@opencvjs/types 4.10.0-release.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE +201 -0
- package/README.md +23 -0
- package/lib/index.d.ts +2 -0
- package/lib/opencv/Affine3.d.ts +206 -0
- package/lib/opencv/Algorithm.d.ts +126 -0
- package/lib/opencv/AutoBuffer.d.ts +50 -0
- package/lib/opencv/BFMatcher.d.ts +37 -0
- package/lib/opencv/BOWTrainer.d.ts +43 -0
- package/lib/opencv/CascadeClassifier.d.ts +153 -0
- package/lib/opencv/DescriptorMatcher.d.ts +236 -0
- package/lib/opencv/DynamicBitset.d.ts +68 -0
- package/lib/opencv/Exception.d.ts +54 -0
- package/lib/opencv/Feature2D.d.ts +20 -0
- package/lib/opencv/FlannBasedMatcher.d.ts +57 -0
- package/lib/opencv/HOGDescriptor.d.ts +401 -0
- package/lib/opencv/Logger.d.ts +34 -0
- package/lib/opencv/LshTable.d.ts +81 -0
- package/lib/opencv/Mat.d.ts +1793 -0
- package/lib/opencv/MatExpr.d.ts +107 -0
- package/lib/opencv/MatOp.d.ts +72 -0
- package/lib/opencv/Matx.d.ts +228 -0
- package/lib/opencv/Node.d.ts +33 -0
- package/lib/opencv/ORB.d.ts +23 -0
- package/lib/opencv/PCA.d.ts +198 -0
- package/lib/opencv/RotatedRect.d.ts +73 -0
- package/lib/opencv/Tracker.d.ts +1 -0
- package/lib/opencv/TrackerMIL.d.ts +3 -0
- package/lib/opencv/_types.d.ts +48 -0
- package/lib/opencv/calib3d.d.ts +2937 -0
- package/lib/opencv/core_array.d.ts +3102 -0
- package/lib/opencv/core_cluster.d.ts +80 -0
- package/lib/opencv/core_hal_interface.d.ts +159 -0
- package/lib/opencv/core_utils.d.ts +748 -0
- package/lib/opencv/dnn.d.ts +505 -0
- package/lib/opencv/features2d_draw.d.ts +114 -0
- package/lib/opencv/fisheye.d.ts +26 -0
- package/lib/opencv/helpers.d.ts +274 -0
- package/lib/opencv/imgproc_color_conversions.d.ts +527 -0
- package/lib/opencv/imgproc_draw.d.ts +732 -0
- package/lib/opencv/imgproc_feature.d.ts +681 -0
- package/lib/opencv/imgproc_filter.d.ts +918 -0
- package/lib/opencv/imgproc_hist.d.ts +399 -0
- package/lib/opencv/imgproc_misc.d.ts +616 -0
- package/lib/opencv/imgproc_object.d.ts +58 -0
- package/lib/opencv/imgproc_shape.d.ts +724 -0
- package/lib/opencv/imgproc_transform.d.ts +574 -0
- package/lib/opencv/missing.d.ts +58 -0
- package/lib/opencv/objdetect.d.ts +103 -0
- package/lib/opencv/photo_inpaint.d.ts +39 -0
- package/lib/opencv/softdouble.d.ts +71 -0
- package/lib/opencv/softfloat.d.ts +71 -0
- package/lib/opencv/video_track.d.ts +370 -0
- package/package.json +18 -0
- package/tsconfig.json +15 -0
|
@@ -0,0 +1,80 @@
|
|
|
1
|
+
import type {
|
|
2
|
+
InputArray,
|
|
3
|
+
InputOutputArray,
|
|
4
|
+
OutputArray,
|
|
5
|
+
TermCriteria,
|
|
6
|
+
} from "./helpers";
|
|
7
|
+
import type { double, int } from "./missing";
|
|
8
|
+
|
|
9
|
+
/*
|
|
10
|
+
* # Clustering
|
|
11
|
+
*
|
|
12
|
+
*/
|
|
13
|
+
/**
|
|
14
|
+
* The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters
|
|
15
|
+
* and groups the input samples around the clusters. As an output, `$\\texttt{bestLabels}_i$` contains
|
|
16
|
+
* a 0-based cluster index for the sample stored in the `$i^{th}$` row of the samples matrix.
