@opencvjs/types 4.10.0-release.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE +201 -0
- package/README.md +23 -0
- package/lib/index.d.ts +2 -0
- package/lib/opencv/Affine3.d.ts +206 -0
- package/lib/opencv/Algorithm.d.ts +126 -0
- package/lib/opencv/AutoBuffer.d.ts +50 -0
- package/lib/opencv/BFMatcher.d.ts +37 -0
- package/lib/opencv/BOWTrainer.d.ts +43 -0
- package/lib/opencv/CascadeClassifier.d.ts +153 -0
- package/lib/opencv/DescriptorMatcher.d.ts +236 -0
- package/lib/opencv/DynamicBitset.d.ts +68 -0
- package/lib/opencv/Exception.d.ts +54 -0
- package/lib/opencv/Feature2D.d.ts +20 -0
- package/lib/opencv/FlannBasedMatcher.d.ts +57 -0
- package/lib/opencv/HOGDescriptor.d.ts +401 -0
- package/lib/opencv/Logger.d.ts +34 -0
- package/lib/opencv/LshTable.d.ts +81 -0
- package/lib/opencv/Mat.d.ts +1793 -0
- package/lib/opencv/MatExpr.d.ts +107 -0
- package/lib/opencv/MatOp.d.ts +72 -0
- package/lib/opencv/Matx.d.ts +228 -0
- package/lib/opencv/Node.d.ts +33 -0
- package/lib/opencv/ORB.d.ts +23 -0
- package/lib/opencv/PCA.d.ts +198 -0
- package/lib/opencv/RotatedRect.d.ts +73 -0
- package/lib/opencv/Tracker.d.ts +1 -0
- package/lib/opencv/TrackerMIL.d.ts +3 -0
- package/lib/opencv/_types.d.ts +48 -0
- package/lib/opencv/calib3d.d.ts +2937 -0
- package/lib/opencv/core_array.d.ts +3102 -0
- package/lib/opencv/core_cluster.d.ts +80 -0
- package/lib/opencv/core_hal_interface.d.ts +159 -0
- package/lib/opencv/core_utils.d.ts +748 -0
- package/lib/opencv/dnn.d.ts +505 -0
- package/lib/opencv/features2d_draw.d.ts +114 -0
- package/lib/opencv/fisheye.d.ts +26 -0
- package/lib/opencv/helpers.d.ts +274 -0
- package/lib/opencv/imgproc_color_conversions.d.ts +527 -0
- package/lib/opencv/imgproc_draw.d.ts +732 -0
- package/lib/opencv/imgproc_feature.d.ts +681 -0
- package/lib/opencv/imgproc_filter.d.ts +918 -0
- package/lib/opencv/imgproc_hist.d.ts +399 -0
- package/lib/opencv/imgproc_misc.d.ts +616 -0
- package/lib/opencv/imgproc_object.d.ts +58 -0
- package/lib/opencv/imgproc_shape.d.ts +724 -0
- package/lib/opencv/imgproc_transform.d.ts +574 -0
- package/lib/opencv/missing.d.ts +58 -0
- package/lib/opencv/objdetect.d.ts +103 -0
- package/lib/opencv/photo_inpaint.d.ts +39 -0
- package/lib/opencv/softdouble.d.ts +71 -0
- package/lib/opencv/softfloat.d.ts +71 -0
- package/lib/opencv/video_track.d.ts +370 -0
- package/package.json +18 -0
- package/tsconfig.json +15 -0
|
@@ -0,0 +1,401 @@
|
|
|
1
|
+
import type {
|
|
2
|
+
bool,
|
|
3
|
+
double,
|
|
4
|
+
FileNode,
|
|
5
|
+
FileStorage,
|
|
6
|
+
float,
|
|
7
|
+
InputArray,
|
|
8
|
+
InputOutputArray,
|
|
9
|
+
int,
|
|
10
|
+
Point,
|
|
11
|
+
Size,
|
|
12
|
+
size_t,
|
|
13
|
+
UMat,
|
|
14
|
+
} from "./_types";
|
|
15
|
+
|
|
16
|
+
/**
|
|
17
|
+
* the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs Dalal2005 .
