@promptbook/markdown-utils 0.81.0-8 → 0.81.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +25 -8
- package/esm/index.es.js +220 -135
- package/esm/index.es.js.map +1 -1
- package/esm/typings/books/index.d.ts +38 -0
- package/esm/typings/src/_packages/core.index.d.ts +12 -4
- package/esm/typings/src/_packages/markdown-utils.index.d.ts +2 -2
- package/esm/typings/src/_packages/node.index.d.ts +0 -2
- package/esm/typings/src/_packages/templates.index.d.ts +2 -2
- package/esm/typings/src/_packages/types.index.d.ts +4 -0
- package/esm/typings/src/_packages/utils.index.d.ts +2 -0
- package/esm/typings/src/_packages/wizzard.index.d.ts +44 -0
- package/esm/typings/src/cli/cli-commands/make.d.ts +1 -1
- package/esm/typings/src/cli/cli-commands/run.d.ts +2 -2
- package/esm/typings/src/collection/constructors/createCollectionFromDirectory.d.ts +11 -0
- package/esm/typings/src/collection/constructors/createCollectionFromUrl.d.ts +1 -1
- package/esm/typings/src/commands/index.d.ts +1 -1
- package/esm/typings/src/config.d.ts +3 -3
- package/esm/typings/src/conversion/compilePipeline.d.ts +1 -4
- package/esm/typings/src/conversion/{precompilePipeline.d.ts → parsePipeline.d.ts} +3 -3
- package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +3 -3
- package/esm/typings/src/conversion/validation/validatePipeline.d.ts +7 -7
- package/esm/typings/src/errors/utils/getErrorReportUrl.d.ts +1 -1
- package/esm/typings/src/execution/PipelineExecutor.d.ts +2 -2
- package/esm/typings/src/execution/createPipelineExecutor/10-executePipeline.d.ts +2 -2
- package/esm/typings/src/formfactors/generator/GeneratorFormfactorDefinition.d.ts +9 -4
- package/esm/typings/src/formfactors/image-generator/ImageGeneratorFormfactorDefinition.d.ts +24 -0
- package/esm/typings/src/formfactors/index.d.ts +31 -9
- package/esm/typings/src/high-level-abstractions/_common/HighLevelAbstraction.d.ts +1 -1
- package/esm/typings/src/high-level-abstractions/index.d.ts +3 -3
- package/esm/typings/src/high-level-abstractions/quick-chatbot/QuickChatbotHla.d.ts +3 -0
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsConfigurationFromEnv.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsForTestingAndScriptsAndPlayground.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/register/{$provideLlmToolsForCli.d.ts → $provideLlmToolsForWizzardOrCli.d.ts} +2 -2
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsFromEnv.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/anthropic-claude-models.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/createAnthropicClaudeExecutionTools.d.ts +2 -2
- package/esm/typings/src/llm-providers/anthropic-claude/playground/playground.d.ts +2 -2
- package/esm/typings/src/llm-providers/anthropic-claude/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +2 -0
- package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/google/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/google/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/openai/playground/playground.d.ts +1 -1
- package/esm/typings/src/llm-providers/openai/register-configuration.d.ts +2 -0
- package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +2 -0
- package/esm/typings/src/llm-providers/vercel/playground/playground.d.ts +1 -1
- package/esm/typings/src/other/templates/getBookTemplates.d.ts +22 -0
- package/esm/typings/src/personas/preparePersona.d.ts +4 -4
- package/esm/typings/src/pipeline/PipelineString.d.ts +0 -3
- package/esm/typings/src/pipeline/book-notation.d.ts +14 -0
- package/esm/typings/src/pipeline/isValidPipelineString.d.ts +13 -0
- package/esm/typings/src/pipeline/isValidPipelineString.test.d.ts +4 -0
- package/esm/typings/src/pipeline/validatePipelineString.d.ts +14 -0
- package/esm/typings/src/prepare/isPipelinePrepared.d.ts +3 -1
- package/esm/typings/src/prepare/preparePipeline.d.ts +2 -0
- package/esm/typings/src/prepare/prepareTasks.d.ts +1 -1
- package/esm/typings/src/scrapers/_common/Converter.d.ts +1 -0
- package/esm/typings/src/scrapers/_common/Scraper.d.ts +1 -1
- package/esm/typings/src/scrapers/_common/ScraperIntermediateSource.d.ts +3 -0
- package/esm/typings/src/scrapers/_common/register/ScraperAndConverterMetadata.d.ts +2 -0
- package/esm/typings/src/scrapers/_common/utils/scraperFetch.d.ts +3 -0
- package/esm/typings/src/scrapers/document/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/document/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/document-legacy/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/document-legacy/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/markdown/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/markdown/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/PdfScraper.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/createPdfScraper.d.ts +1 -1
- package/esm/typings/src/scrapers/pdf/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +2 -1
- package/esm/typings/src/scrapers/website/createWebsiteScraper.d.ts +3 -1
- package/esm/typings/src/scrapers/website/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/website/register-metadata.d.ts +1 -0
- package/esm/typings/src/scripting/javascript/JavascriptEvalExecutionTools.test.d.ts +1 -1
- package/esm/typings/src/scripting/javascript/utils/preserve.d.ts +2 -1
- package/esm/typings/src/types/typeAliases.d.ts +16 -2
- package/esm/typings/src/utils/markdown/flattenMarkdown.d.ts +1 -1
- package/esm/typings/src/utils/markdown/{removeContentComments.d.ts → removeMarkdownComments.d.ts} +2 -2
- package/esm/typings/src/utils/organization/$sideEffect.d.ts +9 -0
- package/esm/typings/src/utils/serialization/checkSerializableAsJson.d.ts +1 -1
- package/esm/typings/src/utils/serialization/isSerializableAsJson.d.ts +2 -2
- package/esm/typings/src/utils/validators/filePath/isRootPath.d.ts +12 -0
- package/esm/typings/src/utils/validators/filePath/isRootPath.test.d.ts +4 -0
- package/esm/typings/src/utils/validators/filePath/isValidFilePath.d.ts +3 -0
- package/esm/typings/src/wizzard/$getCompiledBook.d.ts +16 -0
- package/esm/typings/src/wizzard/wizzard.d.ts +52 -8
- package/package.json +1 -1
- package/umd/index.umd.js +220 -135
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/other/templates/getBookTemplate.d.ts +0 -21
- package/esm/typings/src/scripting/javascript/utils/unknownToString.d.ts +0 -8
- /package/esm/typings/src/conversion/{precompilePipeline.test.d.ts → parsePipeline.test.d.ts} +0 -0
- /package/esm/typings/src/utils/markdown/{removeContentComments.test.d.ts → removeMarkdownComments.test.d.ts} +0 -0
package/umd/index.umd.js
CHANGED
|
@@ -24,7 +24,7 @@
|
|
|
24
24
|
* @generated
|
|
25
25
|
* @see https://github.com/webgptorg/promptbook
|
|
26
26
|
*/
|
|
27
|
-
var PROMPTBOOK_ENGINE_VERSION = '0.81.0-
|
|
27
|
+
var PROMPTBOOK_ENGINE_VERSION = '0.81.0-24';
|
|
28
28
|
/**
|
|
29
29
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
30
30
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -360,7 +360,27 @@
|
|
|
360
360
|
* TODO: [🏢] Make this logic part of `JsonFormatDefinition` or `isValidJsonString`
|
|
361
361
|
*/
|
|
362
362
|
|
|
363
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"}];
|
|
363
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book.md",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book.md`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book.md"}];
|
|
364
|
+
|
|
365
|
+
/**
|
|
366
|
+
* Function `validatePipelineString` will validate the if the string is a valid pipeline string
|
|
367
|
+
* It does not check if the string is fully logically correct, but if it is a string that can be a pipeline string or the string looks completely different.
