@promptbook/markdown-utils 0.81.0-8 → 0.81.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +25 -8
- package/esm/index.es.js +220 -135
- package/esm/index.es.js.map +1 -1
- package/esm/typings/books/index.d.ts +38 -0
- package/esm/typings/src/_packages/core.index.d.ts +12 -4
- package/esm/typings/src/_packages/markdown-utils.index.d.ts +2 -2
- package/esm/typings/src/_packages/node.index.d.ts +0 -2
- package/esm/typings/src/_packages/templates.index.d.ts +2 -2
- package/esm/typings/src/_packages/types.index.d.ts +4 -0
- package/esm/typings/src/_packages/utils.index.d.ts +2 -0
- package/esm/typings/src/_packages/wizzard.index.d.ts +44 -0
- package/esm/typings/src/cli/cli-commands/make.d.ts +1 -1
- package/esm/typings/src/cli/cli-commands/run.d.ts +2 -2
- package/esm/typings/src/collection/constructors/createCollectionFromDirectory.d.ts +11 -0
- package/esm/typings/src/collection/constructors/createCollectionFromUrl.d.ts +1 -1
- package/esm/typings/src/commands/index.d.ts +1 -1
- package/esm/typings/src/config.d.ts +3 -3
- package/esm/typings/src/conversion/compilePipeline.d.ts +1 -4
- package/esm/typings/src/conversion/{precompilePipeline.d.ts → parsePipeline.d.ts} +3 -3
- package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +3 -3
- package/esm/typings/src/conversion/validation/validatePipeline.d.ts +7 -7
- package/esm/typings/src/errors/utils/getErrorReportUrl.d.ts +1 -1
- package/esm/typings/src/execution/PipelineExecutor.d.ts +2 -2
- package/esm/typings/src/execution/createPipelineExecutor/10-executePipeline.d.ts +2 -2
- package/esm/typings/src/formfactors/generator/GeneratorFormfactorDefinition.d.ts +9 -4
- package/esm/typings/src/formfactors/image-generator/ImageGeneratorFormfactorDefinition.d.ts +24 -0
- package/esm/typings/src/formfactors/index.d.ts +31 -9
- package/esm/typings/src/high-level-abstractions/_common/HighLevelAbstraction.d.ts +1 -1
- package/esm/typings/src/high-level-abstractions/index.d.ts +3 -3
- package/esm/typings/src/high-level-abstractions/quick-chatbot/QuickChatbotHla.d.ts +3 -0
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsConfigurationFromEnv.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsForTestingAndScriptsAndPlayground.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/register/{$provideLlmToolsForCli.d.ts → $provideLlmToolsForWizzardOrCli.d.ts} +2 -2
- package/esm/typings/src/llm-providers/_common/register/$provideLlmToolsFromEnv.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/anthropic-claude-models.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/createAnthropicClaudeExecutionTools.d.ts +2 -2
- package/esm/typings/src/llm-providers/anthropic-claude/playground/playground.d.ts +2 -2
- package/esm/typings/src/llm-providers/anthropic-claude/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +2 -0
- package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/google/register-configuration.d.ts +1 -0
- package/esm/typings/src/llm-providers/google/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/openai/playground/playground.d.ts +1 -1
- package/esm/typings/src/llm-providers/openai/register-configuration.d.ts +2 -0
- package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +2 -0
- package/esm/typings/src/llm-providers/vercel/playground/playground.d.ts +1 -1
- package/esm/typings/src/other/templates/getBookTemplates.d.ts +22 -0
- package/esm/typings/src/personas/preparePersona.d.ts +4 -4
- package/esm/typings/src/pipeline/PipelineString.d.ts +0 -3
- package/esm/typings/src/pipeline/book-notation.d.ts +14 -0
- package/esm/typings/src/pipeline/isValidPipelineString.d.ts +13 -0
- package/esm/typings/src/pipeline/isValidPipelineString.test.d.ts +4 -0
- package/esm/typings/src/pipeline/validatePipelineString.d.ts +14 -0
- package/esm/typings/src/prepare/isPipelinePrepared.d.ts +3 -1
- package/esm/typings/src/prepare/preparePipeline.d.ts +2 -0
- package/esm/typings/src/prepare/prepareTasks.d.ts +1 -1
- package/esm/typings/src/scrapers/_common/Converter.d.ts +1 -0
- package/esm/typings/src/scrapers/_common/Scraper.d.ts +1 -1
- package/esm/typings/src/scrapers/_common/ScraperIntermediateSource.d.ts +3 -0
- package/esm/typings/src/scrapers/_common/register/ScraperAndConverterMetadata.d.ts +2 -0
- package/esm/typings/src/scrapers/_common/utils/scraperFetch.d.ts +3 -0
- package/esm/typings/src/scrapers/document/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/document/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/document-legacy/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/document-legacy/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/markdown/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/markdown/register-metadata.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/PdfScraper.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/createPdfScraper.d.ts +1 -1
- package/esm/typings/src/scrapers/pdf/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +2 -1
- package/esm/typings/src/scrapers/website/createWebsiteScraper.d.ts +3 -1
- package/esm/typings/src/scrapers/website/register-constructor.d.ts +1 -0
- package/esm/typings/src/scrapers/website/register-metadata.d.ts +1 -0
- package/esm/typings/src/scripting/javascript/JavascriptEvalExecutionTools.test.d.ts +1 -1
- package/esm/typings/src/scripting/javascript/utils/preserve.d.ts +2 -1
- package/esm/typings/src/types/typeAliases.d.ts +16 -2
- package/esm/typings/src/utils/markdown/flattenMarkdown.d.ts +1 -1
- package/esm/typings/src/utils/markdown/{removeContentComments.d.ts → removeMarkdownComments.d.ts} +2 -2
- package/esm/typings/src/utils/organization/$sideEffect.d.ts +9 -0
- package/esm/typings/src/utils/serialization/checkSerializableAsJson.d.ts +1 -1
- package/esm/typings/src/utils/serialization/isSerializableAsJson.d.ts +2 -2
- package/esm/typings/src/utils/validators/filePath/isRootPath.d.ts +12 -0
- package/esm/typings/src/utils/validators/filePath/isRootPath.test.d.ts +4 -0
- package/esm/typings/src/utils/validators/filePath/isValidFilePath.d.ts +3 -0
- package/esm/typings/src/wizzard/$getCompiledBook.d.ts +16 -0
- package/esm/typings/src/wizzard/wizzard.d.ts +52 -8
- package/package.json +1 -1
- package/umd/index.umd.js +220 -135
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/other/templates/getBookTemplate.d.ts +0 -21
- package/esm/typings/src/scripting/javascript/utils/unknownToString.d.ts +0 -8
- /package/esm/typings/src/conversion/{precompilePipeline.test.d.ts → parsePipeline.test.d.ts} +0 -0
- /package/esm/typings/src/utils/markdown/{removeContentComments.test.d.ts → removeMarkdownComments.test.d.ts} +0 -0
package/esm/index.es.js
CHANGED
|
@@ -22,7 +22,7 @@ var BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
22
22
|
* @generated
|
|
23
23
|
* @see https://github.com/webgptorg/promptbook
|
|
24
24
|
*/
|
|
25
|
-
var PROMPTBOOK_ENGINE_VERSION = '0.81.0-
|
|
25
|
+
var PROMPTBOOK_ENGINE_VERSION = '0.81.0-24';
|
|
26
26
|
/**
|
|
27
27
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
28
28
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -358,7 +358,27 @@ function extractJsonBlock(markdown) {
|
|
|
358
358
|
* TODO: [🏢] Make this logic part of `JsonFormatDefinition` or `isValidJsonString`
|
|
359
359
|
*/
|
|
360
360
|
|
|
361
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Title should be concise and clear\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"}];
|
|
361
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book.md",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book.md`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book.md"}];
|
|
362
|
+
|
|
363
|
+
/**
|
|
364
|
+
* Function `validatePipelineString` will validate the if the string is a valid pipeline string
|
|
365
|
+
* It does not check if the string is fully logically correct, but if it is a string that can be a pipeline string or the string looks completely different.