|
|
17
|
+
*
|
|
18
|
+
* (Python) An example on K-means clustering can be found at
|
|
19
|
+
* opencv_source_code/samples/python/kmeans.py
|
|
20
|
+
*
|
|
21
|
+
* The function returns the compactness measure that is computed as `\\[\\sum _i \\| \\texttt{samples}
|
|
22
|
+
* _i - \\texttt{centers} _{ \\texttt{labels} _i} \\| ^2\\]` after every attempt. The best (minimum)
|
|
23
|
+
* value is chosen and the corresponding labels and the compactness value are returned by the function.
|
|
24
|
+
* Basically, you can use only the core of the function, set the number of attempts to 1, initialize
|
|
25
|
+
* labels each time using a custom algorithm, pass them with the ( flags = [KMEANS_USE_INITIAL_LABELS]
|
|
26
|
+
* ) flag, and then choose the best (most-compact) clustering.
|
|
27
|
+
*
|
|
28
|
+
* @param data Data for clustering. An array of N-Dimensional points with float coordinates is needed.
|
|
29
|
+
* Examples of this array can be:
|
|
30
|
+
* Mat points(count, 2, CV_32F);Mat points(count, 1, CV_32FC2);Mat points(1, count,
|
|
31
|
+
* CV_32FC2);std::vector<cv::Point2f> points(sampleCount);
|
|
32
|
+
*
|
|
33
|
+
* @param K Number of clusters to split the set by.
|
|
34
|
+
*
|
|
35
|
+
* @param bestLabels Input/output integer array that stores the cluster indices for every sample.
|
|
36
|
+
*
|
|
37
|
+
* @param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or
|
|
38
|
+
* the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster
|
|
39
|
+
* centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
|
|
40
|
+
*
|
|
41
|
+
* @param attempts Flag to specify the number of times the algorithm is executed using different
|
|
42
|
+
* initial labellings. The algorithm returns the labels that yield the best compactness (see the last
|
|
43
|
+
* function parameter).
|
|
44
|
+
*
|
|
45
|
+
* @param flags Flag that can take values of cv::KmeansFlags
|
|
46
|
+
*
|
|
47
|
+
* @param centers Output matrix of the cluster centers, one row per each cluster center.
|
|
48
|
+
*/
|
|
49
|
+
export declare function kmeans(
|
|
50
|
+
data: InputArray,
|
|
51
|
+
K: int,
|
|
52
|
+
bestLabels: InputOutputArray,
|
|
53
|
+
criteria: TermCriteria,
|
|
54
|
+
attempts: int,
|
|
55
|
+
flags: int,
|
|
56
|
+
centers?: OutputArray,
|
|
57
|
+
): double;
|
|
58
|
+
|
|
59
|
+
/**
|
|
60
|
+
* The generic function partition implements an `$O(N^2)$` algorithm for splitting a set of `$N$`
|
|
61
|
+
* elements into one or more equivalency classes, as described in . The function returns the number of
|
|
62
|
+
* equivalency classes.
|
|
63
|
+
*
|
|
64
|
+
* @param _vec Set of elements stored as a vector.
|
|
65
|
+
*
|
|
66
|
+
* @param labels Output vector of labels. It contains as many elements as vec. Each label labels[i] is
|
|
67
|
+
* a 0-based cluster index of vec[i].
|
|
68
|
+
*
|
|
69
|
+
* @param predicate Equivalence predicate (pointer to a boolean function of two arguments or an
|
|
70
|
+
* instance of the class that has the method bool operator()(const _Tp& a, const _Tp& b) ). The
|
|
71
|
+
* predicate returns true when the elements are certainly in the same class, and returns false if they
|
|
72
|
+
* may or may not be in the same class.