|
|
368
|
+
*
|
|
369
|
+
* @param {string} pipelineString the candidate for a pipeline string
|
|
370
|
+
* @returns {PipelineString} the same string as input, but validated as valid
|
|
371
|
+
* @throws {ParseError} if the string is not a valid pipeline string
|
|
372
|
+
* @public exported from `@promptbook/core`
|
|
373
|
+
*/
|
|
374
|
+
function validatePipelineString(pipelineString) {
|
|
375
|
+
if (isValidJsonString(pipelineString)) {
|
|
376
|
+
throw new ParseError('Expected a book, but got a JSON string');
|
|
377
|
+
}
|
|
378
|
+
// <- TODO: Implement the validation + add tests when the pipeline logic considered as invalid
|
|
379
|
+
return pipelineString;
|
|
380
|
+
}
|
|
381
|
+
/**
|
|
382
|
+
* TODO: [🧠][🈴] Where is the best location for this file
|
|
383
|
+
*/
|
|
364
384
|
|
|
365
385
|
/**
|
|
366
386
|
* Prettify the html code
|
|
@@ -419,7 +439,7 @@
|
|
|
419
439
|
if (bookVersion !== "undefined") {
|
|
420
440
|
commands.push("BOOK VERSION ".concat(bookVersion));
|
|
421
441
|
}
|
|
422
|
-
// TODO: [main]
|
|
442
|
+
// TODO: [main] !!5 This increases size of the bundle and is probbably not necessary
|
|
423
443
|
pipelineString = prettifyMarkdown(pipelineString);
|
|
424
444
|
try {
|
|
425
445
|
for (var _g = __values(parameters.filter(function (_a) {
|
|
@@ -567,12 +587,12 @@
|
|
|
567
587
|
pipelineString += '```' + contentLanguage;
|
|
568
588
|
pipelineString += '\n';
|
|
569
589
|
pipelineString += spaceTrim__default["default"](content);
|
|
570
|
-
// <- TODO: [main]
|
|
590
|
+
// <- TODO: [main] !!3 Escape
|
|
571
591
|
// <- TODO: [🧠] Some clear strategy how to spaceTrim the blocks
|
|
572
592
|
pipelineString += '\n';
|
|
573
593
|
pipelineString += '```';
|
|
574
594
|
pipelineString += '\n\n';
|
|
575
|
-
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main]
|
|
595
|
+
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main] !!3 If the parameter here has description, add it and use taskParameterJsonToString
|
|
576
596
|
}
|
|
577
597
|
}
|
|
578
598
|
catch (e_3_1) { e_3 = { error: e_3_1 }; }
|
|
@@ -582,7 +602,7 @@
|
|
|
582
602
|
}
|
|
583
603
|
finally { if (e_3) throw e_3.error; }
|
|
584
604
|
}
|
|
585
|
-
return pipelineString;
|
|
605
|
+
return validatePipelineString(pipelineString);
|
|
586
606
|
}
|
|
587
607
|
/**
|
|
588
608
|
* @private internal utility of `pipelineJsonToString`
|
|
@@ -654,7 +674,7 @@
|
|
|
654
674
|
*
|
|
655
675
|
* @public exported from `@promptbook/core`
|
|
656
676
|
*/
|
|
657
|
-
var
|
|
677
|
+
var DEFAULT_BOOK_TITLE = "\u2728 Untitled Book";
|
|
658
678
|
// <- TODO: [🧠] Better system for generator warnings - not always "code" and "by `@promptbook/cli`"
|
|
659
679
|
/**
|
|
660
680
|
* The maximum number of iterations for a loops
|
|
@@ -806,7 +826,7 @@
|
|
|
806
826
|
/**
|
|
807
827
|
* Make error report URL for the given error
|
|
808
828
|
*
|
|
809
|
-
* @private
|
|
829
|
+
* @private private within the repository
|
|
810
830
|
*/
|
|
811
831
|
function getErrorReportUrl(error) {
|
|
812
832
|
var report = {
|
|
@@ -927,7 +947,7 @@
|
|
|
927
947
|
if (!(error instanceof Error)) {
|
|
928
948
|
throw error;
|
|
929
949
|
}
|
|
930
|
-
throw new UnexpectedError(spaceTrim__default["default"](function (block) { return "\n `".concat(name, "` is not serializable\n\n ").concat(block(error.
|
|
950
|
+
throw new UnexpectedError(spaceTrim__default["default"](function (block) { return "\n `".concat(name, "` is not serializable\n\n ").concat(block(error.stack || error.message), "\n\n Additional message for `").concat(name, "`:\n ").concat(block(message || '(nothing)'), "\n "); }));
|
|
931
951
|
}
|
|
932
952
|
/*
|
|
933
953
|
TODO: [0] Is there some more elegant way to check circular references?
|
|
@@ -957,7 +977,7 @@
|
|
|
957
977
|
}
|
|
958
978
|
/**
|
|
959
979
|
* TODO: Can be return type more type-safe? like `asserts options.value is JsonValue`
|
|
960
|
-
* TODO: [🧠][main]
|
|
980
|
+
* TODO: [🧠][main] !!3 In-memory cache of same values to prevent multiple checks
|
|
961
981
|
* Note: [🐠] This is how `checkSerializableAsJson` + `isSerializableAsJson` together can just retun true/false or rich error message
|
|
962
982
|
*/
|
|
963
983
|
|
|
@@ -969,7 +989,6 @@
|
|
|
969
989
|
function deepClone(objectValue) {
|
|
970
990
|
return JSON.parse(JSON.stringify(objectValue));
|
|
971
991
|
/*
|
|
972
|
-
!!!!!!!!
|
|
973
992
|
TODO: [🧠] Is there a better implementation?