|
|
366
|
+
*
|
|
367
|
+
* @param {string} pipelineString the candidate for a pipeline string
|
|
368
|
+
* @returns {PipelineString} the same string as input, but validated as valid
|
|
369
|
+
* @throws {ParseError} if the string is not a valid pipeline string
|
|
370
|
+
* @public exported from `@promptbook/core`
|
|
371
|
+
*/
|
|
372
|
+
function validatePipelineString(pipelineString) {
|
|
373
|
+
if (isValidJsonString(pipelineString)) {
|
|
374
|
+
throw new ParseError('Expected a book, but got a JSON string');
|
|
375
|
+
}
|
|
376
|
+
// <- TODO: Implement the validation + add tests when the pipeline logic considered as invalid
|
|
377
|
+
return pipelineString;
|
|
378
|
+
}
|
|
379
|
+
/**
|
|
380
|
+
* TODO: [🧠][🈴] Where is the best location for this file
|
|
381
|
+
*/
|
|
362
382
|
|
|
363
383
|
/**
|
|
364
384
|
* Prettify the html code
|
|
@@ -417,7 +437,7 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
417
437
|
if (bookVersion !== "undefined") {
|
|
418
438
|
commands.push("BOOK VERSION ".concat(bookVersion));
|
|
419
439
|
}
|
|
420
|
-
// TODO: [main]
|
|
440
|
+
// TODO: [main] !!5 This increases size of the bundle and is probbably not necessary
|
|
421
441
|
pipelineString = prettifyMarkdown(pipelineString);
|
|
422
442
|
try {
|
|
423
443
|
for (var _g = __values(parameters.filter(function (_a) {
|
|
@@ -565,12 +585,12 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
565
585
|
pipelineString += '```' + contentLanguage;
|
|
566
586
|
pipelineString += '\n';
|
|
567
587
|
pipelineString += spaceTrim(content);
|
|
568
|
-
// <- TODO: [main]
|
|
588
|
+
// <- TODO: [main] !!3 Escape
|
|
569
589
|
// <- TODO: [🧠] Some clear strategy how to spaceTrim the blocks
|
|
570
590
|
pipelineString += '\n';
|
|
571
591
|
pipelineString += '```';
|
|
572
592
|
pipelineString += '\n\n';
|
|
573
|
-
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main]
|
|
593
|
+
pipelineString += "`-> {".concat(resultingParameterName, "}`"); // <- TODO: [main] !!3 If the parameter here has description, add it and use taskParameterJsonToString
|
|
574
594
|
}
|
|
575
595
|
}
|
|
576
596
|
catch (e_3_1) { e_3 = { error: e_3_1 }; }
|
|
@@ -580,7 +600,7 @@ function pipelineJsonToString(pipelineJson) {
|
|
|
580
600
|
}
|
|
581
601
|
finally { if (e_3) throw e_3.error; }
|
|
582
602
|
}
|
|
583
|
-
return pipelineString;
|
|
603
|
+
return validatePipelineString(pipelineString);
|
|
584
604
|
}
|
|
585
605
|
/**
|
|
586
606
|
* @private internal utility of `pipelineJsonToString`
|
|
@@ -652,7 +672,7 @@ var ADMIN_GITHUB_NAME = 'hejny';
|
|
|
652
672
|
*
|
|
653
673
|
* @public exported from `@promptbook/core`
|
|
654
674
|
*/
|
|
655
|
-
var
|
|
675
|
+
var DEFAULT_BOOK_TITLE = "\u2728 Untitled Book";
|
|
656
676
|
// <- TODO: [🧠] Better system for generator warnings - not always "code" and "by `@promptbook/cli`"
|
|
657
677
|
/**
|
|
658
678
|
* The maximum number of iterations for a loops
|
|
@@ -804,7 +824,7 @@ function $deepFreeze(objectValue) {
|
|
|
804
824
|
/**
|
|
805
825
|
* Make error report URL for the given error
|
|
806
826
|
*
|
|
807
|
-
* @private
|
|
827
|
+
* @private private within the repository
|
|
808
828
|
*/
|
|
809
829
|
function getErrorReportUrl(error) {
|
|
810
830
|
var report = {
|
|
@@ -925,7 +945,7 @@ function checkSerializableAsJson(options) {
|
|
|
925
945
|
if (!(error instanceof Error)) {
|
|
926
946
|
throw error;
|
|
927
947
|
}
|
|
928
|
-
throw new UnexpectedError(spaceTrim(function (block) { return "\n `".concat(name, "` is not serializable\n\n ").concat(block(error.
|
|
948
|
+
throw new UnexpectedError(spaceTrim(function (block) { return "\n `".concat(name, "` is not serializable\n\n ").concat(block(error.stack || error.message), "\n\n Additional message for `").concat(name, "`:\n ").concat(block(message || '(nothing)'), "\n "); }));
|
|
929
949
|
}
|
|
930
950
|
/*
|
|
931
951
|
TODO: [0] Is there some more elegant way to check circular references?
|
|
@@ -955,7 +975,7 @@ function checkSerializableAsJson(options) {
|
|
|
955
975
|
}
|
|
956
976
|
/**
|
|
957
977
|
* TODO: Can be return type more type-safe? like `asserts options.value is JsonValue`
|
|
958
|
-
* TODO: [🧠][main]
|
|
978
|
+
* TODO: [🧠][main] !!3 In-memory cache of same values to prevent multiple checks
|
|
959
979
|
* Note: [🐠] This is how `checkSerializableAsJson` + `isSerializableAsJson` together can just retun true/false or rich error message
|
|
960
980
|
*/
|
|
961
981
|
|
|
@@ -967,7 +987,6 @@ function checkSerializableAsJson(options) {
|
|
|
967
987
|
function deepClone(objectValue) {
|
|
968
988
|
return JSON.parse(JSON.stringify(objectValue));
|
|
969
989
|
/*
|
|
970
|
-
!!!!!!!!
|
|
971
990
|
TODO: [🧠] Is there a better implementation?