|
|
73
|
+
*/
|
|
74
|
+
export declare function partition(
|
|
75
|
+
arg119: any,
|
|
76
|
+
arg120: any,
|
|
77
|
+
_vec: any,
|
|
78
|
+
labels: any,
|
|
79
|
+
predicate?: any,
|
|
80
|
+
): any;
|
|
@@ -0,0 +1,159 @@
|
|
|
1
|
+
import type { cvhalDFT, int, size_t, uchar } from "./_types";
|
|
2
|
+
/*
|
|
3
|
+
* # Interface
|
|
4
|
+
* Define your functions to override default implementations:
|
|
5
|
+
*
|
|
6
|
+
* ```cpp
|
|
7
|
+
* #undef hal_add8u
|
|
8
|
+
* #define hal_add8u my_add8u
|
|
9
|
+
* ```
|
|
10
|
+
*/
|
|
11
|
+
/**
|
|
12
|
+
* @param context pointer to context storing all necessary data
|
|
13
|
+
*
|
|
14
|
+
* @param src_data source image data and step
|
|
15
|
+
*
|
|
16
|
+
* @param dst_data destination image data and step
|
|
17
|
+
*/
|
|
18
|
+
export declare function hal_ni_dct2D(
|
|
19
|
+
context: cvhalDFT,
|
|
20
|
+
src_data: uchar,
|
|
21
|
+
src_step: size_t,
|
|
22
|
+
dst_data: uchar,
|
|
23
|
+
dst_step: size_t,
|
|
24
|
+
): cvhalDFT;
|
|
25
|
+
|
|
26
|
+
/**
|
|
27
|
+
* @param context pointer to context storing all necessary data
|
|
28
|
+
*/
|
|
29
|
+
export declare function hal_ni_dctFree2D(context: cvhalDFT): cvhalDFT;
|
|
30
|
+
|
|
31
|
+
/**
|
|
32
|
+
* @param context double pointer to context storing all necessary data
|
|
33
|
+
*
|
|
34
|
+
* @param width image dimensions
|
|
35
|
+
*
|
|
36
|
+
* @param depth image type (CV_32F or CV64F)
|
|
37
|
+
*
|
|
38
|
+
* @param flags algorithm options (combination of CV_HAL_DFT_INVERSE, ...)
|
|
39
|
+
*/
|
|
40
|
+
export declare function hal_ni_dctInit2D(
|
|
41
|
+
context: cvhalDFT,
|
|
42
|
+
width: int,
|
|
43
|
+
height: int,
|
|
44
|
+
depth: int,
|
|
45
|
+
flags: int,
|
|
46
|
+
): cvhalDFT;
|
|
47
|
+
|
|
48
|
+
/**
|
|
49
|
+
* @param context pointer to context storing all necessary data
|
|
50
|
+
*
|
|
51
|
+
* @param src source data
|
|
52
|
+
*
|
|
53
|
+
* @param dst destination data
|
|
54
|
+
*/
|
|
55
|
+
export declare function hal_ni_dft1D(
|
|
56
|
+
context: cvhalDFT,
|
|
57
|
+
src: uchar,
|
|
58
|
+
dst: uchar,
|
|
59
|
+
): cvhalDFT;
|
|
60
|
+
|
|
61
|
+
/**
|
|
62
|
+
* @param context pointer to context storing all necessary data
|
|
63
|
+
*
|
|
64
|
+
* @param src_data source image data and step
|
|
65
|
+
*
|
|
66
|
+
* @param dst_data destination image data and step
|
|
67
|
+
*/
|
|
68
|
+
export declare function hal_ni_dft2D(
|
|
69
|
+
context: cvhalDFT,
|
|
70
|
+
src_data: uchar,
|
|
71
|
+
src_step: size_t,
|
|
72
|
+
dst_data: uchar,
|
|
73
|
+
dst_step: size_t,
|
|
74
|
+
): cvhalDFT;
|
|
75
|
+
|
|
76
|
+
/**
|
|
77
|
+
* @param context pointer to context storing all necessary data
|
|
78
|
+
*/
|
|
79
|
+
export declare function hal_ni_dftFree1D(context: cvhalDFT): cvhalDFT;
|
|
80
|
+
|
|
81
|
+
/**
|
|
82
|
+
* @param context pointer to context storing all necessary data
|
|
83
|
+
*/
|
|
84
|
+
export declare function hal_ni_dftFree2D(context: cvhalDFT): cvhalDFT;
|
|
85
|
+
|
|
86
|
+
/**
|
|
87
|
+
* @param context double pointer to context storing all necessary data
|
|
88
|
+
*
|
|
89
|
+
* @param len transformed array length
|
|
90
|
+
*
|
|
91
|
+
* @param count estimated transformation count
|
|
92
|
+
*
|
|
93
|
+
* @param depth array type (CV_32F or CV_64F)
|
|
94
|
+
*
|
|
95
|
+
* @param flags algorithm options (combination of CV_HAL_DFT_INVERSE, CV_HAL_DFT_SCALE, ...)