|
|
18
|
+
*
|
|
19
|
+
* useful links:
|
|
20
|
+
*
|
|
21
|
+
* Source:
|
|
22
|
+
* [opencv2/objdetect.hpp](https://github.com/opencv/opencv/tree/master/modules/core/include/opencv2/objdetect.hpp#L377).
|
|
23
|
+
*
|
|
24
|
+
*/
|
|
25
|
+
export declare class HOGDescriptor {
|
|
26
|
+
public blockSize: Size;
|
|
27
|
+
|
|
28
|
+
public blockStride: Size;
|
|
29
|
+
|
|
30
|
+
public cellSize: Size;
|
|
31
|
+
|
|
32
|
+
public derivAperture: int;
|
|
33
|
+
|
|
34
|
+
public free_coef: float;
|
|
35
|
+
|
|
36
|
+
public gammaCorrection: bool;
|
|
37
|
+
|
|
38
|
+
public histogramNormType: any;
|
|
39
|
+
|
|
40
|
+
public L2HysThreshold: double;
|
|
41
|
+
|
|
42
|
+
public nbins: int;
|
|
43
|
+
|
|
44
|
+
public nlevels: int;
|
|
45
|
+
|
|
46
|
+
public oclSvmDetector: UMat;
|
|
47
|
+
|
|
48
|
+
public signedGradient: bool;
|
|
49
|
+
|
|
50
|
+
public svmDetector: any;
|
|
51
|
+
|
|
52
|
+
public winSigma: double;
|
|
53
|
+
|
|
54
|
+
public winSize: Size;
|
|
55
|
+
|
|
56
|
+
/**
|
|
57
|
+
* aqual to [HOGDescriptor](Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )
|
|
58
|
+
*/
|
|
59
|
+
public constructor();
|
|
60
|
+
|
|
61
|
+
/**
|
|
62
|
+
* This is an overloaded member function, provided for convenience. It differs from the above
|
|
63
|
+
* function only in what argument(s) it accepts.
|
|
64
|
+
*
|
|
65
|
+
* @param _winSize sets winSize with given value.
|
|
66
|
+
*
|
|
67
|
+
* @param _blockSize sets blockSize with given value.
|
|
68
|
+
*
|
|
69
|
+
* @param _blockStride sets blockStride with given value.
|
|
70
|
+
*
|
|
71
|
+
* @param _cellSize sets cellSize with given value.
|
|
72
|
+
*
|
|
73
|
+
* @param _nbins sets nbins with given value.
|
|
74
|
+
*
|
|
75
|
+
* @param _derivAperture sets derivAperture with given value.
|
|
76
|
+
*
|
|
77
|
+
* @param _winSigma sets winSigma with given value.
|
|
78
|
+
*
|
|
79
|
+
* @param _histogramNormType sets histogramNormType with given value.
|
|
80
|
+
*
|
|
81
|
+
* @param _L2HysThreshold sets L2HysThreshold with given value.
|
|
82
|
+
*
|
|
83
|
+
* @param _gammaCorrection sets gammaCorrection with given value.
|
|
84
|
+
*
|
|
85
|
+
* @param _nlevels sets nlevels with given value.
|
|
86
|
+
*
|
|
87
|
+
* @param _signedGradient sets signedGradient with given value.
|
|
88
|
+
*/
|
|
89
|
+
public constructor(
|
|
90
|
+
_winSize: Size,
|
|
91
|
+
_blockSize: Size,
|
|
92
|
+
_blockStride: Size,
|
|
93
|
+
_cellSize: Size,
|
|
94
|
+
_nbins: int,
|
|
95
|
+
_derivAperture?: int,
|
|
96
|
+
_winSigma?: double,
|
|
97
|
+
_histogramNormType?: any,
|
|
98
|
+
_L2HysThreshold?: double,
|
|
99
|
+
_gammaCorrection?: bool,
|
|
100
|
+
_nlevels?: int,
|
|
101
|
+
_signedGradient?: bool,
|
|
102
|
+
);
|
|
103
|
+
|
|
104
|
+
/**
|
|
105
|
+
* This is an overloaded member function, provided for convenience. It differs from the above
|
|
106
|
+
* function only in what argument(s) it accepts.
