@needle-tools/engine 4.7.4 → 4.8.0-next.71dbdab

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. package/dist/gltf-progressive--2HtE1d8.umd.cjs +8 -0
  2. package/dist/gltf-progressive-CeuEsYpY.min.js +8 -0
  3. package/dist/gltf-progressive-DY5t1MFv.js +1370 -0
  4. package/dist/loader.worker-8olmVOL4.js +1 -0
  5. package/dist/needle-engine.bundle-B39uCVgy.js +42600 -0
  6. package/dist/needle-engine.bundle-CvGXlxjL.umd.cjs +1607 -0
  7. package/dist/needle-engine.bundle-D598TFE7.min.js +1607 -0
  8. package/dist/needle-engine.d.ts +15 -15
  9. package/dist/needle-engine.js +591 -592
  10. package/dist/needle-engine.min.js +1 -1
  11. package/dist/needle-engine.umd.cjs +1 -1
  12. package/dist/{postprocessing-BzY0H7ry.min.js → postprocessing-ChsrvDkI.min.js} +54 -54
  13. package/dist/{postprocessing-vKBVFpSz.js → postprocessing-DElbMQgB.js} +479 -483
  14. package/dist/{postprocessing-Dw2OCMp4.umd.cjs → postprocessing-DtxaELce.umd.cjs} +66 -66
  15. package/dist/{three-examples-DUcCNw9s.umd.cjs → three-examples-BhQvv1B9.umd.cjs} +11 -11
  16. package/dist/{three-examples-tvuhV8Ne.js → three-examples-CM6Iip03.js} +23 -27
  17. package/dist/{three-examples-BMOhDaYR.min.js → three-examples-D2zemuAM.min.js} +12 -12
  18. package/dist/{three-mesh-ui-CxuWt7m-.js → three-mesh-ui-D6Mz5Yl7.js} +799 -810
  19. package/dist/three-mesh-ui-DWcMuyQ_.min.js +406 -0
  20. package/dist/three-mesh-ui-tt0buEDC.umd.cjs +406 -0
  21. package/dist/{vendor-BmYIgaS1.js → vendor-ClB-U1Hn.js} +10 -10
  22. package/dist/{vendor-Cavtu3CP.umd.cjs → vendor-bOWOWClg.umd.cjs} +1 -1
  23. package/lib/engine-components/export/usdz/extensions/behavior/Behaviour.d.ts +1 -1
  24. package/lib/engine-components/postprocessing/PostProcessingHandler.d.ts +1 -0
  25. package/lib/engine-components/postprocessing/PostProcessingHandler.js +8 -0
  26. package/lib/engine-components/postprocessing/PostProcessingHandler.js.map +1 -1
  27. package/package.json +5 -5
  28. package/plugins/vite/dependencies.js +28 -19
  29. package/plugins/vite/dependency-watcher.js +6 -1
  30. package/src/engine-components/postprocessing/PostProcessingHandler.ts +14 -0
  31. package/dist/gltf-progressive-Bgh1c4Fd.js +0 -1224
  32. package/dist/gltf-progressive-D6f5talj.min.js +0 -8
  33. package/dist/gltf-progressive-otA_hxSA.umd.cjs +0 -8
  34. package/dist/needle-engine.bundle-Bb6xVcZE.min.js +0 -1607
  35. package/dist/needle-engine.bundle-BldBPoPh.js +0 -43846
  36. package/dist/needle-engine.bundle-ByrSH-zp.umd.cjs +0 -1607
  37. package/dist/three-mesh-ui-B3p3gyUz.min.js +0 -406
  38. package/dist/three-mesh-ui-CQiIQIlA.umd.cjs +0 -406
@@ -1,21 +1,18 @@
1
- var ki = Object.defineProperty;
2
- var Qi = (e, t, i) => t in e ? ki(e, t, { enumerable: !0, configurable: !0, writable: !0, value: i }) : e[t] = i;
3
- var It = (e, t, i) => Qi(e, typeof t != "symbol" ? t + "" : t, i);
4
- import { Uniform$1 as c, Vector4 as Be, Color as N, Vector2 as p, CanvasTexture as Vi, RepeatWrapping as se, ShaderMaterial as w, NoBlending as G, WebGLRenderTarget as T, NearestFilter as P, EventDispatcher as Tt, SRGBColorSpace as y, UnsignedByteType as Y, PerspectiveCamera as Ie, BasicDepthPacking as W, REVISION as Re, LinearFilter as R, RGBADepthPacking as ae, FloatType as J, LessDepth as Rt, MeshDepthMaterial as Wi, LinearSRGBColorSpace as je, NoColorSpace as tt, DepthTexture as ye, DepthStencilFormat as Zt, UnsignedInt248Type as jt, UnsignedIntType as Le, RGBAFormat as z, Scene as dt, Matrix4 as O, Vector3 as L, HalfFloatType as $, Data3DTexture as Xe, Loader as St, LoadingManager as Ne, FileLoader as Jt, ClampToEdgeWrapping as st, DataTexture as it, RedFormat as rt, MeshNormalMaterial as Yi, BackSide as ke, DoubleSide as Qe, FrontSide as Ki, Camera as Xi, Mesh as qt, Texture as Je, EqualDepth as vt, NotEqualDepth as _t, LinearMipmapLinearFilter as Zi, GreaterDepth as ji, GreaterEqualDepth as Ji, LessEqualDepth as qi, AlwaysDepth as _i, NeverDepth as $i, Material as $t, BufferGeometry as ei, BufferAttribute as qe, RGFormat as er, DepthFormat as bt, OrthographicCamera as tr, Sphere as ir } from "./three-DrqIzZTH.js";
5
- import { Pass as rr } from "./three-examples-tvuhV8Ne.js";
1
+ import { Uniform$1 as c, Vector4 as Be, Color as N, Vector2 as p, CanvasTexture as Gi, RepeatWrapping as se, ShaderMaterial as w, NoBlending as G, WebGLRenderTarget as T, NearestFilter as P, EventDispatcher as Tt, SRGBColorSpace as y, UnsignedByteType as Y, PerspectiveCamera as Ie, BasicDepthPacking as W, REVISION as Re, LinearFilter as R, RGBADepthPacking as ae, FloatType as J, LessDepth as It, MeshDepthMaterial as ki, LinearSRGBColorSpace as je, NoColorSpace as tt, DepthTexture as ye, DepthStencilFormat as Xt, UnsignedInt248Type as Zt, UnsignedIntType as Le, RGBAFormat as z, Scene as dt, Matrix4 as O, Vector3 as L, HalfFloatType as $, Data3DTexture as Xe, Loader as St, LoadingManager as Ne, FileLoader as jt, ClampToEdgeWrapping as st, DataTexture as it, RedFormat as rt, MeshNormalMaterial as Qi, BackSide as ke, DoubleSide as Qe, FrontSide as Vi, Camera as Wi, Mesh as Jt, Texture as Je, EqualDepth as vt, NotEqualDepth as qt, LinearMipmapLinearFilter as Yi, GreaterDepth as Ki, GreaterEqualDepth as Xi, LessEqualDepth as Zi, AlwaysDepth as ji, NeverDepth as Ji, Material as _t, BufferGeometry as $t, BufferAttribute as qe, RGFormat as qi, DepthFormat as Rt, OrthographicCamera as _i, Sphere as $i } from "./three-DrqIzZTH.js";
2
+ import { Pass as er } from "./three-examples-CM6Iip03.js";
6
3
  /**
7
4
  * postprocessing v6.37.7 build Mon Aug 04 2025
8
5
  * https://github.com/pmndrs/postprocessing
9
6
  * Copyright 2015-2025 Raoul van Rüschen
10
7
  * @license Zlib
11
8
  */
12
- var ar = "6.37.7", sr = class {
9
+ var tr = "6.37.7", ir = class {
13
10
  /**
14
11
  * Frees internal resources.
15
12
  */
16
13
  dispose() {
17
14
  }
18
- }, nt = 1 / 1e3, nr = 1e3, ti = class {
15
+ }, nt = 1 / 1e3, rr = 1e3, ei = class {
19
16
  /**
20
17
  * Constructs a new timer.
21
18
  */
@@ -44,7 +41,7 @@ var ar = "6.37.7", sr = class {
44
41
  return this._fixedDelta * nt;
45
42
  }
46
43
  set fixedDelta(e) {
47
- this._fixedDelta = e * nr;
44
+ this._fixedDelta = e * rr;
48
45
  }
49
46
  get elapsed() {
50
47
  return this._elapsed * nt;
@@ -75,8 +72,8 @@ var ar = "6.37.7", sr = class {
75
72
  dispose() {
76
73
  this.autoReset = !1;
77
74
  }
78
- }, or = /* @__PURE__ */ (() => {
79
- const e = new Float32Array([-1, -1, 0, 3, -1, 0, -1, 3, 0]), t = new Float32Array([0, 0, 2, 0, 0, 2]), i = new ei();
75
+ }, ar = /* @__PURE__ */ (() => {
76
+ const e = new Float32Array([-1, -1, 0, 3, -1, 0, -1, 3, 0]), t = new Float32Array([0, 0, 2, 0, 0, 2]), i = new $t();
80
77
  return i.setAttribute("position", new qe(e, 3)), i.setAttribute("uv", new qe(t, 2)), i;
81
78
  })(), H = class pt {
82
79
  /**
@@ -88,7 +85,7 @@ var ar = "6.37.7", sr = class {
88
85
  * @internal
89
86
  */
90
87
  static get fullscreenGeometry() {
91
- return or;
88
+ return ar;
92
89
  }
93
90
  /**
94
91
  * Constructs a new pass.
@@ -97,7 +94,7 @@ var ar = "6.37.7", sr = class {
97
94
  * @param {Scene} [scene] - The scene to render. The default scene contains a single mesh that fills the screen.
98
95
  * @param {Camera} [camera] - A camera. Fullscreen effect passes don't require a camera.
99
96
  */
100
- constructor(t = "Pass", i = new dt(), r = new Xi()) {
97
+ constructor(t = "Pass", i = new dt(), r = new Wi()) {
101
98
  this.name = t, this.renderer = null, this.scene = i, this.camera = r, this.screen = null, this.rtt = !0, this.needsSwap = !0, this.needsDepthTexture = !1, this.enabled = !0;
102
99
  }
103
100
  /**
@@ -167,7 +164,7 @@ var ar = "6.37.7", sr = class {
167
164
  }
168
165
  set fullscreenMaterial(t) {
169
166
  let i = this.screen;
170
- i !== null ? i.material = t : (i = new qt(pt.fullscreenGeometry, t), i.frustumCulled = !1, this.scene === null && (this.scene = new dt()), this.scene.add(i), this.screen = i);
167
+ i !== null ? i.material = t : (i = new Jt(pt.fullscreenGeometry, t), i.frustumCulled = !1, this.scene === null && (this.scene = new dt()), this.scene.add(i), this.screen = i);
171
168
  }
172
169
  /**
173
170
  * Returns the current fullscreen material.
@@ -254,11 +251,11 @@ var ar = "6.37.7", sr = class {
254
251
  dispose() {
255
252
  for (const t of Object.keys(this)) {
256
253
  const i = this[t];
257
- (i instanceof T || i instanceof $t || i instanceof Je || i instanceof pt) && this[t].dispose();
254
+ (i instanceof T || i instanceof _t || i instanceof Je || i instanceof pt) && this[t].dispose();
258
255
  }
259
256
  this.fullscreenMaterial !== null && this.fullscreenMaterial.dispose();
260
257
  }
261
- }, ii = class extends H {
258
+ }, ti = class extends H {
262
259
  /**
263
260
  * Constructs a new clear mask pass.
264
261
  */
@@ -278,7 +275,7 @@ var ar = "6.37.7", sr = class {
278
275
  const n = e.state.buffers.stencil;
279
276
  n.setLocked(!1), n.setTest(!1);
280
277
  }
281
- }, lr = `#include <common>
278
+ }, sr = `#include <common>
282
279
  #include <dithering_pars_fragment>
283
280
  #ifdef FRAMEBUFFER_PRECISION_HIGH
284
281
  uniform mediump sampler2D inputBuffer;
@@ -303,7 +300,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
303
300
  toneMapped: !1,
304
301
  depthWrite: !1,
305
302
  depthTest: !1,
306
- fragmentShader: lr,
303
+ fragmentShader: sr,
307
304
  vertexShader: ce
308
305
  });
309
306
  }
@@ -426,7 +423,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
426
423
  initialize(e, t, i) {
427
424
  i !== void 0 && (this.renderTarget.texture.type = i, i !== Y ? this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1" : e !== null && e.outputColorSpace === y && (this.renderTarget.texture.colorSpace = y));
428
425
  }
429
- }, Ut = /* @__PURE__ */ new N(), ge = class extends H {
426
+ }, bt = /* @__PURE__ */ new N(), ge = class extends H {
430
427
  /**
431
428
  * Constructs a new clear pass.
432
429
  *
@@ -494,9 +491,9 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
494
491
  */
495
492
  render(e, t, i, r, a) {
496
493
  const n = this.overrideClearColor, s = this.overrideClearAlpha, o = e.getClearAlpha(), l = n !== null, u = s >= 0;
497
- l ? (e.getClearColor(Ut), e.setClearColor(n, u ? s : o)) : u && e.setClearAlpha(s), e.setRenderTarget(this.renderToScreen ? null : t), e.clear(this.color, this.depth, this.stencil), l ? e.setClearColor(Ut, o) : u && e.setClearAlpha(o);
494
+ l ? (e.getClearColor(bt), e.setClearColor(n, u ? s : o)) : u && e.setClearAlpha(s), e.setRenderTarget(this.renderToScreen ? null : t), e.clear(this.color, this.depth, this.stencil), l ? e.setClearColor(bt, o) : u && e.setClearAlpha(o);
498
495
  }
499
- }, ri = class extends H {
496
+ }, ii = class extends H {
500
497
  /**
501
498
  * Constructs a new mask pass.
502
499
  *
@@ -575,7 +572,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
575
572
  const n = e.getContext(), s = e.state.buffers, o = this.scene, l = this.camera, u = this.clearPass, f = this.inverted ? 0 : 1, h = 1 - f;
576
573
  s.color.setMask(!1), s.depth.setMask(!1), s.color.setLocked(!0), s.depth.setLocked(!0), s.stencil.setTest(!0), s.stencil.setOp(n.REPLACE, n.REPLACE, n.REPLACE), s.stencil.setFunc(n.ALWAYS, f, 4294967295), s.stencil.setClear(h), s.stencil.setLocked(!0), this.clearPass.enabled && (this.renderToScreen ? u.render(e, null) : (u.render(e, t), u.render(e, i))), this.renderToScreen ? (e.setRenderTarget(null), e.render(o, l)) : (e.setRenderTarget(t), e.render(o, l), e.setRenderTarget(i), e.render(o, l)), s.color.setLocked(!1), s.depth.setLocked(!1), s.stencil.setLocked(!1), s.stencil.setFunc(n.EQUAL, 1, 4294967295), s.stencil.setOp(n.KEEP, n.KEEP, n.KEEP), s.stencil.setLocked(!0);
577
574
  }
578
- }, ur = class {
575
+ }, nr = class {
579
576
  /**
580
577
  * Constructs a new effect composer.
581
578
  *
@@ -593,7 +590,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
593
590
  multisampling: r = 0,
594
591
  frameBufferType: a
595
592
  } = {}) {
596
- this.renderer = null, this.inputBuffer = this.createBuffer(t, i, a, r), this.outputBuffer = this.inputBuffer.clone(), this.copyPass = new _e(), this.depthTexture = null, this.passes = [], this.timer = new ti(), this.autoRenderToScreen = !0, this.setRenderer(e);
593
+ this.renderer = null, this.inputBuffer = this.createBuffer(t, i, a, r), this.outputBuffer = this.inputBuffer.clone(), this.copyPass = new _e(), this.depthTexture = null, this.passes = [], this.timer = new ei(), this.autoRenderToScreen = !0, this.setRenderer(e);
597
594
  }
598
595
  /**
599
596
  * The current amount of samples used for multisample anti-aliasing.
@@ -677,7 +674,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
677
674
  */
678
675
  createDepthTexture() {
679
676
  const e = this.depthTexture = new ye();
680
- return this.inputBuffer.depthTexture = e, this.inputBuffer.dispose(), this.inputBuffer.stencilBuffer ? (e.format = Zt, e.type = jt) : e.type = Le, e;
677
+ return this.inputBuffer.depthTexture = e, this.inputBuffer.dispose(), this.inputBuffer.stencilBuffer ? (e.format = Xt, e.type = Zt) : e.type = Le, e;
681
678
  }
682
679
  /**
683
680
  * Deletes the current depth texture.
@@ -777,7 +774,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
777
774
  let r = this.inputBuffer, a = this.outputBuffer, n = !1, s, o, l;
778
775
  e === void 0 && (this.timer.update(), e = this.timer.getDelta());
779
776
  for (const u of this.passes)
780
- u.enabled && (u.render(t, r, a, e, n), u.needsSwap && (n && (i.renderToScreen = u.renderToScreen, s = t.getContext(), o = t.state.buffers.stencil, o.setFunc(s.NOTEQUAL, 1, 4294967295), i.render(t, r, a, e, n), o.setFunc(s.EQUAL, 1, 4294967295)), l = r, r = a, a = l), u instanceof ri ? n = !0 : u instanceof ii && (n = !1));
777
+ u.enabled && (u.render(t, r, a, e, n), u.needsSwap && (n && (i.renderToScreen = u.renderToScreen, s = t.getContext(), o = t.state.buffers.stencil, o.setFunc(s.NOTEQUAL, 1, 4294967295), i.render(t, r, a, e, n), o.setFunc(s.EQUAL, 1, 4294967295)), l = r, r = a, a = l), u instanceof ii ? n = !0 : u instanceof ti && (n = !1));
781
778
  }
782
779
  /**
783
780
  * Sets the size of the buffers, passes and the renderer.
@@ -818,7 +815,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
818
815
  FRAGMENT_MAIN_IMAGE: "FRAGMENT_MAIN_IMAGE",
819
816
  VERTEX_HEAD: "VERTEX_HEAD",
820
817
  VERTEX_MAIN_SUPPORT: "VERTEX_MAIN_SUPPORT"
821
- }, ai = class {
818
+ }, ri = class {
822
819
  /**
823
820
  * Constructs new shader data.
824
821
  */
@@ -832,7 +829,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
832
829
  ]), this.defines = /* @__PURE__ */ new Map(), this.uniforms = /* @__PURE__ */ new Map(), this.blendModes = /* @__PURE__ */ new Map(), this.extensions = /* @__PURE__ */ new Set(), this.attributes = V.NONE, this.varyings = /* @__PURE__ */ new Set(), this.uvTransformation = !1, this.readDepth = !1, this.colorSpace = je;
833
830
  }
834
831
  };
835
- function Ft(e) {
832
+ function Ut(e) {
836
833
  let t;
837
834
  if (e === 0)
838
835
  t = new Float64Array(0);
@@ -848,7 +845,7 @@ function Ft(e) {
848
845
  }
849
846
  return t;
850
847
  }
851
- var si = class {
848
+ var ai = class {
852
849
  /**
853
850
  * Constructs a new Gauss kernel.
854
851
  *
@@ -884,7 +881,7 @@ var si = class {
884
881
  generate(e, t) {
885
882
  if (e < 3 || e > 1020)
886
883
  throw new Error("The kernel size must be in the range [3, 1020]");
887
- const i = e + t * 2, r = t > 0 ? Ft(i).slice(t, -t) : Ft(i), a = Math.floor((r.length - 1) / 2), n = r.reduce((h, d) => h + d, 0), s = r.slice(a), o = [...Array(a + 1).keys()], l = new Float64Array(Math.floor(o.length / 2)), u = new Float64Array(l.length);
884
+ const i = e + t * 2, r = t > 0 ? Ut(i).slice(t, -t) : Ut(i), a = Math.floor((r.length - 1) / 2), n = r.reduce((h, d) => h + d, 0), s = r.slice(a), o = [...Array(a + 1).keys()], l = new Float64Array(Math.floor(o.length / 2)), u = new Float64Array(l.length);
888
885
  l[0] = s[0] / n;
889
886
  for (let h = 1, d = 1, v = o.length - 1; h < v; h += 2, ++d) {
890
887
  const A = o[h], m = o[h + 1], E = s[h], C = s[h + 1], S = E + C, D = (A * E + m * C) / S;
@@ -898,7 +895,7 @@ var si = class {
898
895
  l[h] *= v;
899
896
  this.offsets = o, this.weights = s, this.linearOffsets = u, this.linearWeights = l;
900
897
  }
901
- }, cr = class {
898
+ }, or = class {
902
899
  /**
903
900
  * The current delta time in seconds.
904
901
  *
@@ -915,7 +912,7 @@ var si = class {
915
912
  getElapsed() {
916
913
  return NaN;
917
914
  }
918
- }, fr = class {
915
+ }, lr = class {
919
916
  /**
920
917
  * Performs initialization tasks.
921
918
  *
@@ -996,7 +993,7 @@ var si = class {
996
993
  this.cloneMaterial(e)
997
994
  ];
998
995
  for (const i of t)
999
- i.uniforms = Object.assign({}, e.uniforms), i.side = Ki;
996
+ i.uniforms = Object.assign({}, e.uniforms), i.side = Vi;
1000
997
  t[2].skinning = !0, this.materialsBackSide = t.map((i) => {
1001
998
  const r = this.cloneMaterial(i);
1002
999
  return r.uniforms = Object.assign({}, e.uniforms), r.side = ke, r;
@@ -1073,7 +1070,7 @@ var si = class {
1073
1070
  static set workaroundEnabled(e) {
1074
1071
  ot = e;
1075
1072
  }
1076
- }, hr = class {
1073
+ }, ur = class {
1077
1074
  /**
1078
1075
  * Sets the size of this object.
1079
1076
  *
@@ -1339,7 +1336,7 @@ var si = class {
1339
1336
  static get AUTO_SIZE() {
1340
1337
  return oe;
1341
1338
  }
1342
- }, dr = class {
1339
+ }, cr = class {
1343
1340
  /**
1344
1341
  * Constructs a new ID manager.
1345
1342
  *
@@ -1365,7 +1362,7 @@ var si = class {
1365
1362
  reset(e = 0) {
1366
1363
  return this.nextId = e, this;
1367
1364
  }
1368
- }, lt = /* @__PURE__ */ new dr(2), Et = class extends Set {
1365
+ }, lt = /* @__PURE__ */ new cr(2), Et = class extends Set {
1369
1366
  /**
1370
1367
  * Constructs a new selection.
1371
1368
  *
@@ -1541,41 +1538,41 @@ var si = class {
1541
1538
  SRC: 30,
1542
1539
  SUBTRACT: 31,
1543
1540
  VIVID_LIGHT: 32
1544
- }, vr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb+y.rgb,y.a),opacity);}", pr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,y,y.a*opacity);}", gr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4((x.rgb+y.rgb)*0.5,y.a),opacity);}", mr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(yHSL.xy,xHSL.z));return mix(x,vec4(z,y.a),opacity);}", Ar = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb,b=y.rgb;vec3 z=mix(step(0.0,b)*(1.0-min(vec3(1.0),(1.0-a)/b)),vec3(1.0),step(1.0,a));return mix(x,vec4(z,y.a),opacity);}", xr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb,b=y.rgb;vec3 z=step(0.0,a)*mix(min(vec3(1.0),a/max(1.0-b,1e-9)),vec3(1.0),step(1.0,b));return mix(x,vec4(z,y.a),opacity);}", Dr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(min(x.rgb,y.rgb),y.a),opacity);}", wr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(abs(x.rgb-y.rgb),y.a),opacity);}", Tr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb/max(y.rgb,1e-12),y.a),opacity);}", Sr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4((x.rgb+y.rgb-2.0*x.rgb*y.rgb),y.a),opacity);}", Er = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=min(x.rgb,1.0);vec3 b=min(y.rgb,1.0);vec3 z=mix(2.0*a*b,1.0-2.0*(1.0-a)*(1.0-b),step(0.5,b));return mix(x,vec4(z,y.a),opacity);}", Cr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(step(1.0,x.rgb+y.rgb),y.a),opacity);}", yr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(yHSL.x,xHSL.yz));return mix(x,vec4(z,y.a),opacity);}", Mr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(1.0-y.rgb,y.a),opacity);}", Br = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(y.rgb*(1.0-x.rgb),y.a),opacity);}", Pr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(max(x.rgb,y.rgb),y.a),opacity);}", Ir = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(clamp(y.rgb+x.rgb-1.0,0.0,1.0),y.a),opacity);}", Rr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(min(x.rgb+y.rgb,1.0),y.a),opacity);}", br = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(clamp(2.0*y.rgb+x.rgb-1.0,0.0,1.0),y.a),opacity);}", Ur = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(xHSL.xy,yHSL.z));return mix(x,vec4(z,y.a),opacity);}", Fr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb*y.rgb,y.a),opacity);}", Lr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(1.0-abs(1.0-x.rgb-y.rgb),y.a),opacity);}", Or = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,y,opacity);}", Nr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(2.0*y.rgb*x.rgb,1.0-2.0*(1.0-y.rgb)*(1.0-x.rgb),step(0.5,x.rgb));return mix(x,vec4(z,y.a),opacity);}", Hr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 y2=2.0*y.rgb;vec3 z=mix(mix(y2,x.rgb,step(0.5*x.rgb,y.rgb)),max(y2-1.0,vec3(0.0)),step(x.rgb,y2-1.0));return mix(x,vec4(z,y.a),opacity);}", zr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(min(x.rgb*x.rgb/max(1.0-y.rgb,1e-12),1.0),y.rgb,step(1.0,y.rgb));return mix(x,vec4(z,y.a),opacity);}", Gr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(xHSL.x,yHSL.y,xHSL.z));return mix(x,vec4(z,y.a),opacity);}", kr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb+y.rgb-min(x.rgb*y.rgb,1.0),y.a),opacity);}", Qr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb;vec3 b=y.rgb;vec3 y2=2.0*b;vec3 w=step(0.5,b);vec3 c=a-(1.0-y2)*a*(1.0-a);vec3 d=mix(a+(y2-1.0)*(sqrt(a)-a),a+(y2-1.0)*a*((16.0*a-12.0)*a+3.0),w*(1.0-step(0.25,a)));vec3 z=mix(c,d,w);return mix(x,vec4(z,y.a),opacity);}", Vr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return y;}", Wr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(max(x.rgb+y.rgb-1.0,0.0),y.a),opacity);}", Yr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(max(1.0-min((1.0-x.rgb)/(2.0*y.rgb),1.0),0.0),min(x.rgb/(2.0*(1.0-y.rgb)),1.0),step(0.5,y.rgb));return mix(x,vec4(z,y.a),opacity);}", Kr = /* @__PURE__ */ new Map([
1545
- [g.ADD, vr],
1546
- [g.ALPHA, pr],
1547
- [g.AVERAGE, gr],
1548
- [g.COLOR, mr],
1549
- [g.COLOR_BURN, Ar],
1550
- [g.COLOR_DODGE, xr],
1551
- [g.DARKEN, Dr],
1552
- [g.DIFFERENCE, wr],
1553
- [g.DIVIDE, Tr],
1541
+ }, fr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb+y.rgb,y.a),opacity);}", hr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,y,y.a*opacity);}", dr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4((x.rgb+y.rgb)*0.5,y.a),opacity);}", vr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(yHSL.xy,xHSL.z));return mix(x,vec4(z,y.a),opacity);}", pr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb,b=y.rgb;vec3 z=mix(step(0.0,b)*(1.0-min(vec3(1.0),(1.0-a)/b)),vec3(1.0),step(1.0,a));return mix(x,vec4(z,y.a),opacity);}", gr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb,b=y.rgb;vec3 z=step(0.0,a)*mix(min(vec3(1.0),a/max(1.0-b,1e-9)),vec3(1.0),step(1.0,b));return mix(x,vec4(z,y.a),opacity);}", mr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(min(x.rgb,y.rgb),y.a),opacity);}", Ar = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(abs(x.rgb-y.rgb),y.a),opacity);}", xr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb/max(y.rgb,1e-12),y.a),opacity);}", Dr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4((x.rgb+y.rgb-2.0*x.rgb*y.rgb),y.a),opacity);}", wr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=min(x.rgb,1.0);vec3 b=min(y.rgb,1.0);vec3 z=mix(2.0*a*b,1.0-2.0*(1.0-a)*(1.0-b),step(0.5,b));return mix(x,vec4(z,y.a),opacity);}", Tr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(step(1.0,x.rgb+y.rgb),y.a),opacity);}", Sr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(yHSL.x,xHSL.yz));return mix(x,vec4(z,y.a),opacity);}", Er = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(1.0-y.rgb,y.a),opacity);}", Cr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(y.rgb*(1.0-x.rgb),y.a),opacity);}", yr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(max(x.rgb,y.rgb),y.a),opacity);}", Mr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(clamp(y.rgb+x.rgb-1.0,0.0,1.0),y.a),opacity);}", Br = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(min(x.rgb+y.rgb,1.0),y.a),opacity);}", Pr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(clamp(2.0*y.rgb+x.rgb-1.0,0.0,1.0),y.a),opacity);}", Ir = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(xHSL.xy,yHSL.z));return mix(x,vec4(z,y.a),opacity);}", Rr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb*y.rgb,y.a),opacity);}", br = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(1.0-abs(1.0-x.rgb-y.rgb),y.a),opacity);}", Ur = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,y,opacity);}", Fr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(2.0*y.rgb*x.rgb,1.0-2.0*(1.0-y.rgb)*(1.0-x.rgb),step(0.5,x.rgb));return mix(x,vec4(z,y.a),opacity);}", Lr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 y2=2.0*y.rgb;vec3 z=mix(mix(y2,x.rgb,step(0.5*x.rgb,y.rgb)),max(y2-1.0,vec3(0.0)),step(x.rgb,y2-1.0));return mix(x,vec4(z,y.a),opacity);}", Or = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(min(x.rgb*x.rgb/max(1.0-y.rgb,1e-12),1.0),y.rgb,step(1.0,y.rgb));return mix(x,vec4(z,y.a),opacity);}", Nr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(xHSL.x,yHSL.y,xHSL.z));return mix(x,vec4(z,y.a),opacity);}", Hr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb+y.rgb-min(x.rgb*y.rgb,1.0),y.a),opacity);}", zr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb;vec3 b=y.rgb;vec3 y2=2.0*b;vec3 w=step(0.5,b);vec3 c=a-(1.0-y2)*a*(1.0-a);vec3 d=mix(a+(y2-1.0)*(sqrt(a)-a),a+(y2-1.0)*a*((16.0*a-12.0)*a+3.0),w*(1.0-step(0.25,a)));vec3 z=mix(c,d,w);return mix(x,vec4(z,y.a),opacity);}", Gr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return y;}", kr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(max(x.rgb+y.rgb-1.0,0.0),y.a),opacity);}", Qr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(max(1.0-min((1.0-x.rgb)/(2.0*y.rgb),1.0),0.0),min(x.rgb/(2.0*(1.0-y.rgb)),1.0),step(0.5,y.rgb));return mix(x,vec4(z,y.a),opacity);}", Vr = /* @__PURE__ */ new Map([
1542
+ [g.ADD, fr],
1543
+ [g.ALPHA, hr],
1544
+ [g.AVERAGE, dr],
1545
+ [g.COLOR, vr],
1546
+ [g.COLOR_BURN, pr],
1547
+ [g.COLOR_DODGE, gr],
1548
+ [g.DARKEN, mr],
1549
+ [g.DIFFERENCE, Ar],
1550
+ [g.DIVIDE, xr],
1554
1551
  [g.DST, null],
1555
- [g.EXCLUSION, Sr],
1556
- [g.HARD_LIGHT, Er],
1557
- [g.HARD_MIX, Cr],
1558
- [g.HUE, yr],
1559
- [g.INVERT, Mr],
1560
- [g.INVERT_RGB, Br],
1561
- [g.LIGHTEN, Pr],
1562
- [g.LINEAR_BURN, Ir],
1563
- [g.LINEAR_DODGE, Rr],
1564
- [g.LINEAR_LIGHT, br],
1565
- [g.LUMINOSITY, Ur],
1566
- [g.MULTIPLY, Fr],
1567
- [g.NEGATION, Lr],
1568
- [g.NORMAL, Or],
1569
- [g.OVERLAY, Nr],
1570
- [g.PIN_LIGHT, Hr],
1571
- [g.REFLECT, zr],
1572
- [g.SATURATION, Gr],
1573
- [g.SCREEN, kr],
1574
- [g.SOFT_LIGHT, Qr],
1575
- [g.SRC, Vr],
1576
- [g.SUBTRACT, Wr],
1577
- [g.VIVID_LIGHT, Yr]
1578
- ]), ni = class extends Tt {
1552
+ [g.EXCLUSION, Dr],
1553
+ [g.HARD_LIGHT, wr],
1554
+ [g.HARD_MIX, Tr],
1555
+ [g.HUE, Sr],
1556
+ [g.INVERT, Er],
1557
+ [g.INVERT_RGB, Cr],
1558
+ [g.LIGHTEN, yr],
1559
+ [g.LINEAR_BURN, Mr],
1560
+ [g.LINEAR_DODGE, Br],
1561
+ [g.LINEAR_LIGHT, Pr],
1562
+ [g.LUMINOSITY, Ir],
1563
+ [g.MULTIPLY, Rr],
1564
+ [g.NEGATION, br],
1565
+ [g.NORMAL, Ur],
1566
+ [g.OVERLAY, Fr],
1567
+ [g.PIN_LIGHT, Lr],
1568
+ [g.REFLECT, Or],
1569
+ [g.SATURATION, Nr],
1570
+ [g.SCREEN, Hr],
1571
+ [g.SOFT_LIGHT, zr],
1572
+ [g.SRC, Gr],
1573
+ [g.SUBTRACT, kr],
1574
+ [g.VIVID_LIGHT, Qr]
1575
+ ]), si = class extends Tt {
1579
1576
  /**
1580
1577
  * Constructs a new blend mode.
1581
1578
  *
@@ -1636,9 +1633,9 @@ var si = class {
1636
1633
  * @return {String} The blend function shader code.
1637
1634
  */
1638
1635
  getShaderCode() {
1639
- return Kr.get(this.blendFunction);
1636
+ return Vr.get(this.blendFunction);
1640
1637
  }
1641
- }, oi = class extends Vi {
1638
+ }, ni = class extends Gi {
1642
1639
  /**
1643
1640
  * Constructs a new ASCII texture.
1644
1641
  *
@@ -1694,7 +1691,7 @@ var si = class {
1694
1691
  extensions: s = null,
1695
1692
  vertexShader: o = null
1696
1693
  } = {}) {
1697
- super(), this.name = e, this.renderer = null, this.attributes = i, this.fragmentShader = t, this.vertexShader = o, this.defines = a, this.uniforms = n, this.extensions = s, this.blendMode = new ni(r), this.blendMode.addEventListener("change", (l) => this.setChanged()), this._inputColorSpace = je, this._outputColorSpace = tt;
1694
+ super(), this.name = e, this.renderer = null, this.attributes = i, this.fragmentShader = t, this.vertexShader = o, this.defines = a, this.uniforms = n, this.extensions = s, this.blendMode = new si(r), this.blendMode.addEventListener("change", (l) => this.setChanged()), this._inputColorSpace = je, this._outputColorSpace = tt;
1698
1695
  }
1699
1696
  /**
1700
1697
  * The input color space.
@@ -1922,10 +1919,10 @@ var si = class {
1922
1919
  dispose() {
1923
1920
  for (const e of Object.keys(this)) {
1924
1921
  const t = this[e];
1925
- (t instanceof T || t instanceof $t || t instanceof Je || t instanceof H) && this[e].dispose();
1922
+ (t instanceof T || t instanceof _t || t instanceof Je || t instanceof H) && this[e].dispose();
1926
1923
  }
1927
1924
  }
1928
- }, Xr = `uniform sampler2D asciiTexture;uniform vec4 cellCount;
1925
+ }, Wr = `uniform sampler2D asciiTexture;uniform vec4 cellCount;
1929
1926
  #ifdef USE_COLOR
1930
1927
  uniform vec3 color;
1931
1928
  #endif
@@ -1939,7 +1936,7 @@ outputColor=vec4(color*asciiCharacter,inputColor.a);
1939
1936
  #else
1940
1937
  outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
1941
1938
  #endif
1942
- }`, Zr = class extends I {
1939
+ }`, Yr = class extends I {
1943
1940
  /**
1944
1941
  * Constructs a new ASCII effect.
1945
1942
  *
@@ -1950,12 +1947,12 @@ outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
1950
1947
  * @param {Boolean} [options.inverted=false] - Inverts the effect.
1951
1948
  */
1952
1949
  constructor({
1953
- asciiTexture: e = new oi(),
1950
+ asciiTexture: e = new ni(),
1954
1951
  cellSize: t = 16,
1955
1952
  color: i = null,
1956
1953
  inverted: r = !1
1957
1954
  } = {}) {
1958
- super("ASCIIEffect", Xr, {
1955
+ super("ASCIIEffect", Wr, {
1959
1956
  uniforms: /* @__PURE__ */ new Map([
1960
1957
  ["asciiTexture", new c(null)],
1961
1958
  ["cellCount", new c(new Be())],
@@ -2042,14 +2039,14 @@ outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
2042
2039
  LARGE: 3,
2043
2040
  VERY_LARGE: 4,
2044
2041
  HUGE: 5
2045
- }, jr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2042
+ }, Kr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2046
2043
  uniform mediump sampler2D inputBuffer;
2047
2044
  #else
2048
2045
  uniform lowp sampler2D inputBuffer;
2049
2046
  #endif
2050
2047
  varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec4 sum=texture2D(inputBuffer,vUv0);sum+=texture2D(inputBuffer,vUv1);sum+=texture2D(inputBuffer,vUv2);sum+=texture2D(inputBuffer,vUv3);gl_FragColor=sum*0.25;
2051
2048
  #include <colorspace_fragment>
2052
- }`, Jr = "uniform vec4 texelSize;uniform float kernel;uniform float scale;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vec2 dUv=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;vUv0=vec2(uv.x-dUv.x,uv.y+dUv.y);vUv1=vec2(uv.x+dUv.x,uv.y+dUv.y);vUv2=vec2(uv.x+dUv.x,uv.y-dUv.y);vUv3=vec2(uv.x-dUv.x,uv.y-dUv.y);gl_Position=vec4(position.xy,1.0,1.0);}", qr = [
2049
+ }`, Xr = "uniform vec4 texelSize;uniform float kernel;uniform float scale;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vec2 dUv=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;vUv0=vec2(uv.x-dUv.x,uv.y+dUv.y);vUv1=vec2(uv.x+dUv.x,uv.y+dUv.y);vUv2=vec2(uv.x+dUv.x,uv.y-dUv.y);vUv3=vec2(uv.x-dUv.x,uv.y-dUv.y);gl_Position=vec4(position.xy,1.0,1.0);}", Zr = [
2053
2050
  new Float32Array([0, 0]),
2054
2051
  new Float32Array([0, 1, 1]),
2055
2052
  new Float32Array([0, 1, 1, 2]),
@@ -2076,8 +2073,8 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
2076
2073
  toneMapped: !1,
2077
2074
  depthWrite: !1,
2078
2075
  depthTest: !1,
2079
- fragmentShader: jr,
2080
- vertexShader: Jr
2076
+ fragmentShader: Kr,
2077
+ vertexShader: Xr
2081
2078
  }), this.setTexelSize(e.x, e.y), this.kernelSize = te.MEDIUM;
2082
2079
  }
2083
2080
  /**
@@ -2103,7 +2100,7 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
2103
2100
  * @type {Float32Array}
2104
2101
  */
2105
2102
  get kernelSequence() {
2106
- return qr[this.kernelSize];
2103
+ return Zr[this.kernelSize];
2107
2104
  }
2108
2105
  /**
2109
2106
  * The blur scale.
@@ -2411,7 +2408,7 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
2411
2408
  static get AUTO_SIZE() {
2412
2409
  return x.AUTO_SIZE;
2413
2410
  }
2414
- }, _r = `#include <common>
2411
+ }, jr = `#include <common>
2415
2412
  #ifdef FRAMEBUFFER_PRECISION_HIGH
2416
2413
  uniform mediump sampler2D inputBuffer;
2417
2414
  #else
@@ -2433,7 +2430,7 @@ gl_FragColor=texel*mask;
2433
2430
  #else
2434
2431
  gl_FragColor=vec4(l*mask);
2435
2432
  #endif
2436
- }`, li = class extends w {
2433
+ }`, oi = class extends w {
2437
2434
  /**
2438
2435
  * Constructs a new luminance material.
2439
2436
  *
@@ -2456,7 +2453,7 @@ gl_FragColor=vec4(l*mask);
2456
2453
  toneMapped: !1,
2457
2454
  depthWrite: !1,
2458
2455
  depthTest: !1,
2459
- fragmentShader: _r,
2456
+ fragmentShader: jr,
2460
2457
  vertexShader: ce
2461
2458
  }), this.colorOutput = e, this.luminanceRange = t;
2462
2459
  }
@@ -2638,7 +2635,7 @@ gl_FragColor=vec4(l*mask);
2638
2635
  resolutionX: s = a,
2639
2636
  resolutionY: o = n
2640
2637
  } = {}) {
2641
- super("LuminancePass"), this.fullscreenMaterial = new li(i, t), this.needsSwap = !1, this.renderTarget = e, this.renderTarget === void 0 && (this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "LuminancePass.Target");
2638
+ super("LuminancePass"), this.fullscreenMaterial = new oi(i, t), this.needsSwap = !1, this.renderTarget = e, this.renderTarget === void 0 && (this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "LuminancePass.Target");
2642
2639
  const l = this.resolution = new x(this, s, o, r);
2643
2640
  l.addEventListener("change", (u) => this.setSize(l.baseWidth, l.baseHeight));
2644
2641
  }
@@ -2701,7 +2698,7 @@ gl_FragColor=vec4(l*mask);
2701
2698
  initialize(e, t, i) {
2702
2699
  i !== void 0 && i !== Y && (this.renderTarget.texture.type = i, this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1");
2703
2700
  }
2704
- }, $r = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2701
+ }, Jr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2705
2702
  uniform mediump sampler2D inputBuffer;
2706
2703
  #else
2707
2704
  uniform lowp sampler2D inputBuffer;
@@ -2710,7 +2707,7 @@ uniform lowp sampler2D inputBuffer;
2710
2707
  #define WEIGHT_OUTER 0.0555555
2711
2708
  varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;float clampToBorder(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void main(){vec4 c=vec4(0.0);vec4 w=WEIGHT_INNER*vec4(clampToBorder(vUv00),clampToBorder(vUv01),clampToBorder(vUv02),clampToBorder(vUv03));c+=w.x*texture2D(inputBuffer,vUv00);c+=w.y*texture2D(inputBuffer,vUv01);c+=w.z*texture2D(inputBuffer,vUv02);c+=w.w*texture2D(inputBuffer,vUv03);w=WEIGHT_OUTER*vec4(clampToBorder(vUv04),clampToBorder(vUv05),clampToBorder(vUv06),clampToBorder(vUv07));c+=w.x*texture2D(inputBuffer,vUv04);c+=w.y*texture2D(inputBuffer,vUv05);c+=w.z*texture2D(inputBuffer,vUv06);c+=w.w*texture2D(inputBuffer,vUv07);w=WEIGHT_OUTER*vec4(clampToBorder(vUv08),clampToBorder(vUv09),clampToBorder(vUv10),clampToBorder(vUv11));c+=w.x*texture2D(inputBuffer,vUv08);c+=w.y*texture2D(inputBuffer,vUv09);c+=w.z*texture2D(inputBuffer,vUv10);c+=w.w*texture2D(inputBuffer,vUv11);c+=WEIGHT_OUTER*texture2D(inputBuffer,vUv);gl_FragColor=c;
2712
2709
  #include <colorspace_fragment>
2713
- }`, ea = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;void main(){vUv=position.xy*0.5+0.5;vUv00=vUv+texelSize*vec2(-1.0,1.0);vUv01=vUv+texelSize*vec2(1.0,1.0);vUv02=vUv+texelSize*vec2(-1.0,-1.0);vUv03=vUv+texelSize*vec2(1.0,-1.0);vUv04=vUv+texelSize*vec2(-2.0,2.0);vUv05=vUv+texelSize*vec2(0.0,2.0);vUv06=vUv+texelSize*vec2(2.0,2.0);vUv07=vUv+texelSize*vec2(-2.0,0.0);vUv08=vUv+texelSize*vec2(2.0,0.0);vUv09=vUv+texelSize*vec2(-2.0,-2.0);vUv10=vUv+texelSize*vec2(0.0,-2.0);vUv11=vUv+texelSize*vec2(2.0,-2.0);gl_Position=vec4(position.xy,1.0,1.0);}", ui = class extends w {
2710
+ }`, qr = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;void main(){vUv=position.xy*0.5+0.5;vUv00=vUv+texelSize*vec2(-1.0,1.0);vUv01=vUv+texelSize*vec2(1.0,1.0);vUv02=vUv+texelSize*vec2(-1.0,-1.0);vUv03=vUv+texelSize*vec2(1.0,-1.0);vUv04=vUv+texelSize*vec2(-2.0,2.0);vUv05=vUv+texelSize*vec2(0.0,2.0);vUv06=vUv+texelSize*vec2(2.0,2.0);vUv07=vUv+texelSize*vec2(-2.0,0.0);vUv08=vUv+texelSize*vec2(2.0,0.0);vUv09=vUv+texelSize*vec2(-2.0,-2.0);vUv10=vUv+texelSize*vec2(0.0,-2.0);vUv11=vUv+texelSize*vec2(2.0,-2.0);gl_Position=vec4(position.xy,1.0,1.0);}", li = class extends w {
2714
2711
  /**
2715
2712
  * Constructs a new downsampling material.