|
|
96
|
+
*
|
|
97
|
+
* @param needBuffer pointer to boolean variable, if valid pointer provided, then variable value should
|
|
98
|
+
* be set to true to signal that additional memory buffer is needed for operations
|
|
99
|
+
*/
|
|
100
|
+
export declare function hal_ni_dftInit1D(
|
|
101
|
+
context: cvhalDFT,
|
|
102
|
+
len: int,
|
|
103
|
+
count: int,
|
|
104
|
+
depth: int,
|
|
105
|
+
flags: int,
|
|
106
|
+
needBuffer: any,
|
|
107
|
+
): cvhalDFT;
|
|
108
|
+
|
|
109
|
+
/**
|
|
110
|
+
* @param context double pointer to context storing all necessary data
|
|
111
|
+
*
|
|
112
|
+
* @param width image dimensions
|
|
113
|
+
*
|
|
114
|
+
* @param depth image type (CV_32F or CV64F)
|
|
115
|
+
*
|
|
116
|
+
* @param src_channels number of channels in input image
|
|
117
|
+
*
|
|
118
|
+
* @param dst_channels number of channels in output image
|
|
119
|
+
*
|
|
120
|
+
* @param flags algorithm options (combination of CV_HAL_DFT_INVERSE, ...)
|
|
121
|
+
*
|
|
122
|
+
* @param nonzero_rows number of nonzero rows in image, can be used for optimization
|
|
123
|
+
*/
|
|
124
|
+
export declare function hal_ni_dftInit2D(
|
|
125
|
+
context: cvhalDFT,
|
|
126
|
+
width: int,
|
|
127
|
+
height: int,
|
|
128
|
+
depth: int,
|
|
129
|
+
src_channels: int,
|
|
130
|
+
dst_channels: int,
|
|
131
|
+
flags: int,
|
|
132
|
+
nonzero_rows: int,
|
|
133
|
+
): cvhalDFT;
|
|
134
|
+
|
|
135
|
+
/**
|
|
136
|
+
* @param src_data Source image
|
|
137
|
+
*
|
|
138
|
+
* @param width Source image dimensions
|
|
139
|
+
*
|
|
140
|
+
* @param depth Depth of source image
|
|
141
|
+
*
|
|
142
|
+
* @param minVal Pointer to the returned global minimum and maximum in an array.
|
|
143
|
+
*
|
|
144
|
+
* @param minIdx Pointer to the returned minimum and maximum location.
|
|
145
|
+
*
|
|
146
|
+
* @param mask Specified array region.
|
|
147
|
+
*/
|
|
148
|
+
export declare function hal_ni_minMaxIdx(
|
|
149
|
+
src_data: uchar,
|
|
150
|
+
src_step: size_t,
|
|
151
|
+
width: int,
|
|
152
|
+
height: int,
|
|
153
|
+
depth: int,
|
|
154
|
+
minVal: any,
|
|
155
|
+
maxVal: any,
|
|
156
|
+
minIdx: any,
|
|
157
|
+
maxIdx: any,
|
|
158
|
+
mask: uchar,
|
|
159
|
+
): uchar;
|