|
|
107
|
+
*
|
|
108
|
+
* @param filename The file name containing HOGDescriptor properties and coefficients for the linear
|
|
109
|
+
* SVM classifier.
|
|
110
|
+
*/
|
|
111
|
+
public constructor(filename: String);
|
|
112
|
+
|
|
113
|
+
/**
|
|
114
|
+
* This is an overloaded member function, provided for convenience. It differs from the above
|
|
115
|
+
* function only in what argument(s) it accepts.
|
|
116
|
+
*
|
|
117
|
+
* @param d the HOGDescriptor which cloned to create a new one.
|
|
118
|
+
*/
|
|
119
|
+
public constructor(d: HOGDescriptor);
|
|
120
|
+
|
|
121
|
+
public checkDetectorSize(): bool;
|
|
122
|
+
|
|
123
|
+
/**
|
|
124
|
+
* @param img Matrix of the type CV_8U containing an image where HOG features will be calculated.
|
|
125
|
+
*
|
|
126
|
+
* @param descriptors Matrix of the type CV_32F
|
|
127
|
+
*
|
|
128
|
+
* @param winStride Window stride. It must be a multiple of block stride.
|
|
129
|
+
*
|
|
130
|
+
* @param padding Padding
|
|
131
|
+
*
|
|
132
|
+
* @param locations Vector of Point
|
|
133
|
+
*/
|
|
134
|
+
public compute(
|
|
135
|
+
img: InputArray,
|
|
136
|
+
descriptors: any,
|
|
137
|
+
winStride?: Size,
|
|
138
|
+
padding?: Size,
|
|
139
|
+
locations?: Point,
|
|
140
|
+
): InputArray;
|
|
141
|
+
|
|
142
|
+
/**
|
|
143
|
+
* @param img Matrix contains the image to be computed
|
|
144
|
+
*
|
|
145
|
+
* @param grad Matrix of type CV_32FC2 contains computed gradients
|
|
146
|
+
*
|
|
147
|
+
* @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations
|
|
148
|
+
*
|
|
149
|
+
* @param paddingTL Padding from top-left
|
|
150
|
+
*
|
|
151
|
+
* @param paddingBR Padding from bottom-right
|
|
152
|
+
*/
|
|
153
|
+
public computeGradient(
|
|
154
|
+
img: InputArray,
|
|
155
|
+
grad: InputOutputArray,
|
|
156
|
+
angleOfs: InputOutputArray,
|
|
157
|
+
paddingTL?: Size,
|
|
158
|
+
paddingBR?: Size,
|
|
159
|
+
): InputArray;
|
|
160
|
+
|
|
161
|
+
/**
|
|
162
|
+
* @param c cloned HOGDescriptor
|
|
163
|
+
*/
|
|
164
|
+
public copyTo(c: HOGDescriptor): HOGDescriptor;
|
|
165
|
+
|
|
166
|
+
/**
|
|
167
|
+
* @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
|
|
168
|
+
*
|
|
169
|
+
* @param foundLocations Vector of point where each point contains left-top corner point of detected
|
|
170
|
+
* object boundaries.
|
|
171
|
+
*
|
|
172
|
+
* @param weights Vector that will contain confidence values for each detected object.
|
|
173
|
+
*
|
|
174
|
+
* @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually
|
|
175
|
+
* it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
|
|
176
|
+
* the free coefficient is omitted (which is allowed), you can specify it manually here.
|
|
177
|
+
*
|
|
178
|
+
* @param winStride Window stride. It must be a multiple of block stride.
|
|
179
|
+
*
|
|
180
|
+
* @param padding Padding
|
|
181
|
+
*
|
|
182
|
+
* @param searchLocations Vector of Point includes set of requested locations to be evaluated.
