError)) {
|
|
@@ -1286,7 +1302,7 @@
|
|
|
1286
1302
|
/**
|
|
1287
1303
|
* @private internal function for `validatePipeline`
|
|
1288
1304
|
*/
|
|
1289
|
-
function
|
|
1305
|
+
function validatePipeline_InnerFunction(pipeline) {
|
|
1290
1306
|
// TODO: [🧠] Maybe test if promptbook is a promise and make specific error case for that
|
|
1291
1307
|
var e_1, _a, e_2, _b, e_3, _c;
|
|
1292
1308
|
var pipelineIdentification = (function () {
|
|
@@ -1510,11 +1526,11 @@
|
|
|
1510
1526
|
_loop_3();
|
|
1511
1527
|
}
|
|
1512
1528
|
// Note: Check that formfactor is corresponding to the pipeline interface
|
|
1513
|
-
// TODO:
|
|
1529
|
+
// TODO: !!6 Implement this
|
|
1514
1530
|
// pipeline.formfactorName
|
|
1515
1531
|
}
|
|
1516
1532
|
/**
|
|
1517
|
-
* TODO:
|
|
1533
|
+
* TODO: [🧞♀️] Do not allow joker + foreach
|
|
1518
1534
|
* TODO: [🧠] Work with promptbookVersion
|
|
1519
1535
|
* TODO: Use here some json-schema, Zod or something similar and change it to:
|
|
1520
1536
|
* > /**
|
|
@@ -1526,11 +1542,11 @@
|
|
|
1526
1542
|
* > ex port function validatePipeline(promptbook: really_unknown): asserts promptbook is PipelineJson {
|
|
1527
1543
|
*/
|
|
1528
1544
|
/**
|
|
1529
|
-
* TODO: [🧳][main]
|
|
1530
|
-
* TODO: [🧳][🐝][main]
|
|
1531
|
-
* TODO: [🧳][main]
|
|
1532
|
-
* TODO: [🧳][main]
|
|
1533
|
-
* TODO: [🧳][main]
|
|
1545
|
+
* TODO: [🧳][main] !!4 Validate that all examples match expectations
|
|
1546
|
+
* TODO: [🧳][🐝][main] !!4 Validate that knowledge is valid (non-void)
|
|
1547
|
+
* TODO: [🧳][main] !!4 Validate that persona can be used only with CHAT variant
|
|
1548
|
+
* TODO: [🧳][main] !!4 Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
|
|
1549
|
+
* TODO: [🧳][main] !!4 Validate that reserved parameter is not used as joker
|
|
1534
1550
|
* TODO: [🧠] Validation not only logic itself but imports around - files and websites and rerefenced pipelines exists
|
|
1535
1551
|
* TODO: [🛠] Actions, instruments (and maybe knowledge) => Functions and tools
|
|
1536
1552
|
*/
|
|
@@ -1666,7 +1682,7 @@
|
|
|
1666
1682
|
pipelineJsonToString(unpreparePipeline(pipeline)) !==
|
|
1667
1683
|
pipelineJsonToString(unpreparePipeline(this.collection.get(pipeline.pipelineUrl)))) {
|
|
1668
1684
|
var existing = this.collection.get(pipeline.pipelineUrl);
|
|
1669
|
-
throw new PipelineUrlError(spaceTrim.spaceTrim("\n Pipeline with URL
|
|
1685
|
+
throw new PipelineUrlError(spaceTrim.spaceTrim("\n Pipeline with URL ".concat(pipeline.pipelineUrl, " is already in the collection \uD83C\uDF4E\n\n Conflicting files:\n ").concat(existing.sourceFile || 'Unknown', "\n ").concat(pipeline.sourceFile || 'Unknown', "\n\n Note: You have probably forgotten to run \"ptbk make\" to update the collection\n Note: Pipelines with the same URL are not allowed\n Only exepction is when the pipelines are identical\n\n ")));
|
|
1670
1686
|
}
|
|
1671
1687
|
// Note: [🧠] Overwrite existing pipeline with the same URL
|
|
1672
1688
|
this.collection.set(pipeline.pipelineUrl, pipeline);