|
|
972
991
|
> const propertyNames = Object.getOwnPropertyNames(objectValue);
|
|
973
992
|
> for (const propertyName of propertyNames) {
|
|
@@ -1133,7 +1152,7 @@ function isValidPromptbookVersion(version) {
|
|
|
1133
1152
|
if ( /* version === '1.0.0' || */version === '2.0.0' || version === '3.0.0') {
|
|
1134
1153
|
return false;
|
|
1135
1154
|
}
|
|
1136
|
-
// <- TODO: [main]
|
|
1155
|
+
// <- TODO: [main] !!3 Check isValidPromptbookVersion against PROMPTBOOK_ENGINE_VERSIONS
|
|
1137
1156
|
return true;
|
|
1138
1157
|
}
|
|
1139
1158
|
|
|
@@ -1233,9 +1252,6 @@ function isValidPipelineUrl(url) {
|
|
|
1233
1252
|
if (!url.startsWith('https://')) {
|
|
1234
1253
|
return false;
|
|
1235
1254
|
}
|
|
1236
|
-
if (!(url.endsWith('.book.md') || url.endsWith('.book') || url.endsWith('.book.md') || url.endsWith('.ptbk'))) {
|
|
1237
|
-
return false;
|
|
1238
|
-
}
|
|
1239
1255
|
if (url.includes('#')) {
|
|
1240
1256
|
// TODO: [🐠]
|
|
1241
1257
|
return false;
|
|
@@ -1266,11 +1282,11 @@ function isValidPipelineUrl(url) {
|
|
|
1266
1282
|
*/
|
|
1267
1283
|
function validatePipeline(pipeline) {
|
|
1268
1284
|
if (IS_PIPELINE_LOGIC_VALIDATED) {
|
|
1269
|
-
|
|
1285
|
+
validatePipeline_InnerFunction(pipeline);
|
|
1270
1286
|
}
|
|
1271
1287
|
else {
|
|
1272
1288
|
try {
|
|
1273
|
-
|
|
1289
|
+
validatePipeline_InnerFunction(pipeline);
|
|
1274
1290
|
}
|
|
1275
1291
|
catch (error) {
|
|
1276
1292
|
if (!(error instanceof PipelineLogicError)) {
|
|
@@ -1284,7 +1300,7 @@ function validatePipeline(pipeline) {
|
|
|
1284
1300
|
/**
|
|
1285
1301
|
* @private internal function for `validatePipeline`
|
|
1286
1302
|
*/
|
|
1287
|
-
function
|
|
1303
|
+
function validatePipeline_InnerFunction(pipeline) {
|
|
1288
1304
|
// TODO: [🧠] Maybe test if promptbook is a promise and make specific error case for that
|
|
1289
1305
|
var e_1, _a, e_2, _b, e_3, _c;
|
|
1290
1306
|
var pipelineIdentification = (function () {
|
|
@@ -1508,11 +1524,11 @@ function validatePipelineCore(pipeline) {
|
|
|
1508
1524
|
_loop_3();
|
|
1509
1525
|
}
|
|
1510
1526
|
// Note: Check that formfactor is corresponding to the pipeline interface
|
|
1511
|
-
// TODO:
|
|
1527
|
+
// TODO: !!6 Implement this
|
|
1512
1528
|
// pipeline.formfactorName
|
|
1513
1529
|
}
|
|
1514
1530
|
/**
|
|
1515
|
-
* TODO:
|
|
1531
|
+
* TODO: [🧞♀️] Do not allow joker + foreach
|
|
1516
1532
|
* TODO: [🧠] Work with promptbookVersion
|
|
1517
1533
|
* TODO: Use here some json-schema, Zod or something similar and change it to:
|
|
1518
1534
|
* > /**
|
|
@@ -1524,11 +1540,11 @@ function validatePipelineCore(pipeline) {
|
|
|
1524
1540
|
* > ex port function validatePipeline(promptbook: really_unknown): asserts promptbook is PipelineJson {
|
|
1525
1541
|
*/
|
|
1526
1542
|
/**
|
|
1527
|
-
* TODO: [🧳][main]
|
|
1528
|
-
* TODO: [🧳][🐝][main]
|
|
1529
|
-
* TODO: [🧳][main]
|
|
1530
|
-
* TODO: [🧳][main]
|
|
1531
|
-
* TODO: [🧳][main]
|
|
1543
|
+
* TODO: [🧳][main] !!4 Validate that all examples match expectations
|
|
1544
|
+
* TODO: [🧳][🐝][main] !!4 Validate that knowledge is valid (non-void)
|
|
1545
|
+
* TODO: [🧳][main] !!4 Validate that persona can be used only with CHAT variant
|
|
1546
|
+
* TODO: [🧳][main] !!4 Validate that parameter with reserved name not used RESERVED_PARAMETER_NAMES
|
|
1547
|
+
* TODO: [🧳][main] !!4 Validate that reserved parameter is not used as joker
|
|
1532
1548
|
* TODO: [🧠] Validation not only logic itself but imports around - files and websites and rerefenced pipelines exists
|
|
1533
1549
|
* TODO: [🛠] Actions, instruments (and maybe knowledge) => Functions and tools
|
|
1534
1550
|
*/
|
|
@@ -1664,7 +1680,7 @@ var SimplePipelineCollection = /** @class */ (function () {
|
|
|
1664
1680
|
pipelineJsonToString(unpreparePipeline(pipeline)) !==
|
|
1665
1681
|
pipelineJsonToString(unpreparePipeline(this.collection.get(pipeline.pipelineUrl)))) {
|
|
1666
1682
|
var existing = this.collection.get(pipeline.pipelineUrl);
|
|
1667
|
-
throw new PipelineUrlError(spaceTrim$1("\n Pipeline with URL
|
|
1683
|
+
throw new PipelineUrlError(spaceTrim$1("\n Pipeline with URL ".concat(pipeline.pipelineUrl, " is already in the collection \uD83C\uDF4E\n\n Conflicting files:\n ").concat(existing.sourceFile || 'Unknown', "\n ").concat(pipeline.sourceFile || 'Unknown', "\n\n Note: You have probably forgotten to run \"ptbk make\" to update the collection\n Note: Pipelines with the same URL are not allowed\n Only exepction is when the pipelines are identical\n\n ")));
|
|
1668
1684
|
}
|
|
1669
1685
|
// Note: [🧠] Overwrite existing pipeline with the same URL
|
|
1670
1686
|
this.collection.set(pipeline.pipelineUrl, pipeline);
|
|
@@ -2000,11 +2016,16 @@ function assertsExecutionSuccessful(executionResult) {
|
|
|
2000
2016
|
/**
|
|
2001
2017
|
* Determine if the pipeline is fully prepared
|
|
2002
2018
|
*
|
|
2019
|
+
* @see https://github.com/webgptorg/promptbook/discussions/196
|
|
2020
|
+
*
|
|
2003
2021
|
* @public exported from `@promptbook/core`
|
|
2004
2022
|
*/
|
|
2005
2023
|
function isPipelinePrepared(pipeline) {
|
|
2006
2024
|
// Note: Ignoring `pipeline.preparations` @@@
|
|
2007
2025
|
// Note: Ignoring `pipeline.knowledgePieces` @@@
|
|
2026
|
+
if (pipeline.title === undefined || pipeline.title === '' || pipeline.title === DEFAULT_BOOK_TITLE) {
|
|
2027
|
+
return false;
|
|
2028
|
+
}
|
|
2008
2029
|
if (!pipeline.personas.every(function (persona) { return persona.modelRequirements !== undefined; })) {
|
|
2009
2030
|
return false;
|
|
2010
2031
|
}
|
|
@@ -2020,7 +2041,7 @@ function isPipelinePrepared(pipeline) {
|
|
|
2020
2041
|
return true;
|
|
2021
2042
|
}
|
|
2022
2043
|
/**
|
|
2023
|
-
* TODO: [🔃][main]
|
|
2044
|
+
* TODO: [🔃][main] If the pipeline was prepared with different version or different set of models, prepare it once again
|
|
2024
2045
|
* TODO: [🐠] Maybe base this on `makeValidator`
|
|
2025
2046
|
* TODO: [🧊] Pipeline can be partially prepared, this should return true ONLY if fully prepared
|
|
2026
2047
|
* TODO: [🧿] Maybe do same process with same granularity and subfinctions as `preparePipeline`
|
|