|
|
974
993
|
> const propertyNames = Object.getOwnPropertyNames(objectValue);
|
|
975
994
|
> for (const propertyName of propertyNames) {
|
|
@@ -1135,7 +1154,7 @@
|
|
|
1135
1154
|
if ( /* version === '1.0.0' || */version === '2.0.0' || version === '3.0.0') {
|
|
1136
1155
|
return false;
|
|
1137
1156
|
}
|
|
1138
|
-
// <- TODO: [main]
|
|
1157
|
+
// <- TODO: [main] !!3 Check isValidPromptbookVersion against PROMPTBOOK_ENGINE_VERSIONS
|
|
1139
1158
|
return true;
|
|
1140
1159
|
}
|
|
1141
1160
|
|
|
@@ -1235,9 +1254,6 @@
|
|
|
1235
1254
|
if (!url.startsWith('https://')) {
|
|
1236
1255
|
return false;
|
|
1237
1256
|
}
|
|
1238
|
-
if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.book.md') || url.endsWith('.ptbk'))) {
|
|
1239
|
-
return false;
|
|
1240
|
-
}
|
|
1241
1257
|
if (url.includes('#')) {
|
|
1242
1258
|
// TODO: [🐠]
|
|
1243
1259
|
return false;
|
|
@@ -1268,11 +1284,11 @@
|
|
|
1268
1284
|
*/
|
|
1269
1285
|
function validatePipeline(pipeline) {
|
|
1270
1286
|
if (IS_PIPELINE_LOGIC_VALIDATED) {
|
|
1271
|
-
|
|
1287
|
+
validatePipeline_InnerFunction(pipeline);
|
|
1272
1288
|
}
|
|
1273
1289
|
else {
|
|
1274
1290
|
try {
|
|
1275
|
-
|
|
1291
|
+
validatePipeline_InnerFunction(pipeline);
|
|
1276
1292
|
}
|
|
1277
1293
|
catch (error) {
|
|
1278
1294
|
if (!(error instanceof PipelineLogicError)) {
|
|
@@ -1286,7 +1302,7 @@
|
|
|
1286
1302
|
/**
|
|
1287
1303
|
* @private internal function for `validatePipeline`
|
|
1288
1304
|
*/
|
|
1289
|
-
function
|
|
1305
|
+
function validatePipeline_InnerFunction(pipeline) {
|
|
1290
1306
|
// TODO: [🧠] Maybe test if promptbook is a promise and make specific error case for that
|
|
1291
1307
|
var e_1, _a, e_2, _b, e_3, _c;
|
|
1292
1308
|
var pipelineIdentification = (function () {
|
|
@@ -1510,11 +1526,11 @@
|
|
|
1510
1526
|
_loop_3();
|
|
1511
1527
|
}
|
|
1512
1528
|
// Note: Check that formfactor is corresponding to the pipeline interface
|
|
1513
|
-
// TODO:
|
|
1529
|
+
// TODO: !!6 Implement this
|
|
1514
1530
|
// pipeline.formfactorName
|
|
1515
1531
|
}
|
|
1516
1532
|
/**
|
|
1517
|
-
* TODO:
|
|
1533
|
+
* TODO: [🧞♀️] Do not allow joker + foreach
|
|
1518
1534
|
* TODO: [🧠] Work with promptbookVersion
|
|
1519
1535
|
* TODO: Use here some json-schema, Zod or something similar and change it to:
|
|
1520
1536
|
* > /**
|
|
@@ -1526,11 +1542,11 @@
|
|
|
1526
1542
|
* > ex port function validatePipeline(promptbook: really_unknown): asserts promptbook is PipelineJson {
|
|
1527
1543
|
*/
|
|
1528
1544
|
/**
|
|
1529
|
-
* TODO: [🧳][main]
|
|
1530
|
-
* TODO: [🧳][🐝][main]
|
|
1531
|
-
* TODO: [🧳][main]
|
|
1532
|
-
* TODO: [🧳][main]
|
|
1533
|
-
* TODO: [🧳][main]
|
|
1545
|
+
* TODO: [🧳][main] !!4 Validate that all examples match expectations
|
|
1546
|
+
* TODO: [🧳][🐝][main] !!4 Validate that knowledge is valid (non-void)
|
|
1547
|
+
* TODO: [🧳][main] !!4 Validate that persona can be used only with CHAT variant
|
|
1548
|
+
* TODO: [🧳][main] !!4 Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
|
|
1549
|
+
* TODO: [🧳][main] !!4 Validate that reserved parameter is not used as joker
|
|
1534
1550
|
* TODO: [🧠] Validation not only logic itself but imports around - files and websites and rerefenced pipelines exists
|
|
1535
1551
|
* TODO: [🛠] Actions, instruments (and maybe knowledge) => Functions and tools
|
|
1536
1552
|
*/
|
|
@@ -1666,7 +1682,7 @@
|
|
|
1666
1682
|
pipelineJsonToString(unpreparePipeline(pipeline)) !==
|
|
1667
1683
|
pipelineJsonToString(unpreparePipeline(this.collection.get(pipeline.pipelineUrl)))) {
|
|
1668
1684
|
var existing = this.collection.get(pipeline.pipelineUrl);
|
|
1669
|
-
throw new PipelineUrlError(spaceTrim.spaceTrim("\n Pipeline with URL
|
|
1685
|
+
throw new PipelineUrlError(spaceTrim.spaceTrim("\n Pipeline with URL ".concat(pipeline.pipelineUrl, " is already in the collection \uD83C\uDF4E\n\n Conflicting files:\n ").concat(existing.sourceFile || 'Unknown', "\n ").concat(pipeline.sourceFile || 'Unknown', "\n\n Note: You have probably forgotten to run \"ptbk make\" to update the collection\n Note: Pipelines with the same URL are not allowed\n Only exepction is when the pipelines are identical\n\n ")));
|
|
1670
1686
|
}
|
|
1671
1687
|
// Note: [🧠] Overwrite existing pipeline with the same URL
|
|
1672
1688
|
this.collection.set(pipeline.pipelineUrl, pipeline);
|
|
@@ -2002,11 +2018,16 @@
|
|
|
2002
2018
|
/**
|
|
2003
2019
|
* Determine if the pipeline is fully prepared
|
|
2004
2020
|
*
|
|
2021
|
+
* @see https://github.com/webgptorg/promptbook/discussions/196
|
|
2022
|
+
*
|
|
2005
2023
|
* @public exported from `@promptbook/core`
|
|
2006
2024
|
*/
|
|
2007
2025
|
function isPipelinePrepared(pipeline) {
|
|
2008
2026
|
// Note: Ignoring `pipeline.preparations` @@@
|
|
2009
2027
|
// Note: Ignoring `pipeline.knowledgePieces` @@@
|
|
2028
|
+
if (pipeline.title === undefined || pipeline.title === '' || pipeline.title === DEFAULT_BOOK_TITLE) {
|
|
2029
|
+
return false;
|
|
2030
|
+
}
|
|
2010
2031
|
if (!pipeline.personas.every(function (persona) { return persona.modelRequirements !== undefined; })) {
|
|
2011
2032
|
return false;
|
|
2012
2033
|
}
|
|
@@ -2022,7 +2043,7 @@
|
|
|
2022
2043
|
return true;
|
|
2023
2044
|
}
|
|
2024
2045
|
/**
|
|
2025
|
-
* TODO: [🔃][main]
|
|
2046
|
+
* TODO: [🔃][main] If the pipeline was prepared with different version or different set of models, prepare it once again
|
|
2026
2047
|
* TODO: [🐠] Maybe base this on `makeValidator`
|
|
2027
2048
|
* TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
|
|
2028
2049
|
* TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
|
|
@@ -2031,6 +2052,81 @@
|
|
|
2031
2052
|
* - [♨] Are tasks prepared
|
|
2032
2053
|
*/
|
|
2033
2054
|
|
|
2055
|
+
/**
