@promptbook/markdown-utils 0.81.0-9 → 0.81.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +25 -8
- package/esm/index.es.js +141 -59
- package/esm/index.es.js.map +1 -1
- package/esm/typings/books/index.d.ts +38 -0
- package/esm/typings/src/_packages/core.index.d.ts +12 -4
- package/esm/typings/src/_packages/markdown-utils.index.d.ts +2 -2
- package/esm/typings/src/_packages/node.index.d.ts +0 -2
- package/esm/typings/src/_packages/templates.index.d.ts +2 -2
- package/esm/typings/src/_packages/types.index.d.ts +2 -0
- package/esm/typings/src/_packages/utils.index.d.ts +2 -0
- package/esm/typings/src/_packages/wizzard.index.d.ts +44 -0
- package/esm/typings/src/cli/cli-commands/make.d.ts +1 -1
- package/esm/typings/src/cli/cli-commands/run.d.ts +2 -2
- package/esm/typings/src/collection/constructors/createCollectionFromDirectory.d.ts +11 -0
- package/esm/typings/src/collection/constructors/createCollectionFromUrl.d.ts +1 -1
- package/esm/typings/src/commands/index.d.ts +1 -1
- package/esm/typings/src/config.d.ts +3 -3
- package/esm/typings/src/conversion/compilePipeline.d.ts +1 -4
- package/esm/typings/src/conversion/{precompilePipeline.d.ts → parsePipeline.d.ts} +3 -3
- package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +3 -3
- package/esm/typings/src/conversion/validation/validatePipeline.d.ts +7 -7
- package/esm/typings/src/errors/utils/getErrorReportUrl.d.ts +1 -1
- package/esm/typings/src/formfactors/generator/GeneratorFormfactorDefinition.d.ts +9 -4
- package/esm/typings/src/formfactors/image-generator/ImageGeneratorFormfactorDefinition.d.ts +24 -0
- package/esm/typings/src/formfactors/index.d.ts +31 -9
- package/esm/typings/src/high-level-abstractions/_common/HighLevelAbstraction.d.ts +1 -1
- package/esm/typings/src/high-level-abstractions/index.d.ts +3 -3
- package/esm/typings/src/high-level-abstractions/quick-chatbot/QuickChatbotHla.d.ts +3 -0
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsConfigurationFromEnv.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsForTestingAndScriptsAndPlayground.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/register/{$provideLlmToolsForCli.d.ts → $provideLlmToolsForWizzardOrCli.d.ts} +2 -2
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsFromEnv.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/anthropic-claude-models.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/createAnthropicClaudeExecutionTools.d.ts +2 -2
- package/esm/typings/src/llm-providers/anthropic-claude/playground/playground.d.ts +2 -2
- package/esm/typings/src/llm-providers/anthropic-claude/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +2 -0
- package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/google/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/google/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/openai/playground/playground.d.ts +1 -1
- package/esm/typings/src/llm-providers/openai/register-configuration.d.ts +2 -0
- package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +2 -0
- package/esm/typings/src/llm-providers/vercel/playground/playground.d.ts +1 -1
- package/esm/typings/src/other/templates/getBookTemplates.d.ts +22 -0
- package/esm/typings/src/personas/preparePersona.d.ts +4 -4
- package/esm/typings/src/pipeline/PipelineString.d.ts +0 -3
- package/esm/typings/src/pipeline/book-notation.d.ts +14 -0
- package/esm/typings/src/pipeline/isValidPipelineString.d.ts +13 -0
- package/esm/typings/src/pipeline/isValidPipelineString.test.d.ts +4 -0
- package/esm/typings/src/pipeline/validatePipelineString.d.ts +14 -0
- package/esm/typings/src/prepare/isPipelinePrepared.d.ts +3 -1
- package/esm/typings/src/prepare/preparePipeline.d.ts +2 -0
- package/esm/typings/src/prepare/prepareTasks.d.ts +1 -1
- package/esm/typings/src/scrapers/_common/Converter.d.ts +1 -0
- package/esm/typings/src/scrapers/_common/Scraper.d.ts +1 -1
- package/esm/typings/src/scrapers/_common/ScraperIntermediateSource.d.ts +3 -0
- package/esm/typings/src/scrapers/_common/register/ScraperAndConverterMetadata.d.ts +2 -0
- package/esm/typings/src/scrapers/_common/utils/scraperFetch.d.ts +3 -0
- package/esm/typings/src/scrapers/document/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/document/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/document-legacy/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/document-legacy/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/markdown/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/markdown/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/PdfScraper.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/createPdfScraper.d.ts +1 -1
- package/esm/typings/src/scrapers/pdf/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +2 -1
- package/esm/typings/src/scrapers/website/createWebsiteScraper.d.ts +3 -1
- package/esm/typings/src/scrapers/website/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/website/register-metadata.d.ts +1 -0
- package/esm/typings/src/scripting/javascript/JavascriptEvalExecutionTools.test.d.ts +1 -1
- package/esm/typings/src/scripting/javascript/utils/preserve.d.ts +2 -1
- package/esm/typings/src/types/typeAliases.d.ts +8 -2
- package/esm/typings/src/utils/markdown/flattenMarkdown.d.ts +1 -1
- package/esm/typings/src/utils/markdown/{removeContentComments.d.ts → removeMarkdownComments.d.ts} +2 -2
- package/esm/typings/src/utils/organization/$sideEffect.d.ts +9 -0
- package/esm/typings/src/utils/serialization/checkSerializableAsJson.d.ts +1 -1
- package/esm/typings/src/utils/serialization/isSerializableAsJson.d.ts +2 -2
- package/esm/typings/src/utils/validators/filePath/isRootPath.d.ts +12 -0
- package/esm/typings/src/utils/validators/filePath/isRootPath.test.d.ts +4 -0
- package/esm/typings/src/utils/validators/filePath/isValidFilePath.d.ts +3 -0
- package/esm/typings/src/wizzard/$getCompiledBook.d.ts +16 -0
- package/esm/typings/src/wizzard/wizzard.d.ts +51 -7
- package/package.json +1 -1
- package/umd/index.umd.js +141 -59
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/other/templates/getBookTemplate.d.ts +0 -21
- package/esm/typings/src/scripting/javascript/utils/unknownToString.d.ts +0 -8
- /package/esm/typings/src/conversion/{precompilePipeline.test.d.ts → parsePipeline.test.d.ts} +0 -0
- /package/esm/typings/src/utils/markdown/{removeContentComments.test.d.ts → removeMarkdownComments.test.d.ts} +0 -0
package/esm/index.es.js
CHANGED
|
@@ -22,7 +22,7 @@ var BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
22
22
|
* @generated
|
|
23
23
|
* @see https://github.com/webgptorg/promptbook
|
|
24
24
|
*/
|
|
25
|
-
var PROMPTBOOK_ENGINE_VERSION = '0.81.0-
|
|
25
|
+
var PROMPTBOOK_ENGINE_VERSION = '0.81.0-24';
|
|
26
26
|
/**
|
|
27
27
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
28
28
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -358,7 +358,27 @@ function extractJsonBlock(markdown) {
|
|
|
358
358
|
* TODO: [🏢] Make this logic part of `JsonFormatDefinition` or `isValidJsonString`
|
|
359
359
|
*/
|
|
360
360
|
|
|
361
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"}];
|
|
361
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book.md",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book.md`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book.md"}];
|
|
362
|
+
|
|
363
|
+
/**
|
|
364
|
+
* Function `validatePipelineString` will validate the if the string is a valid pipeline string
|
|
365
|
+
* It does not check if the string is fully logically correct, but if it is a string that can be a pipeline string or the string looks completely different.