|
|
@@ -2002,11 +2018,16 @@
|
|
|
2002
2018
|
/**
|
|
2003
2019
|
* Determine if the pipeline is fully prepared
|
|
2004
2020
|
*
|
|
2021
|
+
* @see https://github.com/webgptorg/promptbook/discussions/196
|
|
2022
|
+
*
|
|
2005
2023
|
* @public exported from `@promptbook/core`
|
|
2006
2024
|
*/
|
|
2007
2025
|
function isPipelinePrepared(pipeline) {
|
|
2008
2026
|
// Note: Ignoring `pipeline.preparations` @@@
|
|
2009
2027
|
// Note: Ignoring `pipeline.knowledgePieces` @@@
|
|
2028
|
+
if (pipeline.title === undefined || pipeline.title === '' || pipeline.title === DEFAULT_BOOK_TITLE) {
|
|
2029
|
+
return false;
|
|
2030
|
+
}
|
|
2010
2031
|
if (!pipeline.personas.every(function (persona) { return persona.modelRequirements !== undefined; })) {
|
|
2011
2032
|
return false;
|
|
2012
2033
|
}
|
|
@@ -2022,7 +2043,7 @@
|
|
|
2022
2043
|
return true;
|
|
2023
2044
|
}
|
|
2024
2045
|
/**
|
|
2025
|
-
* TODO: [🔃][main]
|
|
2046
|
+
* TODO: [🔃][main] If the pipeline was prepared with different version or different set of models, prepare it once again
|
|
2026
2047
|
* TODO: [🐠] Maybe base this on `makeValidator`
|
|
2027
2048
|
* TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
|
|
2028
2049
|
* TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
|
|
@@ -2787,10 +2808,10 @@
|
|
|
2787
2808
|
});
|
|
2788
2809
|
}
|
|
2789
2810
|
/**
|
|
2790
|
-
* TODO: [🔃][main]
|
|
2791
|
-
* TODO: [🏢]
|
|
2792
|
-
* TODO: [🏢]
|
|
2793
|
-
* TODO: [🏢]
|
|
2811
|
+
* TODO: [🔃][main] If the persona was prepared with different version or different set of models, prepare it once again
|
|
2812
|
+
* TODO: [🏢] Check validity of `modelName` in pipeline
|
|
2813
|
+
* TODO: [🏢] Check validity of `systemMessage` in pipeline
|
|
2814
|
+
* TODO: [🏢] Check validity of `temperature` in pipeline
|
|
2794
2815
|
*/
|
|
2795
2816
|
|
|
2796
2817
|
/**
|
|
@@ -3485,21 +3506,44 @@
|
|
|
3485
3506
|
if (typeof filename !== 'string') {
|
|
3486
3507
|
return false;
|
|
3487
3508
|
}
|
|
3509
|
+
if (filename.split('\n').length > 1) {
|
|
3510
|
+
return false;
|
|
3511
|
+
}
|
|
3512
|
+
if (filename.split(' ').length >
|
|
3513
|
+
5 /* <- TODO: [🧠][🈷] Make some better non-arbitrary way how to distinct filenames from informational texts */) {
|
|
3514
|
+
return false;
|
|
3515
|
+
}
|
|
3488
3516
|
var filenameSlashes = filename.split('\\').join('/');
|
|
3489
3517
|
// Absolute Unix path: /hello.txt
|
|
3490
3518
|
if (/^(\/)/i.test(filenameSlashes)) {
|
|
3519
|
+
// console.log(filename, 'Absolute Unix path: /hello.txt');
|
|
3491
3520
|
return true;
|
|
3492
3521
|
}
|
|
3493
3522
|
// Absolute Windows path: /hello.txt
|
|
3494
3523
|
if (/^([A-Z]{1,2}:\/?)\//i.test(filenameSlashes)) {
|
|
3524
|
+
// console.log(filename, 'Absolute Windows path: /hello.txt');
|
|
3495
3525
|
return true;
|
|
3496
3526
|
}
|
|
3497
3527
|
// Relative path: ./hello.txt
|
|
3498
3528
|
if (/^(\.\.?\/)+/i.test(filenameSlashes)) {
|
|
3529
|
+
// console.log(filename, 'Relative path: ./hello.txt');