2716
2713
  */
@@ -2725,8 +2722,8 @@ varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varyin
2725
2722
  toneMapped: !1,
2726
2723
  depthWrite: !1,
2727
2724
  depthTest: !1,
2728
- fragmentShader: $r,
2729
- vertexShader: ea
2725
+ fragmentShader: Jr,
2726
+ vertexShader: qr
2730
2727
  });
2731
2728
  }
2732
2729
  /**
@@ -2746,14 +2743,14 @@ varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varyin
2746
2743
  setSize(e, t) {
2747
2744
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
2748
2745
  }
2749
- }, ta = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2746
+ }, _r = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2750
2747
  uniform mediump sampler2D inputBuffer;uniform mediump sampler2D supportBuffer;
2751
2748
  #else
2752
2749
  uniform lowp sampler2D inputBuffer;uniform lowp sampler2D supportBuffer;
2753
2750
  #endif
2754
2751
  uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vec4 c=vec4(0.0);c+=texture2D(inputBuffer,vUv0)*0.0625;c+=texture2D(inputBuffer,vUv1)*0.125;c+=texture2D(inputBuffer,vUv2)*0.0625;c+=texture2D(inputBuffer,vUv3)*0.125;c+=texture2D(inputBuffer,vUv)*0.25;c+=texture2D(inputBuffer,vUv4)*0.125;c+=texture2D(inputBuffer,vUv5)*0.0625;c+=texture2D(inputBuffer,vUv6)*0.125;c+=texture2D(inputBuffer,vUv7)*0.0625;vec4 baseColor=texture2D(supportBuffer,vUv);gl_FragColor=mix(baseColor,c,radius);
2755
2752
  #include <colorspace_fragment>
2756
- }`, ia = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vUv=position.xy*0.5+0.5;vUv0=vUv+texelSize*vec2(-1.0,1.0);vUv1=vUv+texelSize*vec2(0.0,1.0);vUv2=vUv+texelSize*vec2(1.0,1.0);vUv3=vUv+texelSize*vec2(-1.0,0.0);vUv4=vUv+texelSize*vec2(1.0,0.0);vUv5=vUv+texelSize*vec2(-1.0,-1.0);vUv6=vUv+texelSize*vec2(0.0,-1.0);vUv7=vUv+texelSize*vec2(1.0,-1.0);gl_Position=vec4(position.xy,1.0,1.0);}", ci = class extends w {
2753
+ }`, $r = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vUv=position.xy*0.5+0.5;vUv0=vUv+texelSize*vec2(-1.0,1.0);vUv1=vUv+texelSize*vec2(0.0,1.0);vUv2=vUv+texelSize*vec2(1.0,1.0);vUv3=vUv+texelSize*vec2(-1.0,0.0);vUv4=vUv+texelSize*vec2(1.0,0.0);vUv5=vUv+texelSize*vec2(-1.0,-1.0);vUv6=vUv+texelSize*vec2(0.0,-1.0);vUv7=vUv+texelSize*vec2(1.0,-1.0);gl_Position=vec4(position.xy,1.0,1.0);}", ui = class extends w {
2757
2754
  /**
2758
2755
  * Constructs a new upsampling material.
2759
2756
  */
@@ -2770,8 +2767,8 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
2770
2767
  toneMapped: !1,
2771
2768
  depthWrite: !1,
2772
2769
  depthTest: !1,
2773
- fragmentShader: ta,
2774
- vertexShader: ia
2770
+ fragmentShader: _r,
2771
+ vertexShader: $r
2775
2772
  });
2776
2773
  }
2777
2774
  /**
@@ -2810,14 +2807,14 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
2810
2807
  setSize(e, t) {
2811
2808
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
2812
2809
  }
2813
- }, fi = class extends H {
2810
+ }, ci = class extends H {
2814
2811
  /**
2815
2812
  * Constructs a new mipmap blur pass.
2816
2813
  *
2817
2814
  * @param {Object} [options] - The options.
2818
2815
  */
2819
2816
  constructor() {
2820
- super("MipmapBlurPass"), this.needsSwap = !1, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "Upsampling.Mipmap0", this.downsamplingMipmaps = [], this.upsamplingMipmaps = [], this.downsamplingMaterial = new ui(), this.upsamplingMaterial = new ci(), this.resolution = new p();
2817
+ super("MipmapBlurPass"), this.needsSwap = !1, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "Upsampling.Mipmap0", this.downsamplingMipmaps = [], this.upsamplingMipmaps = [], this.downsamplingMaterial = new li(), this.upsamplingMaterial = new ui(), this.resolution = new p();
2821
2818
  }
2822
2819
  /**
2823
2820
  * A texture that contains the blurred result.
@@ -2925,12 +2922,12 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
2925
2922
  for (const e of this.downsamplingMipmaps.concat(this.upsamplingMipmaps))
2926
2923
  e.dispose();
2927
2924
  }
2928
- }, ra = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2925
+ }, ea = `#ifdef FRAMEBUFFER_PRECISION_HIGH
2929
2926
  uniform mediump sampler2D map;
2930
2927
  #else
2931
2928
  uniform lowp sampler2D map;
2932
2929
  #endif
2933
- uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 texel=texture2D(map,uv);outputColor=vec4(texel.rgb*intensity,max(inputColor.a,texel.a));}`, hi = class extends I {
2930
+ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 texel=texture2D(map,uv);outputColor=vec4(texel.rgb*intensity,max(inputColor.a,texel.a));}`, fi = class extends I {
2934
2931
  /**
2935
2932
  * Constructs a new bloom effect.
2936
2933
  *
@@ -2964,13 +2961,13 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
2964
2961
  resolutionX: h = u,
2965
2962
  resolutionY: d = f
2966
2963
  } = {}) {
2967
- super("BloomEffect", ra, {
2964
+ super("BloomEffect", ea, {
2968
2965
  blendFunction: e,
2969
2966
  uniforms: /* @__PURE__ */ new Map([
2970
2967
  ["map", new c(null)],
2971
2968
  ["intensity", new c(a)]
2972
2969
  ])
2973
- }), this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "Bloom.Target", this.blurPass = new pe({ kernelSize: o }), this.luminancePass = new Ct({ colorOutput: !0 }), this.luminanceMaterial.threshold = t, this.luminanceMaterial.smoothing = i, this.mipmapBlurPass = new fi(), this.mipmapBlurPass.enabled = r, this.mipmapBlurPass.radius = n, this.mipmapBlurPass.levels = s, this.uniforms.get("map").value = r ? this.mipmapBlurPass.texture : this.renderTarget.texture;
2970
+ }), this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "Bloom.Target", this.blurPass = new pe({ kernelSize: o }), this.luminancePass = new Ct({ colorOutput: !0 }), this.luminanceMaterial.threshold = t, this.luminanceMaterial.smoothing = i, this.mipmapBlurPass = new ci(), this.mipmapBlurPass.enabled = r, this.mipmapBlurPass.radius = n, this.mipmapBlurPass.levels = s, this.uniforms.get("map").value = r ? this.mipmapBlurPass.texture : this.renderTarget.texture;
2974
2971
  const v = this.resolution = new x(this, h, d, l);
2975
2972
  v.addEventListener("change", (A) => this.setSize(v.baseWidth, v.baseHeight));
2976
2973
  }
@@ -3171,13 +3168,13 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
3171
3168
  initialize(e, t, i) {
3172
3169
  this.blurPass.initialize(e, t, i), this.luminancePass.initialize(e, t, i), this.mipmapBlurPass.initialize(e, t, i), i !== void 0 && (this.renderTarget.texture.type = i, e !== null && e.outputColorSpace === y && (this.renderTarget.texture.colorSpace = y));
3173
3170
  }
3174
- }, aa = `uniform float focus;uniform float dof;uniform float aperture;uniform float maxBlur;void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){vec2 aspectCorrection=vec2(1.0,aspect);
3171
+ }, ta = `uniform float focus;uniform float dof;uniform float aperture;uniform float maxBlur;void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){vec2 aspectCorrection=vec2(1.0,aspect);
3175
3172
  #ifdef PERSPECTIVE_CAMERA
3176
3173
  float viewZ=perspectiveDepthToViewZ(depth,cameraNear,cameraFar);float linearDepth=viewZToOrthographicDepth(viewZ,cameraNear,cameraFar);
3177
3174
  #else
3178
3175
  float linearDepth=depth;
3179
3176
  #endif
3180
- float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0);float low=step(linearDepth,focusNear);float high=step(focusFar,linearDepth);float factor=(linearDepth-focusNear)*low+(linearDepth-focusFar)*high;vec2 dofBlur=vec2(clamp(factor*aperture,-maxBlur,maxBlur));vec2 dofblur9=dofBlur*0.9;vec2 dofblur7=dofBlur*0.7;vec2 dofblur4=dofBlur*0.4;vec4 color=inputColor;color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur4);outputColor=color/41.0;}`, sa = class extends I {
3177
+ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0);float low=step(linearDepth,focusNear);float high=step(focusFar,linearDepth);float factor=(linearDepth-focusNear)*low+(linearDepth-focusFar)*high;vec2 dofBlur=vec2(clamp(factor*aperture,-maxBlur,maxBlur));vec2 dofblur9=dofBlur*0.9;vec2 dofblur7=dofBlur*0.7;vec2 dofblur4=dofBlur*0.4;vec4 color=inputColor;color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur4);outputColor=color/41.0;}`, ia = class extends I {
3181
3178
  /**
3182
3179
  * Constructs a new bokeh effect.
3183
3180
  *
@@ -3195,7 +3192,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3195
3192
  aperture: r = 0.015,
3196
3193
  maxBlur: a = 1
3197
3194
  } = {}) {
3198
- super("BokehEffect", aa, {
3195
+ super("BokehEffect", ta, {
3199
3196
  blendFunction: e,
3200
3197
  attributes: V.CONVOLUTION | V.DEPTH,
3201
3198
  uniforms: /* @__PURE__ */ new Map([
@@ -3206,7 +3203,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3206
3203
  ])
3207
3204
  });
3208
3205
  }
3209
- }, na = "uniform float brightness;uniform float contrast;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=inputColor.rgb+vec3(brightness-0.5);if(contrast>0.0){color/=vec3(1.0-contrast);}else{color*=vec3(1.0+contrast);}outputColor=vec4(color+vec3(0.5),inputColor.a);}", oa = class extends I {
3206
+ }, ra = "uniform float brightness;uniform float contrast;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=inputColor.rgb+vec3(brightness-0.5);if(contrast>0.0){color/=vec3(1.0-contrast);}else{color*=vec3(1.0+contrast);}outputColor=vec4(color+vec3(0.5),inputColor.a);}", aa = class extends I {
3210
3207
  /**
3211
3208
  * Constructs a new brightness/contrast effect.
3212
3209
  *
@@ -3216,7 +3213,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3216
3213
  * @param {Number} [options.contrast=0.0] - The contrast factor, ranging from -1 to 1, where 0 means no change.
3217
3214
  */
3218
3215
  constructor({ blendFunction: e = g.SRC, brightness: t = 0, contrast: i = 0 } = {}) {
3219
- super("BrightnessContrastEffect", na, {
3216
+ super("BrightnessContrastEffect", ra, {
3220
3217
  blendFunction: e,
3221
3218
  uniforms: /* @__PURE__ */ new Map([
3222
3219
  ["brightness", new c(t)],
@@ -3282,16 +3279,16 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3282
3279
  setContrast(e) {
3283
3280
  this.contrast = e;
3284
3281
  }
3285
- }, la = "void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(vec3(average(inputColor.rgb)),inputColor.a);}", ua = class extends I {
3282
+ }, sa = "void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(vec3(average(inputColor.rgb)),inputColor.a);}", na = class extends I {
3286
3283
  /**
3287
3284
  * Constructs a new color average effect.
3288
3285
  *
3289
3286
  * @param {BlendFunction} [blendFunction] - The blend function of this effect.
3290
3287
  */
3291
3288
  constructor(e) {
3292
- super("ColorAverageEffect", la, { blendFunction: e });
3289
+ super("ColorAverageEffect", sa, { blendFunction: e });
3293
3290
  }
3294
- }, ca = "uniform float factor;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(floor(inputColor.rgb*factor+0.5)/factor,inputColor.a);}", fa = class extends I {
3291
+ }, oa = "uniform float factor;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(floor(inputColor.rgb*factor+0.5)/factor,inputColor.a);}", la = class extends I {
3295
3292
  /**
3296
3293
  * Constructs a new color depth effect.
3297
3294
  *
@@ -3300,7 +3297,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3300
3297
  * @param {Number} [options.bits=16] - The color bit depth.
3301
3298
  */
3302
3299
  constructor({ blendFunction: e, bits: t = 16 } = {}) {
3303
- super("ColorDepthEffect", ca, {
3300
+ super("ColorDepthEffect", oa, {
3304
3301
  blendFunction: e,
3305
3302
  uniforms: /* @__PURE__ */ new Map([
3306
3303
  ["factor", new c(1)]
@@ -3336,7 +3333,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
3336
3333
  setBitDepth(e) {
3337
3334
  this.bitDepth = e;
3338
3335
  }
3339
- }, ha = `#ifdef RADIAL_MODULATION
3336
+ }, ua = `#ifdef RADIAL_MODULATION
3340
3337
  uniform float modulationOffset;
3341
3338
  #endif
3342
3339
  varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec2 ra=inputColor.ra;vec2 ba=inputColor.ba;
@@ -3345,7 +3342,7 @@ const vec2 center=vec2(0.5);float d=distance(uv,center)*2.0;d=max(d-modulationOf
3345
3342
  #else
3346
3343
  if(vActive>0.0){ra=texture2D(inputBuffer,vUvR).ra;ba=texture2D(inputBuffer,vUvB).ba;}
3347
3344
  #endif
3348
- outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, da = "uniform vec2 offset;varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainSupport(const in vec2 uv){vec2 shift=offset*vec2(1.0,aspect);vActive=(shift.x!=0.0||shift.y!=0.0)?1.0:0.0;vUvR=uv+shift;vUvB=uv-shift;}", va = class extends I {
3345
+ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, ca = "uniform vec2 offset;varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainSupport(const in vec2 uv){vec2 shift=offset*vec2(1.0,aspect);vActive=(shift.x!=0.0||shift.y!=0.0)?1.0:0.0;vUvR=uv+shift;vUvB=uv-shift;}", fa = class extends I {
3349
3346
  /**
3350
3347
  * Constructs a new chromatic aberration effect.
3351
3348
  *
@@ -3359,8 +3356,8 @@ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, da
3359
3356
  radialModulation: t = !1,
3360
3357
  modulationOffset: i = 0.15
3361
3358
  } = {}) {
3362
- super("ChromaticAberrationEffect", ha, {
3363
- vertexShader: da,
3359
+ super("ChromaticAberrationEffect", ua, {
3360
+ vertexShader: ca,
3364
3361
  attributes: V.CONVOLUTION,
3365
3362
  uniforms: /* @__PURE__ */ new Map([
3366
3363
  ["offset", new c(e)],
@@ -3421,13 +3418,13 @@ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, da
3421
3418
  setOffset(e) {
3422
3419
  this.offset = e;
3423
3420
  }
3424
- }, pa = `void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){
3421
+ }, ha = `void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){
3425
3422
  #ifdef INVERTED
3426
3423
  vec3 color=vec3(1.0-depth);
3427
3424
  #else
3428
3425
  vec3 color=vec3(depth);
3429
3426
  #endif
3430
- outputColor=vec4(color,inputColor.a);}`, ga = class extends I {
3427
+ outputColor=vec4(color,inputColor.a);}`, da = class extends I {
3431
3428
  /**
3432
3429
  * Constructs a new depth effect.
3433
3430
  *
@@ -3436,7 +3433,7 @@ outputColor=vec4(color,inputColor.a);}`, ga = class extends I {
3436
3433
  * @param {Boolean} [options.inverted=false] - Whether the depth should be inverted.
3437
3434
  */
3438
3435
  constructor({ blendFunction: e = g.SRC, inverted: t = !1 } = {}) {
3439
- super("DepthEffect", pa, {
3436
+ super("DepthEffect", ha, {
3440
3437
  blendFunction: e,
3441
3438
  attributes: V.DEPTH
3442
3439
  }), this.inverted = t;
@@ -3480,7 +3477,7 @@ outputColor=vec4(color,inputColor.a);}`, ga = class extends I {
3480
3477
  MULTIPLY: 1,
3481
3478
  MULTIPLY_RGB_SET_ALPHA: 2,
3482
3479
  MULTIPLY_RGB: 3
3483
- }, ma = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3480
+ }, va = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3484
3481
  uniform mediump sampler2D inputBuffer;
3485
3482
  #else
3486
3483
  uniform lowp sampler2D inputBuffer;
@@ -3532,7 +3529,7 @@ vec4 maxValue=texture2D(inputBuffer,vUv);for(int i=0;i<8;++i){vec4 kernel=kernel
3532
3529
  toneMapped: !1,
3533
3530
  depthWrite: !1,
3534
3531
  depthTest: !1,
3535
- fragmentShader: ma,
3532
+ fragmentShader: va,
3536
3533
  vertexShader: ce
3537
3534
  }), t && (this.defines.FOREGROUND = "1"), this.generateKernel();
3538
3535
  }
@@ -3639,7 +3636,7 @@ function de(e, t, i) {
3639
3636
  function le(e, t, i) {
3640
3637
  return Math.min(Math.max((e + t) / (t - i), 0), 1);
3641
3638
  }
3642
- var Aa = `#include <common>
3639
+ var pa = `#include <common>
3643
3640
  #include <packing>
3644
3641
  #ifdef GL_FRAGMENT_PRECISION_HIGH
3645
3642
  uniform highp sampler2D depthBuffer;
@@ -3661,7 +3658,7 @@ float viewZ=perspectiveDepthToViewZ(depth,cameraNear,cameraFar);float linearDept
3661
3658
  #else
3662
3659
  float linearDepth=depth;
3663
3660
  #endif
3664
- float signedDistance=linearDepth-focusDistance;float magnitude=smoothstep(0.0,focusRange,abs(signedDistance));gl_FragColor.rg=magnitude*vec2(step(signedDistance,0.0),step(0.0,signedDistance));}`, di = class extends w {
3661
+ float signedDistance=linearDepth-focusDistance;float magnitude=smoothstep(0.0,focusRange,abs(signedDistance));gl_FragColor.rg=magnitude*vec2(step(signedDistance,0.0),step(0.0,signedDistance));}`, hi = class extends w {
3665
3662
  /**
3666
3663
  * Constructs a new CoC material.
3667
3664
  *
@@ -3684,7 +3681,7 @@ float signedDistance=linearDepth-focusDistance;float magnitude=smoothstep(0.0,fo
3684
3681
  toneMapped: !1,
3685
3682
  depthWrite: !1,
3686
3683
  depthTest: !1,
3687
- fragmentShader: Aa,
3684
+ fragmentShader: pa,
3688
3685
  vertexShader: ce
3689
3686
  }), this.uniforms.focalLength = this.uniforms.focusRange, this.copyCameraSettings(e);
3690
3687
  }
@@ -3841,7 +3838,7 @@ float signedDistance=linearDepth-focusDistance;float magnitude=smoothstep(0.0,fo
3841
3838
  copyCameraSettings(e) {
3842
3839
  e && (this.uniforms.cameraNear.value = e.near, this.uniforms.cameraFar.value = e.far, e instanceof Ie ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
3843
3840
  }
3844
- }, xa = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3841
+ }, ga = `#ifdef FRAMEBUFFER_PRECISION_HIGH
3845
3842
  uniform mediump sampler2D inputBuffer;
3846
3843
  #else
3847
3844
  uniform lowp sampler2D inputBuffer;
@@ -3883,7 +3880,7 @@ gl_FragColor=vec4(mask*texture2D(inputBuffer,vUv).rgb,mask);
3883
3880
  #else
3884
3881
  gl_FragColor=mask*texture2D(inputBuffer,vUv);
3885
3882
  #endif
3886
- }`, vi = class extends w {
3883
+ }`, di = class extends w {
3887
3884
  /**
3888
3885
  * Constructs a new mask material.
3889
3886
  *
@@ -3901,7 +3898,7 @@ gl_FragColor=mask*texture2D(inputBuffer,vUv);
3901
3898
  toneMapped: !1,
3902
3899
  depthWrite: !1,
3903
3900
  depthTest: !1,
3904
- fragmentShader: xa,
3901
+ fragmentShader: ga,
3905
3902
  vertexShader: ce
3906
3903
  }), this.colorChannel = he.RED, this.maskFunction = yt.DISCARD;
3907
3904
  }
@@ -4077,7 +4074,7 @@ gl_FragColor=mask*texture2D(inputBuffer,vUv);
4077
4074
  initialize(e, t, i) {
4078
4075
  i !== void 0 && i !== Y && (this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1");
4079
4076
  }
4080
- }, Da = `#ifdef FRAMEBUFFER_PRECISION_HIGH
4077
+ }, ma = `#ifdef FRAMEBUFFER_PRECISION_HIGH
4081
4078
  uniform mediump sampler2D nearColorBuffer;uniform mediump sampler2D farColorBuffer;
4082
4079
  #else
4083
4080
  uniform lowp sampler2D nearColorBuffer;uniform lowp sampler2D farColorBuffer;
@@ -4088,7 +4085,7 @@ vec2 cocNearFar=vec2(texture2D(nearCoCBuffer,uv).r,colorFar.a);cocNearFar.x=min(
4088
4085
  #else
4089
4086
  vec2 cocNearFar=vec2(texture2D(nearCoCBuffer,uv).r,texture2D(farCoCBuffer,uv).g);cocNearFar=min(cocNearFar*scale,1.0);
4090
4087
  #endif
4091
- vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,cocNearFar.x);outputColor=result;}`, wa = class extends I {
4088
+ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,cocNearFar.x);outputColor=result;}`, Aa = class extends I {
4092
4089
  /**
4093
4090
  * Constructs a new depth of field effect.
4094
4091
  *
@@ -4121,7 +4118,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4121
4118
  resolutionX: h = u,
4122
4119
  resolutionY: d = f
4123
4120
  } = {}) {
4124
- super("DepthOfFieldEffect", Da, {
4121
+ super("DepthOfFieldEffect", ma, {
4125
4122
  blendFunction: t,
4126
4123
  attributes: V.DEPTH,
4127
4124
  uniforms: /* @__PURE__ */ new Map([
@@ -4131,9 +4128,9 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4131
4128
  ["farCoCBuffer", new c(null)],
4132
4129
  ["scale", new c(1)]
4133
4130
  ])
4134
- }), this.camera = e, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "DoF.Intermediate", this.renderTargetMasked = this.renderTarget.clone(), this.renderTargetMasked.texture.name = "DoF.Masked.Far", this.renderTargetNear = this.renderTarget.clone(), this.renderTargetNear.texture.name = "DoF.Bokeh.Near", this.uniforms.get("nearColorBuffer").value = this.renderTargetNear.texture, this.renderTargetFar = this.renderTarget.clone(), this.renderTargetFar.texture.name = "DoF.Bokeh.Far", this.uniforms.get("farColorBuffer").value = this.renderTargetFar.texture, this.renderTargetCoC = this.renderTarget.clone(), this.renderTargetCoC.texture.name = "DoF.CoC", this.uniforms.get("farCoCBuffer").value = this.renderTargetCoC.texture, this.renderTargetCoCBlurred = this.renderTargetCoC.clone(), this.renderTargetCoCBlurred.texture.name = "DoF.CoC.Blurred", this.uniforms.get("nearCoCBuffer").value = this.renderTargetCoCBlurred.texture, this.cocPass = new q(new di(e));
4131
+ }), this.camera = e, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "DoF.Intermediate", this.renderTargetMasked = this.renderTarget.clone(), this.renderTargetMasked.texture.name = "DoF.Masked.Far", this.renderTargetNear = this.renderTarget.clone(), this.renderTargetNear.texture.name = "DoF.Bokeh.Near", this.uniforms.get("nearColorBuffer").value = this.renderTargetNear.texture, this.renderTargetFar = this.renderTarget.clone(), this.renderTargetFar.texture.name = "DoF.Bokeh.Far", this.uniforms.get("farColorBuffer").value = this.renderTargetFar.texture, this.renderTargetCoC = this.renderTarget.clone(), this.renderTargetCoC.texture.name = "DoF.CoC", this.uniforms.get("farCoCBuffer").value = this.renderTargetCoC.texture, this.renderTargetCoCBlurred = this.renderTargetCoC.clone(), this.renderTargetCoCBlurred.texture.name = "DoF.CoC.Blurred", this.uniforms.get("nearCoCBuffer").value = this.renderTargetCoCBlurred.texture, this.cocPass = new q(new hi(e));
4135
4132
  const v = this.cocMaterial;
4136
- v.focusDistance = a, v.focusRange = s, i !== void 0 && (v.worldFocusDistance = i), r !== void 0 && (v.worldFocusRange = r), this.blurPass = new pe({ resolutionScale: l, resolutionX: h, resolutionY: d, kernelSize: te.MEDIUM }), this.maskPass = new q(new vi(this.renderTargetCoC.texture));
4133
+ v.focusDistance = a, v.focusRange = s, i !== void 0 && (v.worldFocusDistance = i), r !== void 0 && (v.worldFocusRange = r), this.blurPass = new pe({ resolutionScale: l, resolutionX: h, resolutionY: d, kernelSize: te.MEDIUM }), this.maskPass = new q(new di(this.renderTargetCoC.texture));
4137
4134
  const A = this.maskPass.fullscreenMaterial;
4138
4135
  A.colorChannel = he.GREEN, this.maskFunction = yt.MULTIPLY_RGB, this.bokehNearBasePass = new q(new Fe(!1, !0)), this.bokehNearBasePass.fullscreenMaterial.cocBuffer = this.renderTargetCoCBlurred.texture, this.bokehNearFillPass = new q(new Fe(!0, !0)), this.bokehNearFillPass.fullscreenMaterial.cocBuffer = this.renderTargetCoCBlurred.texture, this.bokehFarBasePass = new q(new Fe(!1, !1)), this.bokehFarBasePass.fullscreenMaterial.cocBuffer = this.renderTargetCoC.texture, this.bokehFarFillPass = new q(new Fe(!0, !1)), this.bokehFarFillPass.fullscreenMaterial.cocBuffer = this.renderTargetCoC.texture, this.target = null;
4139
4136
  const m = this.resolution = new x(this, h, d, l);
@@ -4308,7 +4305,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4308
4305
  initialize(e, t, i) {
4309
4306
  this.cocPass.initialize(e, t, i), this.maskPass.initialize(e, t, i), this.bokehNearBasePass.initialize(e, t, i), this.bokehNearFillPass.initialize(e, t, i), this.bokehFarBasePass.initialize(e, t, i), this.bokehFarFillPass.initialize(e, t, i), this.blurPass.initialize(e, t, Y), e.capabilities.logarithmicDepthBuffer && (this.cocPass.fullscreenMaterial.defines.LOG_DEPTH = "1"), i !== void 0 && (this.renderTarget.texture.type = i, this.renderTargetNear.texture.type = i, this.renderTargetFar.texture.type = i, this.renderTargetMasked.texture.type = i, e !== null && e.outputColorSpace === y && (this.renderTarget.texture.colorSpace = y, this.renderTargetNear.texture.colorSpace = y, this.renderTargetFar.texture.colorSpace = y, this.renderTargetMasked.texture.colorSpace = y));
4310
4307
  }
4311
- }, Ta = "uniform vec2 angle;uniform float scale;float pattern(const in vec2 uv){vec2 point=scale*vec2(dot(angle.yx,vec2(uv.x,-uv.y)),dot(angle,uv));return(sin(point.x)*sin(point.y))*4.0;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(inputColor.rgb*10.0-5.0+pattern(uv*resolution));outputColor=vec4(color,inputColor.a);}", Sa = class extends I {
4308
+ }, xa = "uniform vec2 angle;uniform float scale;float pattern(const in vec2 uv){vec2 point=scale*vec2(dot(angle.yx,vec2(uv.x,-uv.y)),dot(angle,uv));return(sin(point.x)*sin(point.y))*4.0;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(inputColor.rgb*10.0-5.0+pattern(uv*resolution));outputColor=vec4(color,inputColor.a);}", Da = class extends I {
4312
4309
  /**
4313
4310
  * Constructs a new dot screen effect.
4314
4311
  *
@@ -4318,7 +4315,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4318
4315
  * @param {Number} [options.scale=1.0] - The scale of the dot pattern.
4319
4316
  */
4320
4317
  constructor({ blendFunction: e, angle: t = Math.PI * 0.5, scale: i = 1 } = {}) {
4321
- super("DotScreenEffect", Ta, {
4318
+ super("DotScreenEffect", xa, {
4322
4319
  blendFunction: e,
4323
4320
  uniforms: /* @__PURE__ */ new Map([
4324
4321
  ["angle", new c(new p())],
@@ -4366,9 +4363,9 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
4366
4363
  set scale(e) {
4367
4364
  this.uniforms.get("scale").value = e;
4368
4365
  }
4369
- }, Ea = `#define QUALITY(q) ((q) < 5 ? 1.0 : ((q) > 5 ? ((q) < 10 ? 2.0 : ((q) < 11 ? 4.0 : 8.0)) : 1.5))
4366
+ }, wa = `#define QUALITY(q) ((q) < 5 ? 1.0 : ((q) > 5 ? ((q) < 10 ? 2.0 : ((q) < 11 ? 4.0 : 8.0)) : 1.5))
4370
4367
  #define ONE_OVER_TWELVE 0.08333333333333333
4371
- varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;vec4 fxaa(const in vec4 inputColor,const in vec2 uv){float lumaCenter=luminance(inputColor.rgb);float lumaDown=luminance(texture2D(inputBuffer,vUvDown).rgb);float lumaUp=luminance(texture2D(inputBuffer,vUvUp).rgb);float lumaLeft=luminance(texture2D(inputBuffer,vUvLeft).rgb);float lumaRight=luminance(texture2D(inputBuffer,vUvRight).rgb);float lumaMin=min(lumaCenter,min(min(lumaDown,lumaUp),min(lumaLeft,lumaRight)));float lumaMax=max(lumaCenter,max(max(lumaDown,lumaUp),max(lumaLeft,lumaRight)));float lumaRange=lumaMax-lumaMin;if(lumaRange<max(EDGE_THRESHOLD_MIN,lumaMax*EDGE_THRESHOLD_MAX)){return inputColor;}float lumaDownLeft=luminance(texture2D(inputBuffer,vUvDownLeft).rgb);float lumaUpRight=luminance(texture2D(inputBuffer,vUvUpRight).rgb);float lumaUpLeft=luminance(texture2D(inputBuffer,vUvUpLeft).rgb);float lumaDownRight=luminance(texture2D(inputBuffer,vUvDownRight).rgb);float lumaDownUp=lumaDown+lumaUp;float lumaLeftRight=lumaLeft+lumaRight;float lumaLeftCorners=lumaDownLeft+lumaUpLeft;float lumaDownCorners=lumaDownLeft+lumaDownRight;float lumaRightCorners=lumaDownRight+lumaUpRight;float lumaUpCorners=lumaUpRight+lumaUpLeft;float edgeHorizontal=(abs(-2.0*lumaLeft+lumaLeftCorners)+abs(-2.0*lumaCenter+lumaDownUp)*2.0+abs(-2.0*lumaRight+lumaRightCorners));float edgeVertical=(abs(-2.0*lumaUp+lumaUpCorners)+abs(-2.0*lumaCenter+lumaLeftRight)*2.0+abs(-2.0*lumaDown+lumaDownCorners));bool isHorizontal=(edgeHorizontal>=edgeVertical);float stepLength=isHorizontal?texelSize.y:texelSize.x;float luma1=isHorizontal?lumaDown:lumaLeft;float luma2=isHorizontal?lumaUp:lumaRight;float gradient1=abs(luma1-lumaCenter);float gradient2=abs(luma2-lumaCenter);bool is1Steepest=gradient1>=gradient2;float gradientScaled=0.25*max(gradient1,gradient2);float lumaLocalAverage=0.0;if(is1Steepest){stepLength=-stepLength;lumaLocalAverage=0.5*(luma1+lumaCenter);}else{lumaLocalAverage=0.5*(luma2+lumaCenter);}vec2 currentUv=uv;if(isHorizontal){currentUv.y+=stepLength*0.5;}else{currentUv.x+=stepLength*0.5;}vec2 offset=isHorizontal?vec2(texelSize.x,0.0):vec2(0.0,texelSize.y);vec2 uv1=currentUv-offset*QUALITY(0);vec2 uv2=currentUv+offset*QUALITY(0);float lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);float lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd1-=lumaLocalAverage;lumaEnd2-=lumaLocalAverage;bool reached1=abs(lumaEnd1)>=gradientScaled;bool reached2=abs(lumaEnd2)>=gradientScaled;bool reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(1);}if(!reached2){uv2+=offset*QUALITY(1);}if(!reachedBoth){for(int i=2;i<SAMPLES;++i){if(!reached1){lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);lumaEnd1=lumaEnd1-lumaLocalAverage;}if(!reached2){lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd2=lumaEnd2-lumaLocalAverage;}reached1=abs(lumaEnd1)>=gradientScaled;reached2=abs(lumaEnd2)>=gradientScaled;reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(i);}if(!reached2){uv2+=offset*QUALITY(i);}if(reachedBoth){break;}}}float distance1=isHorizontal?(uv.x-uv1.x):(uv.y-uv1.y);float distance2=isHorizontal?(uv2.x-uv.x):(uv2.y-uv.y);bool isDirection1=distance1<distance2;float distanceFinal=min(distance1,distance2);float edgeThickness=(distance1+distance2);bool isLumaCenterSmaller=lumaCenter<lumaLocalAverage;bool correctVariation1=(lumaEnd1<0.0)!=isLumaCenterSmaller;bool correctVariation2=(lumaEnd2<0.0)!=isLumaCenterSmaller;bool correctVariation=isDirection1?correctVariation1:correctVariation2;float pixelOffset=-distanceFinal/edgeThickness+0.5;float finalOffset=correctVariation?pixelOffset:0.0;float lumaAverage=ONE_OVER_TWELVE*(2.0*(lumaDownUp+lumaLeftRight)+lumaLeftCorners+lumaRightCorners);float subPixelOffset1=clamp(abs(lumaAverage-lumaCenter)/lumaRange,0.0,1.0);float subPixelOffset2=(-2.0*subPixelOffset1+3.0)*subPixelOffset1*subPixelOffset1;float subPixelOffsetFinal=subPixelOffset2*subPixelOffset2*SUBPIXEL_QUALITY;finalOffset=max(finalOffset,subPixelOffsetFinal);vec2 finalUv=uv;if(isHorizontal){finalUv.y+=finalOffset*stepLength;}else{finalUv.x+=finalOffset*stepLength;}return texture2D(inputBuffer,finalUv);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=fxaa(inputColor,uv);}`, Ca = "varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;void mainSupport(const in vec2 uv){vUvDown=uv+vec2(0.0,-1.0)*texelSize;vUvUp=uv+vec2(0.0,1.0)*texelSize;vUvRight=uv+vec2(1.0,0.0)*texelSize;vUvLeft=uv+vec2(-1.0,0.0)*texelSize;vUvDownLeft=uv+vec2(-1.0,-1.0)*texelSize;vUvUpRight=uv+vec2(1.0,1.0)*texelSize;vUvUpLeft=uv+vec2(-1.0,1.0)*texelSize;vUvDownRight=uv+vec2(1.0,-1.0)*texelSize;}", ya = class extends I {
4368
+ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;vec4 fxaa(const in vec4 inputColor,const in vec2 uv){float lumaCenter=luminance(inputColor.rgb);float lumaDown=luminance(texture2D(inputBuffer,vUvDown).rgb);float lumaUp=luminance(texture2D(inputBuffer,vUvUp).rgb);float lumaLeft=luminance(texture2D(inputBuffer,vUvLeft).rgb);float lumaRight=luminance(texture2D(inputBuffer,vUvRight).rgb);float lumaMin=min(lumaCenter,min(min(lumaDown,lumaUp),min(lumaLeft,lumaRight)));float lumaMax=max(lumaCenter,max(max(lumaDown,lumaUp),max(lumaLeft,lumaRight)));float lumaRange=lumaMax-lumaMin;if(lumaRange<max(EDGE_THRESHOLD_MIN,lumaMax*EDGE_THRESHOLD_MAX)){return inputColor;}float lumaDownLeft=luminance(texture2D(inputBuffer,vUvDownLeft).rgb);float lumaUpRight=luminance(texture2D(inputBuffer,vUvUpRight).rgb);float lumaUpLeft=luminance(texture2D(inputBuffer,vUvUpLeft).rgb);float lumaDownRight=luminance(texture2D(inputBuffer,vUvDownRight).rgb);float lumaDownUp=lumaDown+lumaUp;float lumaLeftRight=lumaLeft+lumaRight;float lumaLeftCorners=lumaDownLeft+lumaUpLeft;float lumaDownCorners=lumaDownLeft+lumaDownRight;float lumaRightCorners=lumaDownRight+lumaUpRight;float lumaUpCorners=lumaUpRight+lumaUpLeft;float edgeHorizontal=(abs(-2.0*lumaLeft+lumaLeftCorners)+abs(-2.0*lumaCenter+lumaDownUp)*2.0+abs(-2.0*lumaRight+lumaRightCorners));float edgeVertical=(abs(-2.0*lumaUp+lumaUpCorners)+abs(-2.0*lumaCenter+lumaLeftRight)*2.0+abs(-2.0*lumaDown+lumaDownCorners));bool isHorizontal=(edgeHorizontal>=edgeVertical);float stepLength=isHorizontal?texelSize.y:texelSize.x;float luma1=isHorizontal?lumaDown:lumaLeft;float luma2=isHorizontal?lumaUp:lumaRight;float gradient1=abs(luma1-lumaCenter);float gradient2=abs(luma2-lumaCenter);bool is1Steepest=gradient1>=gradient2;float gradientScaled=0.25*max(gradient1,gradient2);float lumaLocalAverage=0.0;if(is1Steepest){stepLength=-stepLength;lumaLocalAverage=0.5*(luma1+lumaCenter);}else{lumaLocalAverage=0.5*(luma2+lumaCenter);}vec2 currentUv=uv;if(isHorizontal){currentUv.y+=stepLength*0.5;}else{currentUv.x+=stepLength*0.5;}vec2 offset=isHorizontal?vec2(texelSize.x,0.0):vec2(0.0,texelSize.y);vec2 uv1=currentUv-offset*QUALITY(0);vec2 uv2=currentUv+offset*QUALITY(0);float lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);float lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd1-=lumaLocalAverage;lumaEnd2-=lumaLocalAverage;bool reached1=abs(lumaEnd1)>=gradientScaled;bool reached2=abs(lumaEnd2)>=gradientScaled;bool reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(1);}if(!reached2){uv2+=offset*QUALITY(1);}if(!reachedBoth){for(int i=2;i<SAMPLES;++i){if(!reached1){lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);lumaEnd1=lumaEnd1-lumaLocalAverage;}if(!reached2){lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd2=lumaEnd2-lumaLocalAverage;}reached1=abs(lumaEnd1)>=gradientScaled;reached2=abs(lumaEnd2)>=gradientScaled;reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(i);}if(!reached2){uv2+=offset*QUALITY(i);}if(reachedBoth){break;}}}float distance1=isHorizontal?(uv.x-uv1.x):(uv.y-uv1.y);float distance2=isHorizontal?(uv2.x-uv.x):(uv2.y-uv.y);bool isDirection1=distance1<distance2;float distanceFinal=min(distance1,distance2);float edgeThickness=(distance1+distance2);bool isLumaCenterSmaller=lumaCenter<lumaLocalAverage;bool correctVariation1=(lumaEnd1<0.0)!=isLumaCenterSmaller;bool correctVariation2=(lumaEnd2<0.0)!=isLumaCenterSmaller;bool correctVariation=isDirection1?correctVariation1:correctVariation2;float pixelOffset=-distanceFinal/edgeThickness+0.5;float finalOffset=correctVariation?pixelOffset:0.0;float lumaAverage=ONE_OVER_TWELVE*(2.0*(lumaDownUp+lumaLeftRight)+lumaLeftCorners+lumaRightCorners);float subPixelOffset1=clamp(abs(lumaAverage-lumaCenter)/lumaRange,0.0,1.0);float subPixelOffset2=(-2.0*subPixelOffset1+3.0)*subPixelOffset1*subPixelOffset1;float subPixelOffsetFinal=subPixelOffset2*subPixelOffset2*SUBPIXEL_QUALITY;finalOffset=max(finalOffset,subPixelOffsetFinal);vec2 finalUv=uv;if(isHorizontal){finalUv.y+=finalOffset*stepLength;}else{finalUv.x+=finalOffset*stepLength;}return texture2D(inputBuffer,finalUv);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=fxaa(inputColor,uv);}`, Ta = "varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;void mainSupport(const in vec2 uv){vUvDown=uv+vec2(0.0,-1.0)*texelSize;vUvUp=uv+vec2(0.0,1.0)*texelSize;vUvRight=uv+vec2(1.0,0.0)*texelSize;vUvLeft=uv+vec2(-1.0,0.0)*texelSize;vUvDownLeft=uv+vec2(-1.0,-1.0)*texelSize;vUvUpRight=uv+vec2(1.0,1.0)*texelSize;vUvUpLeft=uv+vec2(-1.0,1.0)*texelSize;vUvDownRight=uv+vec2(1.0,-1.0)*texelSize;}", Sa = class extends I {
4372
4369
  /**
4373
4370
  * Constructs a new FXAA effect.
4374
4371
  *
@@ -4376,8 +4373,8 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
4376
4373
  * @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
4377
4374
  */
4378
4375
  constructor({ blendFunction: e = g.SRC } = {}) {
4379
- super("FXAAEffect", Ea, {
4380
- vertexShader: Ca,
4376
+ super("FXAAEffect", wa, {
4377
+ vertexShader: Ta,
4381
4378
  blendFunction: e,
4382
4379
  defines: /* @__PURE__ */ new Map([
4383
4380
  ["EDGE_THRESHOLD_MIN", "0.0312"],
@@ -4431,7 +4428,7 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
4431
4428
  set samples(e) {
4432
4429
  this.defines.set("SAMPLES", e.toFixed(0)), this.setChanged();
4433
4430
  }
4434
- }, Ma = "uniform float gamma;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=LinearToGamma(max(inputColor,0.0),gamma);}", Ba = class extends I {
4431
+ }, Ea = "uniform float gamma;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=LinearToGamma(max(inputColor,0.0),gamma);}", Ca = class extends I {
4435
4432
  /**
4436
4433
  * Constructs a new gamma correction effect.
4437
4434
  *
@@ -4440,7 +4437,7 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
4440
4437
  * @param {Number} [options.gamma=2.0] - The gamma factor.
4441
4438
  */
4442
4439
  constructor({ blendFunction: e = g.SRC, gamma: t = 2 } = {}) {
4443
- super("GammaCorrectionEffect", Ma, {
4440
+ super("GammaCorrectionEffect", Ea, {
4444
4441
  blendFunction: e,
4445
4442
  uniforms: /* @__PURE__ */ new Map([
4446
4443
  ["gamma", new c(t)]
@@ -4453,10 +4450,10 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
4453
4450
  CONSTANT_MILD: 2,
4454
4451
  CONSTANT_WILD: 3
4455
4452
  };
4456
- function Pa(e, t, i) {
4453
+ function ya(e, t, i) {
4457
4454
  const r = /* @__PURE__ */ new Map([
4458
4455
  [rt, 1],
4459
- [er, 2],
4456
+ [qi, 2],
4460
4457
  [z, 4]
4461
4458
  ]);
4462
4459
  let a;
@@ -4483,13 +4480,13 @@ var et = class extends it {
4483
4480
  * @param {Number} [type=UnsignedByteType] - The texture type.
4484
4481
  */
4485
4482
  constructor(e, t, i = rt, r = Y) {
4486
- super(Pa(e * t, i, r), e, t, i, r), this.needsUpdate = !0;
4483
+ super(ya(e * t, i, r), e, t, i, r), this.needsUpdate = !0;
4487
4484
  }
4488
- }, Ia = "uniform lowp sampler2D perturbationMap;uniform bool active;uniform float columns;uniform float random;uniform vec2 seeds;uniform vec2 distortion;void mainUv(inout vec2 uv){if(active){if(uv.y<distortion.x+columns&&uv.y>distortion.x-columns*random){float sx=clamp(ceil(seeds.x),0.0,1.0);uv.y=sx*(1.0-(uv.y+distortion.y))+(1.0-sx)*distortion.y;}if(uv.x<distortion.y+columns&&uv.x>distortion.y-columns*random){float sy=clamp(ceil(seeds.y),0.0,1.0);uv.x=sy*distortion.x+(1.0-sy)*(1.0-(uv.x+distortion.x));}vec2 normal=texture2D(perturbationMap,uv*random*random).rg;uv+=normal*seeds*(random*0.2);}}", Ve = "Glitch.Generated";
4485
+ }, Ma = "uniform lowp sampler2D perturbationMap;uniform bool active;uniform float columns;uniform float random;uniform vec2 seeds;uniform vec2 distortion;void mainUv(inout vec2 uv){if(active){if(uv.y<distortion.x+columns&&uv.y>distortion.x-columns*random){float sx=clamp(ceil(seeds.x),0.0,1.0);uv.y=sx*(1.0-(uv.y+distortion.y))+(1.0-sx)*distortion.y;}if(uv.x<distortion.y+columns&&uv.x>distortion.y-columns*random){float sy=clamp(ceil(seeds.y),0.0,1.0);uv.x=sy*distortion.x+(1.0-sy)*(1.0-(uv.x+distortion.x));}vec2 normal=texture2D(perturbationMap,uv*random*random).rg;uv+=normal*seeds*(random*0.2);}}", Ve = "Glitch.Generated";
4489
4486
  function Z(e, t) {
4490
4487
  return e + Math.random() * (t - e);
4491
4488
  }
4492
- var Ra = class extends I {
4489
+ var Ba = class extends I {
4493
4490
  /**
4494
4491
  * Constructs a new glitch effect.