|
|
366
|
+
*
|
|
367
|
+
* @param {string} pipelineString the candidate for a pipeline string
|
|
368
|
+
* @returns {PipelineString} the same string as input, but validated as valid
|
|
369
|
+
* @throws {ParseError} if the string is not a valid pipeline string
|
|
370
|
+
* @public exported from `@promptbook/core`
|
|
371
|
+
*/
|
|
372
|
+
function validatePipelineString(pipelineString) {
|
|
373
|
+
if (isValidJsonString(pipelineString)) {
|
|
374
|
+
throw new ParseError('Expected a book, but got a JSON string');
|
|
375
|
+
}
|
|
376
|
+
// <- TODO: Implement the validation + add tests when the pipeline logic considered as invalid
|
|
377
|
+
return pipelineString;
|
|
378
|
+
}
|
|
379
|
+
/**
|
|
380
|
+
* TODO: [🧠][🈴] Where is the best location for this file
|
|
381
|
+
*/
|
|
362
382
|
|
|
363
383
|
/**
|
|
364
384
|
* Prettify the html code
|
|
@@ -417,7 +437,7 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
417
437
|
if (bookVersion !== "undefined") {
|
|
418
438
|
commands.push("BOOK VERSION ".concat(bookVersion));
|
|
419
439
|
}
|
|
420
|
-
// TODO: [main]
|
|
440
|
+
// TODO: [main] !!5 This increases size of the bundle and is probbably not necessary
|
|
421
441
|
pipelineString = prettifyMarkdown(pipelineString);
|
|
422
442
|
try {
|
|
423
443
|
for (var _g = __values(parameters.filter(function (_a) {
|
|
@@ -565,12 +585,12 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
565
585
|
pipelineString += '```' + contentLanguage;
|
|
566
586
|
pipelineString += '\n';
|
|
567
587
|
pipelineString += spaceTrim(content);
|
|
568
|
-
// <- TODO: [main]
|
|
588
|
+
// <- TODO: [main] !!3 Escape
|
|
569
589
|
// <- TODO: [🧠] Some clear strategy how to spaceTrim the blocks
|
|
570
590
|
pipelineString += '\n';
|
|
571
591
|
pipelineString += '```';
|
|
572
592
|
pipelineString += '\n\n';
|
|
573
|
-
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main]
|
|
593
|
+
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main] !!3 If the parameter here has description, add it and use taskParameterJsonToString
|
|
574
594
|
}
|
|
575
595
|
}
|
|
576
596
|
catch (e_3_1) { e_3 = { error: e_3_1 }; }
|
|
@@ -580,7 +600,7 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
580
600
|
}
|
|
581
601
|
finally { if (e_3) throw e_3.error; }
|
|
582
602
|
}
|
|
583
|
-
return pipelineString;
|
|
603
|
+
return validatePipelineString(pipelineString);
|
|
584
604
|
}
|
|
585
605
|
/**
|
|
586
606
|
* @private internal utility of `pipelineJsonToString`
|
|
@@ -652,7 +672,7 @@ var ADMIN_GITHUB_NAME = 'hejny';
|
|
|
652
672
|
*
|
|
653
673
|
* @public exported from `@promptbook/core`
|
|
654
674
|
*/
|
|
655
|
-
var
|
|
675
|
+
var DEFAULT_BOOK_TITLE = "\u2728 Untitled Book";
|
|
656
676
|
// <- TODO: [🧠] Better system for generator warnings - not always "code" and "by `@promptbook/cli`"
|
|
657
677
|
/**
|
|
658
678
|
* The maximum number of iterations for a loops
|
|
@@ -804,7 +824,7 @@ function $deepFreeze(objectValue) {
|
|
|
804
824
|
/**
|
|
805
825
|
* Make error report URL for the given error
|
|
806
826
|
*
|
|
807
|
-
* @private
|
|
827
|
+
* @private private within the repository
|
|
808
828
|
*/
|
|
809
829
|
function getErrorReportUrl(error) {
|
|
810
830
|
var report = {
|
|
@@ -925,7 +945,7 @@ function checkSerializableAsJson(options) {
|
|
|
925
945
|
if (!(error instanceof Error)) {
|
|
926
946
|
throw error;
|
|
927
947
|
}
|
|
928
|
-
throw new UnexpectedError(spaceTrim(function (block) { return "\n `".concat(name, "` is not serializable\n\n ").concat(block(error.
|
|
948
|
+
throw new UnexpectedError(spaceTrim(function (block) { return "\n `".concat(name, "` is not serializable\n\n ").concat(block(error.stack || error.message), "\n\n Additional message for `").concat(name, "`:\n ").concat(block(message || '(nothing)'), "\n "); }));
|
|
929
949
|
}
|
|
930
950
|
/*
|
|
931
951
|
TODO: [0] Is there some more elegant way to check circular references?