@@ -2029,6 +2050,81 @@ function isPipelinePrepared(pipeline) {
|
|
|
2029
2050
|
* - [♨] Are tasks prepared
|
|
2030
2051
|
*/
|
|
2031
2052
|
|
|
2053
|
+
/**
|
|
2054
|
+
* Format either small or big number
|
|
2055
|
+
*
|
|
2056
|
+
* @public exported from `@promptbook/utils`
|
|
2057
|
+
*/
|
|
2058
|
+
function numberToString(value) {
|
|
2059
|
+
if (value === 0) {
|
|
2060
|
+
return '0';
|
|
2061
|
+
}
|
|
2062
|
+
else if (Number.isNaN(value)) {
|
|
2063
|
+
return VALUE_STRINGS.nan;
|
|
2064
|
+
}
|
|
2065
|
+
else if (value === Infinity) {
|
|
2066
|
+
return VALUE_STRINGS.infinity;
|
|
2067
|
+
}
|
|
2068
|
+
else if (value === -Infinity) {
|
|
2069
|
+
return VALUE_STRINGS.negativeInfinity;
|
|
2070
|
+
}
|
|
2071
|
+
for (var exponent = 0; exponent < 15; exponent++) {
|
|
2072
|
+
var factor = Math.pow(10, exponent);
|
|
2073
|
+
var valueRounded = Math.round(value * factor) / factor;
|
|
2074
|
+
if (Math.abs(value - valueRounded) / value < SMALL_NUMBER) {
|
|
2075
|
+
return valueRounded.toFixed(exponent);
|
|
2076
|
+
}
|
|
2077
|
+
}
|
|
2078
|
+
return value.toString();
|
|
2079
|
+
}
|
|
2080
|
+
|
|
2081
|
+
/**
|
|
2082
|
+
* Function `valueToString` will convert the given value to string
|
|
2083
|
+
* This is useful and used in the `templateParameters` function
|
|
2084
|
+
*
|
|
2085
|
+
* Note: This function is not just calling `toString` method
|
|
2086
|
+
* It's more complex and can handle this conversion specifically for LLM models
|
|
2087
|
+
* See `VALUE_STRINGS`
|
|
2088
|
+
*
|
|
2089
|
+
* Note: There are 2 similar functions
|
|
2090
|
+
* - `valueToString` converts value to string for LLM models as human-readable string
|
|
2091
|
+
* - `asSerializable` converts value to string to preserve full information to be able to convert it back
|
|
2092
|
+
*
|
|
2093
|
+
* @public exported from `@promptbook/utils`
|
|
2094
|
+
*/
|
|
2095
|
+
function valueToString(value) {
|
|
2096
|
+
try {
|
|
2097
|
+
if (value === '') {
|
|
2098
|
+
return VALUE_STRINGS.empty;
|
|
2099
|
+
}
|
|
2100
|
+
else if (value === null) {
|
|
2101
|
+
return VALUE_STRINGS.null;
|
|
2102
|
+
}
|
|
2103
|
+
else if (value === undefined) {
|
|
2104
|
+
return VALUE_STRINGS.undefined;
|
|
2105
|
+
}
|
|
2106
|
+
else if (typeof value === 'string') {
|
|
2107
|
+
return value;
|
|
2108
|
+
}
|
|
2109
|
+
else if (typeof value === 'number') {
|
|
2110
|
+
return numberToString(value);
|
|
2111
|
+
}
|
|
2112
|
+
else if (value instanceof Date) {
|
|
2113
|
+
return value.toISOString();
|
|
2114
|
+
}
|
|
2115
|
+
else {
|
|
2116
|
+
return JSON.stringify(value);
|
|
2117
|
+
}
|
|
2118
|
+
}
|
|
2119
|
+
catch (error) {
|
|
2120
|
+
if (!(error instanceof Error)) {
|
|
2121
|
+
throw error;
|
|
2122
|
+
}
|
|
2123
|
+
console.error(error);
|
|
2124
|
+
return VALUE_STRINGS.unserializable;
|
|
2125
|
+
}
|
|
2126
|
+
}
|
|
2127
|
+
|
|
2032
2128
|
/**
|
|
2033
2129
|
* Serializes an error into a [🚉] JSON-serializable object
|
|
2034
2130
|
*
|
|
@@ -2710,10 +2806,10 @@ function preparePersona(personaDescription, tools, options) {
|
|
|
2710
2806
|
});
|
|
2711
2807
|
}
|
|
2712
2808
|
/**
|
|
2713
|
-
* TODO: [🔃][main]
|
|
2714
|
-
* TODO: [🏢]
|
|
2715
|
-
* TODO: [🏢]
|
|
2716
|
-
* TODO: [🏢]
|
|
2809
|
+
* TODO: [🔃][main] If the persona was prepared with different version or different set of models, prepare it once again
|
|
2810
|
+
* TODO: [🏢] Check validity of `modelName` in pipeline
|
|
2811
|
+
* TODO: [🏢] Check validity of `systemMessage` in pipeline
|
|
2812
|
+
* TODO: [🏢] Check validity of `temperature` in pipeline
|
|
2717
2813
|
*/
|
|
2718
2814
|
|
|
2719
2815
|
/**
|
|
@@ -3408,21 +3504,44 @@ function isValidFilePath(filename) {
|
|
|
3408
3504
|
if (typeof filename !== 'string') {
|
|
3409
3505
|
return false;
|
|
3410
3506
|
}
|
|
3507
|
+
if (filename.split('\n').length > 1) {
|
|
3508
|
+
return false;
|
|
3509
|
+
}
|
|
3510
|
+
if (filename.split(' ').length >
|
|
3511
|
+
5 /* <- TODO: [🧠][🈷] Make some better non-arbitrary way how to distinct filenames from informational texts */) {
|
|
3512
|
+
return false;
|
|
3513
|
+
}
|
|
3411
3514
|
var filenameSlashes = filename.split('\\').join('/');
|
|
3412
3515
|
// Absolute Unix path: /hello.txt
|
|
3413
3516
|
if (/^(\/)/i.test(filenameSlashes)) {
|
|
3517
|
+
// console.log(filename, 'Absolute Unix path: /hello.txt');
|
|
3414
3518
|
return true;
|
|
3415
3519
|
}
|
|
3416
3520
|
// Absolute Windows path: /hello.txt
|
|
3417
3521
|
if (/^([A-Z]{1,2}:\/?)\//i.test(filenameSlashes)) {
|
|
3522
|
+
// console.log(filename, 'Absolute Windows path: /hello.txt');
|
|
3418
3523
|
return true;
|
|
3419
3524
|
}
|
|
3420
3525
|
// Relative path: ./hello.txt
|
|
3421
3526
|
if (/^(\.\.?\/)+/i.test(filenameSlashes)) {
|
|
3527
|
+
// console.log(filename, 'Relative path: ./hello.txt');
|
|
3528
|
+
return true;
|
|
3529
|
+
}
|
|
3530
|
+
// Allow paths like foo/hello
|
|
3531
|
+
if (/^[^/]+\/[^/]+/i.test(filenameSlashes)) {
|
|
3532
|
+
// console.log(filename, 'Allow paths like foo/hello');
|
|
3533
|
+
return true;
|
|
3534
|
+
}
|
|
3535
|
+
// Allow paths like hello.book
|
|
3536
|
+
if (/^[^/]+\.[^/]+$/i.test(filenameSlashes)) {
|
|
3537
|
+
// console.log(filename, 'Allow paths like hello.book');
|
|
3422
3538
|
return true;
|
|
3423
3539
|
}
|
|
3424
3540
|
return false;
|
|
3425
3541
|
}
|
|
3542
|
+
/**
|
|
3543
|
+
* TODO: [🍏] Implement for MacOs
|
|
3544
|
+
*/
|
|
3426
3545
|
|
|
3427
3546
|
/**
|
|
3428
3547
|
* The built-in `fetch' function with a lightweight error handling wrapper as default fetch function used in Promptbook scrapers
|
|
@@ -3447,6 +3566,9 @@ var scraperFetch = function (url, init) { return __awaiter(void 0, void 0, void
|
|
|
3447
3566
|
}
|
|
3448
3567
|
});
|
|
3449
3568
|
}); };
|
|
3569
|
+
/**
|
|
3570
|
+
* TODO: [🧠] Maybe rename because it is not used only for scrapers but also in `$getCompiledBook`
|
|
3571
|
+
*/
|
|
3450
3572
|
|
|
3451
3573
|
/**
|
|
3452
3574
|
* @@@
|
|
@@ -3514,7 +3636,7 @@ function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
|
|
|
3514
3636
|
},
|
|
3515
3637
|
}];
|
|
3516
3638
|
case 2:
|
|
3517
|
-
if (!