|
|
3530
|
+
return true;
|
|
3531
|
+
}
|
|
3532
|
+
// Allow paths like foo/hello
|
|
3533
|
+
if (/^[^/]+\/[^/]+/i.test(filenameSlashes)) {
|
|
3534
|
+
// console.log(filename, 'Allow paths like foo/hello');
|
|
3535
|
+
return true;
|
|
3536
|
+
}
|
|
3537
|
+
// Allow paths like hello.book
|
|
3538
|
+
if (/^[^/]+\.[^/]+$/i.test(filenameSlashes)) {
|
|
3539
|
+
// console.log(filename, 'Allow paths like hello.book');
|
|
3499
3540
|
return true;
|
|
3500
3541
|
}
|
|
3501
3542
|
return false;
|
|
3502
3543
|
}
|
|
3544
|
+
/**
|
|
3545
|
+
* TODO: [🍏] Implement for MacOs
|
|
3546
|
+
*/
|
|
3503
3547
|
|
|
3504
3548
|
/**
|
|
3505
3549
|
* The built-in `fetch' function with a lightweight error handling wrapper as default fetch function used in Promptbook scrapers
|
|
@@ -3524,6 +3568,9 @@
|
|
|
3524
3568
|
}
|
|
3525
3569
|
});
|
|
3526
3570
|
}); };
|
|
3571
|
+
/**
|
|
3572
|
+
* TODO: [🧠] Maybe rename because it is not used only for scrapers but also in `$getCompiledBook`
|
|
3573
|
+
*/
|
|
3527
3574
|
|
|
3528
3575
|
/**
|
|
3529
3576
|
* @@@
|
|
@@ -3591,7 +3638,7 @@
|
|
|
3591
3638
|
},
|
|
3592
3639
|
}];
|
|
3593
3640
|
case 2:
|
|
3594
|
-
if (!
|
|
3641
|
+
if (!isValidFilePath(sourceContent)) return [3 /*break*/, 4];
|
|
3595
3642
|
if (tools.fs === undefined) {
|
|
3596
3643
|
throw new EnvironmentMismatchError('Can not import file knowledge without filesystem tools');
|
|
3597
3644
|
// <- TODO: [🧠] What is the best error type here`
|
|
@@ -3606,7 +3653,7 @@
|
|
|
3606
3653
|
return [4 /*yield*/, isFileExisting(filename_1, tools.fs)];
|
|
3607
3654
|
case 3:
|
|
3608
3655
|
if (!(_f.sent())) {
|
|
3609
|
-
throw new NotFoundError(spaceTrim__default["default"](function (block) { return "\n Can not make source handler for file which does not exist:\n\n File:\n ".concat(block(filename_1), "\n "); }));
|
|
3656
|
+
throw new NotFoundError(spaceTrim__default["default"](function (block) { return "\n Can not make source handler for file which does not exist:\n\n File:\n ".concat(block(sourceContent), "\n\n Full file path:\n ").concat(block(filename_1), "\n "); }));
|
|
3610
3657
|
}
|
|
3611
3658
|
// TODO: [🧠][😿] Test security file - file is scoped to the project (BUT maybe do this in `filesystemTools`)
|
|
3612
3659
|
return [2 /*return*/, {
|
|
@@ -3719,7 +3766,7 @@
|
|
|
3719
3766
|
partialPieces = __spreadArray([], __read(partialPiecesUnchecked), false);
|
|
3720
3767
|
return [2 /*return*/, "break"];
|
|
3721
3768
|
}
|
|
3722
|
-
console.warn(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge from source despite the scraper `".concat(scraper.metadata.className, "` supports the mime type \"").concat(sourceHandler.mimeType, "\".\n
|
|
3769
|
+
console.warn(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge from source despite the scraper `".concat(scraper.metadata.className, "` supports the mime type \"").concat(sourceHandler.mimeType, "\".\n\n The source:\n ").concat(block(knowledgeSource.sourceContent