|
|
@@ -955,7 +975,7 @@ function checkSerializableAsJson(options) {
|
|
|
955
975
|
}
|
|
956
976
|
/**
|
|
957
977
|
* TODO: Can be return type more type-safe? like `asserts options.value is JsonValue`
|
|
958
|
-
* TODO: [🧠][main]
|
|
978
|
+
* TODO: [🧠][main] !!3 In-memory cache of same values to prevent multiple checks
|
|
959
979
|
* Note: [🐠] This is how `checkSerializableAsJson` + `isSerializableAsJson` together can just retun true/false or rich error message
|
|
960
980
|
*/
|
|
961
981
|
|
|
@@ -967,7 +987,6 @@ function checkSerializableAsJson(options) {
|
|
|
967
987
|
function deepClone(objectValue) {
|
|
968
988
|
return JSON.parse(JSON.stringify(objectValue));
|
|
969
989
|
/*
|
|
970
|
-
!!!!!!!!
|
|
971
990
|
TODO: [🧠] Is there a better implementation?
|
|
972
991
|
> const propertyNames = Object.getOwnPropertyNames(objectValue);
|
|
973
992
|
> for (const propertyName of propertyNames) {
|
|
@@ -1133,7 +1152,7 @@ function isValidPromptbookVersion(version) {
|
|
|
1133
1152
|
if ( /* version === '1.0.0' || */version === '2.0.0' || version === '3.0.0') {
|
|
1134
1153
|
return false;
|
|
1135
1154
|
}
|
|
1136
|
-
// <- TODO: [main]
|
|
1155
|
+
// <- TODO: [main] !!3 Check isValidPromptbookVersion against PROMPTBOOK_ENGINE_VERSIONS
|
|
1137
1156
|
return true;
|
|
1138
1157
|
}
|
|
1139
1158
|
|
|
@@ -1233,9 +1252,6 @@ function isValidPipelineUrl(url) {
|
|
|
1233
1252
|
if (!url.startsWith('https://')) {
|
|
1234
1253
|
return false;
|
|
1235
1254
|
}
|
|
1236
|
-
if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.book.md') || url.endsWith('.ptbk'))) {
|
|
1237
|
-
return false;
|
|
1238
|
-
}
|
|
1239
1255
|
if (url.includes('#')) {
|
|
1240
1256
|
// TODO: [🐠]
|
|
1241
1257
|
return false;
|
|
@@ -1266,11 +1282,11 @@ function isValidPipelineUrl(url) {
|
|
|
1266
1282
|
*/
|
|
1267
1283
|
function validatePipeline(pipeline) {
|
|
1268
1284
|
if (IS_PIPELINE_LOGIC_VALIDATED) {
|
|
1269
|
-
|
|
1285
|
+
validatePipeline_InnerFunction(pipeline);
|
|
1270
1286
|
}
|
|
1271
1287
|
else {
|
|
1272
1288
|
try {
|
|
1273
|
-
|
|
1289
|
+
validatePipeline_InnerFunction(pipeline);
|
|
1274
1290
|
}
|
|
1275
1291
|
catch (error) {
|
|
1276
1292
|
if (!(error instanceof PipelineLogicError)) {
|
|
@@ -1284,7 +1300,7 @@ function validatePipeline(pipeline) {
|
|
|
1284
1300
|
/**
|
|
1285
1301
|
* @private internal function for `validatePipeline`
|
|
1286
1302
|
*/
|
|
1287
|
-
function
|
|
1303
|
+
function validatePipeline_InnerFunction(pipeline) {
|
|
1288
1304
|
// TODO: [🧠] Maybe test if promptbook is a promise and make specific error case for that
|
|
1289
1305
|
var e_1, _a, e_2, _b, e_3, _c;
|
|
1290
1306
|
var pipelineIdentification = (function () {
|
|
@@ -1508,11 +1524,11 @@ function validatePipelineCore(pipeline) {
|
|
|
1508
1524
|
_loop_3();
|
|
1509
1525
|
}
|
|
1510
1526
|
// Note: Check that formfactor is corresponding to the pipeline interface
|
|
1511
|
-
// TODO:
|
|
1527
|
+
// TODO: !!6 Implement this
|
|
1512
1528
|
// pipeline.formfactorName
|
|
1513
1529
|
}
|
|
1514
1530
|
/**
|
|
1515
|
-
* TODO:
|
|
1531
|
+
* TODO: [🧞♀️] Do not allow joker + foreach
|
|
1516
1532
|
* TODO: [🧠] Work with promptbookVersion
|
|
1517
1533
|
* TODO: Use here some json-schema, Zod or something similar and change it to:
|
|
1518
1534
|
* > /**
|
|
@@ -1524,11 +1540,11 @@ function validatePipelineCore(pipeline) {
|
|
|
1524
1540
|
* > ex port function validatePipeline(promptbook: really_unknown): asserts promptbook is PipelineJson {
|
|
1525
1541
|
*/
|
|
1526
1542
|
/**
|
|
1527
|
-
* TODO: [🧳][main]
|
|
1528
|
-
* TODO: [🧳][🐝][main]
|
|
1529
|
-
* TODO: [🧳][main]
|
|
1530
|
-
* TODO: [🧳][main]
|
|
1531
|
-
* TODO: [🧳][main]
|
|
1543
|
+
* TODO: [🧳][main] !!4 Validate that all examples match expectations
|
|
1544
|
+
* TODO: [🧳][🐝][main] !!4 Validate that knowledge is valid (non-void)
|
|
1545
|
+
* TODO: [🧳][main] !!4 Validate that persona can be used only with CHAT variant
|
|
1546
|
+
* TODO: [🧳][main] !!4 Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
|
|
1547
|
+
* TODO: [🧳][main] !!4 Validate that reserved parameter is not used as joker
|
|
1532
1548
|
* TODO: [🧠] Validation not only logic itself but imports around - files and websites and rerefenced pipelines exists
|
|
1533
1549
|
* TODO: [🛠] Actions, instruments (and maybe knowledge) => Functions and tools
|
|
1534
1550
|
*/
|
|
@@ -1664,7 +1680,7 @@ var SimplePipelineCollection = /** @class */ (function () {
|
|
|
1664
1680
|
pipelineJsonToString(unpreparePipeline(pipeline)) !==
|
|
1665
1681
|
pipelineJsonToString(unpreparePipeline(this.collection.get(pipeline.pipelineUrl)))) {
|
|
1666
1682
|
var existing = this.collection.get(pipeline.pipelineUrl);
|
|
1667
|
-
throw new PipelineUrlError(spaceTrim$1("\n Pipeline with URL
|
|
1683
|
+