|
|
183
|
+
*/
|
|
184
|
+
public detect(
|
|
185
|
+
img: InputArray,
|
|
186
|
+
foundLocations: any,
|
|
187
|
+
weights: any,
|
|
188
|
+
hitThreshold?: double,
|
|
189
|
+
winStride?: Size,
|
|
190
|
+
padding?: Size,
|
|
191
|
+
searchLocations?: Point,
|
|
192
|
+
): InputArray;
|
|
193
|
+
|
|
194
|
+
/**
|
|
195
|
+
* @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
|
|
196
|
+
*
|
|
197
|
+
* @param foundLocations Vector of point where each point contains left-top corner point of detected
|
|
198
|
+
* object boundaries.
|
|
199
|
+
*
|
|
200
|
+
* @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually
|
|
201
|
+
* it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
|
|
202
|
+
* the free coefficient is omitted (which is allowed), you can specify it manually here.
|
|
203
|
+
*
|
|
204
|
+
* @param winStride Window stride. It must be a multiple of block stride.
|
|
205
|
+
*
|
|
206
|
+
* @param padding Padding
|
|
207
|
+
*
|
|
208
|
+
* @param searchLocations Vector of Point includes locations to search.
|
|
209
|
+
*/
|
|
210
|
+
public detect(
|
|
211
|
+
img: InputArray,
|
|
212
|
+
foundLocations: any,
|
|
213
|
+
hitThreshold?: double,
|
|
214
|
+
winStride?: Size,
|
|
215
|
+
padding?: Size,
|
|
216
|
+
searchLocations?: Point,
|
|
217
|
+
): InputArray;
|
|
218
|
+
|
|
219
|
+
/**
|
|
220
|
+
* @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
|
|
221
|
+
*
|
|
222
|
+
* @param foundLocations Vector of rectangles where each rectangle contains the detected object.
|
|
223
|
+
*
|
|
224
|
+
* @param foundWeights Vector that will contain confidence values for each detected object.
|
|
225
|
+
*
|
|
226
|
+
* @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually
|
|
227
|
+
* it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
|
|
228
|
+
* the free coefficient is omitted (which is allowed), you can specify it manually here.
|
|
229
|
+
*
|
|
230
|
+
* @param winStride Window stride. It must be a multiple of block stride.
|
|
231
|
+
*
|
|
232
|
+
* @param padding Padding
|
|
233
|
+
*
|
|
234
|
+
* @param scale Coefficient of the detection window increase.
|
|
235
|
+
*
|
|
236
|
+
* @param finalThreshold Final threshold
|
|
237
|
+
*
|
|
238
|
+
* @param useMeanshiftGrouping indicates grouping algorithm
|
|
239
|
+
*/
|
|
240
|
+
public detectMultiScale(
|
|
241
|
+
img: InputArray,
|
|
242
|
+
foundLocations: any,
|
|
243
|
+
foundWeights: any,
|
|
244
|
+
hitThreshold?: double,
|
|
245
|
+
winStride?: Size,
|
|
246
|
+
padding?: Size,
|
|
247
|
+
scale?: double,
|
|
248
|
+
finalThreshold?: double,
|
|
249
|
+
useMeanshiftGrouping?: bool,
|
|
250
|
+
): InputArray;
|
|
251
|
+
|
|
252
|
+
/**
|
|
253
|
+
* @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
|
|
254
|
+
*
|
|
255
|
+
* @param foundLocations Vector of rectangles where each rectangle contains the detected object.
|
|
256
|
+
*
|
|
257
|
+
* @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually
|
|
258
|
+
* it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
|
|
259
|
+
* the free coefficient is omitted (which is allowed), you can specify it manually here.
|
|
260
|
+
*
|
|
261
|
+
* @param winStride Window stride. It must be a multiple of block stride.
|
|
262
|
+
*
|
|
263
|
+
* @param padding Padding
|
|
264
|
+
*
|
|
265
|
+
* @param scale Coefficient of the detection window increase.