|
|
3723
3770
|
.split('\n')
|
|
3724
3771
|
.map(function (line) { return "> ".concat(line); })
|
|
3725
3772
|
.join('\n')), "\n\n ").concat(block($registeredScrapersMessage(scrapers)), "\n\n\n "); }));
|
|
@@ -3757,7 +3804,7 @@
|
|
|
3757
3804
|
return [7 /*endfinally*/];
|
|
3758
3805
|
case 9:
|
|
3759
3806
|
if (partialPieces === null) {
|
|
3760
|
-
throw new KnowledgeScrapeError(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge\n
|
|
3807
|
+
throw new KnowledgeScrapeError(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge\n\n The source:\n > ".concat(block(knowledgeSource.sourceContent
|
|
3761
3808
|
.split('\n')
|
|
3762
3809
|
.map(function (line) { return "> ".concat(line); })
|
|
3763
3810
|
.join('\n')), "\n\n No scraper found for the mime type \"").concat(sourceHandler.mimeType, "\"\n\n ").concat(block($registeredScrapersMessage(scrapers)), "\n\n\n "); }));
|
|
@@ -3848,7 +3895,7 @@
|
|
|
3848
3895
|
* TODO: [😂] Adding knowledge should be convert to async high-level abstractions, simmilar thing with expectations to sync high-level abstractions
|
|
3849
3896
|
* TODO: [🧠] Add context to each task (if missing)
|
|
3850
3897
|
* TODO: [🧠] What is better name `prepareTask` or `prepareTaskAndParameters`
|
|
3851
|
-
* TODO: [♨][main]
|
|
3898
|
+
* TODO: [♨][main] !!3 Prepare index the examples and maybe tasks
|
|
3852
3899
|
* TODO: Write tests for `preparePipeline`
|
|
3853
3900
|
* TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
|
|
3854
3901
|
* TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
|
|
@@ -3858,6 +3905,8 @@
|
|
|
3858
3905
|
/**
|
|
3859
3906
|
* Prepare pipeline from string (markdown) format to JSON format
|
|
3860
3907
|
*
|
|
3908
|
+
* @see https://github.com/webgptorg/promptbook/discussions/196
|
|
3909
|
+
*
|
|
3861
3910
|
* Note: This function does not validate logic of the pipeline
|
|
3862
3911
|
* Note: This function acts as part of compilation process
|
|
3863
3912
|
* Note: When the pipeline is already prepared, it returns the same pipeline
|
|
@@ -3870,16 +3919,17 @@
|
|
|
3870
3919
|
<- TODO: [🧠][🪑] `promptbookVersion` */
|
|
3871
3920
|
knowledgeSources /*
|
|
3872
3921
|
<- TODO: [🧊] `knowledgePieces` */, personas /*
|
|
3873
|
-
<- TODO: [🧊] `preparations` */, _llms, llmTools, llmToolsWithUsage, currentPreparation, preparations, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared, tasksPrepared /* TODO: parameters: parametersPrepared*/;
|
|
3922
|
+
<- TODO: [🧊] `preparations` */, sources, _llms, llmTools, llmToolsWithUsage, currentPreparation, preparations, title, collection, prepareTitleExecutor, _c, result, outputParameters, titleRaw, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared, tasksPrepared /* TODO: parameters: parametersPrepared*/;
|
|
3923
|
+
var _d;
|
|
3874
3924
|
var _this = this;
|
|
3875
|
-
return __generator(this, function (
|
|
3876
|
-
switch (
|
|
3925
|
+
return __generator(this, function (_e) {
|
|
3926
|
+
switch (_e.label) {
|
|
3877
3927