throw new PipelineUrlError(spaceTrim$1("\n Pipeline with URL ".concat(pipeline.pipelineUrl, " is already in the collection \uD83C\uDF4E\n\n Conflicting files:\n ").concat(existing.sourceFile || 'Unknown', "\n ").concat(pipeline.sourceFile || 'Unknown', "\n\n Note: You have probably forgotten to run \"ptbk make\" to update the collection\n Note: Pipelines with the same URL are not allowed\n Only exepction is when the pipelines are identical\n\n ")));
|
|
1668
1684
|
}
|
|
1669
1685
|
// Note: [🧠] Overwrite existing pipeline with the same URL
|
|
1670
1686
|
this.collection.set(pipeline.pipelineUrl, pipeline);
|
|
@@ -2000,11 +2016,16 @@ function assertsExecutionSuccessful(executionResult) {
|
|
|
2000
2016
|
/**
|
|
2001
2017
|
* Determine if the pipeline is fully prepared
|
|
2002
2018
|
*
|
|
2019
|
+
* @see https://github.com/webgptorg/promptbook/discussions/196
|
|
2020
|
+
*
|
|
2003
2021
|
* @public exported from `@promptbook/core`
|
|
2004
2022
|
*/
|
|
2005
2023
|
function isPipelinePrepared(pipeline) {
|
|
2006
2024
|
// Note: Ignoring `pipeline.preparations` @@@
|
|
2007
2025
|
// Note: Ignoring `pipeline.knowledgePieces` @@@
|
|
2026
|
+
if (pipeline.title === undefined || pipeline.title === '' || pipeline.title === DEFAULT_BOOK_TITLE) {
|
|
2027
|
+
return false;
|
|
2028
|
+
}
|
|
2008
2029
|
if (!pipeline.personas.every(function (persona) { return persona.modelRequirements !== undefined; })) {
|
|
2009
2030
|
return false;
|
|
2010
2031
|
}
|
|
@@ -2020,7 +2041,7 @@ function isPipelinePrepared(pipeline) {
|
|
|
2020
2041
|
return true;
|
|
2021
2042
|
}
|
|
2022
2043
|
/**
|
|
2023
|
-
* TODO: [🔃][main]
|
|
2044
|
+
* TODO: [🔃][main] If the pipeline was prepared with different version or different set of models, prepare it once again
|
|
2024
2045
|
* TODO: [🐠] Maybe base this on `makeValidator`
|
|
2025
2046
|
* TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
|
|
2026
2047
|
* TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
|
|
@@ -2785,10 +2806,10 @@ function preparePersona(personaDescription, tools, options) {
|
|
|
2785
2806
|
});
|
|
2786
2807
|
}
|
|
2787
2808
|
/**
|
|
2788
|
-
* TODO: [🔃][main]
|
|
2789
|
-
* TODO: [🏢]
|
|
2790
|
-
* TODO: [🏢]
|
|
2791
|
-
* TODO: [🏢]
|
|
2809
|
+
* TODO: [🔃][main] If the persona was prepared with different version or different set of models, prepare it once again
|
|
2810
|
+
* TODO: [🏢] Check validity of `modelName` in pipeline
|
|
2811
|
+
* TODO: [🏢] Check validity of `systemMessage` in pipeline
|
|
2812
|
+
* TODO: [🏢] Check validity of `temperature` in pipeline
|
|
2792
2813
|
*/
|
|
2793
2814
|
|
|
2794
2815
|
/**
|
|
@@ -3483,21 +3504,44 @@ function isValidFilePath(filename) {
|
|
|
3483
3504
|
if (typeof filename !== 'string') {
|
|
3484
3505
|
return false;
|
|
3485
3506
|
}
|
|
3507
|
+
if (filename.split('\n').length > 1) {
|
|
3508
|
+
return false;
|
|
3509
|
+
}
|
|
3510
|
+
if (filename.split(' ').length >
|
|
3511
|
+
5 /* <- TODO: [🧠][🈷] Make some better non-arbitrary way how to distinct filenames from informational texts */) {
|
|
3512
|
+
return false;
|
|
3513
|
+
}
|
|
3486
3514
|
var filenameSlashes = filename.split('\\').join('/');
|
|
3487
3515
|
// Absolute Unix path: /hello.txt
|
|
3488
3516
|
if (/^(\/)/i.test(filenameSlashes)) {
|
|
3517
|
+
// console.log(filename, 'Absolute Unix path: /hello.txt');
|
|
3489
3518
|
return true;
|
|
3490
3519
|
}
|
|
3491
3520
|
// Absolute Windows path: /hello.txt
|
|
3492
3521
|
if (/^([A-Z]{1,2}:\/?)\//i.test(filenameSlashes)) {
|
|
3522
|
+
// console.log(filename, 'Absolute Windows path: /hello.txt');
|
|
3493
3523
|
return true;
|
|
3494
3524
|
}
|
|
3495
3525
|
// Relative path: ./hello.txt
|
|
3496
3526
|
if (/^(\.\.?\/)+/i.test(filenameSlashes)) {
|
|
3527
|
+
// console.log(filename, 'Relative path: ./hello.txt');
|
|
3528
|
+
return true;
|
|
3529
|
+
}
|
|
3530
|
+
// Allow paths like foo/hello
|
|
3531
|
+
if (/^[^/]+\/[^/]+/i.test(filenameSlashes)) {
|
|
3532
|
+
// console.log(filename, 'Allow paths like foo/hello');
|
|
3533
|
+
return true;
|
|
3534
|
+
}
|
|
3535
|
+
// Allow paths like hello.book
|
|
3536
|
+
if (/^[^/]+\.[^/]+$/i.test(filenameSlashes)) {
|
|
3537
|
+
// console.log(filename, 'Allow paths like hello.book');
|
|
3497
3538
|
return true;
|
|
3498
3539
|
}
|
|
3499
3540
|
return false;
|
|
3500
3541
|
}
|
|
3542
|
+
/**
|
|
3543
|
+
* TODO: [🍏] Implement for MacOs
|
|
3544
|
+
*/
|
|
3501
3545
|
|
|
3502
3546
|
/**
|
|
3503
3547
|
* The built-in `fetch' function with a lightweight error handling wrapper as default fetch function used in Promptbook scrapers
|
|
@@ -3522,6 +3566,9 @@ var scraperFetch = function (url, init) { return __awaiter(void 0, void 0, void
|
|
|
3522
3566
|
}
|
|
3523
3567
|
});
|
|
3524
3568
|
}); };
|
|
3569
|
+
/**
|
|
3570
|
+
* TODO: [🧠] Maybe rename because it is not used only for scrapers but also in `$getCompiledBook`
|
|
3571
|
+
*/
|
|
3525
3572
|
|
|
3526
3573
|
/**
|
|
3527
3574
|
* @@@
|
|
@@ -3589,7 +3636,7 @@ function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
|
|
|
3589
3636
|
},
|
|
3590
3637
|
}];
|
|
3591
3638
|
case 2:
|
|
3592
|
-
if (!