|
|
2056
|
+
* Format either small or big number
|
|
2057
|
+
*
|
|
2058
|
+
* @public exported from `@promptbook/utils`
|
|
2059
|
+
*/
|
|
2060
|
+
function numberToString(value) {
|
|
2061
|
+
if (value === 0) {
|
|
2062
|
+
return '0';
|
|
2063
|
+
}
|
|
2064
|
+
else if (Number.isNaN(value)) {
|
|
2065
|
+
return VALUE_STRINGS.nan;
|
|
2066
|
+
}
|
|
2067
|
+
else if (value === Infinity) {
|
|
2068
|
+
return VALUE_STRINGS.infinity;
|
|
2069
|
+
}
|
|
2070
|
+
else if (value === -Infinity) {
|
|
2071
|
+
return VALUE_STRINGS.negativeInfinity;
|
|
2072
|
+
}
|
|
2073
|
+
for (var exponent = 0; exponent < 15; exponent++) {
|
|
2074
|
+
var factor = Math.pow(10, exponent);
|
|
2075
|
+
var valueRounded = Math.round(value * factor) / factor;
|
|
2076
|
+
if (Math.abs(value - valueRounded) / value < SMALL_NUMBER) {
|
|
2077
|
+
return valueRounded.toFixed(exponent);
|
|
2078
|
+
}
|
|
2079
|
+
}
|
|
2080
|
+
return value.toString();
|
|
2081
|
+
}
|
|
2082
|
+
|
|
2083
|
+
/**
|
|
2084
|
+
* Function `valueToString` will convert the given value to string
|
|
2085
|
+
* This is useful and used in the `templateParameters` function
|
|
2086
|
+
*
|
|
2087
|
+
* Note: This function is not just calling `toString` method
|
|
2088
|
+
* It's more complex and can handle this conversion specifically for LLM models
|
|
2089
|
+
* See `VALUE_STRINGS`
|
|
2090
|
+
*
|
|
2091
|
+
* Note: There are 2 similar functions
|
|
2092
|
+
* - `valueToString` converts value to string for LLM models as human-readable string
|
|
2093
|
+
* - `asSerializable` converts value to string to preserve full information to be able to convert it back
|
|
2094
|
+
*
|
|
2095
|
+
* @public exported from `@promptbook/utils`
|
|
2096
|
+
*/
|
|
2097
|
+
function valueToString(value) {
|
|
2098
|
+
try {
|
|
2099
|
+
if (value === '') {
|
|
2100
|
+
return VALUE_STRINGS.empty;
|
|
2101
|
+
}
|
|
2102
|
+
else if (value === null) {
|
|
2103
|
+
return VALUE_STRINGS.null;
|
|
2104
|
+
}
|
|
2105
|
+
else if (value === undefined) {
|
|
2106
|
+
return VALUE_STRINGS.undefined;
|
|
2107
|
+
}
|
|
2108
|
+
else if (typeof value === 'string') {
|
|
2109
|
+
return value;
|
|
2110
|
+
}
|
|
2111
|
+
else if (typeof value === 'number') {
|
|
2112
|
+
return numberToString(value);
|
|
2113
|
+
}
|
|
2114
|
+
else if (value instanceof Date) {
|
|
2115
|
+
return value.toISOString();
|
|
2116
|
+
}
|
|
2117
|
+
else {
|
|
2118
|
+
return JSON.stringify(value);
|
|
2119
|
+
}
|
|
2120
|
+
}
|
|
2121
|
+
catch (error) {
|
|
2122
|
+
if (!(error instanceof Error)) {
|
|
2123
|
+
throw error;
|
|
2124
|
+
}
|
|
2125
|
+
console.error(error);
|
|
2126
|
+
return VALUE_STRINGS.unserializable;
|
|
2127
|
+
}
|
|
2128
|
+
}
|
|
2129
|
+
|
|
2034
2130
|
/**
|
|
2035
2131
|
* Serializes an error into a [🚉] JSON-serializable object
|
|
2036
2132
|
*
|
|
@@ -2712,10 +2808,10 @@
|
|
|
2712
2808
|
});
|
|
2713
2809
|
}
|
|
2714
2810
|
/**
|
|
2715
|
-
* TODO: [🔃][main]
|
|
2716
|
-
* TODO: [🏢]
|
|
2717
|
-
* TODO: [🏢]
|
|
2718
|
-
* TODO: [🏢]
|
|
2811
|
+
* TODO: [🔃][main] If the persona was prepared with different version or different set of models, prepare it once again
|
|
2812
|
+
* TODO: [🏢] Check validity of `modelName` in pipeline
|
|
2813
|
+
* TODO: [🏢] Check validity of `systemMessage` in pipeline
|
|
2814
|
+
* TODO: [🏢] Check validity of `temperature` in pipeline
|
|
2719
2815
|
*/
|
|
2720
2816
|
|
|
2721
2817
|
/**
|
|
@@ -3410,21 +3506,44 @@
|
|
|
3410
3506
|
if (typeof filename !== 'string') {
|
|
3411
3507
|
return false;
|
|
3412
3508
|
}
|
|
3509
|
+
if (filename.split('\n').length > 1) {
|
|
3510
|
+
return false;
|
|
3511
|
+
}
|
|
3512
|
+
if (filename.split(' ').length >
|
|
3513
|
+
5 /* <- TODO: [🧠][🈷] Make some better non-arbitrary way how to distinct filenames from informational texts */) {
|
|
3514
|
+
return false;
|
|
3515
|
+
}
|
|
3413
3516
|
var filenameSlashes = filename.split('\\').join('/');
|
|
3414
3517
|
// Absolute Unix path: /hello.txt
|
|
3415
3518
|
if (/^(\/)/i.test(filenameSlashes)) {
|
|
3519
|
+
// console.log(filename, 'Absolute Unix path: /hello.txt');
|
|
3416
3520
|
return true;
|
|
3417
3521
|
}
|
|
3418
3522
|
// Absolute Windows path: /hello.txt
|
|
3419
3523
|
if (/^([A-Z]{1,2}:\/?)\//i.test(filenameSlashes)) {
|
|
3524
|
+
// console.log(filename, 'Absolute Windows path: /hello.txt');
|
|
3420
3525
|
return true;
|
|
3421
3526
|
}
|
|
3422
3527
|
// Relative path: ./hello.txt
|
|
3423
3528
|
if (/^(\.\.?\/)+/i.test(filenameSlashes)) {
|
|
3529
|
+
// console.log(filename, 'Relative path: ./hello.txt');
|
|
3530
|
+
return true;
|
|
3531
|
+
}
|
|
3532
|
+
// Allow paths like foo/hello
|
|
3533
|
+
if (/^[^/]+\/[^/]+/i.test(filenameSlashes)) {
|
|
3534
|
+
// console.log(filename, 'Allow paths like foo/hello');
|
|
3535
|
+
return true;
|
|
3536
|
+
}
|
|
3537
|
+
// Allow paths like hello.book
|
|
3538
|
+
if (/^[^/]+\.[^/]+$/i.test(filenameSlashes)) {
|
|
3539
|
+
// console.log(filename, 'Allow paths like hello.book');
|
|
3424
3540
|
return true;
|
|
3425
3541
|
}
|
|
3426
3542
|
return false;
|
|
3427
3543
|
}
|
|
3544
|
+
/**
|
|
3545
|
+
* TODO: [🍏] Implement for MacOs
|
|
3546
|
+
*/
|
|
3428
3547
|
|
|
3429
3548
|
/**
|
|
3430
3549
|
* The built-in `fetch' function with a lightweight error handling wrapper as default fetch function used in Promptbook scrapers
|
|
@@ -3449,6 +3568,9 @@
|
|
|
3449
3568
|
}
|
|
3450
3569
|
});
|
|
3451
3570
|
}); };
|
|
3571
|
+
/**
|
|
3572
|
+
* TODO: [🧠] Maybe rename because it is not used only for scrapers but also in `$getCompiledBook`
|
|
3573
|
+
*/
|
|
3452
3574
|
|
|
3453
3575
|
/**
|
|
3454
3576
|
* @@@
|
|
@@ -3516,7 +3638,7 @@
|
|
|
3516
3638
|
},
|
|
3517
3639
|
}];
|
|
3518
3640
|
case 2:
|
|
3519
|
-
if (!