|
case 0:
|
|
3878
3928
|
if (isPipelinePrepared(pipeline)) {
|
|
3879
3929
|
return [2 /*return*/, pipeline];
|
|
3880
3930
|
}
|
|
3881
3931
|
rootDirname = options.rootDirname, _a = options.maxParallelCount, maxParallelCount = _a === void 0 ? DEFAULT_MAX_PARALLEL_COUNT : _a, _b = options.isVerbose, isVerbose = _b === void 0 ? DEFAULT_IS_VERBOSE : _b;
|
|
3882
|
-
parameters = pipeline.parameters, tasks = pipeline.tasks, knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas;
|
|
3932
|
+
parameters = pipeline.parameters, tasks = pipeline.tasks, knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas, sources = pipeline.sources;
|
|
3883
3933
|
if (tools === undefined || tools.llm === undefined) {
|
|
3884
3934
|
throw new MissingToolsError('LLM tools are required for preparing the pipeline');
|
|
3885
3935
|
}
|
|
@@ -3897,6 +3947,33 @@
|
|
|
3897
3947
|
// <- TODO: [🧊]
|
|
3898
3948
|
currentPreparation,
|
|
3899
3949
|
];
|
|
3950
|
+
title = pipeline.title;
|
|
3951
|
+
if (!(title === undefined || title === '' || title === DEFAULT_BOOK_TITLE)) return [3 /*break*/, 3];
|
|
3952
|
+
collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
|
|
3953
|
+
_c = createPipelineExecutor;
|
|
3954
|
+
_d = {};
|
|
3955
|
+
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-title.book.md')];
|
|
3956
|
+
case 1:
|
|
3957
|
+
prepareTitleExecutor = _c.apply(void 0, [(_d.pipeline = _e.sent(),
|
|
3958
|
+
_d.tools = tools,
|
|
3959
|
+
_d)]);
|
|
3960
|
+
return [4 /*yield*/, prepareTitleExecutor({
|
|
3961
|
+
book: sources.map(function (_a) {
|
|
3962
|
+
var content = _a.content;
|
|
3963
|
+
return content;
|
|
3964
|
+
}).join('\n\n'),
|
|
3965
|
+
})];
|
|
3966
|
+
case 2:
|
|
3967
|
+
result = _e.sent();
|
|
3968
|
+
assertsExecutionSuccessful(result);
|
|
3969
|
+
outputParameters = result.outputParameters;
|
|
3970
|
+
titleRaw = outputParameters.title;
|
|
3971
|
+
if (isVerbose) {
|
|
3972
|
+
console.info("The title is \"".concat(titleRaw, "\""));
|
|
3973
|
+
}
|
|
3974
|
+
title = titleRaw || DEFAULT_BOOK_TITLE;
|
|
3975
|
+
_e.label = 3;
|
|
3976
|
+
case 3:
|
|
3900
3977
|
preparedPersonas = new Array(personas.length);
|
|
3901
3978
|
return [4 /*yield*/, forEachAsync(personas, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (persona, index) { return __awaiter(_this, void 0, void 0, function () {
|
|
3902
3979
|
var modelRequirements, preparedPersona;
|
|
@@ -3915,12 +3992,12 @@
|
|
|
3915
3992
|
}
|
|
3916
3993
|
});
|
|
3917
3994
|
}); })];
|
|
3918
|
-
case
|
|
3919
|
-
|
|
3995
|
+
case 4:
|
|
3996
|
+
_e.sent();
|
|
3920
3997
|
knowledgeSourcesPrepared = knowledgeSources.map(function (source) { return (__assign(__assign({}, source), { preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id] })); });
|
|
3921
3998
|
return [4 /*yield*/, prepareKnowledgePieces(knowledgeSources /* <- TODO: [🧊] {knowledgeSources, knowledgePieces} */, __assign(__assign({}, tools), { llm: llmToolsWithUsage }), __assign(__assign({}, options), { rootDirname: rootDirname, maxParallelCount: maxParallelCount /* <- TODO: [🪂] */, isVerbose: isVerbose }))];