4495
4492
  *
@@ -4514,7 +4511,7 @@ var Ra = class extends I {
4514
4511
  perturbationMap: s = null,
4515
4512
  dtSize: o = 64
4516
4513
  } = {}) {
4517
- if (super("GlitchEffect", Ia, {
4514
+ if (super("GlitchEffect", Ma, {
4518
4515
  uniforms: /* @__PURE__ */ new Map([
4519
4516
  ["perturbationMap", new c(null)],
4520
4517
  ["columns", new c(a)],
@@ -4885,7 +4882,7 @@ var Ra = class extends I {
4885
4882
  DEFAULT: 0,
4886
4883
  KEEP_MAX_DEPTH: 1,
4887
4884
  DISCARD_MAX_DEPTH: 2
4888
- }, ba = `#include <common>
4885
+ }, Pa = `#include <common>
4889
4886
  #include <packing>
4890
4887
  #ifdef GL_FRAGMENT_PRECISION_HIGH
4891
4888
  uniform highp sampler2D depthBuffer0;uniform highp sampler2D depthBuffer1;
@@ -4949,9 +4946,9 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Mt = class e
4949
4946
  toneMapped: !1,
4950
4947
  depthWrite: !1,
4951
4948
  depthTest: !1,
4952
- fragmentShader: ba,
4949
+ fragmentShader: Pa,
4953
4950
  vertexShader: ce
4954
- }), this.depthMode = Rt;
4951
+ }), this.depthMode = It;
4955
4952
  }
4956
4953
  /**
4957
4954
  * The primary depth buffer.
@@ -5087,28 +5084,28 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Mt = class e
5087
5084
  set depthMode(e) {
5088
5085
  let t;
5089
5086
  switch (e) {
5090
- case $i:
5087
+ case Ji:
5091
5088
  t = "false";
5092
5089
  break;
5093
- case _i:
5090
+ case ji:
5094
5091
  t = "true";
5095
5092
  break;
5096
5093
  case vt:
5097
5094
  t = "abs(d1 - d0) <= DEPTH_EPSILON";
5098
5095
  break;
5099
- case _t:
5096
+ case qt:
5100
5097
  t = "abs(d1 - d0) > DEPTH_EPSILON";
5101
5098
  break;
5102
- case Rt:
5099
+ case It:
5103
5100
  t = "d0 > d1";
5104
5101
  break;
5105
- case qi:
5102
+ case Zi:
5106
5103
  t = "d0 >= d1";
5107
5104
  break;
5108
- case Ji:
5105
+ case Xi:
5109
5106
  t = "d0 <= d1";
5110
5107
  break;
5111
- case ji:
5108
+ case Ki:
5112
5109
  default:
5113
5110
  t = "d0 < d1";
5114
5111
  break;
@@ -5150,7 +5147,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Mt = class e
5150
5147
  copyCameraSettings(e) {
5151
5148
  e && (this.uniforms.cameraNearFar.value.set(e.near, e.far), e instanceof Ie ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
5152
5149
  }
5153
- }, Ua = `#include <common>
5150
+ }, Ia = `#include <common>
5154
5151
  #include <dithering_pars_fragment>
5155
5152
  #ifdef FRAMEBUFFER_PRECISION_HIGH
5156
5153
  uniform mediump sampler2D inputBuffer;
@@ -5159,7 +5156,7 @@ uniform lowp sampler2D inputBuffer;
5159
5156
  #endif
5160
5157
  uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform float density;uniform float weight;uniform float clampMax;varying vec2 vUv;void main(){vec2 coord=vUv;vec2 delta=lightPosition-coord;delta*=1.0/SAMPLES_FLOAT*density;float illuminationDecay=1.0;vec4 color=vec4(0.0);for(int i=0;i<SAMPLES_INT;++i){coord+=delta;vec4 texel=texture2D(inputBuffer,coord);texel*=illuminationDecay*weight;color+=texel;illuminationDecay*=decay;}gl_FragColor=clamp(color*exposure,0.0,clampMax);
5161
5158
  #include <dithering_fragment>
5162
- }`, pi = class extends w {
5159
+ }`, vi = class extends w {
5163
5160
  /**
5164
5161
  * Constructs a new god rays material.
5165
5162
  *
@@ -5186,7 +5183,7 @@ uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform fl
5186
5183
  toneMapped: !1,
5187
5184
  depthWrite: !1,
5188
5185
  depthTest: !1,
5189
- fragmentShader: Ua,
5186
+ fragmentShader: Ia,
5190
5187
  vertexShader: ce
5191
5188
  });
5192
5189
  }
@@ -5550,12 +5547,12 @@ uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform fl
5550
5547
  const n = this.scene, s = this.camera, o = this.selection, l = s.layers.mask, u = n.background, f = e.shadowMap.autoUpdate, h = this.renderToScreen ? null : t;
5551
5548
  o !== null && s.layers.set(o.getLayer()), this.skipShadowMapUpdate && (e.shadowMap.autoUpdate = !1), (this.ignoreBackground || this.clearPass.overrideClearColor !== null) && (n.background = null), this.clearPass.enabled && this.clearPass.render(e, t), e.setRenderTarget(h), this.overrideMaterialManager !== null ? this.overrideMaterialManager.render(e, n, s) : e.render(n, s), s.layers.mask = l, n.background = u, e.shadowMap.autoUpdate = f;
5552
5549
  }
5553
- }, Fa = `#ifdef FRAMEBUFFER_PRECISION_HIGH
5550
+ }, Ra = `#ifdef FRAMEBUFFER_PRECISION_HIGH
5554
5551
  uniform mediump sampler2D map;
5555
5552
  #else
5556
5553
  uniform lowp sampler2D map;
5557
5554
  #endif
5558
- void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv);}`, ut = /* @__PURE__ */ new L(), Lt = /* @__PURE__ */ new O(), La = class extends I {
5555
+ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv);}`, ut = /* @__PURE__ */ new L(), Ft = /* @__PURE__ */ new O(), ba = class extends I {
5559
5556
  /**
5560
5557
  * Constructs a new god rays effect.
5561
5558
  *
@@ -5593,7 +5590,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5593
5590
  resolutionX: A = d,
5594
5591
  resolutionY: m = v
5595
5592
  } = {}) {
5596
- super("GodRaysEffect", Fa, {
5593
+ super("GodRaysEffect", Ra, {
5597
5594
  blendFunction: i,
5598
5595
  attributes: V.DEPTH,
5599
5596
  uniforms: /* @__PURE__ */ new Map([
@@ -5601,7 +5598,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5601
5598
  ])
5602
5599
  }), this.camera = e, this._lightSource = t, this.lightSource = t, this.lightScene = new dt(), this.screenPosition = new p(), this.renderTargetA = new T(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "GodRays.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "GodRays.Target.B", this.uniforms.get("map").value = this.renderTargetB.texture, this.renderTargetLight = new T(1, 1), this.renderTargetLight.texture.name = "GodRays.Light", this.renderTargetLight.depthTexture = new ye(), this.renderPassLight = new ze(this.lightScene, e), this.renderPassLight.clearPass.overrideClearColor = new N(0), this.clearPass = new ge(!0, !1, !1), this.clearPass.overrideClearColor = new N(0), this.blurPass = new pe({ kernelSize: f }), this.blurPass.enabled = u, this.depthMaskPass = new q(new Mt());
5603
5600
  const E = this.depthMaskMaterial;
5604
- E.depthBuffer1 = this.renderTargetLight.depthTexture, E.copyCameraSettings(e), this.godRaysPass = new q(new pi(this.screenPosition));
5601
+ E.depthBuffer1 = this.renderTargetLight.depthTexture, E.copyCameraSettings(e), this.godRaysPass = new q(new vi(this.screenPosition));
5605
5602
  const C = this.godRaysMaterial;
5606
5603
  C.density = a, C.decay = n, C.weight = s, C.exposure = o, C.maxIntensity = l, C.samples = r;
5607
5604
  const S = this.resolution = new x(this, A, m, h);
@@ -5797,7 +5794,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5797
5794
  */
5798
5795
  update(e, t, i) {
5799
5796
  const r = this.lightSource, a = r.parent, n = r.matrixAutoUpdate, s = this.renderTargetA, o = this.renderTargetLight;
5800
- r.material.depthWrite = !0, r.matrixAutoUpdate = !1, r.updateWorldMatrix(!0, !1), a !== null && (n || Lt.copy(r.matrix), r.matrix.copy(r.matrixWorld)), this.lightScene.add(r), this.renderPassLight.render(e, o), this.clearPass.render(e, s), this.depthMaskPass.render(e, o, s), r.material.depthWrite = !1, r.matrixAutoUpdate = n, a !== null && (n || r.matrix.copy(Lt), a.add(r)), ut.setFromMatrixPosition(r.matrixWorld).project(this.camera), this.screenPosition.set(
5797
+ r.material.depthWrite = !0, r.matrixAutoUpdate = !1, r.updateWorldMatrix(!0, !1), a !== null && (n || Ft.copy(r.matrix), r.matrix.copy(r.matrixWorld)), this.lightScene.add(r), this.renderPassLight.render(e, o), this.clearPass.render(e, s), this.depthMaskPass.render(e, o, s), r.material.depthWrite = !1, r.matrixAutoUpdate = n, a !== null && (n || r.matrix.copy(Ft), a.add(r)), ut.setFromMatrixPosition(r.matrixWorld).project(this.camera), this.screenPosition.set(
5801
5798
  Math.min(Math.max((ut.x + 1) * 0.5, -1), 2),
5802
5799
  Math.min(Math.max((ut.y + 1) * 0.5, -1), 2)
5803
5800
  ), this.blurPass.enabled && this.blurPass.render(e, s, s), this.godRaysPass.render(e, s, this.renderTargetB);
@@ -5824,7 +5821,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5824
5821
  initialize(e, t, i) {
5825
5822
  this.blurPass.initialize(e, t, i), this.renderPassLight.initialize(e, t, i), this.depthMaskPass.initialize(e, t, i), this.godRaysPass.initialize(e, t, i), i !== void 0 && (this.renderTargetA.texture.type = i, this.renderTargetB.texture.type = i, this.renderTargetLight.texture.type = i, e !== null && e.outputColorSpace === y && (this.renderTargetA.texture.colorSpace = y, this.renderTargetB.texture.colorSpace = y, this.renderTargetLight.texture.colorSpace = y));
5826
5823
  }
5827
- }, Oa = "uniform vec2 scale;uniform float lineWidth;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float grid=0.5-max(abs(mod(uv.x*scale.x,1.0)-0.5),abs(mod(uv.y*scale.y,1.0)-0.5));outputColor=vec4(vec3(smoothstep(0.0,lineWidth,grid)),inputColor.a);}", Na = class extends I {
5824
+ }, Ua = "uniform vec2 scale;uniform float lineWidth;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float grid=0.5-max(abs(mod(uv.x*scale.x,1.0)-0.5),abs(mod(uv.y*scale.y,1.0)-0.5));outputColor=vec4(vec3(smoothstep(0.0,lineWidth,grid)),inputColor.a);}", Fa = class extends I {
5828
5825
  /**
5829
5826
  * Constructs a new grid effect.
5830
5827
  *
@@ -5834,7 +5831,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5834
5831
  * @param {Number} [options.lineWidth=0.0] - The line width of the grid pattern.
5835
5832
  */
5836
5833
  constructor({ blendFunction: e = g.OVERLAY, scale: t = 1, lineWidth: i = 0 } = {}) {
5837
- super("GridEffect", Oa, {
5834
+ super("GridEffect", Ua, {
5838
5835
  blendFunction: e,
5839
5836
  uniforms: /* @__PURE__ */ new Map([
5840
5837
  ["scale", new c(new p())],
@@ -5911,7 +5908,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5911
5908
  const i = e / t, r = this.scale * (t * 0.125);
5912
5909
  this.uniforms.get("scale").value.set(i * r, r), this.uniforms.get("lineWidth").value = r / t + this.lineWidth;
5913
5910
  }
5914
- }, Ha = "uniform vec3 hue;uniform float saturation;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,hue.xyz),dot(inputColor.rgb,hue.zxy),dot(inputColor.rgb,hue.yzx));float average=(color.r+color.g+color.b)/3.0;vec3 diff=average-color;if(saturation>0.0){color+=diff*(1.0-1.0/(1.001-saturation));}else{color+=diff*-saturation;}outputColor=vec4(min(color,1.0),inputColor.a);}", za = class extends I {
5911
+ }, La = "uniform vec3 hue;uniform float saturation;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,hue.xyz),dot(inputColor.rgb,hue.zxy),dot(inputColor.rgb,hue.yzx));float average=(color.r+color.g+color.b)/3.0;vec3 diff=average-color;if(saturation>0.0){color+=diff*(1.0-1.0/(1.001-saturation));}else{color+=diff*-saturation;}outputColor=vec4(min(color,1.0),inputColor.a);}", Oa = class extends I {
5915
5912
  /**
5916
5913
  * Constructs a new hue/saturation effect.
5917
5914
  *
@@ -5921,7 +5918,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5921
5918
  * @param {Number} [options.saturation=0.0] - The saturation factor, ranging from -1 to 1, where 0 means no change.
5922
5919
  */
5923
5920
  constructor({ blendFunction: e = g.SRC, hue: t = 0, saturation: i = 0 } = {}) {
5924
- super("HueSaturationEffect", Ha, {
5921
+ super("HueSaturationEffect", La, {
5925
5922
  blendFunction: e,
5926
5923
  uniforms: /* @__PURE__ */ new Map([
5927
5924
  ["hue", new c(new L())],
@@ -5993,7 +5990,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
5993
5990
  setHue(e) {
5994
5991
  this.hue = e;
5995
5992
  }
5996
- }, Ga = "uniform vec2 distortion;uniform vec2 principalPoint;uniform vec2 focalLength;uniform float skew;float mask(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void mainUv(inout vec2 uv){vec2 xn=2.0*(uv.st-0.5);vec3 xDistorted=vec3((1.0+distortion*dot(xn,xn))*xn,1.0);mat3 kk=mat3(vec3(focalLength.x,0.0,0.0),vec3(skew*focalLength.x,focalLength.y,0.0),vec3(principalPoint.x,principalPoint.y,1.0));uv=(kk*xDistorted).xy*0.5+0.5;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=mask(uv)*inputColor;}", ka = class extends I {
5993
+ }, Na = "uniform vec2 distortion;uniform vec2 principalPoint;uniform vec2 focalLength;uniform float skew;float mask(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void mainUv(inout vec2 uv){vec2 xn=2.0*(uv.st-0.5);vec3 xDistorted=vec3((1.0+distortion*dot(xn,xn))*xn,1.0);mat3 kk=mat3(vec3(focalLength.x,0.0,0.0),vec3(skew*focalLength.x,focalLength.y,0.0),vec3(principalPoint.x,principalPoint.y,1.0));uv=(kk*xDistorted).xy*0.5+0.5;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=mask(uv)*inputColor;}", Ha = class extends I {
5997
5994
  /**
5998
5995
  * Constructs a new lens distortion effect.
5999
5996
  *
@@ -6009,7 +6006,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
6009
6006
  focalLength: i = new p(1, 1),
6010
6007
  skew: r = 0
6011
6008
  } = {}) {
6012
- super("LensDistortionEffect", Ga, {
6009
+ super("LensDistortionEffect", Na, {
6013
6010
  uniforms: /* @__PURE__ */ new Map([
6014
6011
  ["distortion", new c(e)],
6015
6012
  ["principalPoint", new c(t)],
@@ -6062,7 +6059,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
6062
6059
  set skew(e) {
6063
6060
  this.uniforms.get("skew").value = e;
6064
6061
  }
6065
- }, Qa = `#ifdef LUT_PRECISION_HIGH
6062
+ }, za = `#ifdef LUT_PRECISION_HIGH
6066
6063
  #ifdef GL_FRAGMENT_PRECISION_HIGH
6067
6064
  uniform highp sampler2D lut;
6068
6065
  #else
@@ -6071,7 +6068,7 @@ uniform mediump sampler2D lut;
6071
6068
  #else
6072
6069
  uniform lowp sampler2D lut;
6073
6070
  #endif
6074
- void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(texture2D(lut,vec2(inputColor.r,0.5)).r,texture2D(lut,vec2(inputColor.g,0.5)).r,texture2D(lut,vec2(inputColor.b,0.5)).r,inputColor.a);}`, Va = class extends I {
6071
+ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(texture2D(lut,vec2(inputColor.r,0.5)).r,texture2D(lut,vec2(inputColor.g,0.5)).r,texture2D(lut,vec2(inputColor.b,0.5)).r,inputColor.a);}`, Ga = class extends I {
6075
6072
  /**
6076
6073
  * Constructs a new color grading effect.
6077
6074
  *
@@ -6080,7 +6077,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
6080
6077
  * @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
6081
6078
  */
6082
6079
  constructor(e, { blendFunction: t = g.SRC } = {}) {
6083
- super("LUT1DEffect", Qa, {
6080
+ super("LUT1DEffect", za, {
6084
6081
  blendFunction: t,
6085
6082
  uniforms: /* @__PURE__ */ new Map([["lut", new c(null)]])
6086
6083
  }), this.lut = e;
@@ -6096,10 +6093,10 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
6096
6093
  set lut(e) {
6097
6094
  this.uniforms.get("lut").value = e, e !== null && (e.type === J || e.type === $) && this.defines.set("LUT_PRECISION_HIGH", "1");
6098
6095
  }
6099
- }, gi = {
6096
+ }, pi = {
6100
6097
  SCALE_UP: "lut.scaleup"
6101
6098
  };
6102
- function Ot(e, t, i) {
6099
+ function Lt(e, t, i) {
6103
6100
  const r = document.createElement("canvas"), a = r.getContext("2d");
6104
6101
  if (r.width = e, r.height = t, i instanceof Image)
6105
6102
  a.drawImage(i, 0, 0);
@@ -6109,7 +6106,7 @@ function Ot(e, t, i) {
6109
6106
  }
6110
6107
  return r;
6111
6108
  }
6112
- var ue = class mi {
6109
+ var ue = class gi {
6113
6110
  /**
6114
6111
  * Constructs a new image data container.
6115
6112
  *
@@ -6126,7 +6123,7 @@ var ue = class mi {
6126
6123
  * @return {Canvas} The canvas, or null if it couldn't be created.
6127
6124
  */
6128
6125
  toCanvas() {
6129
- return typeof document > "u" ? null : Ot(this.width, this.height, this.data);
6126
+ return typeof document > "u" ? null : Lt(this.width, this.height, this.data);
6130
6127
  }
6131
6128
  /**
6132
6129
  * Creates a new image data container.
@@ -6138,14 +6135,14 @@ var ue = class mi {
6138
6135
  const { width: i, height: r } = t;
6139
6136
  let a;
6140
6137
  if (t instanceof Image) {
6141
- const n = Ot(i, r, t);
6138
+ const n = Lt(i, r, t);
6142
6139
  n !== null && (a = n.getContext("2d").getImageData(0, 0, i, r).data);
6143
6140
  } else
6144
6141
  a = t.data;
6145
- return new mi(i, r, a);
6142
+ return new gi(i, r, a);
6146
6143
  }
6147
- }, Wa = `"use strict";(()=>{var O={SCALE_UP:"lut.scaleup"};var _=[new Float32Array(3),new Float32Array(3)],n=[new Float32Array(3),new Float32Array(3),new Float32Array(3),new Float32Array(3)],Z=[[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([0,1,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([0,1,1]),new Float32Array([1,1,1])]];function d(a,t,r,m){let i=r[0]-t[0],e=r[1]-t[1],y=r[2]-t[2],h=a[0]-t[0],A=a[1]-t[1],w=a[2]-t[2],c=e*w-y*A,l=y*h-i*w,x=i*A-e*h,u=Math.sqrt(c*c+l*l+x*x),b=u*.5,s=c/u,F=l/u,f=x/u,p=-(a[0]*s+a[1]*F+a[2]*f),M=m[0]*s+m[1]*F+m[2]*f;return Math.abs(M+p)*b/3}function V(a,t,r,m,i,e){let y=(r+m*t+i*t*t)*4;e[0]=a[y+0],e[1]=a[y+1],e[2]=a[y+2]}function k(a,t,r,m,i,e){let y=r*(t-1),h=m*(t-1),A=i*(t-1),w=Math.floor(y),c=Math.floor(h),l=Math.floor(A),x=Math.ceil(y),u=Math.ceil(h),b=Math.ceil(A),s=y-w,F=h-c,f=A-l;if(w===y&&c===h&&l===A)V(a,t,y,h,A,e);else{let p;s>=F&&F>=f?p=Z[0]:s>=f&&f>=F?p=Z[1]:f>=s&&s>=F?p=Z[2]:F>=s&&s>=f?p=Z[3]:F>=f&&f>=s?p=Z[4]:f>=F&&F>=s&&(p=Z[5]);let[M,g,X,Y]=p,P=_[0];P[0]=s,P[1]=F,P[2]=f;let o=_[1],L=x-w,S=u-c,U=b-l;o[0]=L*M[0]+w,o[1]=S*M[1]+c,o[2]=U*M[2]+l,V(a,t,o[0],o[1],o[2],n[0]),o[0]=L*g[0]+w,o[1]=S*g[1]+c,o[2]=U*g[2]+l,V(a,t,o[0],o[1],o[2],n[1]),o[0]=L*X[0]+w,o[1]=S*X[1]+c,o[2]=U*X[2]+l,V(a,t,o[0],o[1],o[2],n[2]),o[0]=L*Y[0]+w,o[1]=S*Y[1]+c,o[2]=U*Y[2]+l,V(a,t,o[0],o[1],o[2],n[3]);let T=d(g,X,Y,P)*6,q=d(M,X,Y,P)*6,C=d(M,g,Y,P)*6,E=d(M,g,X,P)*6;n[0][0]*=T,n[0][1]*=T,n[0][2]*=T,n[1][0]*=q,n[1][1]*=q,n[1][2]*=q,n[2][0]*=C,n[2][1]*=C,n[2][2]*=C,n[3][0]*=E,n[3][1]*=E,n[3][2]*=E,e[0]=n[0][0]+n[1][0]+n[2][0]+n[3][0],e[1]=n[0][1]+n[1][1]+n[2][1]+n[3][1],e[2]=n[0][2]+n[1][2]+n[2][2]+n[3][2]}}var v=class{static expand(t,r){let m=Math.cbrt(t.length/4),i=new Float32Array(3),e=new t.constructor(r**3*4),y=t instanceof Uint8Array?255:1,h=r**2,A=1/(r-1);for(let w=0;w<r;++w)for(let c=0;c<r;++c)for(let l=0;l<r;++l){let x=l*A,u=c*A,b=w*A,s=Math.round(l+c*r+w*h)*4;k(t,m,x,u,b,i),e[s+0]=i[0],e[s+1]=i[1],e[s+2]=i[2],e[s+3]=y}return e}};self.addEventListener("message",a=>{let t=a.data,r=t.data;switch(t.operation){case O.SCALE_UP:r=v.expand(r,t.size);break}postMessage(r,[r.buffer]),close()});})();
6148
- `, Nt = /* @__PURE__ */ new N(), Oe = class Ze extends Xe {
6144
+ }, ka = `"use strict";(()=>{var O={SCALE_UP:"lut.scaleup"};var _=[new Float32Array(3),new Float32Array(3)],n=[new Float32Array(3),new Float32Array(3),new Float32Array(3),new Float32Array(3)],Z=[[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([0,1,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([0,1,1]),new Float32Array([1,1,1])]];function d(a,t,r,m){let i=r[0]-t[0],e=r[1]-t[1],y=r[2]-t[2],h=a[0]-t[0],A=a[1]-t[1],w=a[2]-t[2],c=e*w-y*A,l=y*h-i*w,x=i*A-e*h,u=Math.sqrt(c*c+l*l+x*x),b=u*.5,s=c/u,F=l/u,f=x/u,p=-(a[0]*s+a[1]*F+a[2]*f),M=m[0]*s+m[1]*F+m[2]*f;return Math.abs(M+p)*b/3}function V(a,t,r,m,i,e){let y=(r+m*t+i*t*t)*4;e[0]=a[y+0],e[1]=a[y+1],e[2]=a[y+2]}function k(a,t,r,m,i,e){let y=r*(t-1),h=m*(t-1),A=i*(t-1),w=Math.floor(y),c=Math.floor(h),l=Math.floor(A),x=Math.ceil(y),u=Math.ceil(h),b=Math.ceil(A),s=y-w,F=h-c,f=A-l;if(w===y&&c===h&&l===A)V(a,t,y,h,A,e);else{let p;s>=F&&F>=f?p=Z[0]:s>=f&&f>=F?p=Z[1]:f>=s&&s>=F?p=Z[2]:F>=s&&s>=f?p=Z[3]:F>=f&&f>=s?p=Z[4]:f>=F&&F>=s&&(p=Z[5]);let[M,g,X,Y]=p,P=_[0];P[0]=s,P[1]=F,P[2]=f;let o=_[1],L=x-w,S=u-c,U=b-l;o[0]=L*M[0]+w,o[1]=S*M[1]+c,o[2]=U*M[2]+l,V(a,t,o[0],o[1],o[2],n[0]),o[0]=L*g[0]+w,o[1]=S*g[1]+c,o[2]=U*g[2]+l,V(a,t,o[0],o[1],o[2],n[1]),o[0]=L*X[0]+w,o[1]=S*X[1]+c,o[2]=U*X[2]+l,V(a,t,o[0],o[1],o[2],n[2]),o[0]=L*Y[0]+w,o[1]=S*Y[1]+c,o[2]=U*Y[2]+l,V(a,t,o[0],o[1],o[2],n[3]);let T=d(g,X,Y,P)*6,q=d(M,X,Y,P)*6,C=d(M,g,Y,P)*6,E=d(M,g,X,P)*6;n[0][0]*=T,n[0][1]*=T,n[0][2]*=T,n[1][0]*=q,n[1][1]*=q,n[1][2]*=q,n[2][0]*=C,n[2][1]*=C,n[2][2]*=C,n[3][0]*=E,n[3][1]*=E,n[3][2]*=E,e[0]=n[0][0]+n[1][0]+n[2][0]+n[3][0],e[1]=n[0][1]+n[1][1]+n[2][1]+n[3][1],e[2]=n[0][2]+n[1][2]+n[2][2]+n[3][2]}}var v=class{static expand(t,r){let m=Math.cbrt(t.length/4),i=new Float32Array(3),e=new t.constructor(r**3*4),y=t instanceof Uint8Array?255:1,h=r**2,A=1/(r-1);for(let w=0;w<r;++w)for(let c=0;c<r;++c)for(let l=0;l<r;++l){let x=l*A,u=c*A,b=w*A,s=Math.round(l+c*r+w*h)*4;k(t,m,x,u,b,i),e[s+0]=i[0],e[s+1]=i[1],e[s+2]=i[2],e[s+3]=y}return e}};self.addEventListener("message",a=>{let t=a.data,r=t.data;switch(t.operation){case O.SCALE_UP:r=v.expand(r,t.size);break}postMessage(r,[r.buffer]),close()});})();
6145
+ `, Ot = /* @__PURE__ */ new N(), Oe = class Ze extends Xe {
6149
6146
  /**
6150
6147
  * Constructs a cubic 3D lookup texture.
6151
6148
  *
@@ -6175,7 +6172,7 @@ var ue = class mi {
6175
6172
  const r = this.image;
6176
6173
  let a;
6177
6174
  return t <= r.width ? a = Promise.reject(new Error("The target size must be greater than the current size")) : a = new Promise((n, s) => {
6178
- const o = URL.createObjectURL(new Blob([Wa], {
6175
+ const o = URL.createObjectURL(new Blob([ka], {
6179
6176
  type: "text/javascript"
6180
6177
  })), l = new Worker(o);
6181
6178
  l.addEventListener("error", (f) => s(f.error)), l.addEventListener("message", (f) => {
@@ -6184,7 +6181,7 @@ var ue = class mi {
6184
6181
  });
6185
6182
  const u = i ? [r.data.buffer] : [];
6186
6183
  l.postMessage({
6187
- operation: gi.SCALE_UP,
6184
+ operation: pi.SCALE_UP,
6188
6185
  data: r.data,
6189
6186
  size: t
6190
6187
  }, u);
@@ -6262,7 +6259,7 @@ var ue = class mi {
6262
6259
  const t = this.image.data;
6263
6260
  if (this.type === J) {
6264
6261
  for (let i = 0, r = t.length; i < r; i += 4)
6265
- Nt.fromArray(t, i).convertLinearToSRGB().toArray(t, i);
6262
+ Ot.fromArray(t, i).convertLinearToSRGB().toArray(t, i);
6266
6263
  this.colorSpace = y, this.needsUpdate = !0;
6267
6264
  } else
6268
6265
  console.error("Color space conversion requires FloatType data");
@@ -6277,7 +6274,7 @@ var ue = class mi {
6277
6274
  const t = this.image.data;
6278
6275
  if (this.type === J) {
6279
6276
  for (let i = 0, r = t.length; i < r; i += 4)
6280
- Nt.fromArray(t, i).convertSRGBToLinear().toArray(t, i);
6277
+ Ot.fromArray(t, i).convertSRGBToLinear().toArray(t, i);
6281
6278
  this.colorSpace = je, this.needsUpdate = !0;
6282
6279
  } else
6283
6280
  console.error("Color space conversion requires FloatType data");
@@ -6339,7 +6336,7 @@ var ue = class mi {
6339
6336
  const n = new Ze(i, t);
6340
6337
  return n.name = "neutral", n;
6341
6338
  }
6342
- }, Ya = `uniform vec3 scale;uniform vec3 offset;
6339
+ }, Qa = `uniform vec3 scale;uniform vec3 offset;
6343
6340
  #ifdef CUSTOM_INPUT_DOMAIN
6344
6341
  uniform vec3 domainMin;uniform vec3 domainMax;
6345
6342
  #endif
@@ -6387,7 +6384,7 @@ c=clamp(c,0.0,1.0);
6387
6384
  #endif
6388
6385
  c=applyLUT(scale*c+offset).rgb;
6389
6386
  #endif
6390
- outputColor=vec4(c,inputColor.a);}`, Ht = class extends I {
6387
+ outputColor=vec4(c,inputColor.a);}`, Nt = class extends I {
6391
6388
  /**
6392
6389
  * Constructs a new color grading effect.
6393
6390
  *
@@ -6402,7 +6399,7 @@ outputColor=vec4(c,inputColor.a);}`, Ht = class extends I {
6402
6399
  tetrahedralInterpolation: i = !1,
6403
6400
  inputColorSpace: r = y
6404
6401
  } = {}) {
6405
- super("LUT3DEffect", Ya, {
6402
+ super("LUT3DEffect", Qa, {
6406
6403
  blendFunction: t,
6407
6404
  uniforms: /* @__PURE__ */ new Map([
6408
6405
  ["lut", new c(null)],
@@ -6510,7 +6507,7 @@ outputColor=vec4(c,inputColor.a);}`, Ht = class extends I {
6510
6507
  DEPTH: 0,
6511
6508
  LUMA: 1,
6512
6509
  COLOR: 2
6513
- }, Ai = {
6510
+ }, mi = {
6514
6511
  DISABLED: 0,
6515
6512
  DEPTH: 1,
6516
6513
  CUSTOM: 2
@@ -6533,18 +6530,18 @@ outputColor=vec4(c,inputColor.a);}`, Ht = class extends I {
6533
6530
  }, Ee = {
6534
6531
  DEFAULT: 0,
6535
6532
  ESKIL: 1
6536
- }, Ka = {
6533
+ }, Va = {
6537
6534
  DERIVATIVES: "derivatives",
6538
6535
  FRAG_DEPTH: "fragDepth",
6539
6536
  DRAW_BUFFERS: "drawBuffers",
6540
6537
  SHADER_TEXTURE_LOD: "shaderTextureLOD"
6541
- }, Xa = `void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 noise=vec3(rand(uv*(1.0+time)));
6538
+ }, Wa = `void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 noise=vec3(rand(uv*(1.0+time)));
6542
6539
  #ifdef PREMULTIPLY
6543
6540
  outputColor=vec4(min(inputColor.rgb*noise,vec3(1.0)),inputColor.a);
6544
6541
  #else
6545
6542
  outputColor=vec4(noise,inputColor.a);
6546
6543
  #endif
6547
- }`, Za = class extends I {
6544
+ }`, Ya = class extends I {
6548
6545
  /**
6549
6546
  * Constructs a new noise effect.
6550
6547
  *
@@ -6553,7 +6550,7 @@ outputColor=vec4(noise,inputColor.a);
6553
6550
  * @param {Boolean} [options.premultiply=false] - Whether the noise should be multiplied with the input colors prior to blending.
6554
6551
  */
6555
6552
  constructor({ blendFunction: e = g.SCREEN, premultiply: t = !1 } = {}) {
6556
- super("NoiseEffect", Xa, { blendFunction: e }), this.premultiply = t;
6553
+ super("NoiseEffect", Wa, { blendFunction: e }), this.premultiply = t;
6557
6554
  }
6558
6555
  /**
6559
6556
  * Indicates whether noise will be multiplied with the input colors prior to blending.
@@ -6584,7 +6581,7 @@ outputColor=vec4(noise,inputColor.a);
6584
6581
  setPremultiplied(e) {
6585
6582
  this.premultiply = e;
6586
6583
  }
6587
- }, ja = `#include <packing>
6584
+ }, Ka = `#include <packing>
6588
6585
  #include <clipping_planes_pars_fragment>
6589
6586
  #ifdef GL_FRAGMENT_PRECISION_HIGH
6590
6587
  uniform highp sampler2D depthBuffer;
@@ -6604,7 +6601,7 @@ float viewZ=perspectiveDepthToViewZ(fragCoordZ,cameraNear,cameraFar);
6604
6601
  #else
6605
6602
  float viewZ=orthographicDepthToViewZ(fragCoordZ,cameraNear,cameraFar);
6606
6603
  #endif
6607
- float depthTest=(-vViewZ>-viewZ)?1.0:0.0;gl_FragColor.rg=vec2(0.0,depthTest);}`, Ja = `#include <common>
6604
+ float depthTest=(-vViewZ>-viewZ)?1.0:0.0;gl_FragColor.rg=vec2(0.0,depthTest);}`, Xa = `#include <common>
6608
6605
  #include <morphtarget_pars_vertex>
6609
6606
  #include <skinning_pars_vertex>
6610
6607
  #include <clipping_planes_pars_vertex>
@@ -6616,7 +6613,7 @@ varying float vViewZ;varying vec4 vProjTexCoord;void main(){
6616
6613
  #include <project_vertex>
6617
6614
  vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6618
6615
  #include <clipping_planes_vertex>
6619
- }`, xi = class extends w {
6616
+ }`, Ai = class extends w {
6620
6617
  /**
6621
6618
  * Constructs a new depth comparison material.
6622
6619
  *
@@ -6638,8 +6635,8 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6638
6635
  toneMapped: !1,
6639
6636
  depthWrite: !1,
6640
6637
  depthTest: !1,
6641
- fragmentShader: ja,
6642
- vertexShader: Ja
6638
+ fragmentShader: Ka,
6639
+ vertexShader: Xa
6643
6640
  }), this.depthBuffer = e, this.depthPacking = ae, this.copyCameraSettings(t);
6644
6641
  }
6645
6642
  /**
@@ -6685,7 +6682,7 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6685
6682
  copyCameraSettings(e) {
6686
6683
  e && (this.uniforms.cameraNear.value = e.near, this.uniforms.cameraFar.value = e.far, e instanceof Ie ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
6687
6684
  }
6688
- }, qa = "uniform lowp sampler2D inputBuffer;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 c0=texture2D(inputBuffer,vUv0).rg;vec2 c1=texture2D(inputBuffer,vUv1).rg;vec2 c2=texture2D(inputBuffer,vUv2).rg;vec2 c3=texture2D(inputBuffer,vUv3).rg;float d0=(c0.x-c1.x)*0.5;float d1=(c2.x-c3.x)*0.5;float d=length(vec2(d0,d1));float a0=min(c0.y,c1.y);float a1=min(c2.y,c3.y);float visibilityFactor=min(a0,a1);gl_FragColor.rg=(1.0-visibilityFactor>0.001)?vec2(d,0.0):vec2(0.0,d);}", _a = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=vec2(uv.x+texelSize.x,uv.y);vUv1=vec2(uv.x-texelSize.x,uv.y);vUv2=vec2(uv.x,uv.y+texelSize.y);vUv3=vec2(uv.x,uv.y-texelSize.y);gl_Position=vec4(position.xy,1.0,1.0);}", mt = class extends w {
6685
+ }, Za = "uniform lowp sampler2D inputBuffer;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 c0=texture2D(inputBuffer,vUv0).rg;vec2 c1=texture2D(inputBuffer,vUv1).rg;vec2 c2=texture2D(inputBuffer,vUv2).rg;vec2 c3=texture2D(inputBuffer,vUv3).rg;float d0=(c0.x-c1.x)*0.5;float d1=(c2.x-c3.x)*0.5;float d=length(vec2(d0,d1));float a0=min(c0.y,c1.y);float a1=min(c2.y,c3.y);float visibilityFactor=min(a0,a1);gl_FragColor.rg=(1.0-visibilityFactor>0.001)?vec2(d,0.0):vec2(0.0,d);}", ja = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=vec2(uv.x+texelSize.x,uv.y);vUv1=vec2(uv.x-texelSize.x,uv.y);vUv2=vec2(uv.x,uv.y+texelSize.y);vUv3=vec2(uv.x,uv.y-texelSize.y);gl_Position=vec4(position.xy,1.0,1.0);}", mt = class extends w {
6689
6686
  /**
6690
6687
  * Constructs a new outline material.
6691
6688
  *
@@ -6703,8 +6700,8 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6703
6700
  toneMapped: !1,
6704
6701
  depthWrite: !1,
6705
6702
  depthTest: !1,
6706
- fragmentShader: qa,
6707
- vertexShader: _a
6703
+ fragmentShader: Za,
6704
+ vertexShader: ja
6708
6705
  }), this.uniforms.texelSize.value.set(e.x, e.y), this.uniforms.maskTexture = this.uniforms.inputBuffer;
6709
6706
  }
6710
6707
  /**
@@ -6765,7 +6762,7 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6765
6762
  resolutionX: s = a,
6766
6763
  resolutionY: o = n
6767
6764
  } = {}) {
6768
- super("DepthPass"), this.needsSwap = !1, this.renderPass = new ze(e, t, new Wi({
6765
+ super("DepthPass"), this.needsSwap = !1, this.renderPass = new ze(e, t, new ki({
6769
6766
  depthPacking: ae
6770
6767
  }));
6771
6768
  const l = this.renderPass;
@@ -6851,7 +6848,7 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
6851
6848
  const i = this.resolution;
6852
6849
  i.setBaseSize(e, t), this.renderTarget.setSize(i.width, i.height);
6853
6850
  }
6854
- }, $a = `uniform lowp sampler2D edgeTexture;uniform lowp sampler2D maskTexture;uniform vec3 visibleEdgeColor;uniform vec3 hiddenEdgeColor;uniform float pulse;uniform float edgeStrength;
6851
+ }, Ja = `uniform lowp sampler2D edgeTexture;uniform lowp sampler2D maskTexture;uniform vec3 visibleEdgeColor;uniform vec3 hiddenEdgeColor;uniform float pulse;uniform float edgeStrength;
6855
6852
  #ifdef USE_PATTERN
6856
6853
  uniform lowp sampler2D patternTexture;varying vec2 vUvPattern;
6857
6854
  #endif
@@ -6875,7 +6872,7 @@ outputColor=vec4(color,alpha);
6875
6872
  #else
6876
6873
  outputColor=vec4(color,max(alpha,inputColor.a));
6877
6874
  #endif
6878
- }`, es = "uniform float patternScale;varying vec2 vUvPattern;void mainSupport(const in vec2 uv){vUvPattern=uv*vec2(aspect,1.0)*patternScale;}", ts = class extends I {
6875
+ }`, qa = "uniform float patternScale;varying vec2 vUvPattern;void mainSupport(const in vec2 uv){vUvPattern=uv*vec2(aspect,1.0)*patternScale;}", _a = class extends I {
6879
6876
  /**
6880
6877
  * Constructs a new outline effect.
6881
6878
  *
@@ -6917,7 +6914,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
6917
6914
  resolutionX: E = A,
6918
6915
  resolutionY: C = m
6919
6916
  } = {}) {
6920
- super("OutlineEffect", $a, {
6917
+ super("OutlineEffect", Ja, {
6921
6918
  uniforms: /* @__PURE__ */ new Map([
6922
6919
  ["maskTexture", new c(null)],
6923
6920
  ["edgeTexture", new c(null)],
@@ -6930,7 +6927,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
6930
6927
  ])
6931
6928
  }), this.blendMode.addEventListener("change", (ee) => {
6932
6929
  this.blendMode.blendFunction === g.ALPHA ? this.defines.set("ALPHA", "1") : this.defines.delete("ALPHA"), this.setChanged();
6933
- }), this.blendMode.blendFunction = i, this.patternTexture = r, this.xRay = h, this.scene = e, this.camera = t, this.renderTargetMask = new T(1, 1), this.renderTargetMask.samples = d, this.renderTargetMask.texture.name = "Outline.Mask", this.uniforms.get("maskTexture").value = this.renderTargetMask.texture, this.renderTargetOutline = new T(1, 1, { depthBuffer: !1 }), this.renderTargetOutline.texture.name = "Outline.Edges", this.uniforms.get("edgeTexture").value = this.renderTargetOutline.texture, this.clearPass = new ge(), this.clearPass.overrideClearColor = new N(0), this.clearPass.overrideClearAlpha = 1, this.depthPass = new Pt(e, t), this.maskPass = new ze(e, t, new xi(this.depthPass.texture, t));
6930
+ }), this.blendMode.blendFunction = i, this.patternTexture = r, this.xRay = h, this.scene = e, this.camera = t, this.renderTargetMask = new T(1, 1), this.renderTargetMask.samples = d, this.renderTargetMask.texture.name = "Outline.Mask", this.uniforms.get("maskTexture").value = this.renderTargetMask.texture, this.renderTargetOutline = new T(1, 1, { depthBuffer: !1 }), this.renderTargetOutline.texture.name = "Outline.Edges", this.uniforms.get("edgeTexture").value = this.renderTargetOutline.texture, this.clearPass = new ge(), this.clearPass.overrideClearColor = new N(0), this.clearPass.overrideClearAlpha = 1, this.depthPass = new Pt(e, t), this.maskPass = new ze(e, t, new Ai(this.depthPass.texture, t));
6934
6931
  const S = this.maskPass.clearPass;
6935
6932
  S.overrideClearColor = new N(16777215), S.overrideClearAlpha = 1, this.blurPass = new pe({ resolutionScale: v, resolutionX: E, resolutionY: C, kernelSize: u }), this.blurPass.enabled = f;
6936
6933
  const D = this.blurPass.resolution;
@@ -7164,7 +7161,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
7164
7161
  return this.uniforms.get("patternTexture").value;
7165
7162
  }
7166
7163
  set patternTexture(e) {
7167
- e !== null ? (e.wrapS = e.wrapT = se, this.defines.set("USE_PATTERN", "1"), this.setVertexShader(es)) : (this.defines.delete("USE_PATTERN"), this.setVertexShader(null)), this.uniforms.get("patternTexture").value = e, this.setChanged();
7164
+ e !== null ? (e.wrapS = e.wrapT = se, this.defines.set("USE_PATTERN", "1"), this.setVertexShader(qa)) : (this.defines.delete("USE_PATTERN"), this.setVertexShader(null)), this.uniforms.get("patternTexture").value = e, this.setChanged();
7168
7165
  }
7169
7166
  /**
7170
7167
  * Sets the pattern texture.
@@ -7266,14 +7263,14 @@ outputColor=vec4(color,max(alpha,inputColor.a));
7266
7263
  initialize(e, t, i) {
7267
7264
  this.blurPass.initialize(e, t, Y), i !== void 0 && (this.depthPass.initialize(e, t, i), this.maskPass.initialize(e, t, i), this.outlinePass.initialize(e, t, i));
7268
7265
  }
7269
- }, is = "uniform bool active;uniform vec4 d;void mainUv(inout vec2 uv){if(active){uv=d.xy*(floor(uv*d.zw)+0.5);}}", rs = class extends I {
7266
+ }, $a = "uniform bool active;uniform vec4 d;void mainUv(inout vec2 uv){if(active){uv=d.xy*(floor(uv*d.zw)+0.5);}}", es = class extends I {
7270
7267
  /**
7271
7268
  * Constructs a new pixelation effect.
7272
7269
  *
7273
7270
  * @param {Object} [granularity=30.0] - The pixel granularity.
7274
7271
  */
7275
7272
  constructor(e = 30) {
7276
- super("PixelationEffect", is, {
7273
+ super("PixelationEffect", $a, {
7277
7274
  uniforms: /* @__PURE__ */ new Map([
7278
7275
  ["active", new c(!1)],
7279
7276
  ["d", new c(new Be())]
@@ -7324,7 +7321,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
7324
7321
  const r = this.granularity, a = r / i.x, n = r / i.y;
7325
7322
  this.uniforms.get("d").value.set(a, n, 1 / a, 1 / n);
7326
7323
  }
7327
- }, as = `uniform float focus;uniform float focalLength;uniform float fStop;uniform float maxBlur;uniform float luminanceThreshold;uniform float luminanceGain;uniform float bias;uniform float fringe;
7324
+ }, ts = `uniform float focus;uniform float focalLength;uniform float fStop;uniform float maxBlur;uniform float luminanceThreshold;uniform float luminanceGain;uniform float bias;uniform float fringe;
7328
7325
  #ifdef MANUAL_DOF
7329
7326
  uniform vec4 dof;
7330
7327
  #endif
@@ -7352,7 +7349,7 @@ const int MAX_RING_SAMPLES=RINGS_INT*SAMPLES_INT;blur=clamp(blur,0.0,1.0);vec3 c
7352
7349
  #ifdef SHOW_FOCUS
7353
7350
  float edge=0.002*linearDepth;float m=clamp(smoothstep(0.0,edge,blur),0.0,1.0);float e=clamp(smoothstep(1.0-edge,1.0,blur),0.0,1.0);color=mix(color,vec3(1.0,0.5,0.0),(1.0-m)*0.6);color=mix(color,vec3(0.0,0.5,1.0),((1.0-e)-(1.0-m))*0.2);
7354
7351
  #endif
7355
- outputColor=vec4(color,inputColor.a);}`, ss = class extends I {
7352
+ outputColor=vec4(color,inputColor.a);}`, is = class extends I {
7356
7353
  /**
7357
7354
  * Constructs a new bokeh effect.