|
|
3639
|
+
if (!isValidFilePath(sourceContent)) return [3 /*break*/, 4];
|
|
3518
3640
|
if (tools.fs === undefined) {
|
|
3519
3641
|
throw new EnvironmentMismatchError('Can not import file knowledge without filesystem tools');
|
|
3520
3642
|
// <- TODO: [🧠] What is the best error type here`
|
|
@@ -3529,7 +3651,7 @@ function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
|
|
|
3529
3651
|
return [4 /*yield*/, isFileExisting(filename_1, tools.fs)];
|
|
3530
3652
|
case 3:
|
|
3531
3653
|
if (!(_f.sent())) {
|
|
3532
|
-
throw new NotFoundError(spaceTrim(function (block) { return "\n Can not make source handler for file which does not exist:\n\n File:\n ".concat(block(filename_1), "\n "); }));
|
|
3654
|
+
throw new NotFoundError(spaceTrim(function (block) { return "\n Can not make source handler for file which does not exist:\n\n File:\n ".concat(block(sourceContent), "\n\n Full file path:\n ").concat(block(filename_1), "\n "); }));
|
|
3533
3655
|
}
|
|
3534
3656
|
// TODO: [🧠][😿] Test security file - file is scoped to the project (BUT maybe do this in `filesystemTools`)
|
|
3535
3657
|
return [2 /*return*/, {
|
|
@@ -3642,7 +3764,7 @@ function prepareKnowledgePieces(knowledgeSources, tools, options) {
|
|
|
3642
3764
|
partialPieces = __spreadArray([], __read(partialPiecesUnchecked), false);
|
|
3643
3765
|
return [2 /*return*/, "break"];
|
|
3644
3766
|
}
|
|
3645
|
-
console.warn(spaceTrim(function (block) { return "\n Cannot scrape knowledge from source despite the scraper `".concat(scraper.metadata.className, "` supports the mime type \"").concat(sourceHandler.mimeType, "\".\n
|
|
3767
|
+
console.warn(spaceTrim(function (block) { return "\n Cannot scrape knowledge from source despite the scraper `".concat(scraper.metadata.className, "` supports the mime type \"").concat(sourceHandler.mimeType, "\".\n\n The source:\n ").concat(block(knowledgeSource.sourceContent
|
|
3646
3768
|
.split('\n')
|
|
3647
3769
|
.map(function (line) { return "> ".concat(line); })
|
|
3648
3770
|
.join('\n')), "\n\n ").concat(block($registeredScrapersMessage(scrapers)), "\n\n\n "); }));
|
|
@@ -3680,7 +3802,7 @@ function prepareKnowledgePieces(knowledgeSources, tools, options) {
|
|
|
3680
3802
|
return [7 /*endfinally*/];
|
|
3681
3803
|
case 9:
|
|
3682
3804
|
if (partialPieces === null) {
|
|
3683
|
-
throw new KnowledgeScrapeError(spaceTrim(function (block) { return "\n Cannot scrape knowledge\n
|
|
3805
|
+
throw new KnowledgeScrapeError(spaceTrim(function (block) { return "\n Cannot scrape knowledge\n\n The source:\n > ".concat(block(knowledgeSource.sourceContent
|
|
3684
3806
|
.split('\n')
|
|
3685
3807
|
.map(function (line) { return "> ".concat(line); })
|
|
3686
3808
|
.join('\n')), "\n\n No scraper found for the mime type \"").concat(sourceHandler.mimeType, "\"\n\n ").concat(block($registeredScrapersMessage(scrapers)), "\n\n\n "); }));
|
|
@@ -3771,7 +3893,7 @@ function prepareTasks(pipeline, tools, options) {
|
|
|
3771
3893
|
* TODO: [😂] Adding knowledge should be convert to async high-level abstractions, simmilar thing with expectations to sync high-level abstractions
|
|
3772
3894
|
* TODO: [🧠] Add context to each task (if missing)
|
|
3773
3895
|
* TODO: [🧠] What is better name `prepareTask` or `prepareTaskAndParameters`
|
|
3774
|
-
* TODO: [♨][main]
|
|
3896
|
+
* TODO: [♨][main] !!3 Prepare index the examples and maybe tasks
|
|
3775
3897
|
* TODO: Write tests for `preparePipeline`
|
|
3776
3898
|
* TODO: [🏏] Leverage the batch API and build queues @see https://platform.openai.com/docs/guides/batch
|
|
3777
3899
|
* TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
|
|
@@ -3781,6 +3903,8 @@ function prepareTasks(pipeline, tools, options) {
|
|
|
3781
3903
|
/**
|
|
3782
3904
|
* Prepare pipeline from string (markdown) format to JSON format
|
|
3783
3905
|
*
|
|
3906
|
+
* @see https://github.com/webgptorg/promptbook/discussions/196
|
|
3907
|
+
*
|
|
3784
3908
|
* Note: This function does not validate logic of the pipeline
|
|
3785
3909
|
* Note: This function acts as part of compilation process
|
|
3786
3910
|
* Note: When the pipeline is already prepared, it returns the same pipeline
|
|
@@ -3793,16 +3917,17 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3793
3917
|
<- TODO: [🧠][🪑] `promptbookVersion` */
|
|
3794
3918
|
knowledgeSources /*
|
|
3795
3919
|
<- TODO: [🧊] `knowledgePieces` */, personas /*
|
|
3796
|
-
<- TODO: [🧊] `preparations` */, _llms, llmTools, llmToolsWithUsage, currentPreparation, preparations, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared, tasksPrepared /* TODO: parameters: parametersPrepared*/;
|
|
3920
|
+
<- TODO: [🧊] `preparations` */, sources, _llms, llmTools, llmToolsWithUsage, currentPreparation, preparations, title, collection, prepareTitleExecutor, _c, result, outputParameters, titleRaw, preparedPersonas, knowledgeSourcesPrepared, partialknowledgePiecesPrepared, knowledgePiecesPrepared, tasksPrepared /* TODO: parameters: parametersPrepared*/;
|
|
3921
|
+
var _d;
|
|
3797
3922
|
var _this = this;
|
|
3798
|
-
return __generator(this, function (
|
|
3799
|
-
switch (
|
|
3923
|
+
return __generator(this, function (_e) {
|
|
3924
|
+
switch (_e.label) {
|
|
3800
3925
|
case 0:
|
|
3801
3926
|
if (isPipelinePrepared(pipeline)) {
|
|
3802
3927
|
return [2 /*return*/, pipeline];
|
|
3803
3928
|
}
|
|
3804
3929
|
rootDirname = options.rootDirname, _a = options.maxParallelCount, maxParallelCount = _a === void 0 ? DEFAULT_MAX_PARALLEL_COUNT : _a, _b = options.isVerbose, isVerbose = _b === void 0 ? DEFAULT_IS_VERBOSE : _b;
|
|
3805
|
-
parameters = pipeline.parameters, tasks = pipeline.tasks, knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas;
|
|
3930
|
+
parameters = pipeline.parameters, tasks = pipeline.tasks, knowledgeSources = pipeline.knowledgeSources, personas = pipeline.personas, sources = pipeline.sources;
|
|
3806
3931
|
if (tools === undefined || tools.llm === undefined) {
|
|
3807
3932
|
throw new MissingToolsError('LLM tools are required for preparing the pipeline');
|
|
3808
3933
|
}
|
|
@@ -3820,6 +3945,33 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3820