|
|
3922
|
-
case
|
|
3923
|
-
partialknowledgePiecesPrepared =
|
|
3999
|
+
case 5:
|
|
4000
|
+
partialknowledgePiecesPrepared = _e.sent();
|
|
3924
4001
|
knowledgePiecesPrepared = partialknowledgePiecesPrepared.map(function (piece) { return (__assign(__assign({}, piece), { preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id] })); });
|
|
3925
4002
|
return [4 /*yield*/, prepareTasks({
|
|
3926
4003
|
parameters: parameters,
|
|
@@ -3931,8 +4008,8 @@
|
|
|
3931
4008
|
maxParallelCount: maxParallelCount /* <- TODO: [🪂] */,
|
|
3932
4009
|
isVerbose: isVerbose,
|
|
3933
4010
|
})];
|
|
3934
|
-
case
|
|
3935
|
-
tasksPrepared = (
|
|
4011
|
+
case 6:
|
|
4012
|
+
tasksPrepared = (_e.sent()).tasksPrepared;
|
|
3936
4013
|
// ----- /Tasks preparation -----
|
|
3937
4014
|
// TODO: [😂] Use here all `AsyncHighLevelAbstraction`
|
|
3938
4015
|
// Note: Count total usage
|
|
@@ -3943,7 +4020,7 @@
|
|
|
3943
4020
|
order: ORDER_OF_PIPELINE_JSON,
|
|
3944
4021
|
value: __assign(__assign({}, pipeline), {
|
|
3945
4022
|
// <- TODO: Probbably deeply clone the pipeline because `$exportJson` freezes the subobjects
|
|
3946
|
-
knowledgeSources: knowledgeSourcesPrepared, knowledgePieces: knowledgePiecesPrepared, tasks: __spreadArray([], __read(tasksPrepared), false),
|
|
4023
|
+
title: title, knowledgeSources: knowledgeSourcesPrepared, knowledgePieces: knowledgePiecesPrepared, tasks: __spreadArray([], __read(tasksPrepared), false),
|
|
3947
4024
|
// <- TODO: [🪓] Here should be no need for spreading new array, just ` tasks: tasksPrepared`
|
|
3948
4025
|
personas: preparedPersonas, preparations: __spreadArray([], __read(preparations), false) }),
|
|
3949
4026
|
})];
|
|
@@ -4014,7 +4091,7 @@
|
|
|
4014
4091
|
if (!(error instanceof Error)) {
|
|
4015
4092
|
throw error;
|
|
4016
4093
|
}
|
|
4017
|
-
throw new ParseError(spaceTrim.spaceTrim(function (block) { return "\n Can not extract variables from the script\n
|
|
4094
|
+
throw new ParseError(spaceTrim.spaceTrim(function (block) { return "\n Can not extract variables from the script\n ".concat(block(error.stack || error.message), "\n\n Found variables:\n ").concat(Array.from(variables)
|
|
4018
4095
|
.map(function (variableName, i) { return "".concat(i + 1, ") ").concat(variableName); })
|
|
4019
4096
|
.join('\n'), "\n\n\n The script:\n\n ```javascript\n ").concat(block(originalScript), "\n ```\n "); }));
|
|
4020
4097
|
}
|
|
@@ -4552,6 +4629,8 @@
|
|
|
4552
4629
|
throw new PipelineExecutionError("Parameter `{".concat(parameterName, "}` is not defined"));
|
|
4553
4630
|
}
|
|
4554
4631
|
parameterValue = valueToString(parameterValue);
|
|
4632
|
+
// Escape curly braces in parameter values to prevent prompt-injection
|
|
4633
|
+
parameterValue = parameterValue.replace(/[{}]/g, '\\$&');
|
|
4555
4634
|
if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
|
|
4556
4635
|