|
|
266
|
+
*
|
|
267
|
+
* @param finalThreshold Final threshold
|
|
268
|
+
*
|
|
269
|
+
* @param useMeanshiftGrouping indicates grouping algorithm
|
|
270
|
+
*/
|
|
271
|
+
public detectMultiScale(
|
|
272
|
+
img: InputArray,
|
|
273
|
+
foundLocations: any,
|
|
274
|
+
hitThreshold?: double,
|
|
275
|
+
winStride?: Size,
|
|
276
|
+
padding?: Size,
|
|
277
|
+
scale?: double,
|
|
278
|
+
finalThreshold?: double,
|
|
279
|
+
useMeanshiftGrouping?: bool,
|
|
280
|
+
): InputArray;
|
|
281
|
+
|
|
282
|
+
/**
|
|
283
|
+
* @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
|
|
284
|
+
*
|
|
285
|
+
* @param foundLocations Vector of rectangles where each rectangle contains the detected object.
|
|
286
|
+
*
|
|
287
|
+
* @param locations Vector of DetectionROI
|
|
288
|
+
*
|
|
289
|
+
* @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually
|
|
290
|
+
* it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
|
|
291
|
+
* the free coefficient is omitted (which is allowed), you can specify it manually here.
|
|
292
|
+
*
|
|
293
|
+
* @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a
|
|
294
|
+
* group of rectangles to retain it.
|
|
295
|
+
*/
|
|
296
|
+
public detectMultiScaleROI(
|
|
297
|
+
img: InputArray,
|
|
298
|
+
foundLocations: any,
|
|
299
|
+
locations: any,
|
|
300
|
+
hitThreshold?: double,
|
|
301
|
+
groupThreshold?: int,
|
|
302
|
+
): InputArray;
|
|
303
|
+
|
|
304
|
+
/**
|
|
305
|
+
* @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
|
|
306
|
+
*
|
|
307
|
+
* @param locations Vector of Point
|
|
308
|
+
*
|
|
309
|
+
* @param foundLocations Vector of Point where each Point is detected object's top-left point.
|
|
310
|
+
*
|
|
311
|
+
* @param confidences confidences
|
|
312
|
+
*
|
|
313
|
+
* @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually
|
|
314
|
+
* it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
|
|
315
|
+
* the free coefficient is omitted (which is allowed), you can specify it manually here
|
|
316
|
+
*
|
|
317
|
+
* @param winStride winStride
|
|
318
|
+
*
|
|
319
|
+
* @param padding padding
|
|
320
|
+
*/
|
|
321
|
+
public detectROI(
|
|
322
|
+
img: InputArray,
|
|
323
|
+
locations: any,
|
|
324
|
+
foundLocations: any,
|
|
325
|
+
confidences: any,
|
|
326
|
+
hitThreshold?: double,
|
|
327
|
+
winStride?: any,
|
|
328
|
+
padding?: any,
|
|
329
|
+
): InputArray;
|
|
330
|
+
|
|
331
|
+
public getDescriptorSize(): size_t;
|
|
332
|
+
|
|
333
|
+
public getWinSigma(): double;
|
|
334
|
+
|
|
335
|
+
/**
|
|
336
|
+
* @param rectList Input/output vector of rectangles. Output vector includes retained and grouped
|
|
337
|
+
* rectangles. (The Python list is not modified in place.)
|
|
338
|
+
*
|
|
339
|
+
* @param weights Input/output vector of weights of rectangles. Output vector includes weights of
|
|
340
|
+
* retained and grouped rectangles. (The Python list is not modified in place.)
|
|
341
|
+
*
|
|
342
|
+
* @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a
|
|
343
|
+
* group of rectangles to retain it.
|
|
344
|
+
*
|
|
345
|
+
* @param eps Relative difference between sides of the rectangles to merge them into a group.