7358
7355
  *
@@ -7388,7 +7385,7 @@ outputColor=vec4(color,inputColor.a);}`, ss = class extends I {
7388
7385
  manualDoF: d = !1,
7389
7386
  pentagon: v = !1
7390
7387
  } = {}) {
7391
- super("RealisticBokehEffect", as, {
7388
+ super("RealisticBokehEffect", ts, {
7392
7389
  blendFunction: e,
7393
7390
  attributes: V.CONVOLUTION | V.DEPTH,
7394
7391
  uniforms: /* @__PURE__ */ new Map([
@@ -7463,7 +7460,7 @@ outputColor=vec4(color,inputColor.a);}`, ss = class extends I {
7463
7460
  set pentagon(e) {
7464
7461
  this.pentagon !== e && (e ? this.defines.set("PENTAGON", "1") : this.defines.delete("PENTAGON"), this.setChanged());
7465
7462
  }
7466
- }, ns = `uniform float count;
7463
+ }, rs = `uniform float count;
7467
7464
  #ifdef SCROLL
7468
7465
  uniform float scrollSpeed;
7469
7466
  #endif
@@ -7471,7 +7468,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){f
7471
7468
  #ifdef SCROLL
7472
7469
  y+=time*scrollSpeed;
7473
7470
  #endif
7474
- vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`, os = class extends I {
7471
+ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`, as = class extends I {
7475
7472
  /**
7476
7473
  * Constructs a new scanline effect.
7477
7474
  *
@@ -7481,7 +7478,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7481
7478
  * @param {Number} [options.scrollSpeed=0.0] - The scanline scroll speed.
7482
7479
  */
7483
7480
  constructor({ blendFunction: e = g.OVERLAY, density: t = 1.25, scrollSpeed: i = 0 } = {}) {
7484
- super("ScanlineEffect", ns, {
7481
+ super("ScanlineEffect", rs, {
7485
7482
  blendFunction: e,
7486
7483
  uniforms: /* @__PURE__ */ new Map([
7487
7484
  ["count", new c(0)],
@@ -7538,7 +7535,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7538
7535
  setSize(e, t) {
7539
7536
  this.resolution.set(e, t), this.uniforms.get("count").value = Math.round(t * this.density);
7540
7537
  }
7541
- }, ls = "uniform bool active;uniform vec2 center;uniform float waveSize;uniform float radius;uniform float maxRadius;uniform float amplitude;varying float vSize;void mainUv(inout vec2 uv){if(active){vec2 aspectCorrection=vec2(aspect,1.0);vec2 difference=uv*aspectCorrection-center*aspectCorrection;float distance=sqrt(dot(difference,difference))*vSize;if(distance>radius){if(distance<radius+waveSize){float angle=(distance-radius)*PI2/waveSize;float cosSin=(1.0-cos(angle))*0.5;float extent=maxRadius+waveSize;float decay=max(extent-distance*distance,0.0)/extent;uv-=((cosSin*amplitude*difference)/distance)*decay;}}}}", us = "uniform float size;uniform float cameraDistance;varying float vSize;void mainSupport(){vSize=(0.1*cameraDistance)/size;}", cs = Math.PI * 0.5, be = /* @__PURE__ */ new L(), zt = /* @__PURE__ */ new L(), fs = class extends I {
7538
+ }, ss = "uniform bool active;uniform vec2 center;uniform float waveSize;uniform float radius;uniform float maxRadius;uniform float amplitude;varying float vSize;void mainUv(inout vec2 uv){if(active){vec2 aspectCorrection=vec2(aspect,1.0);vec2 difference=uv*aspectCorrection-center*aspectCorrection;float distance=sqrt(dot(difference,difference))*vSize;if(distance>radius){if(distance<radius+waveSize){float angle=(distance-radius)*PI2/waveSize;float cosSin=(1.0-cos(angle))*0.5;float extent=maxRadius+waveSize;float decay=max(extent-distance*distance,0.0)/extent;uv-=((cosSin*amplitude*difference)/distance)*decay;}}}}", ns = "uniform float size;uniform float cameraDistance;varying float vSize;void mainSupport(){vSize=(0.1*cameraDistance)/size;}", os = Math.PI * 0.5, be = /* @__PURE__ */ new L(), Ht = /* @__PURE__ */ new L(), ls = class extends I {
7542
7539
  /**
7543
7540
  * Constructs a new shock wave effect.
7544
7541
  *
@@ -7556,8 +7553,8 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7556
7553
  waveSize: a = 0.2,
7557
7554
  amplitude: n = 0.05
7558
7555
  } = {}) {
7559
- super("ShockWaveEffect", ls, {
7560
- vertexShader: us,
7556
+ super("ShockWaveEffect", ss, {
7557
+ vertexShader: ns,
7561
7558
  uniforms: /* @__PURE__ */ new Map([
7562
7559
  ["active", new c(!1)],
7563
7560
  ["center", new c(new p(0.5, 0.5))],
@@ -7671,12 +7668,12 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7671
7668
  const r = this.position, a = this.camera, n = this.uniforms, s = n.get("active");
7672
7669
  if (this.active) {
7673
7670
  const o = n.get("waveSize").value;
7674
- a.getWorldDirection(be), zt.copy(a.position).sub(r), s.value = be.angleTo(zt) > cs, s.value && (n.get("cameraDistance").value = a.position.distanceTo(r), be.copy(r).project(a), this.screenPosition.set((be.x + 1) * 0.5, (be.y + 1) * 0.5)), this.time += i * this.speed;
7671
+ a.getWorldDirection(be), Ht.copy(a.position).sub(r), s.value = be.angleTo(Ht) > os, s.value && (n.get("cameraDistance").value = a.position.distanceTo(r), be.copy(r).project(a), this.screenPosition.set((be.x + 1) * 0.5, (be.y + 1) * 0.5)), this.time += i * this.speed;
7675
7672
  const l = this.time - o;
7676
7673
  n.get("radius").value = l, l >= (n.get("maxRadius").value + o) * 2 && (this.active = !1, s.value = !1);
7677
7674
  }
7678
7675
  }
7679
- }, hs = class extends hi {
7676
+ }, us = class extends fi {
7680
7677
  /**
7681
7678
  * Constructs a new selective bloom effect.
7682
7679
  *
@@ -7722,7 +7719,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7722
7719
  return this._inverted;
7723
7720
  }
7724
7721
  set inverted(e) {
7725
- this._inverted = e, this.depthMaskMaterial.depthMode = e ? _t : vt;
7722
+ this._inverted = e, this.depthMaskMaterial.depthMode = e ? qt : vt;
7726
7723
  }
7727
7724
  /**
7728
7725
  * Indicates whether the mask is inverted.
@@ -7815,7 +7812,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7815
7812
  initialize(e, t, i) {
7816
7813
  super.initialize(e, t, i), this.clearPass.initialize(e, t, i), this.depthPass.initialize(e, t, i), this.depthMaskPass.initialize(e, t, i), e !== null && e.capabilities.logarithmicDepthBuffer && (this.depthMaskPass.fullscreenMaterial.defines.LOG_DEPTH = "1"), i !== void 0 && (this.renderTargetMasked.texture.type = i, e !== null && e.outputColorSpace === y && (this.renderTargetMasked.texture.colorSpace = y));
7817
7814
  }
7818
- }, ds = "uniform vec3 weightsR;uniform vec3 weightsG;uniform vec3 weightsB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,weightsR),dot(inputColor.rgb,weightsG),dot(inputColor.rgb,weightsB));outputColor=vec4(color,inputColor.a);}", vs = class extends I {
7815
+ }, cs = "uniform vec3 weightsR;uniform vec3 weightsG;uniform vec3 weightsB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,weightsR),dot(inputColor.rgb,weightsG),dot(inputColor.rgb,weightsB));outputColor=vec4(color,inputColor.a);}", fs = class extends I {
7819
7816
  /**
7820
7817
  * Constructs a new sepia effect.
7821
7818
  *
@@ -7824,7 +7821,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7824
7821
  * @param {Number} [options.intensity=1.0] - The intensity of the effect.
7825
7822
  */
7826
7823
  constructor({ blendFunction: e, intensity: t = 1 } = {}) {
7827
- super("SepiaEffect", ds, {
7824
+ super("SepiaEffect", cs, {
7828
7825
  blendFunction: e,
7829
7826
  uniforms: /* @__PURE__ */ new Map([
7830
7827
  ["weightsR", new c(new L(0.393, 0.769, 0.189))],
@@ -7887,7 +7884,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
7887
7884
  get weightsB() {
7888
7885
  return this.uniforms.get("weightsB").value;
7889
7886
  }
7890
- }, ps = `varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
7887
+ }, hs = `varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
7891
7888
  #if EDGE_DETECTION_MODE != 0
7892
7889
  varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;
7893
7890
  #endif
@@ -7931,7 +7928,7 @@ float l=luminance(texture2D(inputBuffer,vUv).rgb);float lLeft=luminance(texture2
7931
7928
  #elif EDGE_DETECTION_MODE == 2
7932
7929
  vec4 delta;vec3 c=texture2D(inputBuffer,vUv).rgb;vec3 cLeft=texture2D(inputBuffer,vUv0).rgb;vec3 t=abs(c-cLeft);delta.x=max(max(t.r,t.g),t.b);vec3 cTop=texture2D(inputBuffer,vUv1).rgb;t=abs(c-cTop);delta.y=max(max(t.r,t.g),t.b);vec2 edges=step(threshold,delta.xy);if(dot(edges,vec2(1.0))==0.0){discard;}vec3 cRight=texture2D(inputBuffer,vUv2).rgb;t=abs(c-cRight);delta.z=max(max(t.r,t.g),t.b);vec3 cBottom=texture2D(inputBuffer,vUv3).rgb;t=abs(c-cBottom);delta.w=max(max(t.r,t.g),t.b);vec2 maxDelta=max(delta.xy,delta.zw);vec3 cLeftLeft=texture2D(inputBuffer,vUv4).rgb;t=abs(c-cLeftLeft);delta.z=max(max(t.r,t.g),t.b);vec3 cTopTop=texture2D(inputBuffer,vUv5).rgb;t=abs(c-cTopTop);delta.w=max(max(t.r,t.g),t.b);maxDelta=max(maxDelta.xy,delta.zw);float finalDelta=max(maxDelta.x,maxDelta.y);edges*=step(finalDelta,LOCAL_CONTRAST_ADAPTATION_FACTOR*delta.xy);gl_FragColor=vec4(edges,0.0,1.0);
7933
7930
  #endif
7934
- }`, gs = `uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
7931
+ }`, ds = `uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
7935
7932
  #if EDGE_DETECTION_MODE != 0
7936
7933
  varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;
7937
7934
  #endif
@@ -7971,8 +7968,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends w {
7971
7968
  toneMapped: !1,
7972
7969
  depthWrite: !1,
7973
7970
  depthTest: !1,
7974
- fragmentShader: ps,
7975
- vertexShader: gs
7971
+ fragmentShader: hs,
7972
+ vertexShader: ds
7976
7973
  }), this.edgeDetectionMode = t;
7977
7974
  }
7978
7975
  /**
@@ -8249,7 +8246,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends w {
8249
8246
  setSize(e, t) {
8250
8247
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
8251
8248
  }
8252
- }, ms = `#define sampleLevelZeroOffset(t, coord, offset) texture2D(t, coord + offset * texelSize)
8249
+ }, vs = `#define sampleLevelZeroOffset(t, coord, offset) texture2D(t, coord + offset * texelSize)
8253
8250
  #if __VERSION__ < 300
8254
8251
  #define round(v) floor(v + 0.5)
8255
8252
  #endif
@@ -8274,7 +8271,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8274
8271
  #if !defined(DISABLE_DIAG_DETECTION)
8275
8272
  }else{e.r=0.0;}
8276
8273
  #endif
8277
- }if(e.r>0.0){vec2 d;vec3 coords;coords.y=searchYUp(vOffset[1].xy,vOffset[2].z);coords.x=vOffset[0].x;d.x=coords.y;float e1=texture2D(inputBuffer,coords.xy).g;coords.z=searchYDown(vOffset[1].zw,vOffset[2].w);d.y=coords.z;d=round(resolution.yy*d-vPixCoord.yy);vec2 sqrtD=sqrt(abs(d));float e2=sampleLevelZeroOffset(inputBuffer,coords.xz,vec2(0,1)).g;weights.ba=area(sqrtD,e1,e2,subsampleIndices.x);coords.x=vUv.x;detectVerticalCornerPattern(weights.ba,coords.xyxz,d);}gl_FragColor=weights;}`, As = "uniform vec2 texelSize;uniform vec2 resolution;varying vec2 vUv;varying vec4 vOffset[3];varying vec2 vPixCoord;void main(){vUv=position.xy*0.5+0.5;vPixCoord=vUv*resolution;vOffset[0]=vUv.xyxy+texelSize.xyxy*vec4(-0.25,-0.125,1.25,-0.125);vOffset[1]=vUv.xyxy+texelSize.xyxy*vec4(-0.125,-0.25,-0.125,1.25);vOffset[2]=vec4(vOffset[0].xz,vOffset[1].yw)+vec4(-2.0,2.0,-2.0,2.0)*texelSize.xxyy*MAX_SEARCH_STEPS_FLOAT;gl_Position=vec4(position.xy,1.0,1.0);}", Di = class extends w {
8274
+ }if(e.r>0.0){vec2 d;vec3 coords;coords.y=searchYUp(vOffset[1].xy,vOffset[2].z);coords.x=vOffset[0].x;d.x=coords.y;float e1=texture2D(inputBuffer,coords.xy).g;coords.z=searchYDown(vOffset[1].zw,vOffset[2].w);d.y=coords.z;d=round(resolution.yy*d-vPixCoord.yy);vec2 sqrtD=sqrt(abs(d));float e2=sampleLevelZeroOffset(inputBuffer,coords.xz,vec2(0,1)).g;weights.ba=area(sqrtD,e1,e2,subsampleIndices.x);coords.x=vUv.x;detectVerticalCornerPattern(weights.ba,coords.xyxz,d);}gl_FragColor=weights;}`, ps = "uniform vec2 texelSize;uniform vec2 resolution;varying vec2 vUv;varying vec4 vOffset[3];varying vec2 vPixCoord;void main(){vUv=position.xy*0.5+0.5;vPixCoord=vUv*resolution;vOffset[0]=vUv.xyxy+texelSize.xyxy*vec4(-0.25,-0.125,1.25,-0.125);vOffset[1]=vUv.xyxy+texelSize.xyxy*vec4(-0.125,-0.25,-0.125,1.25);vOffset[2]=vec4(vOffset[0].xz,vOffset[1].yw)+vec4(-2.0,2.0,-2.0,2.0)*texelSize.xxyy*MAX_SEARCH_STEPS_FLOAT;gl_Position=vec4(position.xy,1.0,1.0);}", xi = class extends w {
8278
8275
  /**
8279
8276
  * Constructs a new SMAA weights material.
8280
8277
  *
@@ -8311,8 +8308,8 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8311
8308
  toneMapped: !1,
8312
8309
  depthWrite: !1,
8313
8310
  depthTest: !1,
8314
- fragmentShader: ms,
8315
- vertexShader: As
8311
+ fragmentShader: vs,
8312
+ vertexShader: ps
8316
8313
  });
8317
8314
  }
8318
8315
  /**
@@ -8503,7 +8500,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8503
8500
  const i = this.uniforms;
8504
8501
  i.texelSize.value.set(1 / e, 1 / t), i.resolution.value.set(e, t);
8505
8502
  }
8506
- }, xt = "", Dt = "", xs = "uniform sampler2D weightMap;varying vec2 vOffset0;varying vec2 vOffset1;void movec(const in bvec2 c,inout vec2 variable,const in vec2 value){if(c.x){variable.x=value.x;}if(c.y){variable.y=value.y;}}void movec(const in bvec4 c,inout vec4 variable,const in vec4 value){movec(c.xy,variable.xy,value.xy);movec(c.zw,variable.zw,value.zw);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 a;a.x=texture2D(weightMap,vOffset0).a;a.y=texture2D(weightMap,vOffset1).g;a.wz=texture2D(weightMap,uv).rb;vec4 color=inputColor;if(dot(a,vec4(1.0))>=1e-5){bool h=max(a.x,a.z)>max(a.y,a.w);vec4 blendingOffset=vec4(0.0,a.y,0.0,a.w);vec2 blendingWeight=a.yw;movec(bvec4(h),blendingOffset,vec4(a.x,0.0,a.z,0.0));movec(bvec2(h),blendingWeight,a.xz);blendingWeight/=dot(blendingWeight,vec2(1.0));vec4 blendingCoord=blendingOffset*vec4(texelSize,-texelSize)+uv.xyxy;color=blendingWeight.x*texture2D(inputBuffer,blendingCoord.xy);color+=blendingWeight.y*texture2D(inputBuffer,blendingCoord.zw);}outputColor=color;}", Ds = "varying vec2 vOffset0;varying vec2 vOffset1;void mainSupport(const in vec2 uv){vOffset0=uv+texelSize*vec2(1.0,0.0);vOffset1=uv+texelSize*vec2(0.0,1.0);}", ws = class extends I {
8503
+ }, xt = "", Dt = "", gs = "uniform sampler2D weightMap;varying vec2 vOffset0;varying vec2 vOffset1;void movec(const in bvec2 c,inout vec2 variable,const in vec2 value){if(c.x){variable.x=value.x;}if(c.y){variable.y=value.y;}}void movec(const in bvec4 c,inout vec4 variable,const in vec4 value){movec(c.xy,variable.xy,value.xy);movec(c.zw,variable.zw,value.zw);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 a;a.x=texture2D(weightMap,vOffset0).a;a.y=texture2D(weightMap,vOffset1).g;a.wz=texture2D(weightMap,uv).rb;vec4 color=inputColor;if(dot(a,vec4(1.0))>=1e-5){bool h=max(a.x,a.z)>max(a.y,a.w);vec4 blendingOffset=vec4(0.0,a.y,0.0,a.w);vec2 blendingWeight=a.yw;movec(bvec4(h),blendingOffset,vec4(a.x,0.0,a.z,0.0));movec(bvec2(h),blendingWeight,a.xz);blendingWeight/=dot(blendingWeight,vec2(1.0));vec4 blendingCoord=blendingOffset*vec4(texelSize,-texelSize)+uv.xyxy;color=blendingWeight.x*texture2D(inputBuffer,blendingCoord.xy);color+=blendingWeight.y*texture2D(inputBuffer,blendingCoord.zw);}outputColor=color;}", ms = "varying vec2 vOffset0;varying vec2 vOffset1;void mainSupport(const in vec2 uv){vOffset0=uv+texelSize*vec2(1.0,0.0);vOffset1=uv+texelSize*vec2(0.0,1.0);}", As = class extends I {
8507
8504
  /**
8508
8505
  * Constructs a new SMAA effect.
8509
8506
  *
@@ -8517,10 +8514,10 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8517
8514
  blendFunction: e = g.SRC,
8518
8515
  preset: t = Se.MEDIUM,
8519
8516
  edgeDetectionMode: i = Bt.COLOR,
8520
- predicationMode: r = Ai.DISABLED
8517
+ predicationMode: r = mi.DISABLED
8521
8518
  } = {}) {
8522
- super("SMAAEffect", xs, {
8523
- vertexShader: Ds,
8519
+ super("SMAAEffect", gs, {
8520
+ vertexShader: ms,
8524
8521
  blendFunction: e,
8525
8522
  attributes: V.CONVOLUTION | V.DEPTH,
8526
8523
  uniforms: /* @__PURE__ */ new Map([
@@ -8528,7 +8525,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8528
8525
  ])
8529
8526
  });
8530
8527
  let a, n;
8531
- arguments.length > 1 && (a = arguments[0], n = arguments[1], arguments.length > 2 && (t = arguments[2]), arguments.length > 3 && (i = arguments[3])), this.renderTargetEdges = new T(1, 1, { depthBuffer: !1 }), this.renderTargetEdges.texture.name = "SMAA.Edges", this.renderTargetWeights = this.renderTargetEdges.clone(), this.renderTargetWeights.texture.name = "SMAA.Weights", this.uniforms.get("weightMap").value = this.renderTargetWeights.texture, this.clearPass = new ge(!0, !1, !1), this.clearPass.overrideClearColor = new N(0), this.clearPass.overrideClearAlpha = 1, this.edgeDetectionPass = new q(new At()), this.edgeDetectionMaterial.edgeDetectionMode = i, this.edgeDetectionMaterial.predicationMode = r, this.weightsPass = new q(new Di());
8528
+ arguments.length > 1 && (a = arguments[0], n = arguments[1], arguments.length > 2 && (t = arguments[2]), arguments.length > 3 && (i = arguments[3])), this.renderTargetEdges = new T(1, 1, { depthBuffer: !1 }), this.renderTargetEdges.texture.name = "SMAA.Edges", this.renderTargetWeights = this.renderTargetEdges.clone(), this.renderTargetWeights.texture.name = "SMAA.Weights", this.uniforms.get("weightMap").value = this.renderTargetWeights.texture, this.clearPass = new ge(!0, !1, !1), this.clearPass.overrideClearColor = new N(0), this.clearPass.overrideClearAlpha = 1, this.edgeDetectionPass = new q(new At()), this.edgeDetectionMaterial.edgeDetectionMode = i, this.edgeDetectionMaterial.predicationMode = r, this.weightsPass = new q(new xi());
8532
8529
  const s = new Ne();
8533
8530
  s.onLoad = () => {
8534
8531
  const o = new Je(a);
@@ -8711,7 +8708,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
8711
8708
  static get areaImageDataURL() {
8712
8709
  return Dt;
8713
8710
  }
8714
- }, Ts = `#include <common>
8711
+ }, xs = `#include <common>
8715
8712
  #include <packing>
8716
8713
  #ifdef NORMAL_DEPTH
8717
8714
  #ifdef GL_FRAGMENT_PRECISION_HIGH
@@ -8765,7 +8762,7 @@ if(linearDepth<distanceCutoff.y){vec3 viewPosition=getViewPosition(vUv,depth,vie
8765
8762
  #ifdef LEGACY_INTENSITY
8766
8763
  ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
8767
8764
  #endif
8768
- }gl_FragColor.r=ao;}`, Ss = "uniform vec2 noiseScale;varying vec2 vUv;varying vec2 vUv2;void main(){vUv=position.xy*0.5+0.5;vUv2=vUv*noiseScale;gl_Position=vec4(position.xy,1.0,1.0);}", wi = class extends w {
8765
+ }gl_FragColor.r=ao;}`, Ds = "uniform vec2 noiseScale;varying vec2 vUv;varying vec2 vUv2;void main(){vUv=position.xy*0.5+0.5;vUv2=vUv*noiseScale;gl_Position=vec4(position.xy,1.0,1.0);}", Di = class extends w {
8769
8766
  /**
8770
8767
  * Constructs a new SSAO material.
8771
8768
  *
@@ -8804,8 +8801,8 @@ ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
8804
8801
  toneMapped: !1,
8805
8802
  depthWrite: !1,
8806
8803
  depthTest: !1,
8807
- fragmentShader: Ts,
8808
- vertexShader: Ss
8804
+ fragmentShader: xs,
8805
+ vertexShader: Ds
8809
8806
  }), this.copyCameraSettings(e), this.resolution = new p(), this.r = 1;
8810
8807
  }
8811
8808
  /**
@@ -9305,7 +9302,7 @@ ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
9305
9302
  t / r.image.height
9306
9303
  ), i.texelSize.value.set(1 / e, 1 / t), this.resolution.set(e, t), this.updateRadius();
9307
9304
  }
9308
- }, Es = `#include <packing>
9305
+ }, ws = `#include <packing>
9309
9306
  #ifdef GL_FRAGMENT_PRECISION_HIGH
9310
9307
  uniform highp sampler2D depthBuffer;
9311
9308
  #else
@@ -9326,7 +9323,7 @@ vec3 n[4];n[0]=texture2D(normalBuffer,vUv0).rgb;n[1]=texture2D(normalBuffer,vUv1
9326
9323
  #else
9327
9324
  vec3 n[4];n[0]=vec3(0.0);n[1]=vec3(0.0);n[2]=vec3(0.0);n[3]=vec3(0.0);
9328
9325
  #endif
9329
- gl_FragColor=vec4(n[index],d[index]);}`, Cs = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=uv;vUv1=vec2(uv.x,uv.y+texelSize.y);vUv2=vec2(uv.x+texelSize.x,uv.y);vUv3=uv+texelSize;gl_Position=vec4(position.xy,1.0,1.0);}", Ti = class extends w {
9326
+ gl_FragColor=vec4(n[index],d[index]);}`, Ts = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=uv;vUv1=vec2(uv.x,uv.y+texelSize.y);vUv2=vec2(uv.x+texelSize.x,uv.y);vUv3=uv+texelSize;gl_Position=vec4(position.xy,1.0,1.0);}", wi = class extends w {
9330
9327
  /**
9331
9328
  * Constructs a new depth downsampling material.
9332
9329
  */
@@ -9345,8 +9342,8 @@ gl_FragColor=vec4(n[index],d[index]);}`, Cs = "uniform vec2 texelSize;varying ve
9345
9342
  toneMapped: !1,
9346
9343
  depthWrite: !1,
9347
9344
  depthTest: !1,
9348
- fragmentShader: Es,
9349
- vertexShader: Cs
9345
+ fragmentShader: ws,
9346
+ vertexShader: Ts
9350
9347
  });
9351
9348
  }
9352
9349
  /**
@@ -9411,7 +9408,7 @@ gl_FragColor=vec4(n[index],d[index]);}`, Cs = "uniform vec2 texelSize;varying ve
9411
9408
  setSize(e, t) {
9412
9409
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
9413
9410
  }
9414
- }, Si = class extends H {
9411
+ }, Ti = class extends H {
9415
9412
  /**
9416
9413
  * Constructs a new depth downsampling pass.
9417
9414
  *
@@ -9432,7 +9429,7 @@ gl_FragColor=vec4(n[index],d[index]);}`, Cs = "uniform vec2 texelSize;varying ve
9432
9429
  resolutionY: n = r
9433
9430
  } = {}) {
9434
9431
  super("DepthDownsamplingPass");
9435
- const s = new Ti();
9432
+ const s = new wi();
9436
9433
  s.normalBuffer = e, this.fullscreenMaterial = s, this.needsDepthTexture = !0, this.needsSwap = !1, this.renderTarget = new T(1, 1, {
9437
9434
  minFilter: P,
9438
9435
  magFilter: P,
@@ -9511,7 +9508,7 @@ gl_FragColor=vec4(n[index],d[index]);}`, Cs = "uniform vec2 texelSize;varying ve
9511
9508
  if (!(r.getExtension("EXT_color_buffer_float") || r.getExtension("EXT_color_buffer_half_float")))
9512
9509
  throw new Error("Rendering to float texture is not supported.");
9513
9510
  }
9514
- }, ys = `uniform lowp sampler2D aoBuffer;uniform float luminanceInfluence;uniform float intensity;
9511
+ }, Ss = `uniform lowp sampler2D aoBuffer;uniform float luminanceInfluence;uniform float intensity;
9515
9512
  #if defined(DEPTH_AWARE_UPSAMPLING) && defined(NORMAL_DEPTH)
9516
9513
  #ifdef GL_FRAGMENT_PRECISION_HIGH
9517
9514
  uniform highp sampler2D normalDepthBuffer;
@@ -9534,7 +9531,7 @@ outputColor=vec4(1.0-ao*(1.0-color),inputColor.a);
9534
9531
  #else
9535
9532
  outputColor=vec4(vec3(1.0-ao),inputColor.a);
9536
9533
  #endif
9537
- }`, Gt = 64, Ms = class extends I {
9534
+ }`, zt = 64, Es = class extends I {
9538
9535
  /**
9539
9536
  * Constructs a new SSAO effect.
9540
9537
  *
@@ -9596,7 +9593,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9596
9593
  resolutionX: me = re,
9597
9594
  resolutionY: Ae = F
9598
9595
  } = {}) {
9599
- super("SSAOEffect", ys, {
9596
+ super("SSAOEffect", Ss, {
9600
9597
  blendFunction: i,
9601
9598
  attributes: V.DEPTH,
9602
9599
  defines: /* @__PURE__ */ new Map([
@@ -9613,8 +9610,8 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9613
9610
  ])
9614
9611
  }), this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "AO.Target", this.uniforms.get("aoBuffer").value = this.renderTarget.texture;
9615
9612
  const ne = this.resolution = new x(this, me, Ae, ie);
9616
- ne.addEventListener("change", (Ge) => this.setSize(ne.baseWidth, ne.baseHeight)), this.camera = e, this.depthDownsamplingPass = new Si({ normalBuffer: t, resolutionScale: ie }), this.depthDownsamplingPass.enabled = n === null, this.ssaoPass = new q(new wi(e));
9617
- const fe = new et(Gt, Gt, z);
9613
+ ne.addEventListener("change", (Ge) => this.setSize(ne.baseWidth, ne.baseHeight)), this.camera = e, this.depthDownsamplingPass = new Ti({ normalBuffer: t, resolutionScale: ie }), this.depthDownsamplingPass.enabled = n === null, this.ssaoPass = new q(new Di(e));
9614
+ const fe = new et(zt, zt, z);
9618
9615
  fe.wrapS = fe.wrapT = se;
9619
9616
  const k = this.ssaoMaterial;
9620
9617
  k.normalBuffer = t, k.noiseTexture = fe, k.minRadiusScale = m, k.samples = r, k.radius = C, k.rings = a, k.fade = K, k.bias = D, k.distanceThreshold = h, k.distanceFalloff = d, k.proximityThreshold = v, k.proximityFalloff = A, o !== void 0 && (k.worldDistanceThreshold = o), l !== void 0 && (k.worldDistanceFalloff = l), u !== void 0 && (k.worldProximityThreshold = u), f !== void 0 && (k.worldProximityFalloff = f), n !== null && (this.ssaoMaterial.normalDepthBuffer = n, this.defines.set("NORMAL_DEPTH", "1")), this.depthAwareUpsampling = s, this.color = ee;
@@ -9854,7 +9851,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
9854
9851
  this.depthDownsamplingPass.enabled = !1;
9855
9852
  }
9856
9853
  }
9857
- }, Bs = `#ifdef TEXTURE_PRECISION_HIGH
9854
+ }, Cs = `#ifdef TEXTURE_PRECISION_HIGH
9858
9855
  uniform mediump sampler2D map;
9859
9856
  #else
9860
9857
  uniform lowp sampler2D map;
@@ -9865,7 +9862,7 @@ vec4 texel=texture2D(map,vUv2);
9865
9862
  #else
9866
9863
  vec4 texel=texture2D(map,uv);
9867
9864
  #endif
9868
- outputColor=TEXEL;outputColor.a=max(inputColor.a,outputColor.a);}`, Ps = `#ifdef ASPECT_CORRECTION
9865
+ outputColor=TEXEL;outputColor.a=max(inputColor.a,outputColor.a);}`, ys = `#ifdef ASPECT_CORRECTION
9869
9866
  uniform float scale;
9870
9867
  #else
9871
9868
  uniform mat3 uvTransform;
@@ -9876,7 +9873,7 @@ vUv2=uv*vec2(aspect,1.0)*scale;
9876
9873
  #else
9877
9874
  vUv2=(uvTransform*vec3(uv,1.0)).xy;
9878
9875
  #endif
9879
- }`, Is = class extends I {
9876
+ }`, Ms = class extends I {
9880
9877
  /**
9881
9878
  * Constructs a new texture effect.
9882
9879
  *
@@ -9886,7 +9883,7 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
9886
9883
  * @param {Boolean} [options.aspectCorrection=false] - Deprecated. Adjust the texture's offset, repeat and center instead.
9887
9884
  */
9888
9885
  constructor({ blendFunction: e, texture: t = null, aspectCorrection: i = !1 } = {}) {
9889
- super("TextureEffect", Bs, {
9886
+ super("TextureEffect", Cs, {
9890
9887
  blendFunction: e,
9891
9888
  defines: /* @__PURE__ */ new Map([
9892
9889
  ["TEXEL", "texel"]
@@ -9908,7 +9905,7 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
9908
9905
  }
9909
9906
  set texture(e) {
9910
9907
  const t = this.texture, i = this.uniforms, r = this.defines;
9911
- t !== e && (i.get("map").value = e, i.get("uvTransform").value = e.matrix, r.delete("TEXTURE_PRECISION_HIGH"), e !== null && (e.matrixAutoUpdate ? (r.set("UV_TRANSFORM", "1"), this.setVertexShader(Ps)) : (r.delete("UV_TRANSFORM"), this.setVertexShader(null)), e.type !== Y && r.set("TEXTURE_PRECISION_HIGH", "1"), (t === null || t.type !== e.type || t.encoding !== e.encoding) && this.setChanged()));
9908
+ t !== e && (i.get("map").value = e, i.get("uvTransform").value = e.matrix, r.delete("TEXTURE_PRECISION_HIGH"), e !== null && (e.matrixAutoUpdate ? (r.set("UV_TRANSFORM", "1"), this.setVertexShader(ys)) : (r.delete("UV_TRANSFORM"), this.setVertexShader(null)), e.type !== Y && r.set("TEXTURE_PRECISION_HIGH", "1"), (t === null || t.type !== e.type || t.encoding !== e.encoding) && this.setChanged()));
9912
9909
  }
9913
9910
  /**
9914
9911
  * Returns the texture.
@@ -9977,14 +9974,14 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
9977
9974
  update(e, t, i) {
9978
9975
  this.texture.matrixAutoUpdate && this.texture.updateMatrix();
9979
9976
  }
9980
- }, Rs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
9977
+ }, Bs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
9981
9978
  uniform mediump sampler2D inputBuffer;
9982
9979
  #else
9983
9980
  uniform lowp sampler2D inputBuffer;
9984
9981
  #endif
9985
9982
  uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;float linearGradientMask(const in float x){return smoothstep(maskParams.x,maskParams.y,x)-smoothstep(maskParams.w,maskParams.z,x);}void main(){vec2 dUv=vOffset*(1.0-linearGradientMask(vUv2.y));vec4 sum=texture2D(inputBuffer,vec2(vUv.x-dUv.x,vUv.y+dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x+dUv.x,vUv.y+dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x+dUv.x,vUv.y-dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x-dUv.x,vUv.y-dUv.y));gl_FragColor=sum*0.25;
9986
9983
  #include <colorspace_fragment>
9987
- }`, bs = "uniform vec4 texelSize;uniform float kernel;uniform float scale;uniform float aspect;uniform vec2 rotation;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;void main(){vec2 uv=position.xy*0.5+0.5;vUv=uv;vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));vOffset=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;gl_Position=vec4(position.xy,1.0,1.0);}", Ei = class extends $e {
9984
+ }`, Ps = "uniform vec4 texelSize;uniform float kernel;uniform float scale;uniform float aspect;uniform vec2 rotation;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;void main(){vec2 uv=position.xy*0.5+0.5;vUv=uv;vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));vOffset=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;gl_Position=vec4(position.xy,1.0,1.0);}", Si = class extends $e {
9988
9985
  /**
9989
9986
  * Constructs a new tilt shift blur material.
9990
9987
  *
@@ -10001,7 +9998,7 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
10001
9998
  focusArea: r = 0.4,
10002
9999
  feather: a = 0.3
10003
10000
  } = {}) {
10004
- super(), this.fragmentShader = Rs, this.vertexShader = bs, this.kernelSize = e, this.uniforms.aspect = new c(1), this.uniforms.rotation = new c(new p()), this.uniforms.maskParams = new c(new Be()), this._offset = t, this._focusArea = r, this._feather = a, this.rotation = i, this.updateParams();
10001
+ super(), this.fragmentShader = Bs, this.vertexShader = Ps, this.kernelSize = e, this.uniforms.aspect = new c(1), this.uniforms.rotation = new c(new p()), this.uniforms.maskParams = new c(new Be()), this._offset = t, this._focusArea = r, this._feather = a, this.rotation = i, this.updateParams();
10005
10002
  }
10006
10003
  /**
10007
10004
  * The relative offset of the focus area.
@@ -10070,7 +10067,7 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
10070
10067
  setSize(e, t) {
10071
10068
  super.setSize(e, t), this.uniforms.aspect.value = e / t;
10072
10069
  }
10073
- }, Ci = class extends pe {
10070
+ }, Ei = class extends pe {
10074
10071
  /**
10075
10072
  * Constructs a new Kawase blur pass.
10076
10073
  *
@@ -10094,14 +10091,14 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
10094
10091
  resolutionX: s = x.AUTO_SIZE,
10095
10092
  resolutionY: o = x.AUTO_SIZE
10096
10093
  } = {}) {
10097
- super({ kernelSize: a, resolutionScale: n, resolutionX: s, resolutionY: o }), this.blurMaterial = new Ei({ kernelSize: a, offset: e, rotation: t, focusArea: i, feather: r });
10094
+ super({ kernelSize: a, resolutionScale: n, resolutionX: s, resolutionY: o }), this.blurMaterial = new Si({ kernelSize: a, offset: e, rotation: t, focusArea: i, feather: r });
10098
10095
  }
10099
- }, Us = `#ifdef FRAMEBUFFER_PRECISION_HIGH
10096
+ }, Is = `#ifdef FRAMEBUFFER_PRECISION_HIGH
10100
10097
  uniform mediump sampler2D map;
10101
10098
  #else
10102
10099
  uniform lowp sampler2D map;
10103
10100
  #endif
10104
- uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in float x){return step(maskParams.x,x)-step(maskParams.y,x);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float mask=linearGradientMask(vUv2.y);vec4 texel=texture2D(map,uv);outputColor=mix(texel,inputColor,mask);}`, Fs = "uniform vec2 rotation;varying vec2 vUv2;void mainSupport(const in vec2 uv){vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));}", Ls = class extends I {
10101
+ uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in float x){return step(maskParams.x,x)-step(maskParams.y,x);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float mask=linearGradientMask(vUv2.y);vec4 texel=texture2D(map,uv);outputColor=mix(texel,inputColor,mask);}`, Rs = "uniform vec2 rotation;varying vec2 vUv2;void mainSupport(const in vec2 uv){vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));}", bs = class extends I {
10105
10102
  /**
10106
10103
  * Constructs a new tilt shift Effect
10107
10104
  *
@@ -10128,15 +10125,15 @@ uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in floa
10128
10125
  resolutionX: o = x.AUTO_SIZE,
10129
10126
  resolutionY: l = x.AUTO_SIZE
10130
10127
  } = {}) {
10131
- super("TiltShiftEffect", Us, {
10132
- vertexShader: Fs,
10128
+ super("TiltShiftEffect", Is, {
10129
+ vertexShader: Rs,
10133
10130
  blendFunction: e,
10134
10131
  uniforms: /* @__PURE__ */ new Map([
10135
10132
  ["rotation", new c(new p())],
10136
10133
  ["maskParams", new c(new p())],
10137
10134
  ["map", new c(null)]
10138
10135
  ])
10139
- }), this._offset = t, this._focusArea = r, this._feather = a, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "TiltShift.Target", this.uniforms.get("map").value = this.renderTarget.texture, this.blurPass = new Ci({
10136
+ }), this._offset = t, this._focusArea = r, this._feather = a, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "TiltShift.Target", this.uniforms.get("map").value = this.renderTarget.texture, this.blurPass = new Ei({
10140
10137
  kernelSize: n,
10141
10138
  resolutionScale: s,
10142
10139
  resolutionX: o,
@@ -10243,7 +10240,7 @@ uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in floa
10243
10240
  initialize(e, t, i) {
10244
10241
  this.blurPass.initialize(e, t, i), i !== void 0 && (this.renderTarget.texture.type = i, e !== null && e.outputColorSpace === y && (this.renderTarget.texture.colorSpace = y));
10245
10242
  }
10246
- }, Os = `#include <packing>
10243
+ }, Us = `#include <packing>
10247
10244
  #define packFloatToRGBA(v) packDepthToRGBA(v)
10248
10245
  #define unpackRGBAToFloat(v) unpackRGBAToDepth(v)
10249
10246
  uniform lowp sampler2D luminanceBuffer0;uniform lowp sampler2D luminanceBuffer1;uniform float minLuminance;uniform float deltaTime;uniform float tau;varying vec2 vUv;void main(){float l0=unpackRGBAToFloat(texture2D(luminanceBuffer0,vUv));
@@ -10252,7 +10249,7 @@ float l1=texture2DLodEXT(luminanceBuffer1,vUv,MIP_LEVEL_1X1).r;
10252
10249
  #else
10253
10250
  float l1=textureLod(luminanceBuffer1,vUv,MIP_LEVEL_1X1).r;
10254
10251
  #endif
10255
- l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0-exp(-deltaTime*tau));gl_FragColor=(adaptedLum==1.0)?vec4(1.0):packFloatToRGBA(adaptedLum);}`, yi = class extends w {
10252
+ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0-exp(-deltaTime*tau));gl_FragColor=(adaptedLum==1.0)?vec4(1.0):packFloatToRGBA(adaptedLum);}`, Ci = class extends w {
10256
10253
  /**
10257
10254
  * Constructs a new adaptive luminance material.
10258
10255
  */
@@ -10276,7 +10273,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
10276
10273
  toneMapped: !1,
10277
10274
  depthWrite: !1,
10278
10275
  depthTest: !1,
10279
- fragmentShader: Os,
10276
+ fragmentShader: Us,
10280
10277
  vertexShader: ce
10281
10278
  });
10282
10279
  }
@@ -10408,7 +10405,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
10408
10405
  setAdaptationRate(e) {
10409
10406
  this.uniforms.tau.value = e;
10410
10407
  }
10411
- }, Mi = class extends H {
10408
+ }, yi = class extends H {
10412
10409
  /**
10413
10410
  * Constructs a new adaptive luminance pass.
10414
10411
  *
@@ -10418,7 +10415,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
10418
10415
  * @param {Number} [options.adaptationRate=1.0] - The luminance adaptation rate.
10419
10416
  */
10420
10417
  constructor(e, { minLuminance: t = 0.01, adaptationRate: i = 1 } = {}) {
10421
- super("AdaptiveLuminancePass"), this.fullscreenMaterial = new yi(), this.needsSwap = !1, this.renderTargetPrevious = new T(1, 1, {
10418
+ super("AdaptiveLuminancePass"), this.fullscreenMaterial = new Ci(), this.needsSwap = !1, this.renderTargetPrevious = new T(1, 1, {
10422
10419
  minFilter: P,
10423
10420
  magFilter: P,
10424
10421
  depthBuffer: !1
@@ -10483,7 +10480,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
10483
10480
  render(e, t, i, r, a) {
10484
10481
  this.fullscreenMaterial.deltaTime = r, e.setRenderTarget(this.renderToScreen ? null : this.renderTargetAdapted), e.render(this.scene, this.camera), this.copyPass.render(e, this.renderTargetAdapted);
10485
10482
  }
10486
- }, Ns = `#include <tonemapping_pars_fragment>
10483
+ }, Fs = `#include <tonemapping_pars_fragment>
10487
10484
  uniform float whitePoint;
10488
10485
  #if TONE_MAPPING_MODE == 2 || TONE_MAPPING_MODE == 3
10489
10486
  uniform float middleGrey;
@@ -10516,7 +10513,7 @@ outputColor=vec4(Uncharted2ToneMapping(inputColor.rgb),inputColor.a);
10516
10513
  #else
10517
10514
  outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10518
10515
  #endif
10519
- }`, Hs = class extends I {
10516
+ }`, Ls = class extends I {
10520
10517
  /**
10521
10518
  * Constructs a new tone mapping effect.
10522
10519
  *
@@ -10546,7 +10543,7 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10546
10543
  averageLuminance: l = 1,
10547
10544
  adaptationRate: u = 1
10548
10545
  } = {}) {
10549
- super("ToneMappingEffect", Ns, {
10546
+ super("ToneMappingEffect", Fs, {
10550
10547
  blendFunction: e,
10551
10548
  uniforms: /* @__PURE__ */ new Map([
10552
10549
  ["luminanceBuffer", new c(null)],
@@ -10557,11 +10554,11 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10557
10554
  ["averageLuminance", new c(l)]
10558
10555
  ])
10559
10556
  }), this.renderTargetLuminance = new T(1, 1, {
10560
- minFilter: Zi,
10557
+ minFilter: Yi,
10561
10558
  depthBuffer: !1
10562
10559
  }), this.renderTargetLuminance.texture.generateMipmaps = !0, this.renderTargetLuminance.texture.name = "Luminance", this.luminancePass = new Ct({
10563
10560
  renderTarget: this.renderTargetLuminance
10564
- }), this.adaptiveLuminancePass = new Mi(this.luminancePass.texture, {
10561
+ }), this.adaptiveLuminancePass = new yi(this.luminancePass.texture, {
10565
10562
  minLuminance: o,
10566
10563
  adaptationRate: u
10567
10564
  }), this.uniforms.get("luminanceBuffer").value = this.adaptiveLuminancePass.texture, this.resolution = r, this.mode = i;
@@ -10762,13 +10759,13 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
10762
10759
  initialize(e, t, i) {
10763
10760
  this.adaptiveLuminancePass.initialize(e, t, i);
10764
10761
  }
10765
- }, zs = `uniform float offset;uniform float darkness;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){const vec2 center=vec2(0.5);vec3 color=inputColor.rgb;
10762
+ }, Os = `uniform float offset;uniform float darkness;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){const vec2 center=vec2(0.5);vec3 color=inputColor.rgb;
10766
10763
  #if VIGNETTE_TECHNIQUE == 0
10767
10764
  float d=distance(uv,center);color*=smoothstep(0.8,offset*0.799,d*(darkness+offset));
10768
10765
  #else
10769
10766
  vec2 coord=(uv-center)*vec2(offset);color=mix(color,vec3(1.0-darkness),dot(coord,coord));
10770
10767
  #endif
10771
- outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
10768
+ outputColor=vec4(color,inputColor.a);}`, Ns = class extends I {
10772
10769
  /**
10773
10770
  * Constructs a new Vignette effect.
10774
10771
  *
@@ -10786,7 +10783,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
10786
10783
  offset: r = 0.5,
10787
10784
  darkness: a = 0.5
10788
10785
  } = {}) {
10789
- super("VignetteEffect", zs, {
10786
+ super("VignetteEffect", Os, {
10790
10787
  blendFunction: e,
10791
10788
  defines: /* @__PURE__ */ new Map([
10792
10789
  ["VIGNETTE_TECHNIQUE", i.toFixed(0)]
@@ -10902,7 +10899,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
10902
10899
  setDarkness(e) {
10903
10900
  this.darkness = e;
10904
10901
  }
10905
- }, ks = class extends St {
10902
+ }, Hs = class extends St {
10906
10903
  /**
10907
10904
  * Loads a LUT.