3945
|
// <- TODO: [🧊]
|
|
3821
3946
|
currentPreparation,
|
|
3822
3947
|
];
|
|
3948
|
+
title = pipeline.title;
|
|
3949
|
+
if (!(title === undefined || title === '' || title === DEFAULT_BOOK_TITLE)) return [3 /*break*/, 3];
|
|
3950
|
+
collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
|
|
3951
|
+
_c = createPipelineExecutor;
|
|
3952
|
+
_d = {};
|
|
3953
|
+
return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-title.book.md')];
|
|
3954
|
+
case 1:
|
|
3955
|
+
prepareTitleExecutor = _c.apply(void 0, [(_d.pipeline = _e.sent(),
|
|
3956
|
+
_d.tools = tools,
|
|
3957
|
+
_d)]);
|
|
3958
|
+
return [4 /*yield*/, prepareTitleExecutor({
|
|
3959
|
+
book: sources.map(function (_a) {
|
|
3960
|
+
var content = _a.content;
|
|
3961
|
+
return content;
|
|
3962
|
+
}).join('\n\n'),
|
|
3963
|
+
})];
|
|
3964
|
+
case 2:
|
|
3965
|
+
result = _e.sent();
|
|
3966
|
+
assertsExecutionSuccessful(result);
|
|
3967
|
+
outputParameters = result.outputParameters;
|
|
3968
|
+
titleRaw = outputParameters.title;
|
|
3969
|
+
if (isVerbose) {
|
|
3970
|
+
console.info("The title is \"".concat(titleRaw, "\""));
|
|
3971
|
+
}
|
|
3972
|
+
title = titleRaw || DEFAULT_BOOK_TITLE;
|
|
3973
|
+
_e.label = 3;
|
|
3974
|
+
case 3:
|
|
3823
3975
|
preparedPersonas = new Array(personas.length);
|
|
3824
3976
|
return [4 /*yield*/, forEachAsync(personas, { maxParallelCount: maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, function (persona, index) { return __awaiter(_this, void 0, void 0, function () {
|
|
3825
3977
|
var modelRequirements, preparedPersona;
|
|
@@ -3838,12 +3990,12 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3838
3990
|
}
|
|
3839
3991
|
});
|
|
3840
3992
|
}); })];
|
|
3841
|
-
case
|
|
3842
|
-
|
|
3993
|
+
case 4:
|
|
3994
|
+
_e.sent();
|
|
3843
3995
|
knowledgeSourcesPrepared = knowledgeSources.map(function (source) { return (__assign(__assign({}, source), { preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id] })); });
|
|
3844
3996
|
return [4 /*yield*/, prepareKnowledgePieces(knowledgeSources /* <- TODO: [🧊] {knowledgeSources, knowledgePieces} */, __assign(__assign({}, tools), { llm: llmToolsWithUsage }), __assign(__assign({}, options), { rootDirname: rootDirname, maxParallelCount: maxParallelCount /* <- TODO: [🪂] */, isVerbose: isVerbose }))];
|
|
3845
|
-
case
|
|
3846
|
-
partialknowledgePiecesPrepared =
|
|
3997
|
+
case 5:
|
|
3998
|
+
partialknowledgePiecesPrepared = _e.sent();
|
|
3847
3999
|
knowledgePiecesPrepared = partialknowledgePiecesPrepared.map(function (piece) { return (__assign(__assign({}, piece), { preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id] })); });
|
|
3848
4000
|
return [4 /*yield*/, prepareTasks({
|
|
3849
4001
|
parameters: parameters,
|
|
@@ -3854,8 +4006,8 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3854
4006
|
maxParallelCount: maxParallelCount /* <- TODO: [🪂] */,
|
|
3855
4007
|
isVerbose: isVerbose,
|
|
3856
4008
|
})];
|
|
3857
|
-
case
|
|
3858
|
-
tasksPrepared = (
|
|
4009
|
+
case 6:
|
|
4010
|
+
tasksPrepared = (_e.sent()).tasksPrepared;
|
|
3859
4011
|
// ----- /Tasks preparation -----
|
|
3860
4012
|
// TODO: [😂] Use here all `AsyncHighLevelAbstraction`
|
|
3861
4013
|
// Note: Count total usage
|
|
@@ -3866,7 +4018,7 @@ function preparePipeline(pipeline, tools, options) {
|
|
|
3866
4018
|
order: ORDER_OF_PIPELINE_JSON,
|
|
3867
4019
|
value: __assign(__assign({}, pipeline), {
|
|
3868
4020
|
// <- TODO: Probbably deeply clone the pipeline because `$exportJson` freezes the subobjects
|
|
3869
|
-
knowledgeSources: knowledgeSourcesPrepared, knowledgePieces: knowledgePiecesPrepared, tasks: __spreadArray([], __read(tasksPrepared), false),
|
|
4021
|
+
title: title, knowledgeSources: knowledgeSourcesPrepared, knowledgePieces: knowledgePiecesPrepared, tasks: __spreadArray([], __read(tasksPrepared), false),
|
|
3870
4022
|
// <- TODO: [🪓] Here should be no need for spreading new array, just ` tasks: tasksPrepared`
|
|
3871
4023
|
personas: preparedPersonas, preparations: __spreadArray([], __read(preparations), false) }),
|
|
3872
4024
|
})];
|
|
@@ -3937,7 +4089,7 @@ function extractVariablesFromScript(script) {
|
|
|
3937
4089
|
if (!(error instanceof Error)) {
|
|
3938
4090
|
throw error;
|
|
3939
4091
|
}
|
|
3940
|
-
throw new ParseError(spaceTrim$1(function (block) { return "\n Can not extract variables from the script\n
|
|
4092
|
+
throw new ParseError(spaceTrim$1(function (block) { return "\n Can not extract variables from the script\n ".concat(block(error.stack || error.message), "\n\n Found variables:\n ").concat(Array.from(variables)
|
|
3941
4093
|
.map(function (variableName, i) { return "".concat(i + 1, ") ").concat(variableName); })
|
|
3942
4094
|
.join('\n'), "\n\n\n The script:\n\n ```javascript\n ").concat(block(originalScript), "\n ```\n "); }));
|
|
3943
4095
|
}
|
|
@@ -4419,81 +4571,6 @@ function mapAvailableToExpectedParameters(options) {
|
|
|
4419
4571
|
return mappedParameters;
|
|
4420
4572
|
}
|
|
4421
4573
|
|
|
4422
|
-
/**
|
|
4423
|
-
* Format either small or big number
|
|
4424
|
-
*
|
|
4425
|
-
* @public exported from `@promptbook/utils`
|
|
4426
|
-
*/
|
|
4427
|
-
function numberToString(value) {
|
|
4428
|
-
if (value === 0) {
|
|
4429
|
-
return '0';
|
|
4430
|
-
}
|
|
4431
|
-
else if (Number.isNaN(value)) {
|
|
4432
|
-
return VALUE_STRINGS.nan;
|
|
4433
|
-
}
|
|
4434
|
-
else if (value === Infinity) {
|
|
4435
|
-
return VALUE_STRINGS.infinity;
|
|
4436
|
-
}
|
|
4437
|
-
else if (value === -Infinity) {
|
|
4438
|
-
return VALUE_STRINGS.negativeInfinity;
|
|
4439
|
-
}
|
|
4440
|
-
for (var exponent = 0; exponent < 15; exponent++) {
|
|
4441
|
-
var factor = Math.pow(10, exponent);
|
|
4442
|
-
var valueRounded = Math.round(value * factor) / factor;
|
|
4443
|
-
if (Math.abs(value - valueRounded) / value < SMALL_NUMBER) {
|
|
4444
|
-
return valueRounded.toFixed(exponent);
|
|
4445
|
-
}
|
|
4446
|
-
}
|
|
4447
|
-
return value.toString();
|
|
4448
|
-
}
|
|
4449
|
-
|
|
4450
|
-
/**
|
|
4451
|
-
* Function `valueToString` will convert the given value to string