|
|
3639
|
+
if (!isValidFilePath(sourceContent)) return [3 /*break*/, 4];
|
|
3593
3640
|
if (tools.fs === undefined) {
|
|
3594
3641
|
throw new EnvironmentMismatchError('Can not import file knowledge without filesystem tools');
|
|
3595
3642
|
// <- TODO: [🧠] What is the best error type here`
|
|
@@ -3604,7 +3651,7 @@ function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
|
|
|
3604
3651
|
return [4 /*yield*/, isFileExisting(filename_1, tools.fs)];
|
|
3605
3652
|
case 3:
|
|
3606
3653
|
if (!(_f.sent())) {
|
|
3607
|
-
throw new NotFoundError(spaceTrim(function (block) { return "\n Can not make source handler for file which does not exist:\n\n File:\n ".concat(block(filename_1), "\n "); }));
|
|
3654
|
+
throw new NotFoundError(spaceTrim(function (block) { return "\n Can not make source handler for file which does not exist:\n\n File:\n ".concat(block(sourceContent), "\n\n Full file path:\n ").concat(block(filename_1), "\n "); }));
|
|
3608
3655
|
}
|
|
3609
3656
|
// TODO: [🧠][😿] Test security file - file is scoped to the project (BUT maybe do this in `filesystemTools`)
|
|
3610
3657
|
return [2 /*return*/, {
|
|
@@ -3717,7 +3764,7 @@ function prepareKnowledgePieces(knowledgeSources, tools, options) {
|
|
|
3717
3764
|
partialPieces = __spreadArray([], __read(partialPiecesUnchecked), false);
|
|
3718
3765
|
return [2 /*return*/, "break"];
|
|
3719
3766
|
}
|
|
3720
|
-
console.warn(spaceTrim(function (block) { return "\n Cannot scrape knowledge from source despite the scraper `".concat(scraper.metadata.className, "` supports the mime type \"").concat(sourceHandler.mimeType, "\".\n
|
|
3767
|
+
console.warn(spaceTrim(function (block) { return "\n Cannot scrape knowledge from source despite the scraper `".concat(scraper.metadata.className, "` supports the mime type \"").concat(sourceHandler.mimeType, "\".\n\n The source:\n ").concat(block(knowledgeSource.sourceContent
|
|
3721
3768
|
.split('\n')
|
|
3722
3769
|
.map(function (line) { return "> ".concat(line); })
|
|
3723
3770
|
.join('\n')), "\n\n ").concat(block($registeredScrapersMessage(scrapers)), "\n\n\n "); }));
|
|
@@ -3755,7 +3802,7 @@ function prepareKnowledgePieces(knowledgeSources, tools, options) {
|
|
|
3755
3802
|
return [7 /*endfinally*/];
|
|
3756
3803
|
case 9:
|
|
3757
3804
|
if (partialPieces === null) {
|
|
3758
|
-
throw new KnowledgeScrapeError(spaceTrim(function (block) { return "\n Cannot scrape knowledge\n
|
|
3805
|
+
throw new KnowledgeScrapeError(spaceTrim(function (block) { return "\n Cannot scrape knowledge\n\n The source:\n > ".concat(block(knowledgeSource.sourceContent
|
|
3759
3806
|
.split('\n')
|
|
3760
3807
|
.map(function (line) { return "> ".concat(line); })
|
|
3761
3808
|
.join('\n')), "\n\n No scraper found for the mime type \"").concat(sourceHandler.mimeType, "\"\n\n ").concat(block($registeredScrapersMessage(scrapers)), "\n\n\n "); }));
|
|
@@ -3846,7 +3893,7 @@ function prepareTasks(pipeline, tools, options) {
|
|
|
3846
3893
|
* TODO: [😂] Adding knowledge should be convert to async high-level abstractions, simmilar thing with expectations to sync high-level abstractions
|
|
3847
3894
|
* TODO: [🧠] Add context to each task (if missing)
|
|
3848
3895
|
* TODO: [🧠] What is better name `prepareTask` or `prepareTaskAndParameters`
|
|
3849
|
-
* TODO: [♨][main]
|
|
3896
|
+
* TODO: [♨][main] !!3 Prepare index the examples and maybe tasks
|
|
3850
3897
|
* TODO: Write tests for `preparePipeline`
|
|
3851
3898
|
* TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
|
|
3852
3899
|
* TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
|
|
@@ -3856,6 +3903,8 @@ function prepareTasks(pipeline, tools, options) {
|
|
|
3856
3903
|
/**
|
|
3857
3904
|
* Prepare pipeline from string (markdown) format to JSON format
|
|
3858
3905
|
*
|
|
3906
|
+
* @see https://github.com/webgptorg/promptbook/discussions/196
|
|
3907
|
+
*
|
|
3859
3908
|
* Note: This function does not validate logic of the pipeline
|
|
3860
3909
|
* Note: This function acts as part of compilation process
|
|
3861
3910
|
* Note: When the pipeline is already prepared, it returns the same pipeline
|
|
@@ -3868,16 +3917,17 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3868
3917
|
<- TODO: [🧠][🪑] `promptbookVersion` */
|
|
3869
3918
|
knowledgeSources /*
|
|
3870
3919
|
<- TODO: [🧊] `knowledgePieces` */, personas /*
|
|
3871
|
-
<- TODO: [🧊] `preparations` */, _llms, llmTools, llmToolsWithUsage, currentPreparation, preparations, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared, tasksPrepared /* TODO: parameters: parametersPrepared*/;
|
|
3920
|
+
<- TODO: [🧊] `preparations` */, sources, _llms, llmTools, llmToolsWithUsage, currentPreparation, preparations, title, collection, prepareTitleExecutor, _c, result, outputParameters, titleRaw, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared, tasksPrepared /* TODO: parameters: parametersPrepared*/;