10908
10905
  *
@@ -10915,7 +10912,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
10915
10912
  load(e, t = () => {
10916
10913
  }, i = () => {
10917
10914
  }, r = null) {
10918
- const a = this.manager, n = new Ne(), s = new Jt(n);
10915
+ const a = this.manager, n = new Ne(), s = new jt(n);
10919
10916
  return s.setPath(this.path), s.setResponseType("text"), new Promise((o, l) => {
10920
10917
  n.onError = (u) => {
10921
10918
  a.itemError(u), r !== null ? (r(`Failed to load ${u}`), o()) : l(`Failed to load ${u}`);
@@ -10958,7 +10955,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
10958
10955
  l[v + 0] /= d, l[v + 1] /= d, l[v + 2] /= d;
10959
10956
  return new Oe(l, s);
10960
10957
  }
10961
- }, Qs = class extends St {
10958
+ }, zs = class extends St {
10962
10959
  /**
10963
10960
  * Loads a LUT.
10964
10961
  *
@@ -10971,7 +10968,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
10971
10968
  load(e, t = () => {
10972
10969
  }, i = () => {
10973
10970
  }, r = null) {
10974
- const a = this.manager, n = new Ne(), s = new Jt(n);
10971
+ const a = this.manager, n = new Ne(), s = new jt(n);
10975
10972
  return s.setPath(this.path), s.setResponseType("text"), new Promise((o, l) => {
10976
10973
  n.onError = (u) => {
10977
10974
  a.itemError(u), r !== null ? (r(`Failed to load ${u}`), o()) : l(`Failed to load ${u}`);
@@ -11007,7 +11004,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
11007
11004
  const v = new Oe(u, l);
11008
11005
  return v.domainMin.copy(f), v.domainMax.copy(h), o !== null && (v.name = o), v;
11009
11006
  }
11010
- }, Vs = class extends St {
11007
+ }, Gs = class extends St {
11011
11008
  /**
11012
11009
  * Loads the SMAA data images.
11013
11010
  *
@@ -11037,7 +11034,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
11037
11034
  }), i.itemStart("smaa-search"), i.itemStart("smaa-area"), r.itemStart("smaa-search"), r.itemStart("smaa-area"), s.src = xt, o.src = Dt;
11038
11035
  });
11039
11036
  }
11040
- }, Ws = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11037
+ }, ks = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11041
11038
  uniform mediump sampler2D inputBuffer;
11042
11039
  #else
11043
11040
  uniform lowp sampler2D inputBuffer;
@@ -11118,7 +11115,7 @@ vec2 s=texelSize*scale;for(int x=-KERNEL_SIZE_HALF;x<=KERNEL_SIZE_HALF;++x){for(
11118
11115
  #endif
11119
11116
  gl_FragColor=result*INV_KERNEL_SIZE_SQ;
11120
11117
  #endif
11121
- }`, Ys = `uniform vec2 texelSize;uniform float scale;
11118
+ }`, Qs = `uniform vec2 texelSize;uniform float scale;
11122
11119
  #if KERNEL_SIZE == 3
11123
11120
  varying vec2 vUv00,vUv01,vUv02;varying vec2 vUv03,vUv04,vUv05;varying vec2 vUv06,vUv07,vUv08;
11124
11121
  #elif KERNEL_SIZE == 5 && MAX_VARYING_VECTORS >= 13
@@ -11134,7 +11131,7 @@ vec2 s=texelSize*scale;vUv00=uv+s*vec2(-2.0,-2.0);vUv01=uv+s*vec2(-1.0,-2.0);vUv
11134
11131
  #else
11135
11132
  vUv=uv;
11136
11133
  #endif
11137
- gl_Position=vec4(position.xy,1.0,1.0);}`, Bi = class extends w {
11134
+ gl_Position=vec4(position.xy,1.0,1.0);}`, Mi = class extends w {
11138
11135
  /**
11139
11136
  * Constructs a new box blur material.
11140
11137
  *
@@ -11161,8 +11158,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Bi = class extends w {
11161
11158
  toneMapped: !1,
11162
11159
  depthWrite: !1,
11163
11160
  depthTest: !1,
11164
- fragmentShader: Ws,
11165
- vertexShader: Ys
11161
+ fragmentShader: ks,
11162
+ vertexShader: Qs
11166
11163
  }), this.bilateral = e, this.kernelSize = t, this.maxVaryingVectors = 8;
11167
11164
  }
11168
11165
  /**
@@ -11293,7 +11290,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Bi = class extends w {
11293
11290
  setSize(e, t) {
11294
11291
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
11295
11292
  }
11296
- }, Ks = `#include <packing>
11293
+ }, Vs = `#include <packing>
11297
11294
  varying vec2 vUv;
11298
11295
  #ifdef NORMAL_DEPTH
11299
11296
  #ifdef GL_FRAGMENT_PRECISION_HIGH
@@ -11329,7 +11326,7 @@ gl_FragColor=(depth==1.0)?vec4(1.0):packDepthToRGBA(depth);
11329
11326
  gl_FragColor=vec4(vec3(depth),1.0);
11330
11327
  #endif
11331
11328
  #endif
11332
- }`, Xs = `varying vec2 vUv;
11329
+ }`, Ws = `varying vec2 vUv;
11333
11330
  #if DEPTH_COPY_MODE == 1
11334
11331
  uniform vec2 texelPosition;
11335
11332
  #endif
@@ -11339,7 +11336,7 @@ vUv=texelPosition;
11339
11336
  #else
11340
11337
  vUv=position.xy*0.5+0.5;
11341
11338
  #endif
11342
- gl_Position=vec4(position.xy,1.0,1.0);}`, Pi = class extends w {
11339
+ gl_Position=vec4(position.xy,1.0,1.0);}`, Bi = class extends w {
11343
11340
  /**
11344
11341
  * Constructs a new depth copy material.
11345
11342
  */
@@ -11359,8 +11356,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Pi = class extends w {
11359
11356
  toneMapped: !1,
11360
11357
  depthWrite: !1,
11361
11358
  depthTest: !1,
11362
- fragmentShader: Ks,
11363
- vertexShader: Xs
11359
+ fragmentShader: Vs,
11360
+ vertexShader: Ws
11364
11361
  }), this.depthCopyMode = Ce.FULL;
11365
11362
  }
11366
11363
  /**
@@ -11494,7 +11491,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Pi = class extends w {
11494
11491
  setMode(e) {
11495
11492
  this.mode = e;
11496
11493
  }
11497
- }, Zs = `#include <common>
11494
+ }, Ys = `#include <common>
11498
11495
  #include <packing>
11499
11496
  #include <dithering_pars_fragment>
11500
11497
  #define packFloatToRGBA(v) packDepthToRGBA(v)
@@ -11528,7 +11525,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
11528
11525
  #include <colorspace_fragment>
11529
11526
  #endif
11530
11527
  #include <dithering_fragment>
11531
- }`, js = "uniform vec2 resolution;uniform vec2 texelSize;uniform float cameraNear;uniform float cameraFar;uniform float aspect;uniform float time;varying vec2 vUv;VERTEX_HEAD void main(){vUv=position.xy*0.5+0.5;VERTEX_MAIN_SUPPORT gl_Position=vec4(position.xy,1.0,1.0);}", Ii = class extends w {
11528
+ }`, Ks = "uniform vec2 resolution;uniform vec2 texelSize;uniform float cameraNear;uniform float cameraFar;uniform float aspect;uniform float time;varying vec2 vUv;VERTEX_HEAD void main(){vUv=position.xy*0.5+0.5;VERTEX_MAIN_SUPPORT gl_Position=vec4(position.xy,1.0,1.0);}", Pi = class extends w {
11532
11529
  /**
11533
11530
  * Constructs a new effect material.
11534
11531
  *
@@ -11629,7 +11626,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
11629
11626
  * @return {EffectMaterial} This material.
11630
11627
  */
11631
11628
  setShaderParts(e) {
11632
- return this.fragmentShader = Zs.replace(B.FRAGMENT_HEAD, e.get(B.FRAGMENT_HEAD) || "").replace(B.FRAGMENT_MAIN_UV, e.get(B.FRAGMENT_MAIN_UV) || "").replace(B.FRAGMENT_MAIN_IMAGE, e.get(B.FRAGMENT_MAIN_IMAGE) || ""), this.vertexShader = js.replace(B.VERTEX_HEAD, e.get(B.VERTEX_HEAD) || "").replace(B.VERTEX_MAIN_SUPPORT, e.get(B.VERTEX_MAIN_SUPPORT) || ""), this.needsUpdate = !0, this;
11629
+ return this.fragmentShader = Ys.replace(B.FRAGMENT_HEAD, e.get(B.FRAGMENT_HEAD) || "").replace(B.FRAGMENT_MAIN_UV, e.get(B.FRAGMENT_MAIN_UV) || "").replace(B.FRAGMENT_MAIN_IMAGE, e.get(B.FRAGMENT_MAIN_IMAGE) || ""), this.vertexShader = Ks.replace(B.VERTEX_HEAD, e.get(B.VERTEX_HEAD) || "").replace(B.VERTEX_MAIN_SUPPORT, e.get(B.VERTEX_MAIN_SUPPORT) || ""), this.needsUpdate = !0, this;
11633
11630
  }
11634
11631
  /**
11635
11632
  * Sets the shader macros.
@@ -11753,14 +11750,14 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
11753
11750
  static get Section() {
11754
11751
  return B;
11755
11752
  }
11756
- }, Js = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11753
+ }, Xs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
11757
11754
  uniform mediump sampler2D inputBuffer;
11758
11755
  #else
11759
11756
  uniform lowp sampler2D inputBuffer;
11760
11757
  #endif
11761
11758
  uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec4 result=texture2D(inputBuffer,vUv)*kernel[0].y;for(int i=1;i<STEPS;++i){vec2 offset=kernel[i].x*vOffset;vec4 c0=texture2D(inputBuffer,vUv+offset);vec4 c1=texture2D(inputBuffer,vUv-offset);result+=(c0+c1)*kernel[i].y;}gl_FragColor=result;
11762
11759
  #include <colorspace_fragment>
11763
- }`, qs = "uniform vec2 texelSize;uniform vec2 direction;uniform float scale;varying vec2 vOffset;varying vec2 vUv;void main(){vOffset=direction*texelSize*scale;vUv=position.xy*0.5+0.5;gl_Position=vec4(position.xy,1.0,1.0);}", Ri = class extends w {
11760
+ }`, Zs = "uniform vec2 texelSize;uniform vec2 direction;uniform float scale;varying vec2 vOffset;varying vec2 vUv;void main(){vOffset=direction*texelSize*scale;vUv=position.xy*0.5+0.5;gl_Position=vec4(position.xy,1.0,1.0);}", Ii = class extends w {
11764
11761
  /**
11765
11762
  * Constructs a new convolution material.
11766
11763
  *
@@ -11781,8 +11778,8 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
11781
11778
  toneMapped: !1,
11782
11779
  depthWrite: !1,
11783
11780
  depthTest: !1,
11784
- fragmentShader: Js,
11785
- vertexShader: qs
11781
+ fragmentShader: Xs,
11782
+ vertexShader: Zs
11786
11783
  }), this._kernelSize = 0, this.kernelSize = e;
11787
11784
  }
11788
11785
  /**
@@ -11830,7 +11827,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
11830
11827
  * @private
11831
11828
  */
11832
11829
  generateKernel(e) {
11833
- const t = new si(e), i = t.linearSteps, r = new Float64Array(i * 2);
11830
+ const t = new ai(e), i = t.linearSteps, r = new Float64Array(i * 2);
11834
11831
  for (let a = 0, n = 0; a < i; ++a)
11835
11832
  r[n++] = t.linearOffsets[a], r[n++] = t.linearWeights[a];
11836
11833
  this.uniforms.kernel.value = r, this.defines.STEPS = i.toFixed(0), this.needsUpdate = !0;
@@ -11844,7 +11841,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
11844
11841
  setSize(e, t) {
11845
11842
  this.uniforms.texelSize.value.set(1 / e, 1 / t);
11846
11843
  }
11847
- }, _s = class extends H {
11844
+ }, js = class extends H {
11848
11845
  /**
11849
11846
  * Constructs a new box blur pass.
11850
11847
  *
@@ -11864,7 +11861,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
11864
11861
  resolutionX: a = x.AUTO_SIZE,
11865
11862
  resolutionY: n = x.AUTO_SIZE
11866
11863
  } = {}) {
11867
- super("BoxBlurPass"), this.needsDepthTexture = i, this.renderTargetA = new T(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = new T(1, 1, { depthBuffer: !1 }), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new Bi({ bilateral: i, kernelSize: e }), this.copyMaterial = new He();
11864
+ super("BoxBlurPass"), this.needsDepthTexture = i, this.renderTargetA = new T(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = new T(1, 1, { depthBuffer: !1 }), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new Mi({ bilateral: i, kernelSize: e }), this.copyMaterial = new He();
11868
11865
  const s = this.resolution = new x(this, a, n, r);
11869
11866
  s.addEventListener("change", (o) => this.setSize(s.baseWidth, s.baseHeight)), this.iterations = t;
11870
11867
  }
@@ -11930,7 +11927,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
11930
11927
  */
11931
11928
  constructor({ depthPacking: e = ae } = {}) {
11932
11929
  super("DepthCopyPass");
11933
- const t = new Pi();
11930
+ const t = new Bi();
11934
11931
  t.outputDepthPacking = e, this.fullscreenMaterial = t, this.needsDepthTexture = !0, this.needsSwap = !1, this.renderTarget = new T(1, 1, {
11935
11932
  type: e === ae ? Y : J,
11936
11933
  minFilter: P,
@@ -12002,22 +11999,22 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
12002
11999
  setSize(e, t) {
12003
12000
  this.renderTarget.setSize(e, t);
12004
12001
  }
12005
- }, $s = Number(Re.replace(/\D+/g, "")), ve = 255 / 256, en = new Float32Array([
12002
+ }, Js = Number(Re.replace(/\D+/g, "")), ve = 255 / 256, qs = new Float32Array([
12006
12003
  ve / 256 ** 3,
12007
12004
  ve / 256 ** 2,
12008
12005
  ve / 256,
12009
12006
  ve
12010
- ]), tn = new Float32Array([
12007
+ ]), _s = new Float32Array([
12011
12008
  ve,
12012
12009
  ve / 256,
12013
12010
  ve / 256 ** 2,
12014
12011
  1 / 256 ** 3
12015
12012
  ]);
12016
- function rn(e) {
12017
- const t = $s >= 167 ? tn : en;
12013
+ function $s(e) {
12014
+ const t = Js >= 167 ? _s : qs;
12018
12015
  return (e[0] * t[0] + e[1] * t[1] + e[2] * t[2] + e[3] * t[3]) / 255;
12019
12016
  }
12020
- var an = class extends wt {
12017
+ var en = class extends wt {
12021
12018
  /**
12022
12019
  * Constructs a new depth picking pass.
12023
12020
  *
@@ -12076,7 +12073,7 @@ var an = class extends wt {
12076
12073
  const d = n.texelPosition;
12077
12074
  f = Math.round(d.x * o.width), h = Math.round(d.y * o.height);
12078
12075
  }
12079
- e.readRenderTargetPixels(o, f, h, 1, 1, l), this.callback(u ? rn(l) : l[0]), this.callback = null;
12076
+ e.readRenderTargetPixels(o, f, h, 1, 1, l), this.callback(u ? $s(l) : l[0]), this.callback = null;
12080
12077
  }
12081
12078
  }
12082
12079
  /**
@@ -12089,14 +12086,14 @@ var an = class extends wt {
12089
12086
  this.fullscreenMaterial.mode === Ce.FULL && super.setSize(e, t);
12090
12087
  }
12091
12088
  };
12092
- function kt(e, t, i) {
12089
+ function Gt(e, t, i) {
12093
12090
  for (const r of t) {
12094
12091
  const a = "$1" + e + r.charAt(0).toUpperCase() + r.slice(1), n = new RegExp("([^\\.])(\\b" + r + "\\b)", "g");
12095
12092
  for (const s of i.entries())
12096
12093
  s[1] !== null && i.set(s[0], s[1].replace(n, a));
12097
12094
  }
12098
12095
  }
12099
- function sn(e, t, i) {
12096
+ function tn(e, t, i) {
12100
12097
  let r = t.getFragmentShader(), a = t.getVertexShader();
12101
12098
  const n = r !== void 0 && /mainImage/.test(r), s = r !== void 0 && /mainUv/.test(r);
12102
12099
  if (i.attributes |= t.getAttributes(), r === void 0)
@@ -12129,7 +12126,7 @@ function sn(e, t, i) {
12129
12126
  m.add(S);
12130
12127
  m.delete("while"), m.delete("for"), m.delete("if"), t.uniforms.forEach((S, D) => i.uniforms.set(e + D.charAt(0).toUpperCase() + D.slice(1), S)), t.defines.forEach((S, D) => i.defines.set(e + D.charAt(0).toUpperCase() + D.slice(1), S));
12131
12128
  const E = /* @__PURE__ */ new Map([["fragment", r], ["vertex", a]]);
12132
- kt(e, m, i.defines), kt(e, m, E), r = E.get("fragment"), a = E.get("vertex");
12129
+ Gt(e, m, i.defines), Gt(e, m, E), r = E.get("fragment"), a = E.get("vertex");
12133
12130
  const C = t.blendMode;
12134
12131
  if (i.blendModes.set(C.blendFunction, C), n) {
12135
12132
  t.inputColorSpace !== null && t.inputColorSpace !== i.colorSpace && (h += t.inputColorSpace === y ? `color0 = sRGBTransferOETF(color0);
@@ -12152,7 +12149,7 @@ function sn(e, t, i) {
12152
12149
  i.extensions.add(S);
12153
12150
  }
12154
12151
  }
12155
- var nn = class extends H {
12152
+ var rn = class extends H {
12156
12153
  /**
12157
12154
  * Constructs a new effect pass.
12158
12155
  *
@@ -12160,7 +12157,7 @@ var nn = class extends H {
12160
12157
  * @param {...Effect} effects - The effects that will be rendered by this pass.
12161
12158
  */
12162
12159
  constructor(e, ...t) {
12163
- super("EffectPass"), this.fullscreenMaterial = new Ii(null, null, null, e), this.listener = (i) => this.handleEvent(i), this.effects = [], this.setEffects(t), this.skipRendering = !1, this.minTime = 1, this.maxTime = Number.POSITIVE_INFINITY, this.timeScale = 1;
12160
+ super("EffectPass"), this.fullscreenMaterial = new Pi(null, null, null, e), this.listener = (i) => this.handleEvent(i), this.effects = [], this.setEffects(t), this.skipRendering = !1, this.minTime = 1, this.maxTime = Number.POSITIVE_INFINITY, this.timeScale = 1;
12164
12161
  }
12165
12162
  set mainScene(e) {
12166
12163
  for (const t of this.effects)
@@ -12214,7 +12211,7 @@ var nn = class extends H {
12214
12211
  * @protected
12215
12212
  */
12216
12213
  updateMaterial() {
12217
- const e = new ai();
12214
+ const e = new ri();
12218
12215
  let t = 0;
12219
12216
  for (const s of this.effects)
12220
12217
  if (s.blendMode.blendFunction === g.DST)
@@ -12222,7 +12219,7 @@ var nn = class extends H {
12222
12219
  else {
12223
12220
  if ((e.attributes & s.getAttributes() & V.CONVOLUTION) !== 0)
12224
12221
  throw new Error(`Convolution effects cannot be merged (${s.name})`);
12225
- sn("e" + t++, s, e);
12222
+ tn("e" + t++, s, e);
12226
12223
  }
12227
12224
  let i = e.shaderParts.get(B.FRAGMENT_HEAD), r = e.shaderParts.get(B.FRAGMENT_MAIN_IMAGE), a = e.shaderParts.get(B.FRAGMENT_MAIN_UV);
12228
12225
  const n = /\bblend\b/g;
@@ -12325,7 +12322,7 @@ var nn = class extends H {
12325
12322
  break;
12326
12323
  }
12327
12324
  }
12328
- }, on = class extends H {
12325
+ }, an = class extends H {
12329
12326
  /**
12330
12327
  * Constructs a new Gaussian blur pass.
12331
12328
  *
@@ -12343,7 +12340,7 @@ var nn = class extends H {
12343
12340
  resolutionX: r = x.AUTO_SIZE,
12344
12341
  resolutionY: a = x.AUTO_SIZE
12345
12342
  } = {}) {
12346
- super("GaussianBlurPass"), this.renderTargetA = new T(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new Ri({ kernelSize: e }), this.copyMaterial = new He(), this.copyMaterial.inputBuffer = this.renderTargetB.texture;
12343
+ super("GaussianBlurPass"), this.renderTargetA = new T(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new Ii({ kernelSize: e }), this.copyMaterial = new He(), this.copyMaterial.inputBuffer = this.renderTargetB.texture;
12347
12344
  const n = this.resolution = new x(this, r, a, i);
12348
12345
  n.addEventListener("change", (s) => this.setSize(n.baseWidth, n.baseHeight)), this.iterations = t;
12349
12346
  }
@@ -12386,7 +12383,7 @@ var nn = class extends H {
12386
12383
  initialize(e, t, i) {
12387
12384
  i !== void 0 && (this.renderTargetA.texture.type = i, this.renderTargetB.texture.type = i, i !== Y ? (this.blurMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1", this.copyMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1") : e !== null && e.outputColorSpace === y && (this.renderTargetA.texture.colorSpace = y, this.renderTargetB.texture.colorSpace = y));
12388
12385
  }
12389
- }, ln = class extends H {
12386
+ }, sn = class extends H {
12390
12387
  /**
12391
12388
  * Constructs a new lambda pass.
12392
12389
  *
@@ -12407,7 +12404,7 @@ var nn = class extends H {
12407
12404
  render(e, t, i, r, a) {
12408
12405
  this.f();
12409
12406
  }
12410
- }, un = class extends H {
12407
+ }, nn = class extends H {
12411
12408
  /**
12412
12409
  * Constructs a new normal pass.
12413
12410
  *
@@ -12429,7 +12426,7 @@ var nn = class extends H {
12429
12426
  resolutionX: s = a,
12430
12427
  resolutionY: o = n
12431
12428
  } = {}) {
12432
- super("NormalPass"), this.needsSwap = !1, this.renderPass = new ze(e, t, new Yi());
12429
+ super("NormalPass"), this.needsSwap = !1, this.renderPass = new ze(e, t, new Qi());
12433
12430
  const l = this.renderPass;
12434
12431
  l.ignoreBackground = !0, l.skipShadowMapUpdate = !0;
12435
12432
  const u = l.getClearPass();
@@ -12513,7 +12510,7 @@ var nn = class extends H {
12513
12510
  const i = this.resolution;
12514
12511
  i.setBaseSize(e, t), this.renderTarget.setSize(i.width, i.height);
12515
12512
  }
12516
- }, Qt = [
12513
+ }, kt = [
12517
12514
  new Float32Array(3),
12518
12515
  new Float32Array(3)
12519
12516
  ], U = [
@@ -12567,22 +12564,22 @@ function Ue(e, t, i, r, a, n) {
12567
12564
  const s = (i + r * t + a * t * t) * 4;
12568
12565
  n[0] = e[s + 0], n[1] = e[s + 1], n[2] = e[s + 2];
12569
12566
  }
12570
- function cn(e, t, i, r, a, n) {
12567
+ function on(e, t, i, r, a, n) {
12571
12568
  const s = i * (t - 1), o = r * (t - 1), l = a * (t - 1), u = Math.floor(s), f = Math.floor(o), h = Math.floor(l), d = Math.ceil(s), v = Math.ceil(o), A = Math.ceil(l), m = s - u, E = o - f, C = l - h;
12572
12569
  if (u === s && f === o && h === l)
12573
12570
  Ue(e, t, s, o, l, n);
12574
12571
  else {
12575
12572
  let S;
12576
12573
  m >= E && E >= C ? S = xe[0] : m >= C && C >= E ? S = xe[1] : C >= m && m >= E ? S = xe[2] : E >= m && m >= C ? S = xe[3] : E >= C && C >= m ? S = xe[4] : C >= E && E >= m && (S = xe[5]);
12577
- const [D, K, ee, ie] = S, re = Qt[0];
12574
+ const [D, K, ee, ie] = S, re = kt[0];
12578
12575
  re[0] = m, re[1] = E, re[2] = C;
12579
- const F = Qt[1], me = d - u, Ae = v - f, ne = A - h;
12576
+ const F = kt[1], me = d - u, Ae = v - f, ne = A - h;
12580
12577
  F[0] = me * D[0] + u, F[1] = Ae * D[1] + f, F[2] = ne * D[2] + h, Ue(e, t, F[0], F[1], F[2], U[0]), F[0] = me * K[0] + u, F[1] = Ae * K[1] + f, F[2] = ne * K[2] + h, Ue(e, t, F[0], F[1], F[2], U[1]), F[0] = me * ee[0] + u, F[1] = Ae * ee[1] + f, F[2] = ne * ee[2] + h, Ue(e, t, F[0], F[1], F[2], U[2]), F[0] = me * ie[0] + u, F[1] = Ae * ie[1] + f, F[2] = ne * ie[2] + h, Ue(e, t, F[0], F[1], F[2], U[3]);
12581
12578
  const fe = We(K, ee, ie, re) * 6, k = We(D, ee, ie, re) * 6, Ge = We(D, K, ie, re) * 6, at = We(D, K, ee, re) * 6;
12582
12579
  U[0][0] *= fe, U[0][1] *= fe, U[0][2] *= fe, U[1][0] *= k, U[1][1] *= k, U[1][2] *= k, U[2][0] *= Ge, U[2][1] *= Ge, U[2][2] *= Ge, U[3][0] *= at, U[3][1] *= at, U[3][2] *= at, n[0] = U[0][0] + U[1][0] + U[2][0] + U[3][0], n[1] = U[0][1] + U[1][1] + U[2][1] + U[3][1], n[2] = U[0][2] + U[1][2] + U[2][2] + U[3][2];
12583
12580
  }
12584
12581
  }
12585
- var fn = class {
12582
+ var ln = class {
12586
12583
  /**
12587
12584
  * Expands the given data to the target size.
12588
12585
  *
@@ -12596,14 +12593,14 @@ var fn = class {
12596
12593
  for (let u = 0; u < t; ++u)
12597
12594
  for (let f = 0; f < t; ++f) {
12598
12595
  const h = f * o, d = u * o, v = l * o, A = Math.round(f + u * t + l * s) * 4;
12599
- cn(e, i, h, d, v, r), a[A + 0] = r[0], a[A + 1] = r[1], a[A + 2] = r[2], a[A + 3] = n;
12596
+ on(e, i, h, d, v, r), a[A + 0] = r[0], a[A + 1] = r[1], a[A + 2] = r[2], a[A + 3] = n;
12600
12597
  }
12601
12598
  return a;
12602
12599
  }
12603
12600
  }, Pe = [
12604
12601
  new Float32Array(2),
12605
12602
  new Float32Array(2)
12606
- ], De = 16, ct = 20, we = 30, hn = 32, ft = new Float32Array([
12603
+ ], De = 16, ct = 20, we = 30, un = 32, ft = new Float32Array([
12607
12604
  0,
12608
12605
  -0.25,
12609
12606
  0.25,
@@ -12611,13 +12608,13 @@ var fn = class {
12611
12608
  0.125,
12612
12609
  -0.375,
12613
12610
  0.375
12614
- ]), Vt = [
12611
+ ]), Qt = [
12615
12612
  new Float32Array([0, 0]),
12616
12613
  new Float32Array([0.25, -0.25]),
12617
12614
  new Float32Array([-0.25, 0.25]),
12618
12615
  new Float32Array([0.125, -0.125]),
12619
12616
  new Float32Array([-0.125, 0.125])
12620
- ], dn = [
12617
+ ], cn = [
12621
12618
  new Uint8Array([0, 0]),
12622
12619
  new Uint8Array([3, 0]),
12623
12620
  new Uint8Array([0, 3]),
@@ -12634,7 +12631,7 @@ var fn = class {
12634
12631
  new Uint8Array([4, 1]),
12635
12632
  new Uint8Array([1, 4]),
12636
12633
  new Uint8Array([4, 4])
12637
- ], bi = [
12634
+ ], Ri = [
12638
12635
  new Uint8Array([0, 0]),
12639
12636
  new Uint8Array([1, 0]),
12640
12637
  new Uint8Array([0, 2]),
@@ -12655,11 +12652,11 @@ var fn = class {
12655
12652
  function Ye(e, t, i) {
12656
12653
  return e + (t - e) * i;
12657
12654
  }
12658
- function vn(e) {
12655
+ function fn(e) {
12659
12656
  return Math.min(Math.max(e, 0), 1);
12660
12657
  }
12661
- function Wt(e) {
12662
- const t = Pe[0], i = Pe[1], r = Math.sqrt(t[0] * 2) * 0.5, a = Math.sqrt(t[1] * 2) * 0.5, n = Math.sqrt(i[0] * 2) * 0.5, s = Math.sqrt(i[1] * 2) * 0.5, o = vn(e / hn);
12658
+ function Vt(e) {
12659
+ const t = Pe[0], i = Pe[1], r = Math.sqrt(t[0] * 2) * 0.5, a = Math.sqrt(t[1] * 2) * 0.5, n = Math.sqrt(i[0] * 2) * 0.5, s = Math.sqrt(i[1] * 2) * 0.5, o = fn(e / un);
12663
12660
  t[0] = Ye(r, t[0], o), t[1] = Ye(a, t[1], o), i[0] = Ye(n, i[0], o), i[1] = Ye(s, i[1], o);
12664
12661
  }
12665
12662
  function Q(e, t, i, r, a, n) {
@@ -12676,7 +12673,7 @@ function Q(e, t, i, r, a, n) {
12676
12673
  n[0] = 0, n[1] = 0;
12677
12674
  return n;
12678
12675
  }
12679
- function pn(e, t, i, r, a) {
12676
+ function hn(e, t, i, r, a) {
12680
12677
  const n = Pe[0], s = Pe[1], o = 0.5 + r, l = 0.5 + r - 1, u = t + i + 1;
12681
12678
  switch (e) {
12682
12679
  case 0: {
@@ -12692,7 +12689,7 @@ function pn(e, t, i, r, a) {
12692
12689
  break;
12693
12690
  }
12694
12691
  case 3: {
12695
- Q(0, l, u / 2, 0, t, n), Q(u / 2, 0, u, l, t, s), Wt(u), a[0] = n[0] + s[0], a[1] = n[1] + s[1];
12692
+ Q(0, l, u / 2, 0, t, n), Q(u / 2, 0, u, l, t, s), Vt(u), a[0] = n[0] + s[0], a[1] = n[1] + s[1];
12696
12693
  break;
12697
12694
  }
12698
12695
  case 4: {
@@ -12728,7 +12725,7 @@ function pn(e, t, i, r, a) {
12728
12725
  break;
12729
12726
  }
12730
12727
  case 12: {
12731
- Q(0, o, u / 2, 0, t, n), Q(u / 2, 0, u, o, t, s), Wt(u), a[0] = n[0] + s[0], a[1] = n[1] + s[1];
12728
+ Q(0, o, u / 2, 0, t, n), Q(u / 2, 0, u, o, t, s), Vt(u), a[0] = n[0] + s[0], a[1] = n[1] + s[1];
12732
12729
  break;
12733
12730
  }
12734
12731
  case 13: {
@@ -12746,7 +12743,7 @@ function pn(e, t, i, r, a) {
12746
12743
  }
12747
12744
  return a;
12748
12745
  }
12749
- function gn(e, t, i, r, a, n) {
12746
+ function dn(e, t, i, r, a, n) {
12750
12747
  let s = e === i && t === r;
12751
12748
  if (!s) {
12752
12749
  const o = (e + i) / 2, l = (t + r) / 2, u = r - t, f = e - i;
@@ -12754,20 +12751,20 @@ function gn(e, t, i, r, a, n) {
12754
12751
  }
12755
12752
  return s;
12756
12753
  }
12757
- function Yt(e, t, i, r, a, n) {
12754
+ function Wt(e, t, i, r, a, n) {
12758
12755
  let s = 0;
12759
12756
  for (let o = 0; o < we; ++o)
12760
12757
  for (let l = 0; l < we; ++l) {
12761
12758
  const u = l / (we - 1), f = o / (we - 1);
12762
- gn(e, t, i, r, a + u, n + f) && ++s;
12759
+ dn(e, t, i, r, a + u, n + f) && ++s;
12763
12760
  }
12764
12761
  return s / (we * we);
12765
12762
  }
12766
12763
  function b(e, t, i, r, a, n, s, o) {
12767
- const l = bi[e], u = l[0], f = l[1];
12768
- return u > 0 && (t += s[0], i += s[1]), f > 0 && (r += s[0], a += s[1]), o[0] = 1 - Yt(t, i, r, a, 1 + n, 0 + n), o[1] = Yt(t, i, r, a, 1 + n, 1 + n), o;
12764
+ const l = Ri[e], u = l[0], f = l[1];
12765
+ return u > 0 && (t += s[0], i += s[1]), f > 0 && (r += s[0], a += s[1]), o[0] = 1 - Wt(t, i, r, a, 1 + n, 0 + n), o[1] = Wt(t, i, r, a, 1 + n, 1 + n), o;
12769
12766
  }
12770
- function mn(e, t, i, r, a) {
12767
+ function vn(e, t, i, r, a) {
12771
12768
  const n = Pe[0], s = Pe[1], o = t + i + 1;
12772
12769
  switch (e) {
12773
12770
  case 0: {
@@ -12837,19 +12834,19 @@ function mn(e, t, i, r, a) {
12837
12834
  }
12838
12835
  return a;
12839
12836
  }
12840
- function Kt(e, t, i) {
12837
+ function Yt(e, t, i) {
12841
12838
  const r = new Float32Array(2);
12842
12839
  for (let a = 0, n = e.length; a < n; ++a) {
12843
12840
  const s = e[a], o = s.data, l = s.width;
12844
12841
  for (let u = 0; u < l; ++u)
12845
12842
  for (let f = 0; f < l; ++f) {
12846
- i ? pn(a, f, u, t, r) : mn(a, f, u, t, r);
12843
+ i ? hn(a, f, u, t, r) : vn(a, f, u, t, r);
12847
12844
  const h = (u * l + f) * 2;
12848
12845
  o[h] = r[0] * 255, o[h + 1] = r[1] * 255;
12849
12846
  }
12850
12847
  }
12851
12848
  }
12852
- function Xt(e, t, i, r, a, n, s) {
12849
+ function Kt(e, t, i, r, a, n, s) {
12853
12850
  const o = s.data, l = s.width;
12854
12851
  for (let u = 0, f = i.length; u < f; ++u) {
12855
12852
  const h = r[u], d = i[u], v = d.data, A = d.width;
@@ -12860,7 +12857,7 @@ function Xt(e, t, i, r, a, n, s) {
12860
12857
  }
12861
12858
  }
12862
12859
  }
12863
- var An = class {
12860
+ var pn = class {
12864
12861
  /**
12865
12862
  * Creates a new area image.
12866
12863
  *
@@ -12883,31 +12880,31 @@ var An = class {
12883
12880
  2
12884
12881
  ));
12885
12882
  for (let l = 0, u = ft.length; l < u; ++l)
12886
- Kt(s, ft[l], !0), Xt(
12883
+ Yt(s, ft[l], !0), Kt(
12887
12884
  0,
12888
12885
  5 * De * l,
12889
12886
  s,
12890
- dn,
12887
+ cn,
12891
12888
  De,
12892
12889
  !0,
12893
12890
  r
12894
12891
  );
12895
- for (let l = 0, u = Vt.length; l < u; ++l)
12896
- Kt(o, Vt[l], !1), Xt(
12892
+ for (let l = 0, u = Qt.length; l < u; ++l)
12893
+ Yt(o, Qt[l], !1), Kt(
12897
12894
  5 * De,
12898
12895
  4 * ct * l,
12899
12896
  o,
12900
- bi,
12897
+ Ri,
12901
12898
  ct,
12902
12899
  !1,
12903
12900
  r
12904
12901
  );
12905
12902
  return r;
12906
12903
  }
12907
- }, xn = `"use strict";(()=>{function q(t,a,s){let e=document.createElement("canvas"),n=e.getContext("2d");if(e.width=t,e.height=a,s instanceof Image)n.drawImage(s,0,0);else{let r=n.createImageData(t,a);r.data.set(s),n.putImageData(r,0,0)}return e}var F=class t{constructor(a=0,s=0,e=null){this.width=a,this.height=s,this.data=e}toCanvas(){return typeof document=="undefined"?null:q(this.width,this.height,this.data)}static from(a){let{width:s,height:e}=a,n;if(a instanceof Image){let r=q(s,e,a);r!==null&&(n=r.getContext("2d").getImageData(0,0,s,e).data)}else n=a.data;return new t(s,e,n)}};var M=[new Float32Array(2),new Float32Array(2)],D=16,W=20,I=30,j=32,v=new Float32Array([0,-.25,.25,-.125,.125,-.375,.375]),N=[new Float32Array([0,0]),new Float32Array([.25,-.25]),new Float32Array([-.25,.25]),new Float32Array([.125,-.125]),new Float32Array([-.125,.125])],z=[new Uint8Array([0,0]),new Uint8Array([3,0]),new Uint8Array([0,3]),new Uint8Array([3,3]),new Uint8Array([1,0]),new Uint8Array([4,0]),new Uint8Array([1,3]),new Uint8Array([4,3]),new Uint8Array([0,1]),new Uint8Array([3,1]),new Uint8Array([0,4]),new Uint8Array([3,4]),new Uint8Array([1,1]),new Uint8Array([4,1]),new Uint8Array([1,4]),new Uint8Array([4,4])],p=[new Uint8Array([0,0]),new Uint8Array([1,0]),new Uint8Array([0,2]),new Uint8Array([1,2]),new Uint8Array([2,0]),new Uint8Array([3,0]),new Uint8Array([2,2]),new Uint8Array([3,2]),new Uint8Array([0,1]),new Uint8Array([1,1]),new Uint8Array([0,3]),new Uint8Array([1,3]),new Uint8Array([2,1]),new Uint8Array([3,1]),new Uint8Array([2,3]),new Uint8Array([3,3])];function C(t,a,s){return t+(a-t)*s}function B(t){return Math.min(Math.max(t,0),1)}function _(t){let a=M[0],s=M[1],e=Math.sqrt(a[0]*2)*.5,n=Math.sqrt(a[1]*2)*.5,r=Math.sqrt(s[0]*2)*.5,o=Math.sqrt(s[1]*2)*.5,c=B(t/j);a[0]=C(e,a[0],c),a[1]=C(n,a[1],c),s[0]=C(r,s[0],c),s[1]=C(o,s[1],c)}function d(t,a,s,e,n,r){let o=s-t,c=e-a,h=n,i=n+1,w=a+c*(h-t)/o,b=a+c*(i-t)/o;if(h>=t&&h<s||i>t&&i<=s)if(Math.sign(w)===Math.sign(b)||Math.abs(w)<1e-4||Math.abs(b)<1e-4){let g=(w+b)/2;g<0?(r[0]=Math.abs(g),r[1]=0):(r[0]=0,r[1]=Math.abs(g))}else{let g=-a*o/c+t,k=Math.trunc(g),m=g>t?w*(g-k)/2:0,U=g<s?b*(1-(g-k))/2:0;(Math.abs(m)>Math.abs(U)?m:-U)<0?(r[0]=Math.abs(m),r[1]=Math.abs(U)):(r[0]=Math.abs(U),r[1]=Math.abs(m))}else r[0]=0,r[1]=0;return r}function J(t,a,s,e,n){let r=M[0],o=M[1],c=.5+e,h=.5+e-1,i=a+s+1;switch(t){case 0:{n[0]=0,n[1]=0;break}case 1:{a<=s?d(0,h,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 2:{a>=s?d(i/2,0,i,h,a,n):(n[0]=0,n[1]=0);break}case 3:{d(0,h,i/2,0,a,r),d(i/2,0,i,h,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 4:{a<=s?d(0,c,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 5:{n[0]=0,n[1]=0;break}case 6:{Math.abs(e)>0?(d(0,c,i,h,a,r),d(0,c,i/2,0,a,o),d(i/2,0,i,h,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,c,i,h,a,n);break}case 7:{d(0,c,i,h,a,n);break}case 8:{a>=s?d(i/2,0,i,c,a,n):(n[0]=0,n[1]=0);break}case 9:{Math.abs(e)>0?(d(0,h,i,c,a,r),d(0,h,i/2,0,a,o),d(i/2,0,i,c,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,h,i,c,a,n);break}case 10:{n[0]=0,n[1]=0;break}case 11:{d(0,h,i,c,a,n);break}case 12:{d(0,c,i/2,0,a,r),d(i/2,0,i,c,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 13:{d(0,h,i,c,a,n);break}case 14:{d(0,c,i,h,a,n);break}case 15:{n[0]=0,n[1]=0;break}}return n}function K(t,a,s,e,n,r){let o=t===s&&a===e;if(!o){let c=(t+s)/2,h=(a+e)/2,i=e-a,w=t-s;o=i*(n-c)+w*(r-h)>0}return o}function G(t,a,s,e,n,r){let o=0;for(let c=0;c<I;++c)for(let h=0;h<I;++h){let i=h/(I-1),w=c/(I-1);K(t,a,s,e,n+i,r+w)&&++o}return o/(I*I)}function A(t,a,s,e,n,r,o,c){let h=p[t],i=h[0],w=h[1];return i>0&&(a+=o[0],s+=o[1]),w>0&&(e+=o[0],n+=o[1]),c[0]=1-G(a,s,e,n,1+r,0+r),c[1]=G(a,s,e,n,1+r,1+r),c}function Q(t,a,s,e,n){let r=M[0],o=M[1],c=a+s+1;switch(t){case 0:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 1:{A(t,1,0,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 2:{A(t,0,0,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 3:{A(t,1,0,1+c,0+c,a,e,n);break}case 4:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 5:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 6:{A(t,1,1,1+c,0+c,a,e,n);break}case 7:{A(t,1,1,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 8:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 9:{A(t,1,0,1+c,1+c,a,e,n),A(t,1,0,1+c,1+c,a,e,n);break}case 10:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 11:{A(t,1,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 12:{A(t,1,1,1+c,1+c,a,e,n);break}case 13:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 14:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 15:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}}return n}function R(t,a,s){let e=new Float32Array(2);for(let n=0,r=t.length;n<r;++n){let o=t[n],c=o.data,h=o.width;for(let i=0;i<h;++i)for(let w=0;w<h;++w){s?J(n,w,i,a,e):Q(n,w,i,a,e);let b=(i*h+w)*2;c[b]=e[0]*255,c[b+1]=e[1]*255}}}function T(t,a,s,e,n,r,o){let c=o.data,h=o.width;for(let i=0,w=s.length;i<w;++i){let b=e[i],g=s[i],k=g.data,m=g.width;for(let U=0;U<n;++U)for(let x=0;x<n;++x){let Z=b[0]*n+t+x,O=((b[1]*n+a+U)*h+Z)*4,L=r?(U*U*m+x*x)*2:(U*m+x)*2;c[O]=k[L],c[O+1]=k[L+1],c[O+2]=0,c[O+3]=255}}}var S=class{static generate(){let a=10*D,s=v.length*5*D,e=new Uint8ClampedArray(a*s*4),n=new F(a,s,e),r=Math.pow(D-1,2)+1,o=W,c=[],h=[];for(let i=3,w=e.length;i<w;i+=4)e[i]=255;for(let i=0;i<16;++i)c.push(new F(r,r,new Uint8ClampedArray(r*r*2),2)),h.push(new F(o,o,new Uint8ClampedArray(o*o*2),2));for(let i=0,w=v.length;i<w;++i)R(c,v[i],!0),T(0,5*D*i,c,z,D,!0,n);for(let i=0,w=N.length;i<w;++i)R(h,N[i],!1),T(5*D,4*W*i,h,p,W,!1,n);return n}};var P=new Map([[y(0,0,0,0),new Float32Array([0,0,0,0])],[y(0,0,0,1),new Float32Array([0,0,0,1])],[y(0,0,1,0),new Float32Array([0,0,1,0])],[y(0,0,1,1),new Float32Array([0,0,1,1])],[y(0,1,0,0),new Float32Array([0,1,0,0])],[y(0,1,0,1),new Float32Array([0,1,0,1])],[y(0,1,1,0),new Float32Array([0,1,1,0])],[y(0,1,1,1),new Float32Array([0,1,1,1])],[y(1,0,0,0),new Float32Array([1,0,0,0])],[y(1,0,0,1),new Float32Array([1,0,0,1])],[y(1,0,1,0),new Float32Array([1,0,1,0])],[y(1,0,1,1),new Float32Array([1,0,1,1])],[y(1,1,0,0),new Float32Array([1,1,0,0])],[y(1,1,0,1),new Float32Array([1,1,0,1])],[y(1,1,1,0),new Float32Array([1,1,1,0])],[y(1,1,1,1),new Float32Array([1,1,1,1])]]);function H(t,a,s){return t+(a-t)*s}function y(t,a,s,e){let n=H(t,a,.75),r=H(s,e,1-.25);return H(n,r,1-.125)}function V(t,a){let s=0;return a[3]===1&&(s+=1),s===1&&a[2]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s}function $(t,a){let s=0;return a[3]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s===1&&a[2]===1&&t[0]!==1&&t[2]!==1&&(s+=1),s}var E=class{static generate(){let o=new Uint8ClampedArray(2178),c=new Uint8ClampedArray(1024*4);for(let h=0;h<33;++h)for(let i=0;i<66;++i){let w=.03125*i,b=.03125*h;if(P.has(w)&&P.has(b)){let g=P.get(w),k=P.get(b),m=h*66+i;o[m]=127*V(g,k),o[m+33]=127*$(g,k)}}for(let h=0,i=17;i<33;++i)for(let w=0;w<64;++w,h+=4)c[h]=o[i*66+w],c[h+3]=255;return new F(64,16,c)}};self.addEventListener("message",t=>{let a=S.generate(),s=E.generate();postMessage({areaImageData:a,searchImageData:s},[a.data.buffer,s.data.buffer]),close()});})();
12904
+ }, gn = `"use strict";(()=>{function q(t,a,s){let e=document.createElement("canvas"),n=e.getContext("2d");if(e.width=t,e.height=a,s instanceof Image)n.drawImage(s,0,0);else{let r=n.createImageData(t,a);r.data.set(s),n.putImageData(r,0,0)}return e}var F=class t{constructor(a=0,s=0,e=null){this.width=a,this.height=s,this.data=e}toCanvas(){return typeof document=="undefined"?null:q(this.width,this.height,this.data)}static from(a){let{width:s,height:e}=a,n;if(a instanceof Image){let r=q(s,e,a);r!==null&&(n=r.getContext("2d").getImageData(0,0,s,e).data)}else n=a.data;return new t(s,e,n)}};var M=[new Float32Array(2),new Float32Array(2)],D=16,W=20,I=30,j=32,v=new Float32Array([0,-.25,.25,-.125,.125,-.375,.375]),N=[new Float32Array([0,0]),new Float32Array([.25,-.25]),new Float32Array([-.25,.25]),new Float32Array([.125,-.125]),new Float32Array([-.125,.125])],z=[new Uint8Array([0,0]),new Uint8Array([3,0]),new Uint8Array([0,3]),new Uint8Array([3,3]),new Uint8Array([1,0]),new Uint8Array([4,0]),new Uint8Array([1,3]),new Uint8Array([4,3]),new Uint8Array([0,1]),new Uint8Array([3,1]),new Uint8Array([0,4]),new Uint8Array([3,4]),new Uint8Array([1,1]),new Uint8Array([4,1]),new Uint8Array([1,4]),new Uint8Array([4,4])],p=[new Uint8Array([0,0]),new Uint8Array([1,0]),new Uint8Array([0,2]),new Uint8Array([1,2]),new Uint8Array([2,0]),new Uint8Array([3,0]),new Uint8Array([2,2]),new Uint8Array([3,2]),new Uint8Array([0,1]),new Uint8Array([1,1]),new Uint8Array([0,3]),new Uint8Array([1,3]),new Uint8Array([2,1]),new Uint8Array([3,1]),new Uint8Array([2,3]),new Uint8Array([3,3])];function C(t,a,s){return t+(a-t)*s}function B(t){return Math.min(Math.max(t,0),1)}function _(t){let a=M[0],s=M[1],e=Math.sqrt(a[0]*2)*.5,n=Math.sqrt(a[1]*2)*.5,r=Math.sqrt(s[0]*2)*.5,o=Math.sqrt(s[1]*2)*.5,c=B(t/j);a[0]=C(e,a[0],c),a[1]=C(n,a[1],c),s[0]=C(r,s[0],c),s[1]=C(o,s[1],c)}function d(t,a,s,e,n,r){let o=s-t,c=e-a,h=n,i=n+1,w=a+c*(h-t)/o,b=a+c*(i-t)/o;if(h>=t&&h<s||i>t&&i<=s)if(Math.sign(w)===Math.sign(b)||Math.abs(w)<1e-4||Math.abs(b)<1e-4){let g=(w+b)/2;g<0?(r[0]=Math.abs(g),r[1]=0):(r[0]=0,r[1]=Math.abs(g))}else{let g=-a*o/c+t,k=Math.trunc(g),m=g>t?w*(g-k)/2:0,U=g<s?b*(1-(g-k))/2:0;(Math.abs(m)>Math.abs(U)?m:-U)<0?(r[0]=Math.abs(m),r[1]=Math.abs(U)):(r[0]=Math.abs(U),r[1]=Math.abs(m))}else r[0]=0,r[1]=0;return r}function J(t,a,s,e,n){let r=M[0],o=M[1],c=.5+e,h=.5+e-1,i=a+s+1;switch(t){case 0:{n[0]=0,n[1]=0;break}case 1:{a<=s?d(0,h,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 2:{a>=s?d(i/2,0,i,h,a,n):(n[0]=0,n[1]=0);break}case 3:{d(0,h,i/2,0,a,r),d(i/2,0,i,h,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 4:{a<=s?d(0,c,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 5:{n[0]=0,n[1]=0;break}case 6:{Math.abs(e)>0?(d(0,c,i,h,a,r),d(0,c,i/2,0,a,o),d(i/2,0,i,h,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,c,i,h,a,n);break}case 7:{d(0,c,i,h,a,n);break}case 8:{a>=s?d(i/2,0,i,c,a,n):(n[0]=0,n[1]=0);break}case 9:{Math.abs(e)>0?(d(0,h,i,c,a,r),d(0,h,i/2,0,a,o),d(i/2,0,i,c,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,h,i,c,a,n);break}case 10:{n[0]=0,n[1]=0;break}case 11:{d(0,h,i,c,a,n);break}case 12:{d(0,c,i/2,0,a,r),d(i/2,0,i,c,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 13:{d(0,h,i,c,a,n);break}case 14:{d(0,c,i,h,a,n);break}case 15:{n[0]=0,n[1]=0;break}}return n}function K(t,a,s,e,n,r){let o=t===s&&a===e;if(!o){let c=(t+s)/2,h=(a+e)/2,i=e-a,w=t-s;o=i*(n-c)+w*(r-h)>0}return o}function G(t,a,s,e,n,r){let o=0;for(let c=0;c<I;++c)for(let h=0;h<I;++h){let i=h/(I-1),w=c/(I-1);K(t,a,s,e,n+i,r+w)&&++o}return o/(I*I)}function A(t,a,s,e,n,r,o,c){let h=p[t],i=h[0],w=h[1];return i>0&&(a+=o[0],s+=o[1]),w>0&&(e+=o[0],n+=o[1]),c[0]=1-G(a,s,e,n,1+r,0+r),c[1]=G(a,s,e,n,1+r,1+r),c}function Q(t,a,s,e,n){let r=M[0],o=M[1],c=a+s+1;switch(t){case 0:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 1:{A(t,1,0,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 2:{A(t,0,0,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 3:{A(t,1,0,1+c,0+c,a,e,n);break}case 4:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 5:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 6:{A(t,1,1,1+c,0+c,a,e,n);break}case 7:{A(t,1,1,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 8:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 9:{A(t,1,0,1+c,1+c,a,e,n),A(t,1,0,1+c,1+c,a,e,n);break}case 10:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 11:{A(t,1,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 12:{A(t,1,1,1+c,1+c,a,e,n);break}case 13:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 14:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 15:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}}return n}function R(t,a,s){let e=new Float32Array(2);for(let n=0,r=t.length;n<r;++n){let o=t[n],c=o.data,h=o.width;for(let i=0;i<h;++i)for(let w=0;w<h;++w){s?J(n,w,i,a,e):Q(n,w,i,a,e);let b=(i*h+w)*2;c[b]=e[0]*255,c[b+1]=e[1]*255}}}function T(t,a,s,e,n,r,o){let c=o.data,h=o.width;for(let i=0,w=s.length;i<w;++i){let b=e[i],g=s[i],k=g.data,m=g.width;for(let U=0;U<n;++U)for(let x=0;x<n;++x){let Z=b[0]*n+t+x,O=((b[1]*n+a+U)*h+Z)*4,L=r?(U*U*m+x*x)*2:(U*m+x)*2;c[O]=k[L],c[O+1]=k[L+1],c[O+2]=0,c[O+3]=255}}}var S=class{static generate(){let a=10*D,s=v.length*5*D,e=new Uint8ClampedArray(a*s*4),n=new F(a,s,e),r=Math.pow(D-1,2)+1,o=W,c=[],h=[];for(let i=3,w=e.length;i<w;i+=4)e[i]=255;for(let i=0;i<16;++i)c.push(new F(r,r,new Uint8ClampedArray(r*r*2),2)),h.push(new F(o,o,new Uint8ClampedArray(o*o*2),2));for(let i=0,w=v.length;i<w;++i)R(c,v[i],!0),T(0,5*D*i,c,z,D,!0,n);for(let i=0,w=N.length;i<w;++i)R(h,N[i],!1),T(5*D,4*W*i,h,p,W,!1,n);return n}};var P=new Map([[y(0,0,0,0),new Float32Array([0,0,0,0])],[y(0,0,0,1),new Float32Array([0,0,0,1])],[y(0,0,1,0),new Float32Array([0,0,1,0])],[y(0,0,1,1),new Float32Array([0,0,1,1])],[y(0,1,0,0),new Float32Array([0,1,0,0])],[y(0,1,0,1),new Float32Array([0,1,0,1])],[y(0,1,1,0),new Float32Array([0,1,1,0])],[y(0,1,1,1),new Float32Array([0,1,1,1])],[y(1,0,0,0),new Float32Array([1,0,0,0])],[y(1,0,0,1),new Float32Array([1,0,0,1])],[y(1,0,1,0),new Float32Array([1,0,1,0])],[y(1,0,1,1),new Float32Array([1,0,1,1])],[y(1,1,0,0),new Float32Array([1,1,0,0])],[y(1,1,0,1),new Float32Array([1,1,0,1])],[y(1,1,1,0),new Float32Array([1,1,1,0])],[y(1,1,1,1),new Float32Array([1,1,1,1])]]);function H(t,a,s){return t+(a-t)*s}function y(t,a,s,e){let n=H(t,a,.75),r=H(s,e,1-.25);return H(n,r,1-.125)}function V(t,a){let s=0;return a[3]===1&&(s+=1),s===1&&a[2]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s}function $(t,a){let s=0;return a[3]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s===1&&a[2]===1&&t[0]!==1&&t[2]!==1&&(s+=1),s}var E=class{static generate(){let o=new Uint8ClampedArray(2178),c=new Uint8ClampedArray(1024*4);for(let h=0;h<33;++h)for(let i=0;i<66;++i){let w=.03125*i,b=.03125*h;if(P.has(w)&&P.has(b)){let g=P.get(w),k=P.get(b),m=h*66+i;o[m]=127*V(g,k),o[m+33]=127*$(g,k)}}for(let h=0,i=17;i<33;++i)for(let w=0;w<64;++w,h+=4)c[h]=o[i*66+w],c[h+3]=255;return new F(64,16,c)}};self.addEventListener("message",t=>{let a=S.generate(),s=E.generate();postMessage({areaImageData:a,searchImageData:s},[a.data.buffer,s.data.buffer]),close()});})();
12908
12905
  `;
12909
- function Dn(e = !0) {
12910
- const t = URL.createObjectURL(new Blob([xn], {
12906
+ function mn(e = !0) {
12907
+ const t = URL.createObjectURL(new Blob([gn], {
12911
12908
  type: "text/javascript"
12912
12909
  })), i = new Worker(t);
12913
12910
  return URL.revokeObjectURL(t), new Promise((r, a) => {
@@ -12920,7 +12917,7 @@ function Dn(e = !0) {
12920
12917
  }), i.postMessage(null);
12921
12918
  });
12922
12919
  }
12923
- var wn = class {
12920
+ var An = class {
12924
12921
  /**
12925
12922
  * Constructs a new SMAA image generator.