|
|
3641
|
+
if (!isValidFilePath(sourceContent)) return [3 /*break*/, 4];
|
|
3520
3642
|
if (tools.fs === undefined) {
|
|
3521
3643
|
throw new EnvironmentMismatchError('Can not import file knowledge without filesystem tools');
|
|
3522
3644
|
// <- TODO: [🧠] What is the best error type here`
|
|
@@ -3531,7 +3653,7 @@
|
|
|
3531
3653
|
return [4 /*yield*/, isFileExisting(filename_1, tools.fs)];
|
|
3532
3654
|
case 3:
|
|
3533
3655
|
if (!(_f.sent())) {
|
|
3534
|
-
throw new NotFoundError(spaceTrim__default["default"](function (block) { return "\n Can not make source handler for file which does not exist:\n\n File:\n ".concat(block(filename_1), "\n "); }));
|
|
3656
|
+
throw new NotFoundError(spaceTrim__default["default"](function (block) { return "\n Can not make source handler for file which does not exist:\n\n File:\n ".concat(block(sourceContent), "\n\n Full file path:\n ").concat(block(filename_1), "\n "); }));
|
|
3535
3657
|
}
|
|
3536
3658
|
// TODO: [🧠][😿] Test security file - file is scoped to the project (BUT maybe do this in `filesystemTools`)
|
|
3537
3659
|
return [2 /*return*/, {
|
|
@@ -3644,7 +3766,7 @@
|
|
|
3644
3766
|
partialPieces = __spreadArray([], __read(partialPiecesUnchecked), false);
|
|
3645
3767
|
return [2 /*return*/, "break"];
|
|
3646
3768
|
}
|
|
3647
|
-
console.warn(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge from source despite the scraper `".concat(scraper.metadata.className, "` supports the mime type \"").concat(sourceHandler.mimeType, "\".\n
|
|
3769
|
+
console.warn(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge from source despite the scraper `".concat(scraper.metadata.className, "` supports the mime type \"").concat(sourceHandler.mimeType, "\".\n\n The source:\n ").concat(block(knowledgeSource.sourceContent
|
|
3648
3770
|
.split('\n')
|
|
3649
3771
|
.map(function (line) { return "> ".concat(line); })
|
|
3650
3772
|
.join('\n')), "\n\n ").concat(block($registeredScrapersMessage(scrapers)), "\n\n\n "); }));
|
|
@@ -3682,7 +3804,7 @@
|
|
|
3682
3804
|
return [7 /*endfinally*/];
|
|
3683
3805
|
case 9:
|
|
3684
3806
|
if (partialPieces === null) {
|
|
3685
|
-
throw new KnowledgeScrapeError(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge\n
|
|
3807
|
+
throw new KnowledgeScrapeError(spaceTrim__default["default"](function (block) { return "\n Cannot scrape knowledge\n\n The source:\n > ".concat(block(knowledgeSource.sourceContent
|
|
3686
3808
|
.split('\n')
|
|
3687
3809
|
.map(function (line) { return "> ".concat(line); })
|
|
3688
3810
|
.join('\n')), "\n\n No scraper found for the mime type \"").concat(sourceHandler.mimeType, "\"\n\n ").concat(block($registeredScrapersMessage(scrapers)), "\n\n\n "); }));
|
|
@@ -3773,7 +3895,7 @@
|
|
|
3773
3895
|
* TODO: [😂] Adding knowledge should be convert to async high-level abstractions, simmilar thing with expectations to sync high-level abstractions
|
|
3774
3896
|
* TODO: [🧠] Add context to each task (if missing)
|
|
3775
3897
|
* TODO: [🧠] What is better name `prepareTask` or `prepareTaskAndParameters`
|
|
3776
|
-
* TODO: [♨][main]
|
|
3898
|
+
* TODO: [♨][main] !!3 Prepare index the examples and maybe tasks
|
|
3777
3899
|
* TODO: Write tests for `preparePipeline`
|
|
3778
3900
|
* TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
|
|
3779
3901
|
* TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
|
|
@@ -3783,6 +3905,8 @@
|
|
|
3783
3905
|
/**
|
|
3784
3906
|
* Prepare pipeline from string (markdown) format to JSON format
|
|
3785
3907
|
*
|
|
3908
|
+
* @see https://github.com/webgptorg/promptbook/discussions/196
|
|
3909
|
+
*
|
|
3786
3910
|
* Note: This function does not validate logic of the pipeline
|
|
3787
3911
|
* Note: This function acts as part of compilation process
|
|
3788
3912
|
* Note: When the pipeline is already prepared, it returns the same pipeline
|
|
@@ -3795,16 +3919,17 @@
|
|
|
3795
3919
|
<- TODO: [🧠][🪑] `promptbookVersion` */
|
|
3796
3920
|
knowledgeSources /*
|
|
3797
3921
|
<- TODO: [🧊] `knowledgePieces` */, personas /*
|
|
3798
|
-
<- TODO: [🧊] `preparations` */, _llms, llmTools, llmToolsWithUsage, currentPreparation, preparations, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared, tasksPrepared /* TODO: parameters: parametersPrepared*/;
|
|
3922
|
+
<- TODO: [🧊] `preparations` */, sources, _llms, llmTools, llmToolsWithUsage, currentPreparation, preparations, title, collection, prepareTitleExecutor, _c, result, outputParameters, titleRaw, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared, tasksPrepared /* TODO: parameters: parametersPrepared*/;
|
|
3923
|
+
var _d;
|
|
3799
3924
|
var _this = this;
|
|
3800
|
-
return __generator(this, function (
|
|
3801
|
-
switch (
|
|
3925
|
+
return __generator(this, function (_e) {
|
|
3926
|
+
switch (_e.label) {
|
|
3802
3927
|
case 0:
|
|
3803
3928
|
if (isPipelinePrepared(pipeline)) {
|
|
3804
3929
|
return [2 /*return*/, pipeline];
|
|
3805
3930
|
}
|
|
3806
3931
|
rootDirname = options.rootDirname, _a = options.maxParallelCount, maxParallelCount = _a === void 0 ? DEFAULT_MAX_PARALLEL_COUNT : _a, _b = options.isVerbose, isVerbose = _b === void 0 ? DEFAULT_IS_VERBOSE : _b;