|
|
3921
|
+
var _d;
|
|
3872
3922
|
var _this = this;
|
|
3873
|
-
return __generator(this, function (
|
|
3874
|
-
switch (
|
|
3923
|
+
return __generator(this, function (_e) {
|
|
3924
|
+
switch (_e.label) {
|
|
3875
3925
|
case 0:
|
|
3876
3926
|
if (isPipelinePrepared(pipeline)) {
|
|
3877
3927
|
return [2 /*return*/, pipeline];
|
|
3878
3928
|
}
|
|
3879
3929
|
rootDirname = options.rootDirname, _a = options.maxParallelCount, maxParallelCount = _a === void 0 ? DEFAULT_MAX_PARALLEL_COUNT : _a, _b = options.isVerbose, isVerbose = _b === void 0 ? DEFAULT_IS_VERBOSE : _b;
|
|
3880
|
-
parameters = pipeline.parameters, tasks = pipeline.tasks, knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas;
|
|
3930
|
+
parameters = pipeline.parameters, tasks = pipeline.tasks, knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas, sources = pipeline.sources;
|
|
3881
3931
|
if (tools === undefined || tools.llm === undefined) {
|
|
3882
3932
|
throw new MissingToolsError('LLM tools are required for preparing the pipeline');
|
|
3883
3933
|
}
|
|
@@ -3895,6 +3945,33 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3895
3945
|
// <- TODO: [🧊]
|
|
3896
3946
|
currentPreparation,
|
|
3897
3947
|
];
|
|
3948
|
+
title = pipeline.title;
|
|
3949
|
+
if (!(title === undefined || title === '' || title === DEFAULT_BOOK_TITLE)) return [3 /*break*/, 3];
|
|
3950
|
+
collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
|
|
3951
|
+
_c = createPipelineExecutor;
|
|
3952
|
+
_d = {};
|
|
3953
|
+
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-title.book.md')];
|
|
3954
|
+
case 1:
|
|
3955
|
+
prepareTitleExecutor = _c.apply(void 0, [(_d.pipeline = _e.sent(),
|
|
3956
|
+
_d.tools = tools,
|
|
3957
|
+
_d)]);
|
|
3958
|
+
return [4 /*yield*/, prepareTitleExecutor({
|
|
3959
|
+
book: sources.map(function (_a) {
|
|
3960
|
+
var content = _a.content;
|
|
3961
|
+
return content;
|
|
3962
|
+
}).join('\n\n'),
|
|
3963
|
+
})];
|
|
3964
|
+
case 2:
|
|
3965
|
+
result = _e.sent();
|
|
3966
|
+
assertsExecutionSuccessful(result);
|
|
3967
|
+
outputParameters = result.outputParameters;
|
|
3968
|
+
titleRaw = outputParameters.title;
|
|
3969
|
+
if (isVerbose) {
|
|
3970
|
+
console.info("The title is \"".concat(titleRaw, "\""));
|
|
3971
|
+
}
|
|
3972
|
+
title = titleRaw || DEFAULT_BOOK_TITLE;
|
|
3973
|
+
_e.label = 3;
|
|
3974
|
+
case 3:
|
|
3898
3975
|
preparedPersonas = new Array(personas.length);
|
|
3899
3976
|
return [4 /*yield*/, forEachAsync(personas, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (persona, index) { return __awaiter(_this, void 0, void 0, function () {
|
|
3900
3977
|
var modelRequirements, preparedPersona;
|
|
@@ -3913,12 +3990,12 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3913
3990
|
}
|
|
3914
3991
|
});
|
|
3915
3992
|
}); })];
|
|
3916
|
-
case
|
|
3917
|
-
|
|
3993
|
+
case 4:
|
|
3994
|
+
_e.sent();
|
|
3918
3995
|
knowledgeSourcesPrepared = knowledgeSources.map(function (source) { return (__assign(__assign({}, source), { preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id] })); });
|
|
3919
3996
|
return [4 /*yield*/, prepareKnowledgePieces(knowledgeSources /* <- TODO: [🧊] {knowledgeSources, knowledgePieces} */, __assign(__assign({}, tools), { llm: llmToolsWithUsage }), __assign(__assign({}, options), { rootDirname: rootDirname, maxParallelCount: maxParallelCount /* <- TODO: [🪂] */, isVerbose: isVerbose }))];
|
|
3920
|
-
case
|
|
3921
|
-
partialknowledgePiecesPrepared =
|
|
3997
|
+
case 5:
|
|
3998
|
+
partialknowledgePiecesPrepared = _e.sent();
|
|
3922
3999
|
knowledgePiecesPrepared = partialknowledgePiecesPrepared.map(function (piece) { return (__assign(__assign({}, piece), { preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id] })); });
|
|
3923
4000
|
return [4 /*yield*/, prepareTasks({
|
|
3924
4001
|
parameters: parameters,
|
|
@@ -3929,8 +4006,8 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3929
4006
|
maxParallelCount: maxParallelCount /* <- TODO: [🪂] */,
|
|
3930
4007
|
isVerbose: isVerbose,
|
|
3931
4008
|
})];
|
|
3932
|
-
case
|
|
3933
|
-
tasksPrepared = (
|
|
4009
|
+
case 6:
|
|
4010
|
+
tasksPrepared = (_e.sent()).tasksPrepared;
|
|
3934
4011
|
// ----- /Tasks preparation -----
|
|
3935
4012
|
// TODO: [😂] Use here all `AsyncHighLevelAbstraction`
|
|
3936
4013
|
// Note: Count total usage
|
|
@@ -3941,7 +4018,7 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3941
4018
|
order: ORDER_OF_PIPELINE_JSON,
|
|
3942
4019
|
value: __assign(__assign({}, pipeline), {
|
|
3943
4020
|
// <- TODO: Probbably deeply clone the pipeline because `$exportJson` freezes the subobjects
|
|
3944
|
-
knowledgeSources: knowledgeSourcesPrepared, knowledgePieces: knowledgePiecesPrepared, tasks: __spreadArray([], __read(tasksPrepared), false),
|
|
4021
|
+