parameterValue = parameterValue
|
|
4557
4636
|
.split('\n')
|
|
@@ -4911,7 +4990,7 @@
|
|
|
4911
4990
|
promptTitle: task.title,
|
|
4912
4991
|
promptMessage: templateParameters(task.description || '', parameters),
|
|
4913
4992
|
defaultValue: templateParameters(preparedContent, parameters),
|
|
4914
|
-
// TODO: [🧠]
|
|
4993
|
+
// TODO: [🧠] Figure out how to define placeholder in .book.md file
|
|
4915
4994
|
placeholder: undefined,
|
|
4916
4995
|
priority: priority,
|
|
4917
4996
|
}))];
|
|
@@ -5901,6 +5980,7 @@
|
|
|
5901
5980
|
mimeTypes: ['text/markdown', 'text/plain'],
|
|
5902
5981
|
documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
|
|
5903
5982
|
isAvilableInBrowser: true,
|
|
5983
|
+
// <- Note: [🌏] This is the only scraper which makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
|
|
5904
5984
|
requiredExecutables: [],
|
|
5905
5985
|
}); /* <- Note: [🤛] */
|
|
5906
5986
|
/**
|
|
@@ -5909,6 +5989,7 @@
|
|
|
5909
5989
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
5910
5990
|
*
|
|
5911
5991
|
* @public exported from `@promptbook/core`
|
|
5992
|
+
* @public exported from `@promptbook/wizzard`
|
|
5912
5993
|
* @public exported from `@promptbook/cli`
|
|
5913
5994
|
*/
|
|
5914
5995
|
$scrapersMetadataRegister.register(markdownScraperMetadata);
|
|
@@ -5994,12 +6075,12 @@
|
|
|
5994
6075
|
outputParameters = result.outputParameters;
|
|
5995
6076
|
knowledgePiecesRaw = outputParameters.knowledgePieces;
|
|
5996
6077
|
knowledgeTextPieces = (knowledgePiecesRaw || '').split('\n---\n');
|
|
5997
|
-
// <- TODO: [main]
|
|
6078
|
+
// <- TODO: [main] Smarter split and filter out empty pieces
|
|
5998
6079
|
if (isVerbose) {
|
|
5999
6080
|
console.info('knowledgeTextPieces:', knowledgeTextPieces);
|
|
6000
6081
|
}
|
|
6001
6082
|
return [4 /*yield*/, Promise.all(
|
|
6002
|
-
// TODO: [🪂]
|
|
6083
|
+
// TODO: [🪂] Do not send all at once but in chunks
|
|
6003
6084
|
knowledgeTextPieces.map(function (knowledgeTextPiece, i) { return __awaiter(_this, void 0, void 0, function () {
|
|
6004
6085
|
var name, title, knowledgePieceContent, keywords, index, titleResult, _a, titleRaw, keywordsResult, _b, keywordsRaw, embeddingResult, error_1;
|
|
6005
6086
|
return __generator(this, function (_c) {
|
|
@@ -6104,6 +6185,7 @@
|
|
|
6104
6185
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
6105
6186
|
*
|
|
6106
6187
|
* @public exported from `@promptbook/markdown-utils`
|
|
6188
|
+
* @public exported from `@promptbook/wizzard`
|
|
6107
6189
|
* @public exported from `@promptbook/cli`
|
|
6108
6190
|
*/
|
|
6109
6191
|
var _MarkdownScraperRegistration = $scrapersRegister.register(createMarkdownScraper);
|
|
@@ -6113,13 +6195,13 @@
|
|
|
6113
6195
|
*/
|
|
6114
6196
|
|
|
6115
6197
|
/**
|
|
6116
|
-
* Removes
|
|
6198
|
+
* Removes Markdown (or HTML) comments
|
|
6117
6199
|
*
|
|
6118
6200
|
* @param {string} content - The string to remove comments from.
|
|
6119
6201
|
* @returns {string} The input string with all comments removed.