|
|
3807
|
-
parameters = pipeline.parameters, tasks = pipeline.tasks, knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas;
|
|
3932
|
+
parameters = pipeline.parameters, tasks = pipeline.tasks, knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas, sources = pipeline.sources;
|
|
3808
3933
|
if (tools === undefined || tools.llm === undefined) {
|
|
3809
3934
|
throw new MissingToolsError('LLM tools are required for preparing the pipeline');
|
|
3810
3935
|
}
|
|
@@ -3822,6 +3947,33 @@
|
|
|
3822
3947
|
// <- TODO: [🧊]
|
|
3823
3948
|
currentPreparation,
|
|
3824
3949
|
];
|
|
3950
|
+
title = pipeline.title;
|
|
3951
|
+
if (!(title === undefined || title === '' || title === DEFAULT_BOOK_TITLE)) return [3 /*break*/, 3];
|
|
3952
|
+
collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
|
|
3953
|
+
_c = createPipelineExecutor;
|
|
3954
|
+
_d = {};
|
|
3955
|
+
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-title.book.md')];
|
|
3956
|
+
case 1:
|
|
3957
|
+
prepareTitleExecutor = _c.apply(void 0, [(_d.pipeline = _e.sent(),
|
|
3958
|
+
_d.tools = tools,
|
|
3959
|
+
_d)]);
|
|
3960
|
+
return [4 /*yield*/, prepareTitleExecutor({
|
|
3961
|
+
book: sources.map(function (_a) {
|
|
3962
|
+
var content = _a.content;
|
|
3963
|
+
return content;
|
|
3964
|
+
}).join('\n\n'),
|
|
3965
|
+
})];
|
|
3966
|
+
case 2:
|
|
3967
|
+
result = _e.sent();
|
|
3968
|
+
assertsExecutionSuccessful(result);
|
|
3969
|
+
outputParameters = result.outputParameters;
|
|
3970
|
+
titleRaw = outputParameters.title;
|
|
3971
|
+
if (isVerbose) {
|
|
3972
|
+
console.info("The title is \"".concat(titleRaw, "\""));
|
|
3973
|
+
}
|
|
3974
|
+
title = titleRaw || DEFAULT_BOOK_TITLE;
|
|
3975
|
+
_e.label = 3;
|
|
3976
|
+
case 3:
|
|
3825
3977
|
preparedPersonas = new Array(personas.length);
|
|
3826
3978
|
return [4 /*yield*/, forEachAsync(personas, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (persona, index) { return __awaiter(_this, void 0, void 0, function () {
|
|
3827
3979
|
var modelRequirements, preparedPersona;
|
|
@@ -3840,12 +3992,12 @@
|
|
|
3840
3992
|
}
|
|
3841
3993
|
});
|
|
3842
3994
|
}); })];
|
|
3843
|
-
case
|
|
3844
|
-
|
|
3995
|
+
case 4:
|
|
3996
|
+
_e.sent();
|
|
3845
3997
|
knowledgeSourcesPrepared = knowledgeSources.map(function (source) { return (__assign(__assign({}, source), { preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id] })); });
|
|
3846
3998
|
return [4 /*yield*/, prepareKnowledgePieces(knowledgeSources /* <- TODO: [🧊] {knowledgeSources, knowledgePieces} */, __assign(__assign({}, tools), { llm: llmToolsWithUsage }), __assign(__assign({}, options), { rootDirname: rootDirname, maxParallelCount: maxParallelCount /* <- TODO: [🪂] */, isVerbose: isVerbose }))];
|
|
3847
|
-
case
|
|
3848
|
-
partialknowledgePiecesPrepared =
|
|
3999
|
+
case 5:
|
|
4000
|
+
partialknowledgePiecesPrepared = _e.sent();
|
|
3849
4001
|
knowledgePiecesPrepared = partialknowledgePiecesPrepared.map(function (piece) { return (__assign(__assign({}, piece), { preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id] })); });
|
|
3850
4002
|
return [4 /*yield*/, prepareTasks({
|
|
3851
4003
|
parameters: parameters,
|
|
@@ -3856,8 +4008,8 @@
|
|
|
3856
4008
|
maxParallelCount: maxParallelCount /* <- TODO: [🪂] */,
|
|
3857
4009
|
isVerbose: isVerbose,
|
|
3858
4010
|
})];
|
|
3859
|
-
case
|
|
3860
|
-
tasksPrepared = (
|
|
4011
|
+
case 6:
|
|
4012
|
+
tasksPrepared = (_e.sent()).tasksPrepared;
|
|
3861
4013
|
// ----- /Tasks preparation -----
|
|
3862
4014
|
// TODO: [😂] Use here all `AsyncHighLevelAbstraction`
|
|
3863
4015
|
// Note: Count total usage
|
|
@@ -3868,7 +4020,7 @@
|
|
|
3868
4020
|
order: ORDER_OF_PIPELINE_JSON,
|
|
3869
4021
|
value: __assign(__assign({}, pipeline), {
|
|
3870
4022
|
// <- TODO: Probbably deeply clone the pipeline because `$exportJson` freezes the subobjects
|
|
3871
|
-
knowledgeSources: knowledgeSourcesPrepared, knowledgePieces: knowledgePiecesPrepared, tasks: __spreadArray([], __read(tasksPrepared), false),
|
|
4023
|
+
title: title, knowledgeSources: knowledgeSourcesPrepared, knowledgePieces: knowledgePiecesPrepared, tasks: __spreadArray([], __read(tasksPrepared), false),
|
|
3872
4024
|
// <- TODO: [🪓] Here should be no need for spreading new array, just ` tasks: tasksPrepared`
|
|
3873
4025
|
personas: preparedPersonas, preparations: __spreadArray([], __read(preparations), false) }),
|
|
3874
4026
|
})];
|
|
@@ -3939,7 +4091,7 @@
|
|
|
3939
4091
|
if (!(error instanceof Error)) {
|
|
3940
4092
|
throw error;
|
|
3941
4093
|
}
|
|
3942
|
-
throw new ParseError(spaceTrim.spaceTrim(function (block) { return "\n Can not extract variables from the script\n
|
|
4094
|
+
throw new ParseError(spaceTrim.spaceTrim(function (block) { return "\n Can not extract variables from the script\n ".concat(block(error.stack || error.message), "\n\n Found variables:\n ").concat(Array.from(variables)
|
|
3943
4095
|
.map(function (variableName, i) { return "".concat(i + 1, ") ").concat(variableName); })
|
|
3944
4096
|