title: title, knowledgeSources: knowledgeSourcesPrepared, knowledgePieces: knowledgePiecesPrepared, tasks: __spreadArray([], __read(tasksPrepared), false),
|
|
3945
4022
|
// <- TODO: [🪓] Here should be no need for spreading new array, just ` tasks: tasksPrepared`
|
|
3946
4023
|
personas: preparedPersonas, preparations: __spreadArray([], __read(preparations), false) }),
|
|
3947
4024
|
})];
|
|
@@ -4012,7 +4089,7 @@ function extractVariablesFromScript(script) {
|
|
|
4012
4089
|
if (!(error instanceof Error)) {
|
|
4013
4090
|
throw error;
|
|
4014
4091
|
}
|
|
4015
|
-
throw new ParseError(spaceTrim$1(function (block) { return "\n Can not extract variables from the script\n
|
|
4092
|
+
throw new ParseError(spaceTrim$1(function (block) { return "\n Can not extract variables from the script\n ".concat(block(error.stack || error.message), "\n\n Found variables:\n ").concat(Array.from(variables)
|
|
4016
4093
|
.map(function (variableName, i) { return "".concat(i + 1, ") ").concat(variableName); })
|
|
4017
4094
|
.join('\n'), "\n\n\n The script:\n\n ```javascript\n ").concat(block(originalScript), "\n ```\n "); }));
|
|
4018
4095
|
}
|
|
@@ -4550,6 +4627,8 @@ function templateParameters(template, parameters) {
|
|
|
4550
4627
|
throw new PipelineExecutionError("Parameter `{".concat(parameterName, "}` is not defined"));
|
|
4551
4628
|
}
|
|
4552
4629
|
parameterValue = valueToString(parameterValue);
|
|
4630
|
+
// Escape curly braces in parameter values to prevent prompt-injection
|
|
4631
|
+
parameterValue = parameterValue.replace(/[{}]/g, '\\$&');
|
|
4553
4632
|
if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
|
|
4554
4633
|
parameterValue = parameterValue
|
|
4555
4634
|
.split('\n')
|
|
@@ -4909,7 +4988,7 @@ function executeAttempts(options) {
|
|
|
4909
4988
|
promptTitle: task.title,
|
|
4910
4989
|
promptMessage: templateParameters(task.description || '', parameters),
|
|
4911
4990
|
defaultValue: templateParameters(preparedContent, parameters),
|
|
4912
|
-
// TODO: [🧠]
|
|
4991
|
+
// TODO: [🧠] Figure out how to define placeholder in .book.md file
|
|
4913
4992
|
placeholder: undefined,
|
|
4914
4993
|
priority: priority,
|
|
4915
4994
|
}))];
|
|
@@ -5899,6 +5978,7 @@ var markdownScraperMetadata = $deepFreeze({
|
|
|
5899
5978
|
mimeTypes: ['text/markdown', 'text/plain'],
|
|
5900
5979
|
documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
|
|
5901
5980
|
isAvilableInBrowser: true,
|
|
5981
|
+
// <- Note: [🌏] This is the only scraper which makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
|
|
5902
5982
|
requiredExecutables: [],
|
|
5903
5983
|
}); /* <- Note: [🤛] */
|
|
5904
5984
|
/**
|
|
@@ -5907,6 +5987,7 @@ var markdownScraperMetadata = $deepFreeze({
|
|
|
5907
5987
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
5908
5988
|
*
|
|
5909
5989
|
* @public exported from `@promptbook/core`
|
|
5990
|
+
* @public exported from `@promptbook/wizzard`
|
|
5910
5991
|
* @public exported from `@promptbook/cli`
|
|
5911
5992
|
*/
|
|
5912
5993
|
$scrapersMetadataRegister.register(markdownScraperMetadata);
|
|
@@ -5992,12 +6073,12 @@ var MarkdownScraper = /** @class */ (function () {
|
|
|
5992
6073
|
outputParameters = result.outputParameters;
|
|
5993
6074
|
knowledgePiecesRaw = outputParameters.knowledgePieces;
|
|
5994
6075
|
knowledgeTextPieces = (knowledgePiecesRaw || '').split('\n---\n');
|
|
5995
|
-
// <- TODO: [main]
|
|
6076
|
+
// <- TODO: [main] Smarter split and filter out empty pieces
|
|
5996
6077
|
if (isVerbose) {
|
|
5997
6078
|
console.info('knowledgeTextPieces:', knowledgeTextPieces);
|
|
5998
6079
|
}
|
|
5999
6080
|
return [4 /*yield*/, Promise.all(
|
|
6000
|
-
// TODO: [🪂]
|
|
6081
|
+
// TODO: [🪂] Do not send all at once but in chunks
|
|
6001
6082
|
knowledgeTextPieces.map(function (knowledgeTextPiece, i) { return __awaiter(_this, void 0, void 0, function () {
|
|
6002
6083
|
var name, title, knowledgePieceContent, keywords, index, titleResult, _a, titleRaw, keywordsResult, _b, keywordsRaw, embeddingResult, error_1;
|
|
6003
6084
|
return __generator(this, function (_c) {
|
|
@@ -6102,6 +6183,7 @@ var createMarkdownScraper = Object.assign(function (tools, options) {
|
|
|
6102
6183
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
6103
6184
|
*
|
|
6104
6185
|
* @public exported from `@promptbook/markdown-utils`
|
|
6186
|
+
* @public exported from `@promptbook/wizzard`
|
|
6105
6187
|
* @public exported from `@promptbook/cli`
|
|
6106
6188
|
*/
|
|
6107
6189
|
var _MarkdownScraperRegistration = $scrapersRegister.register(createMarkdownScraper);
|
|
@@ -6111,13 +6193,13 @@ var _MarkdownScraperRegistration = $scrapersRegister.register(createMarkdownScra
|
|
|
6111
6193
|
*/
|
|
6112
6194
|
|
|
6113
6195
|
/**
|
|
6114
|
-
* Removes
|
|
6196
|
+
* Removes Markdown (or HTML) comments
|
|
6115
6197
|
*
|
|
6116
6198
|
* @param {string} content - The string to remove comments from.