|
|
346
|
+
*/
|
|
347
|
+
public groupRectangles(
|
|
348
|
+
rectList: any,
|
|
349
|
+
weights: any,
|
|
350
|
+
groupThreshold: int,
|
|
351
|
+
eps: double,
|
|
352
|
+
): any;
|
|
353
|
+
|
|
354
|
+
/**
|
|
355
|
+
* @param filename Path of the file to read.
|
|
356
|
+
*
|
|
357
|
+
* @param objname The optional name of the node to read (if empty, the first top-level node will be
|
|
358
|
+
* used).
|
|
359
|
+
*/
|
|
360
|
+
public load(filename: String, objname?: String): String;
|
|
361
|
+
|
|
362
|
+
/**
|
|
363
|
+
* @param fn File node
|
|
364
|
+
*/
|
|
365
|
+
public read(fn: FileNode): FileNode;
|
|
366
|
+
|
|
367
|
+
/**
|
|
368
|
+
* @param filename File name
|
|
369
|
+
*
|
|
370
|
+
* @param objname Object name
|
|
371
|
+
*/
|
|
372
|
+
public save(filename: String, objname?: String): String;
|
|
373
|
+
|
|
374
|
+
/**
|
|
375
|
+
* @param svmdetector coefficients for the linear SVM classifier.
|
|
376
|
+
*/
|
|
377
|
+
public setSVMDetector(svmdetector: InputArray): InputArray;
|
|
378
|
+
|
|
379
|
+
/**
|
|
380
|
+
* @param fs File storage
|
|
381
|
+
*
|
|
382
|
+
* @param objname Object name
|
|
383
|
+
*/
|
|
384
|
+
public write(fs: FileStorage, objname: String): FileStorage;
|
|
385
|
+
|
|
386
|
+
public static getDaimlerPeopleDetector(): any;
|
|
387
|
+
|
|
388
|
+
public static getDefaultPeopleDetector(): any;
|
|
389
|
+
}
|
|
390
|
+
|
|
391
|
+
export declare const DEFAULT_NLEVELS: any; // initializer: = 64
|
|
392
|
+
|
|
393
|
+
export declare const DESCR_FORMAT_COL_BY_COL: DescriptorStorageFormat; // initializer:
|
|
394
|
+
|
|
395
|
+
export declare const DESCR_FORMAT_ROW_BY_ROW: DescriptorStorageFormat; // initializer:
|
|
396
|
+
|
|
397
|
+
export declare const L2Hys: HistogramNormType; // initializer: = 0
|
|
398
|
+
|
|
399
|
+
export type DescriptorStorageFormat = any;
|
|
400
|
+
|
|
401
|
+
export type HistogramNormType = any;
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
import type { int } from "./_types";
|
|
2
|
+
|
|
3
|
+
export declare class Logger {
|
|
4
|
+
public static error(fmt: any, arg121: any): int;
|
|
5
|
+
|
|
6
|
+
public static fatal(fmt: any, arg122: any): int;
|
|
7
|
+
|
|
8
|
+
public static info(fmt: any, arg123: any): int;
|
|
9
|
+
|
|
10
|
+
/**
|
|
11
|
+
* Print log message
|
|
12
|
+
*
|
|
13
|
+
* @param level Log level
|
|
14
|
+
*
|
|
15
|
+
* @param fmt Message format
|
|
16
|
+
*/
|
|
17
|
+
public static log(level: int, fmt: any, arg124: any): int;
|
|
18
|
+
|
|
19
|
+
/**
|
|
20
|
+
* Sets the logging destination
|
|
21
|
+
*
|
|
22
|
+
* @param name Filename or NULL for console
|
|
23
|
+
*/
|
|
24
|
+
public static setDestination(name: any): void;
|
|
25
|
+
|
|
26
|
+
/**
|
|
27
|
+
* Sets the logging level. All messages with lower priority will be ignored.