.join('\n'), "\n\n\n The script:\n\n ```javascript\n ").concat(block(originalScript), "\n ```\n "); }));
|
|
3945
4097
|
}
|
|
@@ -4421,81 +4573,6 @@
|
|
|
4421
4573
|
return mappedParameters;
|
|
4422
4574
|
}
|
|
4423
4575
|
|
|
4424
|
-
/**
|
|
4425
|
-
* Format either small or big number
|
|
4426
|
-
*
|
|
4427
|
-
* @public exported from `@promptbook/utils`
|
|
4428
|
-
*/
|
|
4429
|
-
function numberToString(value) {
|
|
4430
|
-
if (value === 0) {
|
|
4431
|
-
return '0';
|
|
4432
|
-
}
|
|
4433
|
-
else if (Number.isNaN(value)) {
|
|
4434
|
-
return VALUE_STRINGS.nan;
|
|
4435
|
-
}
|
|
4436
|
-
else if (value === Infinity) {
|
|
4437
|
-
return VALUE_STRINGS.infinity;
|
|
4438
|
-
}
|
|
4439
|
-
else if (value === -Infinity) {
|
|
4440
|
-
return VALUE_STRINGS.negativeInfinity;
|
|
4441
|
-
}
|
|
4442
|
-
for (var exponent = 0; exponent < 15; exponent++) {
|
|
4443
|
-
var factor = Math.pow(10, exponent);
|
|
4444
|
-
var valueRounded = Math.round(value * factor) / factor;
|
|
4445
|
-
if (Math.abs(value - valueRounded) / value < SMALL_NUMBER) {
|
|
4446
|
-
return valueRounded.toFixed(exponent);
|
|
4447
|
-
}
|
|
4448
|
-
}
|
|
4449
|
-
return value.toString();
|
|
4450
|
-
}
|
|
4451
|
-
|
|
4452
|
-
/**
|
|
4453
|
-
* Function `valueToString` will convert the given value to string
|
|
4454
|
-
* This is useful and used in the `templateParameters` function
|
|
4455
|
-
*
|
|
4456
|
-
* Note: This function is not just calling `toString` method
|
|
4457
|
-
* It's more complex and can handle this conversion specifically for LLM models
|
|
4458
|
-
* See `VALUE_STRINGS`
|
|
4459
|
-
*
|
|
4460
|
-
* Note: There are 2 similar functions
|
|
4461
|
-
* - `valueToString` converts value to string for LLM models as human-readable string
|
|
4462
|
-
* - `asSerializable` converts value to string to preserve full information to be able to convert it back
|
|
4463
|
-
*
|
|
4464
|
-
* @public exported from `@promptbook/utils`
|
|
4465
|
-
*/
|
|
4466
|
-
function valueToString(value) {
|
|
4467
|
-
try {
|
|
4468
|
-
if (value === '') {
|
|
4469
|
-
return VALUE_STRINGS.empty;
|
|
4470
|
-
}
|
|
4471
|
-
else if (value === null) {
|
|
4472
|
-
return VALUE_STRINGS.null;
|
|
4473
|
-
}
|
|
4474
|
-
else if (value === undefined) {
|
|
4475
|
-
return VALUE_STRINGS.undefined;
|
|
4476
|
-
}
|
|
4477
|
-
else if (typeof value === 'string') {
|
|
4478
|
-
return value;
|
|
4479
|
-
}
|
|
4480
|
-
else if (typeof value === 'number') {
|
|
4481
|
-
return numberToString(value);
|
|
4482
|
-
}
|
|
4483
|
-
else if (value instanceof Date) {
|
|
4484
|
-
return value.toISOString();
|
|
4485
|
-
}
|
|
4486
|
-
else {
|
|
4487
|
-
return JSON.stringify(value);
|
|
4488
|
-
}
|
|
4489
|
-
}
|
|
4490
|
-
catch (error) {
|
|
4491
|
-
if (!(error instanceof Error)) {
|
|
4492
|
-
throw error;
|
|
4493
|
-
}
|
|
4494
|
-
console.error(error);
|
|
4495
|
-
return VALUE_STRINGS.unserializable;
|
|
4496
|
-
}
|
|
4497
|
-
}
|
|
4498
|
-
|
|
4499
4576
|
/**
|
|
4500
4577
|
* Replaces parameters in template with values from parameters object
|
|
4501
4578
|
*
|
|
@@ -4552,6 +4629,8 @@
|
|
|
4552
4629
|
throw new PipelineExecutionError("Parameter `{".concat(parameterName, "}` is not defined"));
|
|
4553
4630
|
}
|
|
4554
4631
|
parameterValue = valueToString(parameterValue);
|
|
4632
|
+
// Escape curly braces in parameter values to prevent prompt-injection
|
|
4633
|
+
parameterValue = parameterValue.replace(/[{}]/g, '\\$&');
|
|
4555
4634
|
if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
|
|
4556
4635
|
parameterValue = parameterValue
|
|
4557
4636
|
.split('\n')
|
|
@@ -4911,7 +4990,7 @@
|
|
|
4911
4990
|
promptTitle: task.title,
|
|
4912
4991
|
promptMessage: templateParameters(task.description || '', parameters),
|
|
4913
4992
|
defaultValue: templateParameters(preparedContent, parameters),
|
|
4914
|
-
// TODO: [🧠]
|
|
4993
|
+
// TODO: [🧠] Figure out how to define placeholder in .book.md file
|
|
4915
4994
|
placeholder: undefined,
|
|
4916
4995
|
priority: priority,
|
|
4917
4996
|
}))];
|
|
@@ -5611,7 +5690,10 @@
|
|
|
5611
5690
|
finally { if (e_2) throw e_2.error; }
|
|
5612
5691
|
return [7 /*endfinally*/];
|
|
5613
5692
|
case 19:
|
|
5614
|
-
parametersToPass = inputParameters
|
|
5693
|
+
parametersToPass = Object.fromEntries(Object.entries(inputParameters).map(function (_a) {
|
|
5694
|
+
var _b = __read(_a, 2), key = _b[0], value = _b[1];
|
|
5695
|
+
return [key, valueToString(value)];
|
|
5696
|
+
}));
|
|
5615
5697
|
_g.label = 20;
|
|
5616
5698
|
case 20:
|
|
5617
5699
|
_g.trys.push([20, 25, , 28]);
|
|
@@ -5898,6 +5980,7 @@
|
|
|
5898
5980
|
mimeTypes: ['text/markdown', 'text/plain'],
|
|
5899
5981
|
documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
|
|
5900
5982
|
isAvilableInBrowser: true,
|
|
5983
|
+
// <- Note: [🌏] This is the only scraper which makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
|
|
5901
5984
|
requiredExecutables: [],
|
|
5902
5985
|
}); /* <- Note: [🤛] */
|
|
5903
5986
|
/**
|
|
@@ -5906,6 +5989,7 @@
|
|
|
5906
5989
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
5907
5990
|