|
|
6117
6199
|
* @returns {string} The input string with all comments removed.
|
|
6118
6200
|
* @public exported from `@promptbook/markdown-utils`
|
|
6119
6201
|
*/
|
|
6120
|
-
function
|
|
6202
|
+
function removeMarkdownComments(content) {
|
|
6121
6203
|
return spaceTrim$1(content.replace(/<!--(.*?)-->/gs, ''));
|
|
6122
6204
|
}
|
|
6123
6205
|
|
|
@@ -6136,7 +6218,7 @@ function addAutoGeneratedSection(content, options) {
|
|
|
6136
6218
|
return content.replace(sectionRegex, contentToInsert);
|
|
6137
6219
|
}
|
|
6138
6220
|
// Note: Following is the case when the section is not found in the file so we add it there
|
|
6139
|
-
var placeForSection =
|
|
6221
|
+
var placeForSection = removeMarkdownComments(content).match(/^##.*$/im);
|
|
6140
6222
|
if (placeForSection !== null) {
|
|
6141
6223
|
var _a = __read(placeForSection, 1), heading_1 = _a[0];
|
|
6142
6224
|
return content.replace(heading_1, spaceTrim$1(function (block) { return "\n ".concat(block(contentToInsert), "\n\n ").concat(block(heading_1), "\n "); }));
|
|
@@ -6316,7 +6398,7 @@ function splitMarkdownIntoSections(markdown) {
|
|
|
6316
6398
|
return;
|
|
6317
6399
|
}
|
|
6318
6400
|
if (!section.startsWith('#')) {
|
|
6319
|
-
section = "# ".concat(
|
|
6401
|
+
section = "# ".concat(DEFAULT_BOOK_TITLE, "\n\n").concat(section);
|
|
6320
6402
|
}
|
|
6321
6403
|
sections.push(section);
|
|
6322
6404
|
buffer = [];
|
|
@@ -6371,7 +6453,7 @@ function splitMarkdownIntoSections(markdown) {
|
|
|
6371
6453
|
/**
|
|
6372
6454
|
* Normalizes the markdown by flattening the structure
|
|
6373
6455
|
*
|
|
6374
|
-
* - It always have h1 - if there is no h1 in the markdown, it will be added
|
|
6456
|
+
* - It always have h1 - if there is no h1 in the markdown, it will be added `DEFAULT_BOOK_TITLE`
|
|
6375
6457
|
* - All other headings are normalized to h2
|
|
6376
6458
|
*
|
|
6377
6459
|
* @public exported from `@promptbook/markdown-utils`
|
|
@@ -6380,7 +6462,7 @@ function flattenMarkdown(markdown) {
|
|
|
6380
6462
|
var e_1, _a;
|
|
6381
6463
|
var sections = splitMarkdownIntoSections(markdown);
|
|
6382
6464
|
if (sections.length === 0) {
|
|
6383
|
-
return "# ".concat(
|
|
6465
|
+
return "# ".concat(DEFAULT_BOOK_TITLE);
|
|
6384
6466
|
}
|
|
6385
6467
|
var flattenedMarkdown = '';
|
|
6386
6468
|
var parsedSections = sections.map(parseMarkdownSection);
|
|
@@ -6391,7 +6473,7 @@ function flattenMarkdown(markdown) {
|
|
|
6391
6473
|
}
|
|
6392
6474
|
else {
|
|
6393
6475
|
parsedSections.unshift(firstSection);
|
|
6394
|
-
flattenedMarkdown += "# ".concat(
|
|
6476
|
+
flattenedMarkdown += "# ".concat(DEFAULT_BOOK_TITLE) + "\n\n"; // <- [🧠] Maybe 3 new lines?
|
|
6395
6477
|
}
|
|
6396
6478
|
try {
|
|
6397
6479
|
for (var parsedSections_1 = __values(parsedSections), parsedSections_1_1 = parsedSections_1.next(); !parsedSections_1_1.done; parsedSections_1_1 = parsedSections_1.next()) {
|
|
@@ -6434,5 +6516,5 @@ function removeMarkdownFormatting(str) {
|
|
|
6434
6516
|
return str;
|
|
6435
6517
|
}
|
|
6436
6518
|
|
|
6437
|
-
export { BOOK_LANGUAGE_VERSION, MarkdownScraper, PROMPTBOOK_ENGINE_VERSION, _MarkdownScraperRegistration, addAutoGeneratedSection, createMarkdownChart, createMarkdownScraper, createMarkdownTable, escapeMarkdownBlock, extractAllBlocksFromMarkdown, extractAllListItemsFromMarkdown, extractBlock, extractJsonBlock, extractOneBlockFromMarkdown, flattenMarkdown, parseMarkdownSection,
|
|
6519
|
+
export { BOOK_LANGUAGE_VERSION, MarkdownScraper, PROMPTBOOK_ENGINE_VERSION, _MarkdownScraperRegistration, addAutoGeneratedSection, createMarkdownChart, createMarkdownScraper, createMarkdownTable, escapeMarkdownBlock, extractAllBlocksFromMarkdown, extractAllListItemsFromMarkdown, extractBlock, extractJsonBlock, extractOneBlockFromMarkdown, flattenMarkdown, parseMarkdownSection, removeMarkdownComments, removeMarkdownFormatting, splitMarkdownIntoSections };
|
|
6438
6520
|
//# sourceMappingURL=index.es.js.map
|