|
|
28
|
+
*
|
|
29
|
+
* @param level Logging level
|
|
30
|
+
*/
|
|
31
|
+
public static setLevel(level: int): void;
|
|
32
|
+
|
|
33
|
+
public static warn(fmt: any, arg125: any): int;
|
|
34
|
+
}
|
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
import type { Bucket, BucketKey, LshStats, Matrix, size_t } from "./_types";
|
|
2
|
+
|
|
3
|
+
/**
|
|
4
|
+
* Lsh hash table. As its key is a sub-feature, and as usually the size of it is pretty small, we keep
|
|
5
|
+
* it as a continuous memory array. The value is an index in the corpus of features (we keep it as an
|
|
6
|
+
* unsigned int for pure memory reasons, it could be a size_t)
|
|
7
|
+
*
|
|
8
|
+
* Source:
|
|
9
|
+
* [opencv2/flann/lsh_table.h](https://github.com/opencv/opencv/tree/master/modules/core/include/opencv2/flann/lsh_table.h#L261).
|
|
10
|
+
*
|
|
11
|
+
*/
|
|
12
|
+
export declare class LshTable {
|
|
13
|
+
/**
|
|
14
|
+
* Default constructor
|
|
15
|
+
*/
|
|
16
|
+
public constructor();
|
|
17
|
+
|
|
18
|
+
/**
|
|
19
|
+
* Default constructor Create the mask and allocate the memory
|
|
20
|
+
*
|
|
21
|
+
* @param feature_size is the size of the feature (considered as a ElementType[])
|
|
22
|
+
*
|
|
23
|
+
* @param key_size is the number of bits that are turned on in the feature
|
|
24
|
+
*/
|
|
25
|
+
public constructor(feature_size: any, key_size: any);
|
|
26
|
+
|
|
27
|
+
public constructor(feature_size: any, subsignature_size: any);
|
|
28
|
+
|
|
29
|
+
/**
|
|
30
|
+
* Add a feature to the table
|
|
31
|
+
*
|
|
32
|
+
* @param value the value to store for that feature
|
|
33
|
+
*
|
|
34
|
+
* @param feature the feature itself
|
|
35
|
+
*/
|
|
36
|
+
public add(value: any, feature: any): void;
|
|
37
|
+
|
|
38
|
+
/**
|
|
39
|
+
* Add a set of features to the table
|
|
40
|
+
*
|
|
41
|
+
* @param dataset the values to store
|
|
42
|
+
*/
|
|
43
|
+
public add(dataset: Matrix): Matrix;
|
|
44
|
+
|
|
45
|
+
/**
|
|
46
|
+
* Get a bucket given the key
|
|
47
|
+
*/
|
|
48
|
+
public getBucketFromKey(key: BucketKey): Bucket;
|
|
49
|
+
|
|
50
|
+
/**
|
|
51
|
+
* Compute the sub-signature of a feature
|
|
52
|
+
*/
|
|
53
|
+
public getKey(arg50: any): size_t;
|
|
54
|
+
|
|
55
|
+
/**
|
|
56
|
+
* Return the Subsignature of a feature
|
|
57
|
+
*
|
|
58
|
+
* @param feature the feature to analyze
|
|
59
|
+
*/
|
|
60
|
+
public getKey(feature: any): size_t;
|
|
61
|
+
|
|
62
|
+
/**
|
|
63
|
+
* Get statistics about the table
|
|
64
|
+
*/
|
|
65
|
+
public getStats(): LshStats;
|
|
66
|
+
|
|
67
|
+
public getStats(): LshStats;
|
|
68
|
+
}
|
|
69
|
+
|
|
70
|
+
export declare const kArray: SpeedLevel; // initializer:
|
|
71
|
+
|
|
72
|
+
export declare const kBitsetHash: SpeedLevel; // initializer:
|
|
73
|
+
|
|
74
|
+
export declare const kHash: SpeedLevel; // initializer:
|
|
75
|
+
|
|
76
|
+
/**
|
|
77
|
+
* defines the speed fo the implementation kArray uses a vector for storing data kBitsetHash uses a
|
|
78
|
+
* hash map but checks for the validity of a key with a bitset kHash uses a hash map only
|
|
79
|
+
*
|
|
80
|
+
*/
|
|
81
|
+
export type SpeedLevel = any;
|