*
|
|
5908
5991
|
* @public exported from `@promptbook/core`
|
|
5992
|
+
* @public exported from `@promptbook/wizzard`
|
|
5909
5993
|
* @public exported from `@promptbook/cli`
|
|
5910
5994
|
*/
|
|
5911
5995
|
$scrapersMetadataRegister.register(markdownScraperMetadata);
|
|
@@ -5991,12 +6075,12 @@
|
|
|
5991
6075
|
outputParameters = result.outputParameters;
|
|
5992
6076
|
knowledgePiecesRaw = outputParameters.knowledgePieces;
|
|
5993
6077
|
knowledgeTextPieces = (knowledgePiecesRaw || '').split('\n---\n');
|
|
5994
|
-
// <- TODO: [main]
|
|
6078
|
+
// <- TODO: [main] Smarter split and filter out empty pieces
|
|
5995
6079
|
if (isVerbose) {
|
|
5996
6080
|
console.info('knowledgeTextPieces:', knowledgeTextPieces);
|
|
5997
6081
|
}
|
|
5998
6082
|
return [4 /*yield*/, Promise.all(
|
|
5999
|
-
// TODO: [🪂]
|
|
6083
|
+
// TODO: [🪂] Do not send all at once but in chunks
|
|
6000
6084
|
knowledgeTextPieces.map(function (knowledgeTextPiece, i) { return __awaiter(_this, void 0, void 0, function () {
|
|
6001
6085
|
var name, title, knowledgePieceContent, keywords, index, titleResult, _a, titleRaw, keywordsResult, _b, keywordsRaw, embeddingResult, error_1;
|
|
6002
6086
|
return __generator(this, function (_c) {
|
|
@@ -6101,6 +6185,7 @@
|
|
|
6101
6185
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
6102
6186
|
*
|
|
6103
6187
|
* @public exported from `@promptbook/markdown-utils`
|
|
6188
|
+
* @public exported from `@promptbook/wizzard`
|
|
6104
6189
|
* @public exported from `@promptbook/cli`
|
|
6105
6190
|
*/
|
|
6106
6191
|
var _MarkdownScraperRegistration = $scrapersRegister.register(createMarkdownScraper);
|
|
@@ -6110,13 +6195,13 @@
|
|
|
6110
6195
|
*/
|
|
6111
6196
|
|
|
6112
6197
|
/**
|
|
6113
|
-
* Removes
|
|
6198
|
+
* Removes Markdown (or HTML) comments
|
|
6114
6199
|
*
|
|
6115
6200
|
* @param {string} content - The string to remove comments from.
|
|
6116
6201
|
* @returns {string} The input string with all comments removed.
|
|
6117
6202
|
* @public exported from `@promptbook/markdown-utils`
|
|
6118
6203
|
*/
|
|
6119
|
-
function
|
|
6204
|
+
function removeMarkdownComments(content) {
|
|
6120
6205
|
return spaceTrim.spaceTrim(content.replace(/<!--(.*?)-->/gs, ''));
|
|
6121
6206
|
}
|
|
6122
6207
|
|
|
@@ -6135,7 +6220,7 @@
|
|
|
6135
6220
|
return content.replace(sectionRegex, contentToInsert);
|
|
6136
6221
|
}
|
|
6137
6222
|
// Note: Following is the case when the section is not found in the file so we add it there
|
|
6138
|
-
var placeForSection =
|
|
6223
|
+
var placeForSection = removeMarkdownComments(content).match(/^##.*$/im);
|
|
6139
6224
|
if (placeForSection !== null) {
|
|
6140
6225
|
var _a = __read(placeForSection, 1), heading_1 = _a[0];
|
|
6141
6226
|
return content.replace(heading_1, spaceTrim.spaceTrim(function (block) { return "\n ".concat(block(contentToInsert), "\n\n ").concat(block(heading_1), "\n "); }));
|
|
@@ -6315,7 +6400,7 @@
|
|
|
6315
6400
|
return;
|
|
6316
6401
|
}
|
|
6317
6402
|
if (!section.startsWith('#')) {
|
|
6318
|
-
section = "# ".concat(
|
|
6403
|
+
section = "# ".concat(DEFAULT_BOOK_TITLE, "\n\n").concat(section);
|
|
6319
6404
|
}
|
|
6320
6405
|
sections.push(section);
|
|
6321
6406
|
buffer = [];
|
|
@@ -6370,7 +6455,7 @@
|
|
|
6370
6455
|
/**
|
|
6371
6456
|
* Normalizes the markdown by flattening the structure
|
|
6372
6457
|
*
|
|
6373
|
-
* - It always have h1 - if there is no h1 in the markdown, it will be added
|
|
6458
|
+
* - It always have h1 - if there is no h1 in the markdown, it will be added `DEFAULT_BOOK_TITLE`
|
|
6374
6459
|
* - All other headings are normalized to h2
|
|
6375
6460
|
*
|
|
6376
6461
|
* @public exported from `@promptbook/markdown-utils`
|
|
@@ -6379,7 +6464,7 @@
|
|
|
6379
6464
|
var e_1, _a;
|
|
6380
6465
|
var sections = splitMarkdownIntoSections(markdown);
|
|
6381
6466
|
if (sections.length === 0) {
|
|
6382
|
-
return "# ".concat(
|
|
6467
|
+
return "# ".concat(DEFAULT_BOOK_TITLE);
|
|
6383
6468
|
}
|
|
6384
6469
|
var flattenedMarkdown = '';
|
|
6385
6470
|
var parsedSections = sections.map(parseMarkdownSection);
|
|
@@ -6390,7 +6475,7 @@
|
|
|
6390
6475
|
}
|
|
6391
6476
|
else {
|
|
6392
6477
|
parsedSections.unshift(firstSection);
|
|
6393
|
-
flattenedMarkdown += "# ".concat(
|
|
6478
|
+
flattenedMarkdown += "# ".concat(DEFAULT_BOOK_TITLE) + "\n\n"; // <- [🧠] Maybe 3 new lines?
|
|
6394
6479
|
}
|
|
6395
6480
|
try {
|
|
6396
6481
|
for (var parsedSections_1 = __values(parsedSections), parsedSections_1_1 = parsedSections_1.next(); !parsedSections_1_1.done; parsedSections_1_1 = parsedSections_1.next()) {
|
|
@@ -6449,7 +6534,7 @@
|
|
|
6449
6534
|
exports.extractOneBlockFromMarkdown = extractOneBlockFromMarkdown;
|
|
6450
6535
|
exports.flattenMarkdown = flattenMarkdown;
|
|
6451
6536
|
exports.parseMarkdownSection = parseMarkdownSection;
|
|
6452
|
-
exports.
|
|
6537
|
+
exports.removeMarkdownComments = removeMarkdownComments;
|
|
6453
6538
|
exports.removeMarkdownFormatting = removeMarkdownFormatting;
|
|
6454
6539
|
exports.splitMarkdownIntoSections = splitMarkdownIntoSections;
|
|
6455
6540
|
|