|
|
6120
6202
|
* @public exported from `@promptbook/markdown-utils`
|
|
6121
6203
|
*/
|
|
6122
|
-
function
|
|
6204
|
+
function removeMarkdownComments(content) {
|
|
6123
6205
|
return spaceTrim.spaceTrim(content.replace(/<!--(.*?)-->/gs, ''));
|
|
6124
6206
|
}
|
|
6125
6207
|
|
|
@@ -6138,7 +6220,7 @@
|
|
|
6138
6220
|
return content.replace(sectionRegex, contentToInsert);
|
|
6139
6221
|
}
|
|
6140
6222
|
// Note: Following is the case when the section is not found in the file so we add it there
|
|
6141
|
-
var placeForSection =
|
|
6223
|
+
var placeForSection = removeMarkdownComments(content).match(/^##.*$/im);
|
|
6142
6224
|
if (placeForSection !== null) {
|
|
6143
6225
|
var _a = __read(placeForSection, 1), heading_1 = _a[0];
|
|
6144
6226
|
return content.replace(heading_1, spaceTrim.spaceTrim(function (block) { return "\n ".concat(block(contentToInsert), "\n\n ").concat(block(heading_1), "\n "); }));
|
|
@@ -6318,7 +6400,7 @@
|
|
|
6318
6400
|
return;
|
|
6319
6401
|
}
|
|
6320
6402
|
if (!section.startsWith('#')) {
|
|
6321
|
-
section = "# ".concat(
|
|
6403
|
+
section = "# ".concat(DEFAULT_BOOK_TITLE, "\n\n").concat(section);
|
|
6322
6404
|
}
|
|
6323
6405
|
sections.push(section);
|
|
6324
6406
|
buffer = [];
|
|
@@ -6373,7 +6455,7 @@
|
|
|
6373
6455
|
/**
|
|
6374
6456
|
* Normalizes the markdown by flattening the structure
|
|
6375
6457
|
*
|
|
6376
|
-
* - It always have h1 - if there is no h1 in the markdown, it will be added
|
|
6458
|
+
* - It always have h1 - if there is no h1 in the markdown, it will be added `DEFAULT_BOOK_TITLE`
|
|
6377
6459
|
* - All other headings are normalized to h2
|
|
6378
6460
|
*
|
|
6379
6461
|
* @public exported from `@promptbook/markdown-utils`
|
|
@@ -6382,7 +6464,7 @@
|
|
|
6382
6464
|
var e_1, _a;
|
|
6383
6465
|
var sections = splitMarkdownIntoSections(markdown);
|
|
6384
6466
|
if (sections.length === 0) {
|
|
6385
|
-
return "# ".concat(
|
|
6467
|
+
return "# ".concat(DEFAULT_BOOK_TITLE);
|
|
6386
6468
|
}
|
|
6387
6469
|
var flattenedMarkdown = '';
|
|
6388
6470
|
var parsedSections = sections.map(parseMarkdownSection);
|
|
@@ -6393,7 +6475,7 @@
|
|
|
6393
6475
|
}
|
|
6394
6476
|
else {
|
|
6395
6477
|
parsedSections.unshift(firstSection);
|
|
6396
|
-
flattenedMarkdown += "# ".concat(
|
|
6478
|
+
flattenedMarkdown += "# ".concat(DEFAULT_BOOK_TITLE) + "\n\n"; // <- [🧠] Maybe 3 new lines?
|
|
6397
6479
|
}
|
|
6398
6480
|
try {
|
|
6399
6481
|
for (var parsedSections_1 = __values(parsedSections), parsedSections_1_1 = parsedSections_1.next(); !parsedSections_1_1.done; parsedSections_1_1 = parsedSections_1.next()) {
|
|
@@ -6452,7 +6534,7 @@
|
|
|
6452
6534
|
exports.extractOneBlockFromMarkdown = extractOneBlockFromMarkdown;
|
|
6453
6535
|
exports.flattenMarkdown = flattenMarkdown;
|
|
6454
6536
|
exports.parseMarkdownSection = parseMarkdownSection;
|
|
6455
|
-
exports.
|
|
6537
|
+
exports.removeMarkdownComments = removeMarkdownComments;
|
|
6456
6538
|
exports.removeMarkdownFormatting = removeMarkdownFormatting;
|
|
6457
6539
|
exports.splitMarkdownIntoSections = splitMarkdownIntoSections;
|
|
6458
6540
|
|