|
|
4452
|
-
* This is useful and used in the `templateParameters` function
|
|
4453
|
-
*
|
|
4454
|
-
* Note: This function is not just calling `toString` method
|
|
4455
|
-
* It's more complex and can handle this conversion specifically for LLM models
|
|
4456
|
-
* See `VALUE_STRINGS`
|
|
4457
|
-
*
|
|
4458
|
-
* Note: There are 2 similar functions
|
|
4459
|
-
* - `valueToString` converts value to string for LLM models as human-readable string
|
|
4460
|
-
* - `asSerializable` converts value to string to preserve full information to be able to convert it back
|
|
4461
|
-
*
|
|
4462
|
-
* @public exported from `@promptbook/utils`
|
|
4463
|
-
*/
|
|
4464
|
-
function valueToString(value) {
|
|
4465
|
-
try {
|
|
4466
|
-
if (value === '') {
|
|
4467
|
-
return VALUE_STRINGS.empty;
|
|
4468
|
-
}
|
|
4469
|
-
else if (value === null) {
|
|
4470
|
-
return VALUE_STRINGS.null;
|
|
4471
|
-
}
|
|
4472
|
-
else if (value === undefined) {
|
|
4473
|
-
return VALUE_STRINGS.undefined;
|
|
4474
|
-
}
|
|
4475
|
-
else if (typeof value === 'string') {
|
|
4476
|
-
return value;
|
|
4477
|
-
}
|
|
4478
|
-
else if (typeof value === 'number') {
|
|
4479
|
-
return numberToString(value);
|
|
4480
|
-
}
|
|
4481
|
-
else if (value instanceof Date) {
|
|
4482
|
-
return value.toISOString();
|
|
4483
|
-
}
|
|
4484
|
-
else {
|
|
4485
|
-
return JSON.stringify(value);
|
|
4486
|
-
}
|
|
4487
|
-
}
|
|
4488
|
-
catch (error) {
|
|
4489
|
-
if (!(error instanceof Error)) {
|
|
4490
|
-
throw error;
|
|
4491
|
-
}
|
|
4492
|
-
console.error(error);
|
|
4493
|
-
return VALUE_STRINGS.unserializable;
|
|
4494
|
-
}
|
|
4495
|
-
}
|
|
4496
|
-
|
|
4497
4574
|
/**
|
|
4498
4575
|
* Replaces parameters in template with values from parameters object
|
|
4499
4576
|
*
|
|
@@ -4550,6 +4627,8 @@ function templateParameters(template, parameters) {
|
|
|
4550
4627
|
throw new PipelineExecutionError("Parameter `{".concat(parameterName, "}` is not defined"));
|
|
4551
4628
|
}
|
|
4552
4629
|
parameterValue = valueToString(parameterValue);
|
|
4630
|
+
// Escape curly braces in parameter values to prevent prompt-injection
|
|
4631
|
+
parameterValue = parameterValue.replace(/[{}]/g, '\\$&');
|
|
4553
4632
|
if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
|
|
4554
4633
|
parameterValue = parameterValue
|
|
4555
4634
|
.split('\n')
|
|
@@ -4909,7 +4988,7 @@ function executeAttempts(options) {
|
|
|
4909
4988
|
promptTitle: task.title,
|
|
4910
4989
|
promptMessage: templateParameters(task.description || '', parameters),
|
|
4911
4990
|
defaultValue: templateParameters(preparedContent, parameters),
|
|
4912
|
-
// TODO: [🧠]
|
|
4991
|
+
// TODO: [🧠] Figure out how to define placeholder in .book.md file
|
|
4913
4992
|
placeholder: undefined,
|
|
4914
4993
|
priority: priority,
|
|
4915
4994
|
}))];
|
|
@@ -5609,7 +5688,10 @@ function executePipeline(options) {
|
|
|
5609
5688
|
finally { if (e_2) throw e_2.error; }
|
|
5610
5689
|
return [7 /*endfinally*/];
|
|
5611
5690
|
case 19:
|
|
5612
|
-
parametersToPass = inputParameters
|
|
5691
|
+
parametersToPass = Object.fromEntries(Object.entries(inputParameters).map(function (_a) {
|
|
5692
|
+
var _b = __read(_a, 2), key = _b[0], value = _b[1];
|
|
5693
|
+
return [key, valueToString(value)];
|
|
5694
|
+
}));
|
|
5613
5695
|
_g.label = 20;
|
|
5614
5696
|
case 20:
|
|
5615
5697
|
_g.trys.push([20, 25, , 28]);
|
|
@@ -5896,6 +5978,7 @@ var markdownScraperMetadata = $deepFreeze({
|
|
|
5896
5978
|
mimeTypes: ['text/markdown', 'text/plain'],
|
|
5897
5979
|
documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
|
|
5898
5980
|
isAvilableInBrowser: true,
|
|
5981
|
+
// <- Note: [🌏] This is the only scraper which makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
|
|
5899
5982
|
requiredExecutables: [],
|
|
5900
5983
|
}); /* <- Note: [🤛] */
|
|
5901
5984
|
/**
|
|
@@ -5904,6 +5987,7 @@ var markdownScraperMetadata = $deepFreeze({
|
|
|
5904
5987
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
5905
5988
|
*
|
|
5906
5989
|
* @public exported from `@promptbook/core`
|
|
5990
|
+
* @public exported from `@promptbook/wizzard`
|
|
5907
5991
|
* @public exported from `@promptbook/cli`
|
|
5908
5992
|
*/
|
|
5909
5993
|
$scrapersMetadataRegister.register(markdownScraperMetadata);
|
|
@@ -5989,12 +6073,12 @@ var MarkdownScraper = /** @class */ (function () {
|
|
|
5989
6073
|
outputParameters = result.outputParameters;
|
|
5990
6074
|
knowledgePiecesRaw = outputParameters.knowledgePieces;
|
|
5991
6075
|
knowledgeTextPieces = (knowledgePiecesRaw || '').split('\n---\n');
|
|
5992
|
-
// <- TODO: [main]
|
|
6076
|
+
// <- TODO: [main] Smarter split and filter out empty pieces
|
|
5993
6077
|
if (isVerbose) {
|
|
5994
6078
|
console.info('knowledgeTextPieces:', knowledgeTextPieces);
|
|
5995
6079
|
}
|
|
5996
6080
|
return [4 /*yield*/, Promise.all(
|
|
5997
|
-
// TODO: [🪂]
|
|
6081
|
+
// TODO: [🪂] Do not send all at once but in chunks
|
|
5998
6082
|
knowledgeTextPieces.map(function (knowledgeTextPiece, i) { return __awaiter(_this, void 0, void 0, function () {
|
|
5999
6083
|
var name, title, knowledgePieceContent, keywords, index, titleResult, _a, titleRaw, keywordsResult, _b, keywordsRaw, embeddingResult, error_1;
|
|
6000
6084
|
return __generator(this, function (_c) {
|
|
@@ -6099,6 +6183,7 @@ var createMarkdownScraper = Object.assign(function (tools, options) {
|
|
|
6099
6183
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
6100
6184
|
*
|
|
6101
6185
|
* @public exported from `@promptbook/markdown-utils`
|
|
6186
|
+
* @public exported from `@promptbook/wizzard`
|
|
6102
6187
|
* @public exported from `@promptbook/cli`
|
|
6103
6188
|
*/
|
|
6104
6189
|
var _MarkdownScraperRegistration = $scrapersRegister.register(createMarkdownScraper);
|
|
@@ -6108,13 +6193,13 @@ var _MarkdownScraperRegistration = $scrapersRegister.register(createMarkdownScra
|
|
|
6108
6193
|
*/
|
|
6109
6194
|
|
|
6110
6195
|
/**
|
|
6111
|
-
* Removes
|
|
6196
|
+
* Removes Markdown (or HTML) comments
|
|
6112
6197
|
*
|
|
6113
6198
|
* @param {string} content - The string to remove comments from.
|
|
6114
6199
|
* @returns {string} The input string with all comments removed.
|
|
6115
6200
|
* @public exported from `@promptbook/markdown-utils`
|
|
6116
6201
|
*/
|
|
6117
|
-
function
|
|
6202
|
+
function removeMarkdownComments(content) {
|
|
6118
6203
|
return spaceTrim$1(content.replace(/<!--(.*?)-->/gs, ''));
|
|
6119
6204
|
}
|
|
6120
6205
|
|
|
@@ -6133,7 +6218,7 @@ function addAutoGeneratedSection(content, options) {
|
|
|
6133
6218
|
return content.replace(sectionRegex, contentToInsert);
|
|
6134
6219
|
}
|
|
6135
6220
|
// Note: Following is the case when the section is not found in the file so we add it there
|
|
6136
|
-
var placeForSection =
|
|
6221
|
+
var placeForSection = removeMarkdownComments(content).match(/^##.*$/im);
|
|
6137
6222
|
if (placeForSection !== null) {
|
|
6138
6223
|
var _a = __read(placeForSection, 1), heading_1 = _a[0];
|
|
6139
6224
|
return content.replace(heading_1, spaceTrim$1(function (block) { return "\n ".concat(block(contentToInsert), "\n\n ").concat(block(heading_1), "\n "); }));
|
|
@@ -6313,7 +6398,7 @@ function splitMarkdownIntoSections(markdown) {
|
|
|
6313
6398
|
return;
|
|
6314
6399
|
}
|
|
6315
6400
|
if (!section.startsWith('#')) {
|
|
6316
|
-
section = "# ".concat(
|
|
6401
|
+
section = "# ".concat(DEFAULT_BOOK_TITLE, "\n\n").concat(section);
|
|
6317
6402
|
}
|
|
6318
6403
|
sections.push(section);
|
|
6319
6404
|
buffer = [];
|
|
@@ -6368,7 +6453,7 @@ function splitMarkdownIntoSections(markdown) {
|
|
|
6368
6453
|
/**
|
|
6369
6454
|
* Normalizes the markdown by flattening the structure
|
|
6370
6455
|
*
|
|
6371
|
-
* - It always have h1 - if there is no h1 in the markdown, it will be added
|
|
6456
|
+
* - It always have h1 - if there is no h1 in the markdown, it will be added `DEFAULT_BOOK_TITLE`
|
|
6372
6457
|
* - All other headings are normalized to h2
|
|
6373
6458
|
*
|
|
6374
6459
|
* @public exported from `@promptbook/markdown-utils`
|
|
@@ -6377,7 +6462,7 @@ function flattenMarkdown(markdown) {
|
|
|
6377
6462
|
var e_1, _a;
|
|
6378
6463
|
var sections = splitMarkdownIntoSections(markdown);
|
|
6379
6464
|
if (sections.length === 0) {
|
|
6380
|
-
return "# ".concat(
|
|
6465
|
+
return "# ".concat(DEFAULT_BOOK_TITLE);
|
|
6381
6466
|
}
|
|
6382
6467
|
var flattenedMarkdown = '';
|
|
6383
6468
|
var parsedSections = sections.map(parseMarkdownSection);
|
|
@@ -6388,7 +6473,7 @@ function flattenMarkdown(markdown) {
|
|
|
6388
6473
|
}
|
|
6389
6474
|
else {
|
|
6390
6475
|
parsedSections.unshift(firstSection);
|
|
6391
|
-
flattenedMarkdown += "# ".concat(
|
|
6476
|
+
flattenedMarkdown += "# ".concat(DEFAULT_BOOK_TITLE) + "\n\n"; // <- [🧠] Maybe 3 new lines?
|
|
6392
6477
|
}
|
|
6393
6478
|
try {
|
|
6394
6479
|
for (var parsedSections_1 = __values(parsedSections), parsedSections_1_1 = parsedSections_1.next(); !parsedSections_1_1.done; parsedSections_1_1 = parsedSections_1.next()) {
|
|
@@ -6431,5 +6516,5 @@ function removeMarkdownFormatting(str) {
|
|
|
6431
6516
|
return str;
|
|
6432
6517
|
}
|
|
6433
6518
|
|
|
6434
|
-
export { BOOK_LANGUAGE_VERSION, MarkdownScraper, PROMPTBOOK_ENGINE_VERSION, _MarkdownScraperRegistration, addAutoGeneratedSection, createMarkdownChart, createMarkdownScraper, createMarkdownTable, escapeMarkdownBlock, extractAllBlocksFromMarkdown, extractAllListItemsFromMarkdown, extractBlock, extractJsonBlock, extractOneBlockFromMarkdown, flattenMarkdown, parseMarkdownSection,
|
|
6519
|
+
export { BOOK_LANGUAGE_VERSION, MarkdownScraper, PROMPTBOOK_ENGINE_VERSION, _MarkdownScraperRegistration, addAutoGeneratedSection, createMarkdownChart, createMarkdownScraper, createMarkdownTable, escapeMarkdownBlock, extractAllBlocksFromMarkdown, extractAllListItemsFromMarkdown, extractBlock, extractJsonBlock, extractOneBlockFromMarkdown, flattenMarkdown, parseMarkdownSection, removeMarkdownComments, removeMarkdownFormatting, splitMarkdownIntoSections };
|
|
6435
6520
|
//# sourceMappingURL=index.es.js.map
|