12926
12923
  */
@@ -12949,7 +12946,7 @@ var wn = class {
12949
12946
  localStorage.getItem("smaa-search"),
12950
12947
  localStorage.getItem("smaa-area")
12951
12948
  ] : [null, null];
12952
- return (t[0] !== null && t[1] !== null ? Promise.resolve(t) : Dn(e)).then((r) => new Promise((a, n) => {
12949
+ return (t[0] !== null && t[1] !== null ? Promise.resolve(t) : mn(e)).then((r) => new Promise((a, n) => {
12953
12950
  const s = new Image(), o = new Image(), l = new Ne();
12954
12951
  l.onLoad = () => a([s, o]), l.onError = n, s.addEventListener("error", (u) => l.itemError("smaa-search")), o.addEventListener("error", (u) => l.itemError("smaa-area")), s.addEventListener("load", () => l.itemEnd("smaa-search")), o.addEventListener("load", () => l.itemEnd("smaa-area")), l.itemStart("smaa-search"), l.itemStart("smaa-area"), s.src = r[0], o.src = r[1];
12955
12952
  }));
@@ -12979,15 +12976,15 @@ function X(e, t, i, r) {
12979
12976
  const a = ht(e, t, 0.75), n = ht(i, r, 1 - 0.25);
12980
12977
  return ht(a, n, 1 - 0.125);
12981
12978
  }
12982
- function Tn(e, t) {
12979
+ function xn(e, t) {
12983
12980
  let i = 0;
12984
12981
  return t[3] === 1 && (i += 1), i === 1 && t[2] === 1 && e[1] !== 1 && e[3] !== 1 && (i += 1), i;
12985
12982
  }
12986
- function Sn(e, t) {
12983
+ function Dn(e, t) {
12987
12984
  let i = 0;
12988
12985
  return t[3] === 1 && e[1] !== 1 && e[3] !== 1 && (i += 1), i === 1 && t[2] === 1 && e[0] !== 1 && e[2] !== 1 && (i += 1), i;
12989
12986
  }
12990
- var En = class {
12987
+ var wn = class {
12991
12988
  /**
12992
12989
  * Creates a new search image.
12993
12990
  *
@@ -13000,7 +12997,7 @@ var En = class {
13000
12997
  const u = 0.03125 * l, f = 0.03125 * o;
13001
12998
  if (Ke.has(u) && Ke.has(f)) {
13002
12999
  const h = Ke.get(u), d = Ke.get(f), v = o * 66 + l;
13003
- n[v] = 127 * Tn(h, d), n[v + 33] = 127 * Sn(h, d);
13000
+ n[v] = 127 * xn(h, d), n[v + 33] = 127 * Dn(h, d);
13004
13001
  }
13005
13002
  }
13006
13003
  for (let o = 0, l = 17; l < 33; ++l)
@@ -13009,141 +13006,140 @@ var En = class {
13009
13006
  return new ue(64, 16, s);
13010
13007
  }
13011
13008
  };
13012
- const On = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
13009
+ const bn = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
13013
13010
  __proto__: null,
13014
- ASCIIEffect: Zr,
13015
- ASCIITexture: oi,
13016
- AdaptiveLuminanceMaterial: yi,
13017
- AdaptiveLuminancePass: Mi,
13011
+ ASCIIEffect: Yr,
13012
+ ASCIITexture: ni,
13013
+ AdaptiveLuminanceMaterial: Ci,
13014
+ AdaptiveLuminancePass: yi,
13018
13015
  BlendFunction: g,
13019
- BlendMode: ni,
13020
- BloomEffect: hi,
13016
+ BlendMode: si,
13017
+ BloomEffect: fi,
13021
13018
  BlurPass: pe,
13022
- BokehEffect: sa,
13019
+ BokehEffect: ia,
13023
13020
  BokehMaterial: Fe,
13024
- BoxBlurMaterial: Bi,
13025
- BoxBlurPass: _s,
13026
- BrightnessContrastEffect: oa,
13027
- ChromaticAberrationEffect: va,
13028
- CircleOfConfusionMaterial: di,
13029
- ClearMaskPass: ii,
13021
+ BoxBlurMaterial: Mi,
13022
+ BoxBlurPass: js,
13023
+ BrightnessContrastEffect: aa,
13024
+ ChromaticAberrationEffect: fa,
13025
+ CircleOfConfusionMaterial: hi,
13026
+ ClearMaskPass: ti,
13030
13027
  ClearPass: ge,
13031
- ColorAverageEffect: ua,
13028
+ ColorAverageEffect: na,
13032
13029
  ColorChannel: he,
13033
- ColorDepthEffect: fa,
13030
+ ColorDepthEffect: la,
13034
13031
  ColorEdgesMaterial: At,
13035
13032
  ConvolutionMaterial: $e,
13036
13033
  CopyMaterial: He,
13037
13034
  CopyPass: _e,
13038
- DepthComparisonMaterial: xi,
13039
- DepthCopyMaterial: Pi,
13035
+ DepthComparisonMaterial: Ai,
13036
+ DepthCopyMaterial: Bi,
13040
13037
  DepthCopyMode: Ce,
13041
13038
  DepthCopyPass: wt,
13042
- DepthDownsamplingMaterial: Ti,
13043
- DepthDownsamplingPass: Si,
13044
- DepthEffect: ga,
13039
+ DepthDownsamplingMaterial: wi,
13040
+ DepthDownsamplingPass: Ti,
13041
+ DepthEffect: da,
13045
13042
  DepthMaskMaterial: Mt,
13046
- DepthOfFieldEffect: wa,
13043
+ DepthOfFieldEffect: Aa,
13047
13044
  DepthPass: Pt,
13048
- DepthPickingPass: an,
13045
+ DepthPickingPass: en,
13049
13046
  DepthSavePass: wt,
13050
13047
  DepthTestStrategy: Me,
13051
- Disposable: sr,
13052
- DotScreenEffect: Sa,
13053
- DownsamplingMaterial: ui,
13048
+ Disposable: ir,
13049
+ DotScreenEffect: Da,
13050
+ DownsamplingMaterial: li,
13054
13051
  EdgeDetectionMaterial: At,
13055
13052
  EdgeDetectionMode: Bt,
13056
13053
  Effect: I,
13057
13054
  EffectAttribute: V,
13058
- EffectComposer: ur,
13059
- EffectMaterial: Ii,
13060
- EffectPass: nn,
13061
- EffectShaderData: ai,
13055
+ EffectComposer: nr,
13056
+ EffectMaterial: Pi,
13057
+ EffectPass: rn,
13058
+ EffectShaderData: ri,
13062
13059
  EffectShaderSection: B,
13063
- FXAAEffect: ya,
13064
- GammaCorrectionEffect: Ba,
13065
- GaussKernel: si,
13066
- GaussianBlurMaterial: Ri,
13067
- GaussianBlurPass: on,
13068
- GlitchEffect: Ra,
13060
+ FXAAEffect: Sa,
13061
+ GammaCorrectionEffect: Ca,
13062
+ GaussKernel: ai,
13063
+ GaussianBlurMaterial: Ii,
13064
+ GaussianBlurPass: an,
13065
+ GlitchEffect: Ba,
13069
13066
  GlitchMode: Te,
13070
- GodRaysEffect: La,
13071
- GodRaysMaterial: pi,
13072
- GridEffect: Na,
13073
- HueSaturationEffect: za,
13074
- ImmutableTimer: cr,
13075
- Initializable: fr,
13067
+ GodRaysEffect: ba,
13068
+ GodRaysMaterial: vi,
13069
+ GridEffect: Fa,
13070
+ HueSaturationEffect: Oa,
13071
+ ImmutableTimer: or,
13072
+ Initializable: lr,
13076
13073
  KawaseBlurMaterial: $e,
13077
13074
  KawaseBlurPass: pe,
13078
13075
  KernelSize: te,
13079
- LUT1DEffect: Va,
13080
- LUT3DEffect: Ht,
13081
- LUT3dlLoader: ks,
13082
- LUTCubeLoader: Qs,
13083
- LUTEffect: Ht,
13084
- LUTOperation: gi,
13085
- LambdaPass: ln,
13086
- LensDistortionEffect: ka,
13076
+ LUT1DEffect: Ga,
13077
+ LUT3DEffect: Nt,
13078
+ LUT3dlLoader: Hs,
13079
+ LUTCubeLoader: zs,
13080
+ LUTEffect: Nt,
13081
+ LUTOperation: pi,
13082
+ LambdaPass: sn,
13083
+ LensDistortionEffect: Ha,
13087
13084
  LookupTexture: Oe,
13088
13085
  LookupTexture3D: Oe,
13089
- LuminanceMaterial: li,
13086
+ LuminanceMaterial: oi,
13090
13087
  LuminancePass: Ct,
13091
13088
  MaskFunction: yt,
13092
- MaskMaterial: vi,
13093
- MaskPass: ri,
13094
- MipmapBlurPass: fi,
13095
- NoiseEffect: Za,
13089
+ MaskMaterial: di,
13090
+ MaskPass: ii,
13091
+ MipmapBlurPass: ci,
13092
+ NoiseEffect: Ya,
13096
13093
  NoiseTexture: et,
13097
- NormalPass: un,
13094
+ NormalPass: nn,
13098
13095
  OutlineEdgesMaterial: mt,
13099
- OutlineEffect: ts,
13096
+ OutlineEffect: _a,
13100
13097
  OutlineMaterial: mt,
13101
13098
  OverrideMaterialManager: gt,
13102
13099
  Pass: H,
13103
- PixelationEffect: rs,
13104
- PredicationMode: Ai,
13100
+ PixelationEffect: es,
13101
+ PredicationMode: mi,
13105
13102
  RawImageData: ue,
13106
- RealisticBokehEffect: ss,
13103
+ RealisticBokehEffect: is,
13107
13104
  RenderPass: ze,
13108
- Resizable: hr,
13105
+ Resizable: ur,
13109
13106
  Resizer: x,
13110
13107
  Resolution: x,
13111
- SMAAAreaImageData: An,
13112
- SMAAEffect: ws,
13113
- SMAAImageGenerator: wn,
13114
- SMAAImageLoader: Vs,
13108
+ SMAAAreaImageData: pn,
13109
+ SMAAEffect: As,
13110
+ SMAAImageGenerator: An,
13111
+ SMAAImageLoader: Gs,
13115
13112
  SMAAPreset: Se,
13116
- SMAASearchImageData: En,
13117
- SMAAWeightsMaterial: Di,
13118
- SSAOEffect: Ms,
13119
- SSAOMaterial: wi,
13113
+ SMAASearchImageData: wn,
13114
+ SMAAWeightsMaterial: xi,
13115
+ SSAOEffect: Es,
13116
+ SSAOMaterial: Di,
13120
13117
  SavePass: _e,
13121
- ScanlineEffect: os,
13118
+ ScanlineEffect: as,
13122
13119
  Section: B,
13123
13120
  Selection: Et,
13124
- SelectiveBloomEffect: hs,
13125
- SepiaEffect: vs,
13121
+ SelectiveBloomEffect: us,
13122
+ SepiaEffect: fs,
13126
13123
  ShaderPass: q,
13127
- ShockWaveEffect: fs,
13128
- TetrahedralUpscaler: fn,
13129
- TextureEffect: Is,
13130
- TiltShiftBlurMaterial: Ei,
13131
- TiltShiftBlurPass: Ci,
13132
- TiltShiftEffect: Ls,
13133
- Timer: ti,
13134
- ToneMappingEffect: Hs,
13124
+ ShockWaveEffect: ls,
13125
+ TetrahedralUpscaler: ln,
13126
+ TextureEffect: Ms,
13127
+ TiltShiftBlurMaterial: Si,
13128
+ TiltShiftBlurPass: Ei,
13129
+ TiltShiftEffect: bs,
13130
+ Timer: ei,
13131
+ ToneMappingEffect: Ls,
13135
13132
  ToneMappingMode: j,
13136
- UpsamplingMaterial: ci,
13137
- VignetteEffect: Gs,
13133
+ UpsamplingMaterial: ui,
13134
+ VignetteEffect: Ns,
13138
13135
  VignetteTechnique: Ee,
13139
- WebGLExtension: Ka,
13140
- version: ar
13136
+ WebGLExtension: Va,
13137
+ version: tr
13141
13138
  }, Symbol.toStringTag, { value: "Module" }));
13142
- class Cn extends ei {
13139
+ class Tn extends $t {
13140
+ boundingSphere = new $i();
13143
13141
  constructor() {
13144
- super();
13145
- It(this, "boundingSphere", new ir());
13146
- this.setAttribute("position", new qe(new Float32Array([
13142
+ super(), this.setAttribute("position", new qe(new Float32Array([
13147
13143
  -1,
13148
13144
  -1,
13149
13145
  3,
@@ -13162,13 +13158,13 @@ class Cn extends ei {
13162
13158
  computeBoundingSphere() {
13163
13159
  }
13164
13160
  }
13165
- const yn = /* @__PURE__ */ new Cn(), Mn = /* @__PURE__ */ new tr();
13161
+ const Sn = /* @__PURE__ */ new Tn(), En = /* @__PURE__ */ new _i();
13166
13162
  class _ {
13167
13163
  constructor(t) {
13168
- this._mesh = new qt(yn, t), this._mesh.frustumCulled = !1;
13164
+ this._mesh = new Jt(Sn, t), this._mesh.frustumCulled = !1;
13169
13165
  }
13170
13166
  render(t) {
13171
- t.render(this._mesh, Mn);
13167
+ t.render(this._mesh, En);
13172
13168
  }
13173
13169
  get material() {
13174
13170
  return this._mesh.material;
@@ -13180,7 +13176,7 @@ class _ {
13180
13176
  this._mesh.material.dispose(), this._mesh.geometry.dispose();
13181
13177
  }
13182
13178
  }
13183
- const Ui = {
13179
+ const bi = {
13184
13180
  uniforms: {
13185
13181
  sceneDiffuse: {
13186
13182
  value: null
@@ -13493,7 +13489,7 @@ void main() {
13493
13489
  gl_FragColor = vec4(occ, 0.5 + 0.5 * normal);
13494
13490
  }`
13495
13491
  )
13496
- }, Fi = {
13492
+ }, Ui = {
13497
13493
  uniforms: {
13498
13494
  sceneDiffuse: {
13499
13495
  value: null
@@ -13854,7 +13850,7 @@ void main() {
13854
13850
  }
13855
13851
  `
13856
13852
  )
13857
- }, Li = {
13853
+ }, Fi = {
13858
13854
  uniforms: {
13859
13855
  sceneDiffuse: {
13860
13856
  value: null
@@ -14055,7 +14051,7 @@ void main() {
14055
14051
  }
14056
14052
  `
14057
14053
  )
14058
- }, Oi = {
14054
+ }, Li = {
14059
14055
  uniforms: {
14060
14056
  sceneDepth: {
14061
14057
  value: null
@@ -14214,9 +14210,9 @@ void main() {
14214
14210
  ), 0.0);
14215
14211
  }`
14216
14212
  )
14217
- }, Bn = "5L7pP4UXrOIr/VZ1G3f6p89FIWU7lqc7J3DPxKjJUXODJoHQzf/aNVM+ABlvhXeBGN7iC0WkmTjEaAqOItBfBdaK5KSGV1ET5SOKl3x9JOX5w2sAl6+6KjDhVUHgbqq7DZ5EeYzbdSNxtrQLW/KkPJoOTG4u5CBUZkCKHniY9l7DUgjuz708zG1HIC8qfohi1vPjPH9Lq47ksjRrjwXD4MlVCjdAqYFGodQ8tRmHkOfq4wVRIAHvoavPHvN1lpk3X4Y1yzAPGe8S9KBs3crc4GwlU1dEOXiWol/mgQqxkNqB1xd04+0Bmpwj0GcCc4NUi+c731FUxjvaexCkCJ0qhrJJ++htWqetNC4NewClu8aFRSwrqiJEGe+qtTg4CYCHaF1wJI0sy/ZBQAI0qAMyBvVjWZlv2pdkCaro9eWDLK5I4mbb8E4d7hZr9dDJiTJm6Bmb5S+2F7yal/JPdeLUfwq7jmVLaQfhv4tWMJAt7V4sG9LuAv2oPJgSj1nnlBvPibfHM2TrlWHwGCLGxW/5Jm2TotaDL+pHDM5pn1r0UuTZ24N8S5k68bLHW9tfD+2k4zGev23ExJb4YTRKWrj82N5LjJ26lj1BkGZ0CsXLGGELoPaYQomjTqPxYqhfwOwDliNGVqux9ffuybqOKgsbB51B1GbZfG8vHDBE2JQGib1mnCmWOWAMJcHN0cKeDHYTflbDTVXajtr68mwfRje6WueQ/6yWqmZMLWNH7P27zGFhMFqaqfg11Q88g/9UA/FROe9yfq0yOO0pnNAxvepFy2BpEbcgG+mCyjCC01JWlOZlIPdf1TtlyOt7L94ToYGCukoFt4OqwOrofamjECpSgKLLmrRM+sNRAw12eaqk8KtdFk7pn2IcDQiPXCh16t1a+psi+w9towHTKPyQM0StKr61b2BnN1HU+aezFNBLfHTiXwhGTbdxLLmrsAGIVSiNAeCGE8GlB0iOv2v78kP0CTmAPUEqnHYRSDlP+L6m/rYjEK6Q85GRDJi2W20/7NLPpSOaMR++IFvpkcwRuc59j8hh9tYlc1xjdt2jmp9KJczB7U9P43inuxLOv11P5/HYH5d6gLB0CsbGC8APjh+EcCP0zFWqlaACZweLhVfv3yiyd8R3bdVg8sRKsxPvhDaPpiFp9+MN+0Ua0bsPr+lhxfZhMhlevkLbR4ZvcSRP6ApQLy3+eMh9ehCB3z5DVAaN3P6J8pi5Qa88ZQsOuCTWyH6q8yMfBw8y8nm6jaOxJhPH6Hf0I4jmALUBsWKH4gWBnyijHh7z3/1HhQzFLRDRrIQwUtu11yk7U0gDw/FatOIZOJaBx3UqbUxSZ6dboFPm5pAyyXC2wYdSWlpZx/D2C6hDO2sJM4HT9IKWWmDkZIO2si/6BKHruXIEDpfAtz3xDlIdKnnlqnkfCyy6vNOPyuoWsSWBeiN0mcfIrnOtp2j7bxjOkr25skfS/lwOC692cEp7TKSlymbsyzoWg/0AN66SvQYo6BqpNwPpTaUu25zMWlwVUdfu1EEdc0O06TI0JmHk4f6GZQbfOs//OdgtGPO6uLoadJycR8Z80rkd88QoNmimZd8vcpQKScCFkxH1RMTkPlN3K7CL/NSMOiXEvxrn9VyUPFee63uRflgaPMSsafvqMgzTt3T1RaHNLLFatQbD0Vha4YXZ/6Ake7onM65nC9cyLkteYkDfHoJtef7wCrWXTK0+vH38VUBcFJP0+uUXpkiK0gDXNA39HL/qdVcaOA16kd2gzq8aHpNSaKtgMLJC6fdLLS/I/4lUWV2+djY9Rc3QuJOUrlHFQERtXN4xJaAHZERCUQZ9ND2pEtZg8dsnilcnqmqYn3c1sRyK0ziKpHNytEyi2gmzxEFchvT1uBWxZUikkAlWuyqvvhteSG9kFhTLNM97s3X1iS2UbE6cvApgbmeJ/KqtP0NNT3bZiG9TURInCZtVsNZzYus6On0wcdMlVfqo8XLhT5ojaOk4DtCyeoQkBt1mf5luFNaLFjI/1cnPefyCQwcq5ia/4pN4NB+xE/3SEPsliJypS964SI6o5fDVa0IERR8DoeQ+1iyRLU1qGYexB61ph4pkG1rf3c2YD6By1pFCmww9B0r2VjFeaubkIdgWx4RKLQRPLENdGo8ezI5mkNtdCws19aP1uHhenD+HKa8GDeLulb2fiMRhU2xJzzz9e4yOMPvEnGEfbCiQ17nUDpcFDWthr68mhZ4WiHUkRpaVWJNExuULcGkuyVLsQj59pf6OHFR7tofhy9FMrWPCEvX1d5sCVJt8yBFiB6NoOuwMy4wlso9I2G4E5/5B2c6vIZUUY9fFujT3hpkdTuVhbhBwLCtnlIjBpN4cq+waZ0wXSrmebcl+dcrb7sPh9jKxFINkScDTBgjSUfLkC3huJJs/M4M8AOFxbbSIVpBUarYFmLpGsv+V6TJnWNTwI41tubwo7QSI1VOdRKT/Pp8U3oK2ciDbeuWnAGAANvQjGfcewdAdo6H83XzqlK/4yudtFHJSv9Y+qJskwnVToH1I0+tJ3vsLBXtlvMzLIxUj/8LcqZnrNHfVRgabFNXW0qpUvDgxnP3f54KooR3NI+2Q/VHAYFigMkQE5dLH6C6fGs/TKeE6E2jOhZQcP9/rrJjJKcLYdn5cw6XLCUe9F7quk5Yhac+nYL5HOXvp6Q/5qbiQHkuebanX77YSNx34YaWYpcEHuY1u/lEVTCQ7taPaw3oNcn/qJhMzGPZUs3XAq48wj/hCIO2d5aFdfXnS0yg57/jxzDJBwkdOgeVnyyh19Iz1UqiysT4J1eeKwUuWEYln23ydtP7g3R1BnvnxqFPAnOMgOIop2dkXPfUh/9ZKV3ZQbZNactPD4ql5Qg9CxSBnIwzlj/tseQKWRstwNbf17neGwDFFWdm/8f+nDWt/WlKV3MUiAm3ci6xXMDSL5ubPXBg/gKEE7TsZVGUcrIbdXILcMngvGs7unvlPJh6oadeBDqiAviIZ/iyiUMdQZAuf/YBAY0VP1hcgInuWoKbx31AOjyTN2OOHrlthB3ny9JKHOAc8BMvqopikPldcwIQoFxTccKKIeI815GcwaKDLsMbCsxegrzXl8E0bpic/xffU9y1DCgeKZoF2PIY77RIn6kSRdBiGd8NtNwT74dyeFBMkYraPkudN26x9NPuBt4iCOAnBFaNSKVgKiZQruw22kM1fgBKG7cPYAxdHJ8M4V/jzBn2jEJg+jk/jjV4oMmMNOpKB5oVpVh7tK529Z+5vKZ0NSY2A4YdcT0x4BdkoNEDrpsTmekSTjvx9ZBiTHrm9M/n/hGmgpjz4WEjttRfAEy5DYH5vCK/9GuVPa4hoApFaNlrFD/n2PpKOw24iKujKhVIz41p1E0HwsCd/c17OA0H0RjZi1V/rjJLexUzpmXTMIMuzaOBbU4dxvQMgyvxJvR6DyF3BaHkaqT4P3FRYlm+zh8EEGgmkNqD1WRUubDW62VqLoH8UEelIpL7C8CguWWGGCAIDPma9bnh+7IJSt0Cn6ACER2mYk8dLsrN70RUVLiE0ig+08yPY9IOtuqHf/KYsT84BwhMcVq7t8q1WVjpJGNyXdtIPIjhAzabtrX03Itn29QO3TCixE9WpkHIOdAoGvqCrw1D3x9g9Px8u0yZZuulZuGy0veSY34KDSlhsO1zx2ZMrpDBzCHPB4niwApk6NevIvmBxU3+4yaewDvgEQDJ6Of5iRxjAIpp9UO8EzNY4blj4qh8SCSZTqbe/lShE6tNU9Y5IoWHeJxPcHF9KwYQD7lFcIpcscHrcfkHJfL2lL1zczKywEF7BwkjXEirgBcvNWayatqdTVT5oLbzTmED3EOYBSXFyb2VIYk3t0dOZWJdG1nP+W7Qfyeb8MSIyUGKEA57ptPxrPHKYGZPHsuBqQuVSrn0i8KJX+rlzAqo8AawchsJ26FckxTf5+joTcw+2y8c8bushpRYEbgrdr64ltEYPV2AbVgKXV3XACoD1gbs01CExbJALkuItjfYN3+6I8kbiTYmdzBLaNC+xu9z/eXcRQV1Lo8cJoSsKyWJPuTncu5vcmfMUAWmuwhjymK1rhYR8pQMXNQg9X+5ha5fEnap+LhUL1d5SURZz9rGdOWLhrMcMKSaU3LhOQ/6a6qSCwgzQxCW2gFs53fpvfWxhH+xDHdKRV6w29nQ6rNqd9by+zm1OpzYyJwvFyOkrVXQUwt4HaapnweCa7Tj2Mp/tT4YcY3Q/tk1czgkzlV5mpDrdp1spOYB8ionAwxujjdhj5y9qEHu0uc36PAKAYsKLaEoiwPnob0pdluPWdv4sNSlG8GWViI+x/Z4DkW/kSs2iE3ADFjg4TCvgCbX3v0Hz0KZkerrpzEIukAusidDs2g/w0zgmLnZXvVr5kkpwQTLZ0L6uaTHl0LVikIuNIVPmL3fOQJqIdfzymUN0zucIrDintBn6ICl/inj5zteISv5hEMGMqtHc2ghcFJvmH3ZhIZi34vqqTFCb9pltTYz582Y3dwYaHb9khdfve1YryzEwEKbI8qm62qv+NyllC+WxLLAJjz0ZaEF2aTn35qeFmkbP6LDYcbwqWxA0WKsteB7vy8bRHE4r8LhubWDc0pbe90XckSDDAkRej0TQlmWsWwaz18Tx2phykVvwuIRzf4kt9srT8N7gsMjMs0NLAAldabFf2tiMoaaxHcZSX51WPc1BrwApMxih227qTZkcgtkdK1h314XvZKUKh/XysWYnk1ST4kiBI1B9OlfTjB3WHzTAReFLofsGtikwpIXzQBc/gOjz2Thlj36WN0sxyf4RmAFtrYt64fwm+ThjbhlmUTZzebLl4yAkAqzJSfjPBZS2H/IvkkTUdVh0qdB6EuiHEjEil5lk9BTPzxmoW4Jx543hiyy4ASdYA2DNoprsR9iwGFwFG3F2vIROy4L5CZrl230+k733JwboSNBKngsaFPtqo+q3mFFSjC1k0kIAFmKihaYSwaSF7konmYHZWmchuaq15TpneA2ADSRvA07I7US0lTOOfKrgxhzRl0uJihcEZhhYWxObjvNTJ/5sR4Aa5wOQhGClGLb746cJhQ2E6Jie1hbGgWxUH7YSKETptrTeR/xfcMNk2WM12S0XElC9klR8O7jLYekEOZdscP0ypSdoCVZAoK+2ju2PHE869Q9rxCs9DVQco4BriiPbCjN/8tBjsah4IuboR5QbmbyDpcdXVxGMxvWKIjocBuKbjb+B4HvkunbG0wX0IFCjQKoNMFIKcJSJXtkP3EO+J16uh4img0LQlBAOYwBLupu5r1NALMo0g3xkd9b4f7KoCBWHeyk24FmYUCy/PGLv0xErOTyORp8TJ5nnc2k1dOVBTJok7iHye9dwxwRVP3c7eAS8pMmJYHGpzIHz6ii2WJm8HMTPAZdA4q+ugj3PNCL/N45kyglqvQV4f/+ryDDG5RPy5HVoV9FVuJcq2dxF9Y0heVoipV6q1LyfAeuMzbsUV+rsSBmCSV+1CdKlxy0T0Y6Om0X6701URm2Ml6DIQgJ/3KO6kwcMYRrmKsY7TfxWhSXZll+1PfyRXe9HS0t1IKTQMZL7ZqQ8D/o+en57Y9XAQ9C+kZYykNr0xOMxEwu2+Cppm69mQyTm3H7QX6kHvXF201r+KVAf354qypJC5OHSeBU47bM1bTaVmdVEWQ+9CcvvHdu8Ue5UndHM+EeukmR82voQpetZ7WJjyXs+tPS60nk09gymuORoHNtbm0VuvyigiEvOsyHiRBW7V6FyTCppLPEHvesan91SlEh1/QEunq+qgREFXByDwNKcAH5s8/RFg8hP4wcPmFqX0xXGSKY087bqRLsBZe52jThx0XLkhKQUWPvI18WQQS3g2Ra1pzQ1oNFKdfJJjyaH5tJH6w0/upJobwB8KZ5cIs9LnVGxfBaHXBfvLkNpab7dpU6TdcbBIc+A4bqXE/Xt8/xsGQOdoXra4Us5nDAM6v2BNBQaGMmgMfQQV+ikTteSHvyl8wUxULiYRIEKaiDxpBJnyf9OoqQdZVJ8ahqOvuwqq5mnDUAUzUr/Lvs1wLu2F+r4eZMfJPL4gV5mKLkITmozRnTvA7VABaxZmFRtkhvU5iH9RQ1z26ku7aABokvptx7RKZBVL6dveLKOzg0NC7HAxcg5kE1wuyJiEQLOpO0ma3AtWD2Q2Wmn2oPZeDYAwVyEpxuwDy7ivmdUDSL95ol3h2JByTMovOCgxZ1q4E5nwwa7+4WtDAse6bDdr27XgAi5Px3IWbyZ/vRiECKwOMeJSuIl8A4Ds0emI3SgKVVWVO5uyiEUET+ucEq0casA+DQyhzRc8j+Plo0pxKynB/t0uXod1FVV4fX1sC4kDfwFaUDGQ4p9HYgaMqIWX3OF/S8+vcR0JS0bDapWKJwAIIQiRUzvh5YwtzkjccbbrT9Ky/qt5X7MAGA0lzh43mDF9EB6lCGuO/aFCMhdOqNryvd73KdJNy3mxtT8AqgmG4xq7eE1jKu6rV0g8UGyMatzyIMjiOCf4lIJFzAfwDbIfC72TJ/TK+cGsLR8blpjlEILjD8Mxr7IffhbFhgo12CzXRQ2O8JqBJ70+t12385tSmFC8Or+U8svOaoGoojT1/EmjRMT7x2iTUZ7Ny02VGeMZTtGy029tGN1/9k7x3mFu63lYnaWjfJT1m1zpWO3HSXpGkFqVd/m3kDMv4X9rmLOpwEeu8r6TI6C2zUG+MT6v90OU3y5hKqLhpyFLGtkZhDmUg/W1JGSmA8N1TapR4Kny+P6+DuMadZ9+xBbv06nfOjMwkoTsjG0zFmNbvlxEjw+Pl5QYK+V8Qyb+nknZ0Nb/Ofi9+V0eoNtTrtD1/0wzUGGG5u2D/J1ouO/PjXFJVx6LurVnPOyFVbZx7s3ZSjSq+7YN3wzTbFbUvP8GBh7cKieJt56SIowQ2I577+UEXrxUKMFO+XaLLCALuiJWB2vUdpsT+kQ+adoeTfwOulXhd/KZ7ygjj6PhvGT1xzfT7hTwd6dzSB4xV70CesHC0dsg2VyujlMGBKjg5snbrHHX/LNj3SsoLGSX+bZNTDDCNTXh+dCVPlj4K8+hJ/kVddrbtZw26Hx5qYiv3oNNg5blHRSPtmojhZmBQAz8sLC9nAuWNSz1dIofFtlryEKklbdkhBCcx5dhj7pinXDNlCeatCeTCEjYCpZ3HRf5QzUcRR1Tdb3gwtYtpPdgMxmWfJGoZSu1EsCJbIhS16Ed97+8br4Ar1mB1GcnZVx/HPtJl4CgbHXrrDPwlE4od8deRQYLt9IlsvCqgesMmLAVxB+igH7WGTcY/e3lLHJ4rkBgh2p1QpUBRb/cSQsJCbosFDkalbJigimldVK7TIHKSq2w8mezku9hgw8fXJxGdXoL1ggma52kXzjP78l0d0zMwtTVlt0FqnRyGLPGEjmICzgSp7XPFlUr7AeMclQ4opqwBFInziM5F8oJJ8qeuckGOnAcZZOLl1+ZhGF17pfIuujipwFJL7ChIIB2vlo0IQZGTJPNa2YjNcGUw+a/gWYLkCp+bOGIYhWr08UIE709ZEHlUoEbumzgpJv1D0+hWYNEpj+laoZIK5weO2DFwLL6UBYNrXTm9YvvxeN9U9oKsB3zKBwzFFwDgid5ESMhy68xBnVa55sCZd+l5AnzT8etYjIwF/BGwEx1jjzFv32bk6EeJulESARh8RZ48o7rKw67UZpudPa15SDnL8AL8xMV2SC0D1P53p190zhCFkMmEiir2olwxcJppl/kLm6/0QSUQLNaxi1AC3Pg1CTosX2YQr73PjEIxIlg4mJ62vP7ZyoHE55B0SX9YrrrCPtNsrJEwtn6KOSt7nLT3n3DLJTPbLulcqQ1kETP6Huts29oP+JLEqRGWgnrqMD+mhCl1XCZifjgQ39AeudE8pyu2DqnYU3PyPbJhStq1HbP+VxgseWL+hQ+4w1okADlA9WqoaRuoS7IY77Cm40cJiE6FLomUMltT+xO3Upcv5dzSh9F57hodSBnMHukcH1kd9tqlpprBQ/Ij9E+wMQXrZG5PlzwYJ6jmRdnQtRj64wC/7vsDaaMFteBOUDR4ebRrNZJHhwlNEK9Bz3k7jqOV5KJpL74p2sQnd7vLE374Jz+G7H3RUbX17SobYOe9wKkL/Ja/zeiKExOBmPo0X29bURQMxJkN4ddbrHnOkn6+M1zTZHo0efsB23WSSsByfmye2ZuTEZ12J3Y8ffT6Fcv8XVfA/k+p+xJGreKHJRVUIBqfEIlRt987/QXkssXuvLkECSpVEBs+gE1meB6Xn1RWISG6sV3+KOVjiE9wGdRHS8rmTERRnk0mDNU/+kOQYN/6jdeq0IHeh9c6xlSNICo9OcX1MmAiEuvGay43xCZgxHeZqD7etZMigoJI5V2q7xDcXcPort7AEjLwWlEf4ouzy2iPa3lxpcJWdIcHjhLZf1zg/Kv3/yN1voOmCLrI1Fe0MuFbB0TFSUt+t4Wqe2Mj1o2KS0TFQPGRlFm26IvVP9OXKIQkjfueRtMPoqLfVgDhplKvWWJA673+52FgEEgm+HwEgzOjaTuBz639XtCTwaQL/DrCeRdXun0VU3HDmNmTkc6YrNR6tTVWnbqHwykSBswchFLnvouR0KRhDhZiTYYYNWdvXzY+61Jz5IBcTJavGXr9BcHdk/3tqaLbwCbfpwjxCFSUs1xfFcRzRfMAl+QYuCpsYGz9H01poc1LyzhXwmODmUSg/xFq/RosgYikz4Om/ni9QCcr28ZPISaKrY7O+CspM/s+sHtnA9o9WgFWhcBX2LDN2/AL5uB6UxL/RaBp7EI+JHGz6MeLfvSNJnBgI9THFdUwmg1AXb9pvd7ccLqRdmcHLRT1I2VuEAghBduBm7pHNrZIjb2UVrijpZPlGL68hr+SDlC31mdis0BjP4aZFEOcw+uB17y5u7WOnho60Vcy7gRr7BZ9z5zY1uIwo+tW1YKpuQpdR0Vi7AxKmaIa4jXTjUh7MRlNM0W/Ut/CSD7atFd4soMsX7QbcrUZZaWuN0KOVCL9E09UcJlX+esWK56mre/s6UO9ks0owQ+foaVopkuKG+HZYbE1L1e0VwY2J53aCpwC77HqtpyNtoIlBVzOPtFvzBpDV9TjiP3CcTTGqLKh+m7urHvtHSB/+cGuRk4SsTma9sPCVJ19UPvaAv5WB8u57lNeUewwKpXmmKm5XZV91+FqCCT6nVrrrOgXfYmGFlVjqsSn3/yufkGIdtmdD0yVBcYFR3hDx43e3E4iuiEtP3Me9gcsBqveQdKojKR//qD2nEDY0IktMgFvH+SqVWi9mAorym92NEGbY8MeDjp553MiTXCRSASPt+Ga5q7pB9vwFQCTpaoevx0yEfrq9rMs3eU6wclBMJ9Ve8m6QuLYZ58J41YG3jW/khW92h6M/vbFIUPuopZ6VVtpciesU74Ef7ic8iSymDohGeUn4ubT0vRsXmbsjaJaYhL8f+8I5EiD5l680MJbxX/4GYrOg4iPQqpKp0qddSu/HKtznHeVyxgTwhfEORMCwnaqetVSzvidaWN9P+fXtGXfEP9cTdwx2gKVfDdICq7hecgRhIs0qlCt6+5pGlCc6kWoplHa/KjP+FJdXBU/IDoKMxRjFhSYkggIkhvRKiN/b2ud8URPF+lB87AGAwyMjr/Wju2Uj5IrppXZWjI3d14BdKE2fhALyQPmHqqA+AXd2LwvRHcBq4mhOQ4oNRWH7wpzc6Pggfcbv9kqhLxrJKEaJqA6Rxi+TDNOJstd5DoRVCDjmVspCVyHJsFEWPg9+NA8l1e4X2PDvOd5MPZAGw6LRhWqeZoSQcPf9/dGJYAyzCmttlRnx0BfrKQ/G9i5DVJft9fuJwMi3OD/0Dv1bRoxcXAyZ0wMJ6rwk9RjRTF4ZK8JviCCNuVt/BqQYiphOzWCpnbwOZt6qXuiAabQWrS4mNXQ7cEErXR/yJcbdFp5nWE1bPBjD0fmG3ovMxmOq5blpcOs0DtNQpci1t+9DKERWAO53IVV/S4yhMklvIp0j0FIQgwjdUptqmoMYGVWSI5YkTKLHZdXRDv9zs+HdFZt1QVcdlGOgATro3fg6ticCrDQKUJC7bYX50wdvetilEwVenHhlr85HMLRLTD6nDXWId4ORLwwe5IXiOhpuZTVTv+xdkTxJofqeCRM/jcZqQlU0gFVTlYlfwMi6HKR2YG4fQ8TOtgR+yV+BMZb6L5OwDc/28/xdfD7GXFaVA2ZSObiIxBwT2Zev637EuvpM6rxcogdM4FJFa0ZhF7nrqtNsqWg5M7hZMORpjd4szf/wS+Ahs1shY54Ct5J1dOBO4sdEtSnRc0P9PhgyOCt6aQW98R22DpAcNTDe72AHK40vutKTPfpokghRPuGvz0dulBPKfC3O4KVDCyWrJGO7Ikdu06A0keKlVfi0tGcpO0NhzXEh75NHyMysAMV19fq7//sPC0For1k2uFEvq8lwrMAfmP7afR69U2RqaILHe7glpc8HmVf87Qb2ohsw+Di9U+ePdHLecS66MhB/0OwdcXR5WBcWTZLGq/kiAaT+bzkjR8GIpWdv6pfIgQ+Q0xdiKvo+gNB7/Nf9knNJGxnh7LeZEFtMn517tNc74PPS0M4K3I6HHZqNPA+VZcBc/g5a2ARyqKrJ4Z3krsuA+VOJJz2KJpBMgCCWFln3u7k6/q3DETAubKG/pt3ObaNT0NI0Qug90L2ip5dHnZJUjPTvK5E96aX/4mRU2u8n8kh6MKbY7ANBro3huF06U+JvfyELQP25oIaj+n0ITQ4KT9rXZD4EtBIOj95fYNldDN3io/VMIvWNj9P/b95WEMq8UAVfG2XG0N6fSYdnBEC7sUEbatbDICH9qA8TTuW9kEt9DlFOZFP7bdfYLa/khSY8W5K/AkIIAPXtMvyVKyESjKx9nfragssxC0jFMVY94d8lOAwRocdS/l/P43cBGa3IqDa0ihGPcmwS8O8Vj16Uy55rOrnN0shhRJZdW8I7F0Q0KeHc35GFo4aJOFc25gNafBu1V/VO0qS4Qkb6wjRrnlepUWjtYyaDABZceValuOMtoDdeIITWKOJiwGPpB12lQgwkmXh9M86podb0D117mNQ8ElluFvbaS8RTKQ6lyj88dUwoJU/ofOeubhoXWBF8eNumkVJu+As3ED/AvLlrV91UowIWI2m8HBG+a3k247ZKAGYsOcWe7fTWqL8eqwM5ZFuoXbeugPKuMOAtOsN+4dSwkhrSAlfGNTzFwEmCNWtzpa9CgPbYNcmoHtO8pj8qMvlGET6nrkJoQ2lp5MEUV1E2A4ZH70JUlCLXvqTIpZlzyxdr5p/GZiD1/BuFOGbyfFzhuxaC/l3lC2jjt6GNRBa06AqqPlYtdA7kiidYa5Qi0/XpXiMDyMXNOj3kmJEaXufW0GO8+DF8OoMULX1vvjCePKNis4AmxQKLCF+cjf/wyilCJvuiyLVPSdsuRTPZ0AhpdDF/1uFmDwG7iP3qYwNsKzqd3sYdnMolCOuQOIHWy1eQpWhuV+jmSeAC5zCc0/KsOIXkZPdiw8vtB33jEBpezpGDBP4JLY2wH1J7Fzp8y8RICqVd25mDT2tDb/L1mh4fv9TOfDH5dTeATqu+diOZi+/sIt18hiTovPsVQVaqXLPRx/4R/uH/86tBMcF+WBkThKLfblcVCIECc8DgNRVX97KdrsCeIK+CvJZMfwrftcDZDZyp7G8HeKl7bPYnTKX88dXAwAyz66O2chkPDHy/2K2XcT/61XnlAKgPwtI8yP9Vu45yh55KHhJu93mL4nfo8szp/IyDjmFHtSMqqoWsj8WaVhbjXgzZxcqZcyOe7pUK6aXF/Y32LnBOt0WN28UmHRiOpL525C63I2JQPX8vvOU0fz2ij74OeJ1Apgu3JRObfdo9xGDpp7cv3TdULEfNS6Gu3EJu7drBsBsogUqUc6wAUW3ux0/1hLVI/JEKJrAGm8g72C2aJSsGAsKFW4CBvBXVlNIKa5r7HvT1BeGYBfxTR1vhNlFFNN8WQYwr39yT/13XzRGiF2IsfE8HcN0+lN1zN/OnzekVBKkFY11GgrK5CLxrE/2HCEMwQb9yOuP2rTXiZzTEETp/ismFGcTWmbM9G1Sn2D/x3G74uWYZY4rgKB2Zo2bTKS6QnM5x1Yee66Y1L7K44AyiY5K2MH5wrTwxMFh+S8LzNQ25z6sunWZyiRwFIIvSnioltUXNiOr+XMZ6O9h9HcHxZJkfF0tUm6QkU7iJ2ozXARitiL86aqVsMOpmvdIBROhUoanPtCjgft8up3hAaKpw9Qs9MzYtBA2ijHXotzarkV3zKEK0dFFQUwT74NgCmGGuSCEDmFCezXPC9BhyGhmzNa6rQeQQz+r9CmGUZjIQEPsHwe86oCOQhWaHERsv5ia9rZvJ//7UXO7B329YUkLLAiqpLRsVV5XpcfdawlJqi/BVcCqO6dr9YJTFFRMVGhfUbB9YWNvYPY6RyaydAFYq1YIBQxuNAGfYWLMAHtt2XRHoOKCLz+qf5HCVBDOPOktQ3SdJBfxUkaiD585bmTzMwU3oeXUHZ55EC99Kz9kk4ZXMIENwVVpqW2JmGIcUiutIMj2KkpjE2QD+dIZUCxcX57kH7hiuUPnKCTdaw4KN95XPeFRvMcvo5L8LexWqvaJPECzwXCs/4XPAlSMpWUzBBjK3pEnkbueMkMJQrYcnXf7PjbAoJra1VLX4YuscQLpaeYWbT+h24hCFrfcHjxxx6WTSe4AGY/KHRZCQKqTuFWt0D8RmGWmvXSdg1ptIefYPshuIVZT7CV4Ny67fvjJugy0TNYHqoCO45CB88kxrvIsih19DqjD0UqiJsTFPcGW3P/ULOG3nb8CjpgVTIoa5nO9ZYEX4uEHu8hLXrJPjV1lTQ5xTdZVagg+Wj8V0EE4yPsTc345KM6lVXqLiHtm+G6edC4GVEiPgd98g+twSYm18gCsPnjqlLcFm9e72CLJbYD+ocIZOxuVjrX6IKh9fh7WqdIZ66x9PWkDGOVVGkx7jM76Ywe16DX9ng205kg5eq+R2q2MguTJxYv/wWHliD9mOYpzZKNXYC3Wr4iBGkm54hBwkPzFhiX/VBHdVH/KJ1ZIMOHxIN6arKdxrm6EBsgwDt0mPe0MX1HRUMq8ctcmysU6xX0bzM1J07kAvq33jw1q0Pq2cyMWme8F7aVkfhzZEFdyi8fVBQav0YZqvAjZ83WKH726rBx5Bn7GHFthR6H4lFsltu+jWmsAibJ3kpWMG/QbncU7n9skIBL0MuXXtj9sJg+4Dl0XhKJ1LcrMydaIgyrgZgScP4k8YQvcsBmD26X1iYXKLzMYfZn2IfRjznsrJ1e5cnl/3a5xiNoI6n1x1U36FWckJbyx+hiSZg0QqAqeeSvzFYMlZ2REnO/a6yoQhu7PdHMYEPFIvfyGeyCU8e7rpju4DrlOhszj9rOIpNsvCkuD+TLyf5J7D/wsPkBpscFVI1q7oUSU9bN30vH5AqnO7bsf+9rGhtVjOJQ32H9hHSAzR2ape4L0Cz4WxaySm4jvuGXwkFp5NMMLrgZ8LdA+5uLuyxO5SMOmJNDBcbbLefv7z6LyxBwltnfQLd7qqpG1MmNcoLUcx73BkNF/xpdS0cKd6G646ntChXSeTZJJTFYGw39T7fqXDPKoG2cF7/ZcTvME42gXLVjTqzAER1Rt5m7GYsh0X0+XgOeW9MJqE5j/rpGzY6vUu6ACcCTzDMdZHiWELpDnvgE1hmztLcSYz0MtNyUBLqvylUJJnJu79Sku9NMHCTkgqozTnhMFfduV2NLCSYvAI5HUvQp1h/M02vKFD6eosIkGTg6mujUo1W8hy5Knf/erkBQC9LzNqPAYCgR+hczgevta88NNqSlBZryq9QNeUK7RpbvHjoNhUKAAeNYH55LeTW36KyFaXdAkBvyNP9xmRuBokPi2OhqDby6IZ61mwfzG+GmACkS+G80A4WGON5izgJWeeDK91jzusfOi0RmEsVJXwbVUr8u/J2LCQaMnHhi+wJTEPN9tS2b6W4GRGCNmtjAMgPsP357nOeD3H2tcDAPu5xQBKMHf/j4ZhXlkvvy3YmBJsjsd4pSOlfPZCnw5JvzxEXM5JIc+E2mU4CgB0mdJnH4NEsCHYNeVRDXFNuyZUE4nuvaJf1h+11AWLdAZ72D9XNRcxfb2+XHZN/SN48U7yl+sNZhg5gn/PD8wkBtnRj1zBUPIWnoMP6yGUEEzuT+VaX3x2jEIZAZsr3rs9wCfY1Ss0EdIFFzBbyruUup4EPanbSYew5tf16/ZWVup5iykttuqL4xoC/jdZWsAZeSfDSd3fP9kbyAFYXkf0Q2lmxaTkKRZrCo9XCoiUG4yP1URJ5G7+HSOhhJp0Anz0N07QZtyFUye6rcgiOFbtyoO1lkuV0iQ602MTyFK9xLqNHtNy4cJaTO6hjtiwNynVc34ZA6H7k8ai6S6eF6jIG0xJx+JfP97lzuCZr8vU5SIzImaNpiQhyvDbz23//PJcOk7hD4iIvJzfIgOGIR6ZPEJpWHZQoacbF+omeHw8aWHaNOfaIyGeG4lEryMfhtNmWh4RAIpn8dLs7ZE2eTVDwK++xDoSUgh47WDmKlZ/k6OosEUoQjk7Q+Kp7OxwgMFShAv6z4pTW8loVj2+qXLQ0T3hmIue8qHy1o/HXjm089m71t6mrrUyDftqMYtmfvQXKDlZ+K1HR/FkqPSqcjGlcPPIwbMw3wIFKBdVMJ4pFLt+oOIkWZMw8pkoYZ3byw4LmAF+7BdicGXFcb5PWtDw5XNNVc6eB9dv0rAEpgr5J+bLr010bpfGw+IkRoxDbkDFmQdEQUSElP5bViLo1ur/23KN0jEwl+rGC6AUMKxHcv+T9F1Ktpn8jSSrKxJnVkK8UD/tH5DN6nXB8mjUdFU539e9ywLtLYCwmHYVEVqnFmdubduaSd1ivIo4pTsX+mJcOAkrR1D60RIoocCBIdwJhCBM1rOE2XSlPo0U+khALvw+zfxYzwzd4roWlLJkZheFRR8QB8v4USwmAcDswUZ2P/7v7Xa51Fs7orYebYyww4YW5869Y/c6Kq2eTR9HLSjYuChTkXaDygoo8nz/yJ0KzfX8oowaNAwz8HvQdlLU9V9hjqYMURyYvPzZ60G0itmUdZwB+sY6rUkMAZZtWStbDFmnk/dQorhwr3121XQWffrK3as0g29ASwxbsZ3dZAq/96b7/XWckbjmo8+jwdE680DzoEUUivnBgowMuBQxHXoGyp+w/cSGY88rWtmwoyNNIvChs/QsZRnbdV7y8x7t2RkliJV/j8e6qfctrTsMV22zoqgQuTSNFh7U7p/Q49L0kygXNnEYXCBDgi5BeNWxu7VjULcUHI+lGj+OTCEATzWrDmaynq3wT9IAejtvh3esCu6sEu9JOsXxMDpqxm4Tzl+pt2Wa5Bq3TM5TKH4N7KLir8FGIPA569+uJ1VEL3fW8Jyigz/nEUjAVYrdCWq2MnS4hQVgcvXq9aF7Xke/k++rAtIQqckPNwjKrV2t7HCOrA1ps88Y5Rw1Zp+9itnB71j8tNiQc7mV1kUCQXkoi5fOsq1uC6hUPUL7Z69NAM6lg0c/aeiifHoi35v+pVBh7CDM1XfvYpiK5JIbIQFHafmnhHfRTnMagKcjdE7zzgtxkTPKVrObTySTT51g9bB5ro/dzn/sB24fNM2LGJuRQsmC49PLi1jTRfZaLpo8Txxxczij5Pl2vur+S1wQW3W5qyVcIUySZHtFDQHv+EYDoZG1T1J7D91vEIV8dHzUBzW1UyuxRbP+M/CM/vsas6RzmS5traXnQ0Jzv9hYXxKHcs15TQCP744XsLjzFjILYURXFnhM+nnV0iO6nwls9TR4tlz1J9/NvE8FGg5mgpZA4htS05AK0NnU2gxuqf2vjCyWlm3ypKvaX4vxh8Um1MHGB2NTeAFhbDyGm+5w2zqJAWxVlj6dVePb5yR+aMhuz05YubCQJ0BOtoYQ6PoDoW5fCwCtXj5SHvCgL/3B5z2mcXWaRTf8/GsFAfX/ntdWZWFc2xg8MJeenwZ4dZUToce43If4zVb1ex3BMAWGhgkPwR5EgktZhW3Yi+nsnZTUr9FYI160YhAraB0zMV+ouHz6hYm25/ETDM0MTmcypoGgZISSkfwYAQaHGY45yZ91K4A4Mm4fnbMk8GTc4orypT3NLBqAxYdcY/qCH82PpIkmVOEHi1NoYaUymuImLLcib5pmd2MHTB3JR+4rLdRc3gtQ9zeFdciciRiWviu3HkqaLSxJeI2rgc7OKQslItumACQow89elXmi4P3gTZeCauvMH5nF4VrBcLjjwGD+KlKqe/RWIEgT2wGqAgSuL6b+RTTPnQZzxZ5y5HQJkEEKJp5NfoB8hJBM8qn6xbOFtyzBjVBrwSS1zCJR3lEc9ODQ5Wu/xct9/2Q6qLHnmNx6XwZus/i8rEd6UsVxGtoDrm+Br0L5oUojlwdcqyVV4PIMsR60JhZwJtgX7izQWj+GOeF9DA8Wexdmv6DWjgR8LEBp9YuPAM8tJDu3uCumNqHnF2ATYX/tuVO55OgQuiUhmDmJbF9jJyifBRtxOVI9DCNLUY71IXZYTuiYcnILQ/XHuVJ8aHDStL0N+3eYNvXwHi2vEiTPnBqzsC4TsPnFVnYY042j5i7C11AVdBZ1pGSa52jM9dIL119rry0mgGxFzI8xPs+7bmMfYKh37A4HtA081olG1m9S4Zch2hoNCGVvVhd6UL7C2d5hKIBHoB+Uxarq/4aQXhh7IWjSj+ca7Vhqb4+ZwY3nHXh2S9JH4XZxQojbe/eINxYlozTYtT2rpU/xbj+W2hXjFQ+z+dQ8wh9751MP0UpjutQdxz3/FJYAEG5BF400JXWCBs7KrCRf/l+F+d9EuwVk6thOPDB+HNS9iWlLmDgXvY6K0vgiyoeA3An+jWufdAG1suUMBuJT+/w0FNJZbObUT8c5q5WtQxASQF6E+/u8UwVBs1eo8jTamCrcdhZJlADJbqn3crcDHQlBQNGq7btcGKiJXW6q0cn3F0xzf+k1JJS2testB3rx15ZPTDXm8QV5XE2qxBOdM2n6t5YbxyNOmEdsHx+hMp+y9pWkcgw1NikeXuafJvzcjaNwE1Ad6gG79S68aO7jWpKgBETYLmV4ONHhBk7Be8tjf2WVvWMDQvQdOnk448yeMv1tQKU1xev0L171e/qxkMZbmkfKnd29XRCK2hgNNJhwt1qiYWZGKz7Di6K3fGDT7DO2YQ7WU33svE/WKGbWQEvzUV2w+VNYDocI4yxQ6i3i4zU2TjmjCwu5Pk+Ja9HSwLpEoUswq3tFJ1jimthgMXd7KjSl6Qd0K+vxWT8G4/+xITHsWDGSfQTSdFQth5uVVfa8wrkDZHTGVgpJys2ik+3I0dSf6TNo6A/sVptyY/kx1hdAWKPI6t/xj6s+fPMU3hg1vkEB0RRHq/tCy3KUUhzU/d0JKxTyjvUms5iy1GbOFco0NA4t83SK9sBmtLWm4kOLLflyxqgQYP08iyXwYXzKnlQ6VTipuaspSJ9g5H5Lu3eLMnPKbhcwuEg0VZ80ppJWjUnhS3rL35erzysp+fJhxsUs86m28/UwW+IgrS5Y0zWaxlFJ8xML5wk8sg1ragF+eNajyI0Y4mwStxt1RZH2BjaAhvu+SnNNIK88thEgZEsoHv+ii+OMmXJL7dnAiINVDz3tCnqDgpQX9OguNGgZj3axcjq1UgxDw785yNIpqNiLgv57399jVmJ0/RStNswaFIs6FtnkilFZldxj6m562jL4p5g3Y9XCiXRJX6nq2PGJFifFR7EyPG4jDMnBM4t+O8ZpEp3th7TCxEw+ZG4afHl4sNFaqxyLh6+979tt0Aq9BrqI+CS2U7HJoKiGmyVU1lFa3/0O5mNC1bzRgNMy+GXyifLwJP7FwUSUmxmVRpn+gnXWoIuswPutsiciurvN6lsMG7yqEc2Y5ZI3jrPgPq0xEKPZpF7teJa0TQn8BQL4Th+hjv2ByfwKookyXEmj0d1KMcsmfKaeKK3cZZubiYqmSCrnGpYTwgPk5itKucVtjViuswQsDR6TuyGSIHYvlz7wkLg1Rr0K9kV1o8RgABlhbLrN74cVWJW6TnfXN0q12JFMpUbEa8t1+j440FA+17o8qa8PQ9igkctVROVIfB3jU5vtGm5pYYHYSDvU2TEc15pIz19ka1q6c/7WXfF8+POkApdOw7nn7Kqz6V4tru7NXgnA/u0g6+fPRT3hp/QrDQwMsjwNCZxdWrR6pgCBDJNc7/KAlwC0UZ4yWQs0KsuwbbOgcTxQPK54wiXr7s+221hzZ8RVxfoRUKM3e4lpxHC83JllxlrV760tl06f7/65qhE1jhMfivAUXIXfRMe3uY/G2TpWYzDrw5Cm5cS062Bx9lhHq9gtJp8xZwAtSdSuW/Kd7+orEAiswA76N8ezmVGYgNaYlQ/xk930LAWAtKVBC4U6R08L45IohB1kFia7XJs0TcaT2zBZoLFuOGu4iJaoAnfjL3uS6gnRH7G7A+aT6ETlmkYUfgrBuaSLLDJfhPJe01PfN0oqBTeQURasl3N8BZiQSgdr0aDv3hPTiog4NSyfAUyy98WP7dnTDWQTY+Qwzgk1uxwRqHl5MpC/84Cuw1TXfRlgJrwPop10kCHjmffnFdxCe2J3R3J5j+3H/sZn3IUu3Suy+I+dAOMWvzwExNR3RRPVelZAhtarKlXPWNjPRIVP4JsAFSRXs3o/fSYAPaV/zP8q6DltH47/rYhCLdy/LrpOsbaLf09eACcClJosNefetNElkSFSuCgeY7oTAAl+8Y2zOXJb/bgEDpoDXfQqc6lnlBr/WsmVznkBS1M7ufiqpxvKXjwvR4WxLbh5NbMNy8LsnX4UiuAi8XonbSUcVZKQOWBYUecSOMj6jMG8gHu7WNreBHY90lV7FocDprSrSbexkAtMW9KlXcnrOyLnZdodGYdxz8aw71HztIqLhRdCOB6NyzHPoS2hDy6wLk0I5Jr2t+U0A+A7EsgSn/Ih03A5CspHnVF4MOic+Lck3m61Um+GHDEe4DrHBhmgtDlRQl1XJ/V/VumCHtUDDcZCkgjVMBOmVOGYW0Rcdi1ahdjhBcFlfjA+5cRjBop1aNDvdrf7CxkLVgxiCxhRctW8wczM8+kVmIrGtkaHGlr8y2D098HXE23r7fnJFUU68zyeyM265igNOGPzFG0dIgUDWN6S3ZcfMERJdWVvpGhVEHXNLeWqHiTcF3wOt0FbJY4XHEpmkoG9MQPJJ4ueQ01+MB+SR0rCSGzlE8zod19q75LlLWgzogpnJoD4gPxUYcX+Gpc5Ly4nk+Zm8LDXcNR7SNVxLh6NAcx8ekjb/AC7ADlRnfuHaHJaBodZr7RBX9FLTvocY6kY8bavdAkQicE9bbwGLkZu6whTCJ56lOvM39ijehpTOFqR3V53nQx4hfOvwRPU2y2w7UU8yiRbcyaX6jGJ9CRvl9ybV1tebTp5MMuMnwLcx/lven0w9T0atJuiUE2WtYGiVMaP3EchABl5AsyaCpu/BKAWDFvU2vaCL2/fJBKCKLjxG6xzT4Mh4wHhH3/EqsGSoQAHu2wbHmXHj2LvoW19GXDa2oyeKRwGG1PU+S7mE/S+UmjHiDF1oqJ0R5QsdjAZYN1MzpNX5YDqWYfhfdjAXyFQaVyGKkp1oEGTR8MK6jaGfRDFd41u2Ex8ac8jKPYu3pXsk8gu+m9tr1RVzTTuDsACW4S1h32yFHX7qpXSmA0QVEcR8W9j2Juu0pcYqTmdis88VgT3gq7iYue5Hx/3K6hFQa9rZrNSDcjaSQlNn4LSqs20bypnKqpzvnnxjMdz5StbzvoAJKgVZa4DLCVoJW765/KyTF4s4YztmAT1c0pTmKJHTpa106FegDo8p2zD6uOnwpYi0vJlRMDe9wPT6964UfAf6lq3qWypUOx9q6BbKEYt7K3gWMXDNN6wAm1fNnSOnZ4JkbPq7jLQrl0wL1V7QwO/sXneKGfTgUL28I5iPVG9dA2gS7Ki005JUR7Vmw4gX4TJvy1WS74cIXD08LCF5obqcZwamuoZ+FPMJEck0TLHjyH1baPr55/Cy0ptDfRJ7d89pbP48tLMHG5dO11Z8xSSpPGQSgXDWmpsNsmm+MvxJjMCi7OFDHxxpmTtjgnOCq+c7Fi1DybfhAntviKccz+sj+OPKPYOKeYYPLvq6MpUx/chSvBccg9dfbeqetQNCs3eiCFZTU1mrDido/mib64STMgsa+IKLk9PyxGGbVSQB9GsHto6f5prAFIbRDSItDedz3t5+Nn69FFS0nEfmkF7hKBmNVce5xv65USKGBoHYxJyutSGnRIq7vMDsAMvirOEJOzNi5Kt7fypuSU2c2Npo6UH5jMOkePH0TwgpammO3Fb2FX6f11309z/mqRmQ949HHRj/wMzKNx95M9pwKf+UQkMEwisL3YVotvHhCv4y00Ui0Ql8dR7tGqFcSdYtmoAOuAodkBNs4PZSjAAF7S/szwLddFMdCyB/dWPgFUiUE+WmUUCjYrKfJLQfNNpQ4NKaF57w7Kp/isZVwQPUJyjJavN3fQNKU+F74jVBJYQEcEdw0Niinyea0l9PJ1/AcTm/LI91RZjDvLI81pnat7RKU2P4/TnIAa3hIEfeg4iGQ+wTDlURK6YjNpN5s5VkQW9w7sDYKU4XmjyZsCQLxztqd4SDQvLyuPDhURAJXKfR1c7tq3mRu4usFHPqz7HgS0X7kNxiWWR3fb3uVwbgKpmgLYkwKrXKt09COw4MjhxeZlDXKy7nNLHXAIKPtferWQnZLboonQXK81x+BB3oUidBehK1swSXxVbscj/LsfONu/xYEXYPM3aMqIYd+2hAnFvDHbdrJLhGEd3sG5PyxqhzejhQJo9wauFK3xmPYqxB99J8zYU9/yzrEZNzzbvPoR9vUlE3Ha4zspVDzHHffPZMJ1VLZkKqGCf8ZqupqMt6T+NRPfmPm2xeDgvzMrRJEL4/zzlu7Z35smvzbgeC25VP2CUrZkRxEi15A0769ojdO1d7C9OG+swj1ROMM3NgKdeBADoRMeJkRZcZ1FbQu6C0BS9NNSaoxtFzYT4lX7+PQ7BKa84yrN+ujVVef+SgnEie1G0N+eOtbZF/UU+wkeerWjloYqFiqo0vBnmxh+TwNMo9I/8lfU2XTCT0K4OoWE08ipyNHjxHvfhY6qa3x4HzdQ8+jkiO5+j91YkihS5memfpFREHP/2veN5XcRue2zCVuAub8V6vDlOvyP+PBm+owyRhMmng5wwGGIXsOkQekXrXpE/6dFjkHwwoFoj5bIFiqp+4wHpSWRbv2xGrRpd2c87FzMP6Hfj/3LWIBqFiNOAxBw+AAP1XqUBszdZhzOSQrQS4Ein4fyV7MaGsB0VsMF4bPb4lx/foTGQRJv45LpoxDd84xCawHaX7jpXUrOdkFxx2oUvY2xqpgIvcVufwd+zAnaaVTnEyDXD7S/o/xrrk4mgTjXhcjj5Rzrbr23NmuZQvpdNzny5MCR9bwvIRIqzOZZLsstZSCDYa56JTvzxgBs20dYTtTUbe21uljlWqGfSh2bYAzOpf6UguK30ZxNXgLHs6Y6urtxFA5iLYvlue5mDONW0MOtQjhqr8fRbCkYneiDkvzHkQVT4F9v9vxh2SIGPBH8bZb8ugo/BSgXojeSdNXbBAIDsB6DUNSXnwlu/bFLaCqSbvu4+YLplwO1JbtrMf9ZUfsxerAZjB7E/zl3qwgK27FswemUmSM4i37YAVhQSocuV8AcDI/CSeCDNPavESshDQ8A/lVIrAJAMdP/rHXouiNU8RL/TIvfQiuZEb6dkIKMGGOW5kT8vO8pivWnT4v7qmwuJo52AS1r/RyQ2g/7c9ZJgmMIzf0GvJJRfMNu1utRNuLWHOm9JIMcJK3qiDtVpGCDP45W1oTTMUnMC91kYhP0GHjhCW8V38xhjHgFFBfuWMsmSQ9MvNqKXiqtUhDAkIy0PW7YSKaKUv6zctAiIk+Jt17kG6LpNVOeMvJnlVBaJSkKe0HTJJUMvf8R2zna35/yh2wNlWLzIP3BJR5aRNxkV94ICOlycI1/JYRZtzvWMNoIpQrdNvyBuBydhSwhRwPo079Xk/XQZpbhzN/KK4NbdJQV0JIMP+Y5UBIM3TTYlFGYVjcvA5yVozkimco91Fx/eo+ydgAx1gMezTh+bYxCtXPYkMoPdtaElRusxlmdSV9zgF4Np+iylun3LVxCycAFxGCFsmARf6y4I6zXY0tx81aQyalr3/ih+ZjxGNWdhItgNLdEZ/BOIJpPoAveh2bKbEFxU/M0+4xqDo3Ox8MnNn8Lmv15NJigSvJV+y2W/ZogEXNiv0/nuFzZGr0pKujOShzcdkEVlMw8mNZXZCbtM9V+mfawtLxCTvo+enFWhJcFv8LVTFycDjPGBXRQKNN+z68HJtYdpH++g5WdhQpCO+DE7Qdu6TmZgtetrpU2ZlgpslOx+4hb3aXaqbdc92LCh51er8vm1GQ9uWD9+fAPRV50ixhgc5zi2Jsg1xQVxzlaELRWJ5biyF+eCwNV0oFnTbBHr3Glm9qlGVOpoOsQC8hlNG88fxeAekkCGnHFn6i5WzyO7ShDYbZ2KM4eqndyy01v+6TFhmkxgc0dndt7EzRCcEfBxSaWZwcev6MDZcuvSZQ9CNSd4Tx25TY6UAbrhikuP1vNFfPdZhCG1pe6vx4D6Ez3zIb0zDa42FPpxWvIpEeXb7YTcfZOahSpSYaWLH/vq0F3U1KO7ZxliZpoMBBYJs91IE0bOkrPNQ/USYY0qKCO3CU+AFbOYxzKWBkIglrX34377BZ18MKQCv1KWfIHEeguSpvrNH5RQOD4LeiH2gdx1MOAKphlL41F4RpxaU4dy8xERFgqoyICQq9XmQ8WJSokwqvhQM0fLtsvyCO2PAkJ3BZg5IqoR5q/GdTLgOWPFR53Nqw9Ma5vBzZcQ4+iZgetmKg5ZIn+/7Jbi+VlViXuD9CaAUtdEmnwWTS7wZWuskVvc/SDaaKV+Jz6HrZTHo3UrAu0IZDBkXWmL+mTTjdTb1A+MdhKkY/hvFNwXj1FzUngsN58u/kTdJ3Xi0hy7efR6faAOi4SKGaiOty8lxDFkiD9wq2GW1EZEsoWGw/WzxXhWDzYY8CC7WuLFHc+x19jhH+FiLXwDIARRtnkJPF2BUPZ9+grZ3tjqAWhhN3h74w5pooRQUNATy05A9HDLnILGSCtfESoSilqtqAIQ/TV2t3KhOc+teDf5t+DqZDdB8Ob9YXyklrSO73pR0QAxPvQj57c6FIR5dOciqeHZ2LRABMROo8Jk8V6JFewCL8TCd/A5MSbXLky1cW7mXobqgeEXdFDoEydKo5oCuyn+2JYI/7pIGFAzErlHZ5hOaiT17HC3zp2HpJwsIAb4/oIoZ8x8ak43Yp83Ermq55Dg8HxKGHXbXs47sh0PzQELTGFsf5eO3lYAuJjMneoYWk8W/3tW2WLntEKBZEW4hOFgo8K58Rj0vk5KLyezu1d8SO/JcuxpOJqFUM2sxBmbQ/9qqwb90R0WulpR/Ju84bQ5/fTh7po/pbBb7AQaYNdK3fatD3K4TLHAaa66MQzp/+ZGyCjzo5OXRzJ8UHyg/YpNHvvlOpwQIOjakpLHwGV4WsLDPjEIqG23ily3LL0dlkYQxj3Xx0ApCo35zYGoGOtIclYS83MnI5TwVdQ+Hg453WFQN694DaqhGaL/dm0KncXYqXLi5polgT4DOrzD4oSVhrkh8GW2PaXjOFDCLPcn4RQj8dRGIJuV81LxMPZ0UL6zpkaebhbFBxcRJe38UiTbUPDjFWk2jBqzrBvXcKmgdDcmRyJhIpuq+3DQY464AlY42z2EM0yIK0I6b+VgpanMfpdWo7OxKY8RM5tSJv340/qD8SxrYsybMuUkF8fHj7HcvxEPC5YYrH4LW1YKg6QaeFZLvPbrHZHvi4OXLKkN8cGQO8019OKqcv6QnBlj01e7qS5evoGm53rv+VmDxxCXDiOrDg+IaPeMPrn8TJ1oReXYI3yb+4HQbikxP5TQXHk4YXPUv95+KmkxGsRgTwP71YiMpqNXp0loHZeXRp9i3euKrVtxMM0e6XAoACwNtcc6sOuhZVb1htBLudzahrDFt5GkdlwHjZl5y0LbvSHwII+qYeDwRKTTzyXaInHIM+8rc5TrjUlPRVwB5LKFpQnV8e7vLv7T7V/iJTW9h9TnRtNCSGcofBWYm5P7wZcAq3AFamEW/GMbo27ldz0plt5HI53ddWkn9IuCZY+Iy0MATUh3YenRTbVgdLYtu893SuN6EL4e9V4NhlzUjI8nOS6B99ecyC1Ot8sDahQpWHbmt2YvWGyL3S9tEVLKYs+LnghBmmSl2uPWfqPobPwBHNLW21LUjfZb7jfLMTsMp3icGO1npK/rCsUgdBVKVg0Ys+/WKuTmVJoC8Oe5h3PK1TQhbpZ2ytP9nlutQPtLAEt+CVT90DfVkn7lHLOX8AfS6HLzfHeAhu1alnl19RHKV1LI0G7RPzYgVaSpX7th9f06uo2WpxjL86i/2uzK2qj/ClHbGDyQr3F9/axmq4kJ7zZFVXVVwfiFr5bhUGVZeQJHKFAcsnqPKsb8vHyB9SpFpT9U1U7D4aS9vYgqajxhC+hOkolJV2dKAxysCkWBo3SPiPUrSQYZxOWwWCoQzbV0oeaDEcgUtqI3nq9TSmpQ688/+wb26P2CHLY1H7q5lypXSrnwnnztq/jN1o9lyvLmLyGguV0VJnDCREkiUNrZqGG06MsyA+Phd9CuFoM5M1Pyk7S6TJaHdTw0ni3n5ysAup0kyxr65lFc81NcH8xSmpp+iOEtQZrH/y01k1rGMRJAGFhi+nDecpUlnrh+qBOCMZCcSCovOPJrxjZnZJDMLdpMVu+tBSVS1nKxsYjY9Dtq1/++riVfLUVhzofIcIgQQPOqHioELxU3EpCcZMoL9laa5YlOZAMEp5apx7CphrkL+fyKbBAf8ctwVd93FTo7F5Oc/alNsCgK6lHruPROtN2RybiLqx8P5LTUZXU+Aoyz08zYHasR3U8hPDKj+6arWXR9yWdJoMn45prCSURKKy3+JHgvs2Ot6v6GbEtdCumgCttv2VNoU3KOqUwqNIWHqYm4eMijTM9VWB7umEyp7UPOI8fduHJY0W9xSCZdvc2xMjo3Zdu2o/WZKDMOSh9UmLvo45IBppD2dG++HJu8kbfFdlwuIxk2KHhgHQeNKcHhFkYGRzL2VJVMOAb0Co64wvds5CaYl9ZmBm4zuGDeaO2eI1XM4+rD/HmZyRF62SabgAe8TF43VuMutigJJMfbW2UK0azGLFbOfujnHD+GGBYmSmOQbUCOY99HYvswBQA6r9hrc2jtsUUxLVjxnZ4JnIrTwIVdWCTPtpJpvlA7m01/4tbUMyz9mv1jdN1jkiHQCJXXKg8bJ+aqW6rbwbn5yDSHBTcFXIegrhHGAjJOZI1pyP83Z3vMYTAJoo8V9IwyS+U6OVg78+IhSYHDYjRs8FrF8smHQ9h4qAYxp49rRP2d5uxLAuP72GvZaYvfeLOkMrcg0PkPuq7NsXhMFmiZa6PKBH1l+oKHI5DBLdZCvCwTPdXqmnz8gLzVRb/ixLTSdit2nrzt0x+5rDeZT+ac31NKNskQs6noKlQccyD3UxzfVZFmcbpmrfPsZD0Ve34xpKWk/E9Khn4A5yVPVq+dwnv0EyYecPqXGU7R8suTW0A6NJWweLI3iSGDlQXzMYsSWkSMhFTfyA2vTDt/3wXk+mVU6bRNkZvNnyVHYiA4tmnNwdh/RVsk/EgSerfTIf5VBmuAc2IKSeL5Nbrg3acgFj80mI8SWsc3dNAGCBLLMP89gH5UnLTKq78d9SxQH/g7DVnBh/qnBdw5CDrw/uMzcdXSxWqGIFcnQZt/1aOHxUg88MN2w+FPx/V75gy2wzEVe6G51PQIR2tZsxbv62HhgjwtlzrVREw/yzlaAiuXC26cnpvQzWXp2mOgihyPCWqq38nEadX2T7f1Y5zGxEGBaT//IcL/BsquAJX5EDbX8X1p8nLWR2yyjFRvqC/jssoCJBCDJOsZvoBfXqQSEKhNARH1YfueeKBslAwLi24/wAO1BHptlf1kQFNsOPlDvlYednrEp3a4SAz/G7LIVEsZBu0EKWZu/euB/XKdkGonP6t6lgEcCOw8mceuzvEVzyoPnMyzrqoNQXJb9C8ZCXSiedKiCgNwfNkpVlHbUgE2Rb9WFScOeEad+T+jT8XlSc8rcvkIuhAv/gxRu2eb2GonLTyokjcGF1EBpCJbhy2H3lhL0rdZIw1okA5pBg2oRfQceXTPzhuNKorTEF7t1UIgDqIo7/loxyTgbtKu29o9K9KujvCqUGyPY7upcfiZLNBVKh5uXAAZjQjhlhBp0ukmO4Avxu4xAVhCtnsOIA/tAm94U3HEuSr3wq+ZLo8pyoC9EB/q3pOzQRyCTkozmJwo1Ln/2xEbtNnS2S0NUIS3yz3/mBIdxONHxqP9FW+uoGI1F415lI1nZwK0SoPA0+flaokBGEoXgZnO4GOExU7VOjdPns59ekmDxqNhEHeAF5i5N/3W2NC1XGFjTpqLrnCECiwVkOTrLtp2ehUIaejOG6+1336YQSKMSsL4zhUjw6SQKryVRz5Ldn3R5/r8AOi02RJkQXPdvPsl/FMg96E/cJmIFLmEDzr1Gkh9G3zisG4pqM/MV6XIz+CtDUh6hmJB97VzN8jaPSS90vgDjvnaNlKky2/zIhE9ObugwrftI+Oi2a4VVaB/Mwn3VmaWjsU9NOf2usbcN/GLQMjvfeU/YvyEERPKw1leXZWWk1HXzY3P9MUq6MZq1hkEgFzds51mv8mnp1i4pQprPwY0TId1szXwe5TG+R5mMD76nGPQr7/EhQWksjsgGs7Zy5QYvMcGV5tcXJR+6hlHFIAc/M6XjkKYtwm673Bi+K1tNO9i1YBePTur4I+gMsOK7f7980mcJXhgdWdhNzUN2JvFsvXq3zZRG2V30sJtJYxj0aUv1u4/ppVHi1iHnTY3gDHsrQS8YwMX5XwZ2gcFYYe2wd7ZO9swr0gb8zf/fXx8QWKPXcK1UdJk3760B/TMlpWLCbhkqVoSTsOqzgkmFmFteCCTGhNyvFhw1RrTIWzRxq8Tj5FirvKvtkp2GAVhnZ7vnr71pyI0rKwQbVxKZuqM7GAvn2mRBj5p8djlHUsh/r/eBECptpbbjP5nFyuN4mvQLZCaxeTkDUzd/kNGLIzBFv1CElQO+xmf7Dzt1f7GM1Bh+wLDCJZlhcVDXbtPuGssdEie3lZNiWcXMTjZtWAT5MCmpq6JCRuFSHZYGKcSFZ9kOYJfEqLIcWdzpTA+Hmu+ktgSUwXVSwkaa/aHdZXh7IOyrudCBalCZpgXGRNbhN2XpEY60DXXO1Ci5ayZSoxtG0WRCC50+XtgWz7qgX5MRA5S+jzXCYy7O7Nn0ljVxiBxQNCZKZMTqi6mPfy2LZx76uyRUXHjnpJJEimflHDUxyX7fFg7iJvSrsZMH6Uv2xbfQNx5eCbx3oKycUrBY22KPmgfg/w07CDVsw6tb5VxPg5/X38cQtXI47U7MAGGjO28II12T+PjaXHlstPtkUQNn0DKkCYis+kVAkA1wyAJgYKLGnKD3nlVCarYqCkNIZbiVwO2Ydjl7N6iOtvvbAfuq7VKZLo0jEdw1YdsRaHcuJQulgb51JyELzYBkP1hd03IDcZfPg5XmNvYQSOINsCSn3BuLtkCPZRalK7+S97zxvJHiJCZJM9XP785NZ8B8fqDe/Ot0BS3PH1ptErwxBtpgfOj4d/41nrSjJQf9bV1kfdBHJxYbHILxOsWkZvoP/Z4Sl0Yx3bDjTF96xf96+6uIoQ351Ce6DeTwTnkPr20YwATlnhskWIddUohklNITCq/07zkiEc3B58uiBG6d9YAc4h/7s44FN2RG1UuZWeojrOZIhElvDP4KqHcOYbqqS95o7ilQH5ONJfy+aYiB+sPpn35HfHG3duLpNvBjXc+Klf4IKrFHjeVty02xPTNnbdL4gtkqPqMLhSgR/fDXzxJbSScqewiF1wdVoJ/fGL/nGWZfVlDHOQKD+/i/mqwXqvNqxtZeRHwoe/bodk66B9soOnZp36gdzVMRRQsQiBFf+HXjRcrRf9FsGghw3+qoN0JeeMvDJrkSBPsESDai/uVOzn2Ohge+UVdi050fdWpsjP0D/QuTdYs6QyI9xnhU8WT2+KBKzoZ7Bq8fOdKPeLulUhJjT34/EOnUloqus8+pzqNh/UdUOhgTlrbkuTfsaIYDm87u/GNIl3N53uaU8bgaBjpz0jdu1f59K4KFDtwUUeEUoeYx6DEkWKHdi7dtHhQF44lbysk7PqERrsuAQu2D5tDMl7kFoGdI8r/s8rMytJzYBU40wqeFvTl0ZVLdOB6Ya9E/f8VPbGx5MdpYqYMLMyB0QxVdnoJ+tgAQVWfH+jtOHD3PsjuT8dOTSrupuvHWRHQoGI1Qj1Hc6k+Mg84FAZ/gzl3SEzuGWZKFwuo2D3EiG95D2Z1szTqAuFRmT1nEh20tkC4ysmXx6JtN0taK1iRR62s2uNW5rSAvMEJ8yotr3UhJe22brlQn8Gvcq1I0aODaHJucQKVe6SXyfcDWODMw8xf+2C7Zx5a4Qlh7pJs550DictL4OxcDXKvVmLgVWRwb3moxv4kcxzm89EERJXCl7X/BziBkGQWOHPGF+6K5NFJYOFVv4+NyFq+OPMaSWZKoydplufY+CYyL63T8MCMmwqLTmAE8h0prhi174wnx7DHZWYuRJSYZ63uz97AGOzyI3aebclnud77znbZetbWUripe+AadLQeZPtWsF+FNiaXCy/98km137lWewyc7Gamai1Hd3Ls+KMMVh0R3NKTQ08TIClDfMKwUGKy/7YZlJHU3uW60X0r74Afh02v5MJgVOYkjmors6GAaDU7yKHydfkXYd6nEjYc76xws1LDLWCNNKBtUHNyLseOyNDgmHiJ41lXvq638RzDGis8WIniOb/pbTs+HsQVGPi6mxG+CU+oflMR6/qx3pVP+GPgqa0U0lo8MVmI1cBgSnPGgrh+J+m9TVg8nivua0EQP7xai44ruC5gsAVOp9bLsDXfHQujo6IpBmpfbbU8PDavZpTuJtmflVQuOImnRQ5kKoQz2NBFjdiHH3cF9QLgDP5vz/W5trCy22Uk+TCjXjdbCCHB3rJhKYTwiyQUf8xu6yTKtIwrbw4tzFgXDODmWYEnnpDupk3b4AP3qz4AZ2En5wi6aZV287AgCF4vH8TlWLni1E5Hd93vLxSYLBWSuj3eXGFtWyWpBkIeKu+YsBh19VeakA8OePM0ILu6dYYl9DNIK3kU1ybH+A5xYhFI/EqSX3vtNs6V5eQgxYLvu0hYFjiG+n8JzqLQVROiVa8XNQDYJtDAetPFSuEtGI3B8rnbbrNo9TJn/z3lRYq0ecBIe7a03vLESwhKOm1bGTk2kPMv/Sh9wyCOmIore7JhSFT9HIjonBfi+gcdDLfFt7dpShJmW1gkcXmitWwm1cC480CraHm/or2MHphB9Q1bmt/SBXFqXJdcv5GTt3IS2fRgqThhInCjRkh7Dk1iS2vMBLSGtRPppb4FEu762JehUMQxxLQre365CKoJGvJwVde91XQ+bDp5ZsMu/QHmLgITmwGXSpQFQlQBajqquxlwIOe2cyfezaSHIoRNLcwjW+epnmAtmmWA9KU29v/cA2iuWbj9ZV7HR4anhHkjbxnzKPHnIZ7Mm5wAf2o/3xUhnfH++quS20TdhalHgNhusidPKWyKWV8ZjFLgb1fX2r7ifLyUtxuKHHIfCWXQJ/DKeU61vxmPT34MTi2Q9r7/sK1CYuHVqMBsgtfenn31bUzCoyPN89KiO5wHveqnk3uyHnJSUBVTQQ3NyRPmeRKTQvWEBZ4QWcSgMyZF0RQgvUXRcp6KflF056fwahSioP622TdcTVYi4cAwSZLWDvfjoKFLMowPQpzn6ogXHc93fFA5NZmnwslSuesOyNI1EE3RM8kzat6thkmpOiGmm69Yn8yNuxz1YuuPWekoybkee106T9WTPXo44ea9E5QH2Ig6FZn716DBa2FyXHG1B+YfnmhbEpANlOi61BoGO4+G3WMJDokJXj9GhNsFqdaLjA1pkhLP+/mGCZoYsxNI+A+sMvWyoj+PMWeR8koRz+r9pNVEWT70WhiAkNTrojdr0sBLwxIM7D4zT+cVy96ZE+ABi9CqkM9VK7iOfkJVp7AqCqQ9EZ9emn8rB8zfoQZUBrVd6YS2AqiTFt0nJ8HfPGmnBWf3Xi5CgyWoLAmHJp/AfTdHB0+Ns5DlhL6UJ+O/6xys+CWVKtL9S8fVHkpwZZMJn6jVtiUTtXjywmiVXw9a6f/G7Qd4tZtcoS3aytxXYA9aGGmEeBobjiammhUaMDicH3nlOkDvvz19NqWOvHC2SMv7OQHtDIykYerPuoLz6SQNOBtw6oX2Sj3ZLITBDcWNx9CuZYYVaE+vleXnATrwn+PnuQ34jL52tp85aIOk684SUlQ8uyO2t+eIOHndZ3oxD+BcMAba/JVxRYUAUZoEw3D80WWOz0/ul+fYbhFnffx3PgOy2LLiu82D5FMSpi+Pd4EkIFTgfv7p/0vnX1wp0VpNzyXs/5S/4z0RFS21vIF67k1ERTfFuhLM/8fdbKognohMqTNF/+oqvXXLuJB7IHeDdn1X2eParLBEpz8y9CAN2g5VdE7EimekAOhkw+tTzqeEsgyQL4iVDnWrP/RcBd6CDm16/5t+I1SAxCn9wo8knzmpg8DYP8V/vHw8Stu7cliAt+G/VR4XPNZXWF2rZBeQO75os2jFJrbtkfhN9BzHT4HGgXTjyTy8NGsiQdeOw12GjYKCyxP+34kRHZqYsn0pFvVubB0+/emKRgiGXNRWQwMSvAB1xvTprD0Zyt08BjP/4W9HGNfNBcA0Qb9qF5hdQ4dDqpKAFLoIW2gFEVKOganw3M9/4WP9ckP0/g6kaJDRurtxNgT+PjvWYEWlFa80wKYCkd/0ZChV94njjGyg0t98Pz3AL2AFAhvRRiJwdfRcQqqhWkv/o6X45d5w1YLJOye3v7rgta7Ya0jAl/an42ng5Wz4S5we7n2+1W94JnpoGyV8WW2HYjKLkKmp4hBKlNtb5y4W1MrsG/wfq2N5Xrz2kqhdPQL/YoxgCQd6Y2KNkADVu7TxugQRWVuNL0BUj3JRFyWNeCmB74Wsz54OPnbq0GFFxzSkoiJ3Rtq8yEJMKvOMMalFKH7YFHKjb2nwrKVfuUUuRtTfJDiBuaEHHoX+MUrM2bBaAsSdnY5PjqcMBn/wwojQxzt2MoOCC3OEArr09ghhsj2M0mue5ntQcmcC1R/sK3zfShGJuazS+mJUeKxk5u36CYj8+SJCq8ZEv7bNf1+BywGeDQoTDGq6Yh1xW3Suwo2O/ykazTPK/TdVOICyiwK8MuQpK+FX3mqSPzxfLwFJ/iYDjs0WgW2kqXYgm+gkNToB5+jYH83Xlt0cbtEmkkBaVGlHz61rVuWzrK1yjn5nYHKvKCrBPPRth3AKDQQB83fdrbgIeIfB3iHya5NPpEyxbzmtN5Dnk7GqrQ4uu4h3QSoHU+74zs31cWqIx4SZ2bwWLvIxUtR6gufZhNZoMcmSB5z1O9TKvHMORD+VmuiqzsyJKA1OaApB+b9x6u9FTvUkalgl0r7raV+wRqimc2D7B1z/OiSagdd5UME2igLGUcgPlMSX1VsKQp/9yDiYei87KTBA2NPCUmgaLwVdvQFFFxWp2vGCY/KCUvxt3FOu6xIgwS4Vybvbj6feUCkrQPpO/wPHJPhAobSj/aa5YrUvjHMcQkDZwfc9mvghrk/PIPvcJa5InhVBfjh3Xr9vIvA4ac+m+pywS/EqkSX55xgiyj0TB1EE0NT3W2CPFdVD88P72SpdFzHS/6XsmbGtM8JE/m8eojzd4PM1bNADliZ+XG/9hbcKg6PftVKyKKt/8Bz4lGsHyT0VKj2vDGp/qDGBajSHrqzmpEjW5LXsb5kTV6HgbMcnPW2dzQju9N1sI/gPVlgGmk0bHKOX2Ws1q4aPizhcM/XiJ5EZNUK6bZNUeFaUJVTvGxglRUY7vdnoVOe0Raho3huh1XDeTlHpk/2gBjjhUQXe8FN5A4zcRqkNtKpSVq0xyw9j3yQlQxq/Lnqklpz8lXmzHkz8sX9HJjHwyn8UAjblvN0ZFIk4liejx0lVACoKvpsT9+pQoLY4weMHRzcuVC60DUFkaqLfclS4UJti5WK4FE3dYcc0OilX50uscLJomlR6pXriD6ELNNBWOSMt50CJjPkyt3Zn/xj1dlPVP1t6XExK+b3jMoULLPOrEGvjELfAMM1qcuBb0AijkIuFca8f8xapUlkvLjmmJW7RK94r8HaPzvmHHSqX9MXdivNI4A+JHy0VCe79UZZJvzMGzpnsj+Q6k3EItDBiA12fTMlSbEOMAWCdQq9TtyUiAaAqJozMzryEg0k+yVHqCc/DyJcCE2V4WXIhEnsOc5c8f4ChWfUaONhPPWogpDs/lyVCvp3m0NSfrAJKNiVy5aNC9gZ6c9BqwYgj/cDO3kdam6gCjhR+akALFYmt4ixHkWxKhDTGs5K+CwRiKJnvxP9dbxRPCBHbiVa8gsd2GuiNHZD98MNwXMdMC0MubVodd7dnyk3UQFfCIIL1osPxY0ZJ6DvZXwtZ2I0th6aqlTMULVo+lhSIU/5qO63lTSa3MgPRJEOi0AJ8/UlZuvgqLw9dyEDQoHTKWOsq+6fzoAyvIpv14fLaY+braPd6NkSaq0RClMenK1QLH87NZriUaeuCo6SZ7/CfUt2K6VOt0AjIK2jR0vorf6R8+TVzxZb+QdLimH9pU5tQc73xW93QRPMGy/gCK+R+YzmV4fHK52GWBEBL05EEoTY6OYG1WWji66dWnVTg0uPNw839p/yjLxkCfdTaH+v6hVUCd6HlROj6W8Mil6AYGC7NI2+qkZvJh/dAw/iQspXQNwwWHr6slLIp0hBHYTDh/J7Ba7ZR6cp3iU4bSXdmzhTahYDev4yKiIHyN64EANhI5OHYv1G4KXfIOvQizYWchPhzQg5eVGNMxsqrvWVxjtIbkKuHzE+IcA2NZ83GKz0D8z5zmgRnoJGKigseP9TmMS7BgAqtqyixA/SLc1KEUWrhXOQ6kA5ZQRazp3wwSa404cppBnfsS8EsEpbr/gXyW36cZ9pt1RhzyxGxDUmnZeBz/Uf1AP+gyLIg9x04u1fThm2w/H1ZXGvVqsO1VqutV5gUhFkdkwoCjzz3F3FUr1v0njGYT2mSZYvoF/fSd1W11c5VIhkEO06US5wYRmHVPYXmZnbK5YHQ8pkIDJ0yqssqFK34CuHE8RWb+Dr4omk779QOOcYomAMYQ9ILt2KUk2uNlahW/IjGtenuGLxb/t3aFoVz4oNwMZ7iyp4td8mdzgJAfnCcYtklubGAUB9k6bGC5DSkf5VFarnGEBWz600VGR8QywZ+jIYFZbtKT2QdDOYP6k7D8qVgEZByGmRedZRWaQDTggLyNgDD6pQwEeSs82+hTxWypqwU3zuAWqfwil+mytzVnKztyvMFJyJwPFaPr4Z3mTjyxCR2Jv674JVGGMUSWb0l+GtcYtd+NBGChwr8mB2hlyccget9liJhQEb0XgXfgVRlHlbO+jlZ9CcAew0Nw+tRcWgNnz/GL9Kur7RohRhaYZBBmQA6JhvzkazHRcdZDn0zDkfBmYP1PfQjP3d6qqx6gE7vrb3lBKEfK3Y/nCe4COdpr23oZCoIpssGXmqE8CGpO2bEwkSN6uqeqR4UtWR+xsgOzNeR49PTLJpFEAkXha5YaecJ8t/KR+eG7/HKV23zPZAMvHDC1rdxQ0l+6wlIgZbUybjBe6yusL7isRuuYYwg4+8+4lia2ox8RCdvmXlt00ZshBnAIfLkSwIqUzCcsD/d1ZG6Az728L4FCIqBKpbA6bzkJ87lYQpbaHpwPpqu3S0UqNDCwgg3q9MEn02X16E4xibz/rLx7NMDtHcwMOt9r1dVU6Hws9TvJVH7THrnSFESgN5eBy53Nq2Fdb8mySTxz5CitvVE+ZjHaYS3hq9Bax+uS7TxMIT4qJE7HGdsHM1/9uPNBylhP04Lck39JMe8v2dPOSJzyQoy8m/8Fc6h+X+5/mBVA9jAsG4vmx/KdUW+NXxgRt//SS2Ib7aGILsjOz+ZZQu/NMeuAsP1pFRTN90rqIVULbJ20ZJlrjoZD1VxHEoDFFGVWCVOT3jGK+vFD06gc3yDUSnZ7ZHjGmw4ZiAglY2nm78aUpXxI4BfUHqL6YQKFDCazUIryLi53RczlaTh0ry7WN4WpWK9sPJ0J49fu6RGUMYZd3+NrRvEdOrS5n+EJOTkr4lNzo8vawcYnR/n1Dq0rCHu5o2BGBEHABJbsFLi/mlWFO1MjpvUu6UPJjXlXse6MtBROT/mQfyegWGmFRQ7Q/O+rJp471+tQF10+bvkExfBoTQrewd5UwhAUODpyeW+aK6vx2AroUo2bGBZ/ZjcsJFfMYEMsm47LdQSq7T7peI2Ex+4/9oIAJGfhidbXA9UYPNhxigFTg83CETNYfYVkoambj3vv4MZNtE/wrIfTguBNqkQk9ebLPTmY2U4UCzbYqPKO5vjaZXeVksobDAJzhVjoU7p9TdFmNMyLyCQJryBSOcm0hFk/pcwcV15KZ/+IIqeQGPkTbiY1haWSnuQYBeyW5uSPHGtYw28cQS/v3rToNAUGVBSQ6zpBt4CHvaOfEJhuDJYZCcxvPeOStdCzaoSQn9nDe8wDc1MXrJ0+9N9TAKcS6u8ANLCLY4UfHLGf884/LFIn4OLOlRcNl7FS1IJgu1/vLm4INkgHt5ISp2vC3MFJHz1zJnopnKS1AgJtCmhJRZDaW6wis8CJ0KAJW0Yy0+kWI3lJ9N8yqJht68FMNVgkgaAGi5LuKmkZWm+ztKvf9gT8hJrXZkM/QdHI6wy9BqVeWa7g7ZM1YLbUv37YSnLmGsCrl/UVi/tG+fZbzY4bGye0zH08VQpGmyd/v++fS9EtasmbkQEIYnmLZLxO+tNHp3myIGwYBZVXjlWvrCiQcsP/Fu9l0HWmLBu3gvuJ4phtJsXXllJdM8iZIQR8Z6zEMs+cqVL7+TYhxDd0c0l4sbyIEw6N+V0v3ZbUlidyekdcz/aIomGdZtmdI+1QUrrHw7eDXT+G3zbTZMXxpEgJc4zY5bH5az8eHzwoo8QUleUKpVRrsErGmSF6GPJ2OltKYL6/C4zx4rHdcfsrQTcWBmrBWMMiFiU4NGtpYeACqYafRyu8j8x7ltp3nxVbsPO0MSoaR8tv61/q+YCqHX3h4vy4HzjCYEl+4ZDtj2+mawuj4J0rBpcDw+spzuCQ2khFbks09lPGxK8HYJl0Y/lNLUxGLZ+2h6+EFSaD22bYzF7dk/EhCWh6u/v1HUVKC/r/Wl6JHtd1V68J9zdOTgbvJuQug4r4vUV3JJolQQ5tecHKqcNoYjOIs6BZTlfB+yHGfGdxTKsGxbU/4taKuH8Qpd/M7fIG5zebrpiDHV97T4jiUNt7K64/u1e/+erXV34aOjfddcKNO76EzIf1pfD+KivBsRlzlsjj17aDPq/lnKHQCLsD+3TK021HNzhZyuwpLRKS3KE0XH/0TqUOr3VqLMcsSZM6349QJDznPG+sUqeS6wwMWp28TAoDKdmjzW6f+2au71HsOzLIeWencRa5JapKkVTYpvwMIC8u2L+/hYGJmk0588rq6Nnqe041NMzU6lj1K5KmSj0ZRiVpzu2FSTl4PBYHAuhe5dtwnRQwvvNqIELVxKMFWedxxB7UO4zpYRe2x0zH4X6pI2m4g6YdCs08vR9B7omy/goQUYbUZA+wJamq7/c0FhkNm74Mp05NSCK1Dcy1+9qp82p8XVkUB4+SsVRJ/Tqtn8v2esmemr7zjCfjLicMb05JqNoL6zzz0KaYkXeStBrF9+T7EbZTo2Fa/wS5NhJvRoZc8QUfS46HX8HIZ8A6LK8zKtROnakAnEEFoonVlvYR71xYuBAXbjtxfu/bteN8WkArB3//qp+3btpi2SIMyK6rX03iCLnzOd2OrPnD6xqgVT35e6NUMpN7EJSz0DRRzyze1J+Dx3cfx0M577W84qifD51mZG8VNbBf+5PxmGGrGOmkO+Q41YnCkx51D+X3CXsNAjaz/XfcPJUXJ00vaQyfYDtmFq4kU1ZHdnep48T4IskzPsYT9or3rd/ubiYLqeBqjnGbuNWb9ZdPDxkeBmJwYTjsTU+VugQmtz5+C3QBX0piVh3d7BK+Hk4mO3q8qJVQXeIqs4hKuRvBfIwwUyKg9W1x8dv+EwESuk2Bgs1+Zc3wzx4eGasynWs3V360wH3fKXZFTckeHZdgtzTqcQPC2hCHhSXyFMyljvrneLE+c+b/YQ0XcDBam1oAPzvKmmcgER6AqnyC32Ic4HMP4FQN2rh4Y2ntrawByV+9oq/Z8hdwQEPYRYiELBCnuGGXDQbl3ZLuUo0vfKU/AuMwYfNXmNM2vkn/GRrpc5WDP+MEL80tbJDZfDNBRfpfcvVpf75u0LrkIIjnU4adaolZWzB2yjIVwNrF7zF//n4N5xHeaGc7Vh1EYRdc0h2l23qFvLBNQ5kHbmX8Yta2Vj4DU6eBN3XyJBvJf9iL4x+hw1hx/7Ej5U8EZr/Qhgoni5r9PxBfU3fdvXICGW9DzST7GV141bvyMDXblFG5PizNjJUVAWNSxIAStz6+eDAbkYeAKTj6DIR6ysFvZAloBLCgSdMFd3ol/WXDQh3BbBtLqO9hp08BfumZjLpTJGRAIHzDizXZfhbgqejNSS27BIXQLV0muwzgXGqYt9McSvtLWo1Fos3k6Nu2qGyFftqQyDz0/bmgvtZyiFce/SLYnjt2Q9BnlmUVBWOtbDPvUgOSizvJDhdiSkbLLP96MJ7dKO3eUK2nZnpb4s4b2XGF4T6gC4qo9TDv9z2SY4Rffb/RjPs76P0YiWADpPB/nQjC2tDRlxt4sdNCIjmMsLgU+cr8cpyaMSYI9maP4HHww2jTPkGKvF6H6+DFAF+jAZKT9oi23gpZ2zavE0xXPkF7a2FTNJ3bwxvsJV+o0fXZAkmouYq6B2+6ccHhnUIeL10QtZaPoZPJB7/Xry/2Nv+JJFmQ/p2NSiO5bYGA8ej1vh5QlWhaX3JMs5gMBnyyIfXIMf4im0WEUnCPAJzq9q04Tmxzy7nGKKEf31kAp6IFk95aj0AogL7iljLVJlOXNvV7BwZn4dKfuZweSEZBqy+Mvual0TVDHiwHuIuXbvaw+OkU7aeAfck0Hc6H0jgt9g6Rxb6dAuaiKEN1cUYtD88y0b9Arq1q6ML9B20/FunTnZNF+IHgsg641FfllDFpQ+dqrIPKQ8IkLx/2ppx0ivQSrehNaf5dwtBjnPHroRGzG/RWOdiW0COPzepxIqcsWjhfmBXSUD7YCvPm/qTGcSnhcriFKew6a5s0AgK03I1gEifX6y90cJBY9REbQ7yW/XB+zAXN1XZQVEs7r+0ajtx8KvVBKJksKj5YFGdhEennMbwgCJJIMdt/pJD6FIcNVegt2LiQS70DAJeiNNG86dQVNYNZmYEfo8oa002xKLh1+rHlBX40iY8Wlv7FqswQFktpyLn5oSdo1jBRz8V3aRIOmhSnrs2wxGwGBEVEXvRm8RZVvSQ0xlKMVWs9Y7nnmJ9jEVuDL08D2ES3plzvCNP3FpKQeSknFeVBXv5T1Yk0/X5vdj1J1LYa6Ffxxrv90ObLHARkCI+tz6+0i5cZTinvgIYLMVnV/OL+m4RCsTy/+9VQPsYv6X2qSSlVdQ3KM1SOntMNUBpb4C0MsDh10xHQ0cbJK0gsR6X93ru63BDYbRZmPISt1casVwVVE7+u3l55XJGJ0Ev6S+2zpNqOAH66RuzpVskXE6X8x6wHOfp5PAI/7YG3Zozh1U27IXGEEKIm13Rt/nTE3pKWA7i1NFdVQKQ0CNdqEsBkjiuM41dd5rIbR4DMnoDva07v1esxYBGU4JWJUJQyejYbI9p7pqjrpHZUNlz2exX1lTAks+WxY6CExoPlSlNNv6AIsE0VdPmHOj4m0a8bigDelTpIL1WoePLhblmhRlkPDKiZvkzz6eG8vLeJjCGJL1+VFa4QREBVyuhcpZm1ygJm9kuQ+8v4yEMw0VO+TKee6sMFRVc/kS4IirJupnw48LoR2aRk+GuDBZ25xnKFxdSYqZqvWlEcemsbzl7wvQg5z2xKxEUsquyGziyzd/X+XFl/ct9KRLzyyb6ComIL8Wam9x6LPNZXvhO0QQZmQ8T2MFjmRJ42WyRzfyLGkJKft94uO0Yy6Fflo3AoIEon3XBygpi3Je932ToU5EKoikvqkeLFACpsBN5dseemiMdHxOJKrVJDdTS0qCcTzPCyz506oyENFdelskwdghmUnWyXK2WeJX2CBXudNUBON/i8kMdtJm52REvmGqVmxe5aricuTCGLbgZtYvigT++E7xltEh/ZgUoMP+d8vaPU/HdhZaUjsgQ8OoqZeezvNR2JFm2on+IliVyYQ/58LmZ2stgKoBbs4SllwiTpNRw7ecL2WR8bbg05aTN00C8aGWtReWSsYsirJ0K0I97flI2gJRRN717wESryWahXUAFZAdyD08j9SIZQm+wq5GkoUkK5cQ3wk1x01x4fKLPgPIj6D6lZiylqvWGtl6KxCfoSQXlNZIHeDsrIRqhINxdrCinM0iMMkveNxhqrEzhnBn8F6nXVY5zUDLzOXpp338I2HycFa2pueObEof3HQgFEMnHS3/CDKwJAyYl3HyA4X5vXUE8MMa79gYELseTf0IEUJRsfSa873vl6n29lFq+GCqF1I+mB5PSyLFvgHv6hG5Hd14PAHTKhY+xzCgOwwRZxygPwNET0UiO9ynH0p3j7GAFEs+VSjl4ArhHJbySohRLfm6B7FxxYJLJxJlQr5UdD+5Vs0nM6CehSZZNYw4FzcpYoL6nS+wGGSNKLVLXgbgvzAbT4B1J4GMS16IKMlo5S/dzM/NM4NI+a1Fuk4qwaewoHqGp78vgp+SkuhLyAVhI2Or50Id4LlHwRon9o7JT3D2pibchFvFi2VTEx6cLX/qorW2YGSSmnu9+M8teW9DIRH1TfabuDIuLk16NFz3kNr5QLPGAd0JzN2IYFA140yqfi9LfBcZI3aUK/Gt2bfMMk8eqttN8c92OmUYKUaHbB9C9cpEwaOYs49MztuGtI0VMqDDHN8HiRP55BpRIJtIWbSyi0/LOC94XhzqGVyuzaVaBfg0f++sV8wy7ytxlQYA9w1ejE0XaCkpM9zbOrymf4OrEaIyQX84Z9e6wQ1czIvOihnSaq/fcFdkxJcMzE2kWcARwWT1U80dW6B+v6HdclWMyMWLYr49iKWrhm7o1yumJKxVGiv1Rx3Tw61jrh+vuNjikpFRxa0F9G7ZWs57nuhaIeT8ZRjYzuyq4WZBEXs4CyfvmZxGcS4/G2aWon2O/UkjqrfdbBUF0yavSPdNJacaaZxFQNejGDPK7SCF82XxiahbNpwFs/t07gbCJkDUvvKjqaYv1SNJBa21RKsOuGJNKO/F6HTjc1Q5t8lqLL4e83gWTT4aubYGtE+D4e9zdPPo2R3dvG7bDrCQosp62YhTaV3B/kEQGqtzvu59fbgA6lFyGe7urhYr3TWCBFYBmrEpB78fWnXUEd1z0LSzMcWL6vuh4CJYR0tg1jX4H0wkw9mkbM07MXopLJ2Rt7/aL3Hl3MjO8h/1lqNlK74QTbgkurmgd23XflEcMhjO52Y/Wsz+CqwkBCDN8SUcd0hvJ6srikURdDKw75ZZMyms8NdzvzfsXreeCzpVaPKbkgWo0BlD+qWqaXziVa7YTSezNkCD1UBphMwE3IFwG3+Oja0AILbwR+VMjirrIkRPt+DMtp+OKLpkiE15AVv3jn19brZGZkhhAsuT2sTiWSjLvxJkMICAGdQY6CcJ1bmQsycrXCCxoxrME8B5k7aYQkl31h4kmnvmUA1Uo5bGEJkzebQNuMeVIRwKr7shM3Y3iowzuO8Jm833ALhjeDbR9i+ajGdiv5nuQcBDW0PZ0CB/GHvnmE702e3iEmWKin/StmkbfvsVh9mXnjLzZCRfht3g5Fu6OpDSsq1DSVUie4hNThGTSTWkOhTKbARv54Bxp1m/BqW0CfvfUJMQYci+HzQBrAw7lHJI8klNzq1wbwtxf0zzTFIpYQcsU3ddDWDMuciKmN+BHJ47B6FkgX4uR5QSWzLqgN2wQK1aLp2hgMJGqMII4rLK56VcDk89QQhw6cy8PCM19olNpuDwdrQFvP+77wiyyKx8Z4MVJNxV5vJWOwvF+aDouZMW5HNno5d960qcPPO89qYm6Zh6UO7MyFx272aWYtu/0+UZ6eThOP3s/uMGRarrYNGVN2bkl0VbM7ZArP2AnCQLuPoIbkry4nTS/RsIdFmPg98zeYI4R0RY41FQsBym1OXnJcHtmKPjfEXuujVQGfCPrCZsaT+vFbMFWIvUy7OxquIvdi2DVp3+q3E3NGG06d/cz77wgHGWrfcy5LJIzCMZHkk6m2QnZCXYVXwMsVhJI9nJcgG/CrU5lgDb/DlVEsXG06BHIuqVfnTyLdAQZYmJlEEk43pdgF69V12XC+sB9W5Tfm3jPwiHn/VmGszkYx+Er49CLbyk3hDBSKuzDj+nzCo77ZO40EIP4ZROdSwWlf5S8wfYcAzjNdj/aZ8uknw3tur126RfCzMA+cUo5mPaZL9cVp33X0mRTUIS2vgtwDRgsSSX5xcJUWR8gZbdeqyqQEEAeDu3+BMlrgYP2SH/le2u1yfVFn5JX9VQ04X9mmABR/KOd3rAYqR+OQwLWao9MXVS1y+0OKo0FlXuirKuPaY1BQbY3Vo05Gf/+N+u4rDcFBQqiCrYhgRAEjvVW9eNCaOsukcJWEaDuo/pWCYGJLadm4ssTCPvVVEJNBfVXAcTIxH4EFtWFMJUy5of50QNXNZBl+oRuFIkdbt04DeU6j2A3vzzP+IkMahLD6zBVJv+xRBIc5fODvnJMmJRMI8kcyMFqxpeWZAHxC68tGFNyl6yyGN95SwNYXwDSIQCPlL9bzjZaWNWvs5puiP2lbEBlDw5vCHtVmb/sD8QBgOhRassChwM5o5g4lhlD4u86wmdmVmhmEXnCyLeQJ0rRtqYIWRhg72ieDnqmPvOkDTWtKR38TeJwrK/7IRYfbNspygrU6yV9YtJyw3I3uEkDgbPrpcNUpISYvzv3beFg3ZN+swedqf3IVKkcdiAezu/KpHGHPyvX9oT6qzTS342/DenW9ctM197UfFl4rk21KxSma1KnLIWlGGasMF4+G3dxTnqBscul4CqNda6Qy8ita7HCzKlYa86yljm+HQA2B5ArJoZy4LNxeT9izFuQhEoEhUTNJQj2pCc/O44h8GpQX6XgpaAvAQJLVNq0yXGFbzb3O54XQ6sm557+lT3A+VWPyCJn1MLbsssHIdFhJcMtBFQYi0bS+exQ4Rq74xNE2CIRSzi3nj5TNy2AoO0gdyBC0/2iH67UB581jmM92OHqgD4EzAzyxDauPnlIdZu0nWwB4dtxWN+meq/faIuQpK2hoRP/ULwIJ9r3xyxtXxfFwJ3YquXldSEnxoPiYD85u0OAHvKOG6+3eBraUiOgvdfp1EjiroeSLLFutuPPV9XqhAReYPaRy87OAkV5tzSqvyfufCvOMTtkpxApWsJ9n+cNM2uBWu4lj1oDjGasCfCt6cfgCzh6UbZanbL/qCgf/iHjKYaavIiRLJrU2BuzdsP97XHkXLYbbfsHVTlXSohKOXOJ+3LiR6ix9UFLo9qieejYk+P4e5wC64jGQLSxJzYt3cErx1Rtc2+xlJaEBynLN4hLl/qOrgBM7a+yswC0Mh2OieA4SR6MfM9WK/FOWbVyoUBIUAKOhhIZp2LOgukk0/DInn7sF7dRP6Nw77MaAcYg6k0gdjQN9/1wtGVSBm+6LwkI+xfcK9l+JiWepXul+/EEdV7XXp/9lUsW4RQmIkda9H38FJj3EYJTrG4hEU9YWtNd2lKI1683cXFVzSMkh+2nuu9K0JUBoAnrYkKVZpAKF9G7y5n/KMZrP2xPuUFSOaruqriffSEX9Euj/k5dgewEyQCFTif83LhkIjt5qJ1LyI4ynIznWl1SoAdecEp+I5WmKBB2fr5yw33NX94q6HIP0jW3Np2E0r1f7fUjqdxV+iCRULU+yAwPXFvTL7HqfFLj+wCfIbOg+nsW03rGTf1haLvAZA/nC52pSDnC4f0qOiA6WtK20BldZUaA6GO3m5ZOCGyemGK4a12hM3BXnbladA/yTRV+pH7IiT/9WOijGGNXzV+K4wmdmRjU3It+QwUCRat2mGkEHhOcQY06pWeQqBGjHkWcceX8/drkk+tYysHMXVk8hLhLGjUVgivK1Ra4K+RtUcZO5fkVkWQ4W8fyo2tafhGEDSsflUH7yj8wsATBE9YpskR+r7Ac8xqdxtEAfRioGXSprjbLI2DAZZz9HAYR7rUHzvh/UPpFvrLbd/hFf7sF3RimWNpiGsQRZ11RqfZkck9IJu/FPU2DYr/HWUdskJHuLufXCvDbKn0F9sM31Hn3zIuAMTUc+tQsO9ll6jnNnW9Ulo7d32jEQMqJIrWQL5+Se0a8lKRp+XhYp4IfyUaTRC58vFEjKupeFEpU4EOp1AjeALc7vZV0ovza8QSl3ru6xFpY0/ckElMOChkhLWSDHLCKaFK/qC/SIfT50GJZnkCr5SgXZRddXq8Gc6XNjIzSdCF+9YlUFKMiri/sn1Gp/dEMhARah97GidLqitLNBlF+H8XoQmdrM3GXBSCN6izNn2ON0OzpCxOuM917OZCw2ZC0DSvNuTOFCGGYf1TYgUbgK2KKc4zm/25dz3GhVpFqs6x4yhZBbiy/6FD1vXW/aIcDiSUoIhwrUtxuGGZijb47Jz8JfUTblzx4eNPbXeYpygkQo1xXonjeouTuJvAH/zH+FK50zOLAtbN9AO6xjfX09CsjKitMVlHWmmQybLoBHBPkC5IbAZxvs3cH1VAcy2X90WL6y/0SXNsGeLBdr1OWVuYg+/wUNiR7QnP2ec7jNrZZOosT6Olwn02Dh6zSwKoDnMFLfk7lBO0p9mWjex7gEFXNfxFO19qmaoISUZEgdTuy7sHgrD/36o3XeFdzLFoFnOJa4yaENBXdTSmVZacz+5IGdVkEgjQt/TxuhNGHGtQuzNDfM4iNZ28Ly9S9WkUGMNAfDRLr4ipZkJxUA6HnlOi4Yb04/Ze8rB+HEXpDGC5Jpr4fN62LQh8o6kxknE1P5/rNmz43jehFlRUvCyNi3Y5St7lC7a2ogCt3Za6M7AshQdbVV2+R2DuuiLEJz0MLhnn/1/F2Z2U3h560PrnhR0Gc/5GW5DwO/DGrR/4PvL046BKjUp1lfrtKfE4osRTS9/oB0GrNW3cYgvhU8ld61sHhKOf4P94t4n7h9zdRXDaFv4ORPHokkY+NA9QA49RmsGMfJLu1/RXuluq0J4fsUUBoa9dL9T0yDJXvGtuoln8aYrNzoapa7E8cR73/wX6KwBPpwCUUlxsBtOj0rnca7zu5FqJC5W0U8Yt529SAI0S6nmWnS8zguQLRzf/gRLaqSQ6E9T6Q84u1cs56dzBMv2eBG+zAKw2V0x1NJX1gC8M2MYZpScdXEKPG1442UFWTEUlkM9OjbR4FurtJNV4IqEu1htlgltESO0SeZMHZ1JM7bNtYegevwPSCmW+S8uEGj7FTSSV0HbDg1rOnt4Ws8DxqN2T/HOXNd5NGboZ8VTSD6g6rLWcoWOwsyeG08GPG6KHPiLRunEdTPNmY74ObRGT1VCHP7nmBYmjnH+kqK6rDyrEoNjdqc8uG8yZrHWBXU9weqD5rpQ6S/annq7P/GiYepA2ZDdJA/GbdxpHYatPgkXt5sop564gVHZamW6cq/cdADaLCXWt1WgK7y11WaQR90YOen8BECQ56pmJbLvzzfWBhUUJP+dAEEK4o4wZv2+IBAFEdNkNF3mKntsLE5PDLA/IEiV0rziyORzLJsoxRMCQV/HlpCkXsaizcHT/vxU9iadf2hOkKehGum3973fFs7uRlqxz/oDerFL0617PqG+VYIxjeRb2IRLZJGH8vp8ITzF7U7HUg8Crs3WpVY5r8wxn8tzGvUUwY5csVu15Vmm1xcs0UL/lUCkrOXdLtlaa4pHLeQgpd/vu1ZzjMOcgzfQaIwiZK+fMZjRLAHUf83TSCOkovb3xPkD0jElmb4TBqFrwn8G4KWr+RM58qhCnlVimQ390m8YLz+fNHbBRDs7GJgHSK+v5Z9cwZq4glnR2eTjnqTy8Wo7BEg24CL/RT1AKzOIE7muo8oegzn8R6qab08LzTcbb0ippsScfjQoJhsr4jKG2pMVczpCYqptZcGD5rxTHFbL3+NDnEUptRMyARhF2FMiM7pgaB/IpAna1AHa5EPt7oBdzMGg7kOdSOpxrPXbdP3l/+QCfCLMpCsxFd3VAxA/IPVvK8JaenCYCadhyZ6rJeGxTUh11+OOAjrXIJxb/EbIy8rv6h7hywPp9ZhPCcgt9BN808JhGIaKwtL85jO5nipQyAF690xJ9A2DMuCx55TSG88fN6rqBMYDI+I+DtFmoAqJB27B/xxN9xMLnQwLcLCHOx4GIFCq3/6i7gwJePjoG/HKNb0XjhuEQmYFzTgtt/uIo1bBX4C+y1jrb+R0mRj+RyaDkRus8W4WW73qbcjpjIh2tGUY6KJyhEaKiK+LHG5euQeYZO4zXoKbZOWiJTvJNNVrWugpXkIIIE4zK/g4JKATQjtaC1qbJ6khaJHxOTS2goU5zGyjmaPKvVPrBh27E7E2iZ/6omwpBARV/9EKeU1m4Msz8Q7y3MzEF0C8VIIqAxB+Fk8qG970lhV/ZIX6CsxiHqybemqil3Qv/cWKm96fPoMJWSA1dcF03dSwSyNMdvKKBCYVYLuqr2pISKPaNRJJw2R43RNE6avh/TNA1tGJ/ilW/e4LbOvIh7cS2OsbjyXcD6WS0DYaDa+og0lSxehZQiDSt2fVdtF+DO7/cEUAM3uju47Fl17rUPkRPaheA+6/jpSYK5Nh6rSwO8Pbi1y4/L0L5SStva0NcscpH0pw/3Y9+Eqw1SDVvRn2r2d8vRC6YhQywdhKWraKGBMILqjiU2l5d3jb1tnQIwi95QiTJW7MAjJD4Plr9FGRGlM4NQyAiG8wSAKUbRCpmxE+zk9YhXjiC/Rbt983pV0VzovJW+90dH65IOb2VS+Wk+MpsRgZ86uEuxeGPyB++07HlAwqFjq0sm5Lvom/rcHSaLduJrDdabujYJRWbbY2QZptvGwTHAiaqsAafE9NQa2oq6hV8+E2YRbdEcrirxyx9JVWpti7CsFfA/egMevH0MR40/X1jQzMYbw6mr01MI833RiE3EuU79cpspC8tuN6QxFB7ExHF8yrFQ4vRniEkTgKc8kT2tC2HgNJJ+l/FwYXky6qbHj1cMtBGVOw3SFMHn5l5odYVrLqhL6R4DujKq/CEsEj742QjUogvrSb9DOh1Mm5Z7n6MI+YHii3bWp2abi25FJIiX3GM/137MQVr4wwQ5IQETnYx0CoXX1nLeqLjQ2VlOulhy58iVxN5d0Q2TEV6MPr+wA6lluGEC5890db42elDUvTbbMcjHGrT7WA4eEhNLqVT35NhLruSPkwg1UCAUz94Dj23i6dqS1MPh40Oyi0W+wfoWYXIw+siweU3qKdQM/IWLUwDjgMQuiK+CTyRgR/Cg+XmfazCLiF1JChK7C2x+ROCl4t2WjYngGRxBWRQqqrNqx1EesLx8Z8GOimBJK3Ip3O0TWp1z6fhibUBvCtBpCBH7Wz0MrsYEtW/6gd/rLbB2IcMxOrxgW5u+/ZBOjd+9Zg9SRf7ln5tqXgM7wZE2rj4u7BOezWvuyca2TpJkQOR8U/bR+LRjmN6RAS7MCfYSPtJWSbZYnQL8vGmJb39SyiYiER2Via1nlShjJEe3JgCwTOTiIQJ5h+NQeEs7qWkpIDJiQHb7VwcR7T1gLGhKAqUT5DPO5zvGPny/DOh+Lo+Xhxf5wTkF5p5yY0vM1gw2UZQ2nhCedQ+PBxACaAeuBYTyBs9aNWvYATPBLUtXJ3H/+rMIUQ3Xz5MJKdV6OhLEEK73rb9hfjPlA0gKO4j120U6VHh4AJvL3WqjaY/KCbwpCzUCADZmnJdpD4p4U5ry6/YuhcWXcVV4dFm5J8qADBWw9jPITjUtkf0lhIJkzhXLTcXQBZaaunvCCxyWh6ifYzNTTCGJcUD6DyfGam2zj4qdBy7DwBaL2S2IxicF7F2ubPDvx0+DEQVydAIF4Utn+/niyxDQpGlaaG5eRQcfYEHaZeHBOfZ8x6KnSsZnB8YZbLVBcEF3Mv/87cj4r/BYDYAaUWrrm/rWPImSVpvPlB3xQvVG305B+bCj4kIW4ZWzFnX7/nApDibPZxncAV04laDsD872g54z55DZylkUKHXF7Y5iFwsc0HDovYpJ1P+XIAb4pKZnw/e2BrTZn6jCeAAvAt6Z8EdXqS/KoRwK37xhZL7w17n2PYpqnoCtRAvnU/CocUq+el+PFEwM2GkhLBAJXvVbqxBMfPWlA8XMNY1+dfsV9Uy0C+WgSzcXw/ylN23DlELK9DPZ1nzFCvyDWygh1ABv0LXhuVuDEraYOrX0J/NpbYoxjl/mfncXN1DorfumMjOo/dWEk/OvdZ8w/66CtISpGM2htGRpT929qEz+kRM+2XpAqcSS9GOrLWVVUVIm3Ez/yIqAWm019Td/ytbE6eeYJaY+mJpelcp0h+4Y1hmcF9J6cZQEJi7foY8n1psVTCzE0QYMX+ScYxKxb/bU9eproUaSNTxHeNhomtba4y/CfLAZYXndn5ndeIjFIsRWRpwX3HwrIsKxRgd52tRs/iun5uy44w8u2wZgayiPbOTWGXUn/BDqak5EZebXbdQHyE0yEhUO5HcDnE6xlAuZFDSKLDTTZz9bWcfe1wy8KhSOwh15cBRibt+faUQgl7/5na6Nl5d1o7iUWTjOhjQa4z2Pha1PNGSn0hZFeICMKGtHJ6EGQbB+HF6+M2e8YSQjJ2cnG2SVpdzXlnkzxYqwXv0s0WM8nggSh7Viq5joXNiF3RJ0A9637p1HFJd2I7GrQ4ZTOWRi8jcZaL/25Pox9feMT7VDPV6TT++0Ri3a1aLS8IABZh2dWfxnBmXDWPdvrxmBiF3eePVqd2ZM5bI9YAN23/3qVLElDeD61xvgRdjkXkl2tqif3zsX1gGp9mzEm6suh1kWL75XC2kXlrCreiNi2pfI+iWVFJDXPd3MBNp7VSAZRp1jpt3ug1pQEM470lZXwotpDljklvGxuNeKwTuKNJw0EK74nc0d851QXL9P4pxZdM7pkmbA7IU2S2Xa/AJRP2VOz3Kyp9oW6FgoQi4noNkoHeNnprbQod8n+dQSSbMzNRZIuL/riHaxoOHkaGYwROCZwqcbK1tUnU2Qt1J+3UTvklj6wOD/d8lrZG7ucjZiCyHxK5XVtzq9lDJ4N1FvARCTUfnLeOLc5bmrtGvb8mmsr0lDDyR5607k41wzglZH1fExfmsXrEjiNLSzSKGb7FVusl07/BgeCclDsQkds2G654GVeUpX7UHaqQBEmJsIyvfxvz85+WyRaoYuQfSH9WpJLeUoXpUt7+Crnl1Jqz+eARyCmzL59OUUBwBuoQAl5VddIrfG6xvDA/RZBOV5AfwjOrJ2xRo4N42rCSFCcnOY7xfewl6tVLetiM2tGLqRLc9k/owyHriX1A9BnluzfDc5xdEUKyuwzWPG+tZGNDV0WLl1JyHPflzcBpj92G0AR0lGaMSZuKui5/LUMn69X9wPKc6FVkNEHEjHjQKPQjuFCokjN+N/6DlMscpE48IhHIa0Ghrc36GwGEiPRymXWKD/di92yfjZjDM3fdHBdwSxJRSBVKHSwh6Ey1/zWZRZ4kk+KMS8HuroIw1UPa+PDVpsSIKvmqZnZisbfHFWNW/dl9n5+wM4VIzhmrETz3k9WU3s+z84SHh2f7dGT/G5WvoisBYAgwm+pqFS0A8xyhy4PiKfgS+6TgnQD5hDEerpzgFSaMcw3yvDZ0+xfL0yznf0uY8N6APiqHdoJZOWqTPnTIbeBLc5dvFdh+mvD+sDtl8BAWzYR7QkSgnx30Ru7TH5a/g4byacurCNvG0lTgpkj9w42uqBp1zMsKr2riOCQwfCRKkuSX9CGADOYGqCHh1JUsk6RwvI9OvM9fCJoL7Sap8NUQ7mAvdB2ougA01NdqxVo8NeGta0R9C7QybiN4uAtDxw2zLTG9+0we68JkqZrj9tJilUV/f4wOLc83GfstXOVF2bAJ6zf56YworQQEDj6QnC+lqyMkGAr0QuAikm0jqS7fy9bYSBz5hekPILc94b8aUau3Kt69QI1kFEmcb19aFQA4bSegA9/hFi61RDIVQ7iOBqViYdGaK8d3zH5qWIjed0hR9e6o4zELdXWhOVOcPCmZIYYXvgUsAyGUoCszsCiTdwOaPEL2kRnYh0mNSZGb6/kr8XfbyUdbEZ7mDBYy0yTDxhkrpIoJmVutN6FHk/E4cTEolaGnv7x+QxQIKZus8IEygpdtBDxj+lC5M6HaJ313pLDYbjpCA+oYl11ISRJ/fB2oIdDBHFLefQmF1uHk7vtSmIyI7Q9HG0qxu8QRWecP8ipKR1o4bGrAhR2KcGEDE6k8r2F7N9lNUZCswXi/EXaOlPb9fdsaw1Sspku1xrmyADIImEs//XiPqI3Jl8BlrsHf1mAVCBmlqE7usMbDEpilt45ia5CXzVqlIZ95Fesu48LEATS3dyXVEjwQAqVbFBttbLfXvX4LhaGKv6P3XBsKWvqEFfq1rPYdohHtQH03ehlVMpZ/BRCBFV6dffGCrIa7OngRAbORd6wsIcR/gQSxhfrfHFmb9Ws3Pk/SikwIvAIYljNbXbvIpKTROSiPcmBDp4hxLkrjR+MfBFZLV5I4usLY6WYmjhT2kzW9XAxxLYCELLIf6lg6p/GFgpoRTm+yQ6PYtmKVvdTHyBxv28y3vTiy+reYBZqmC7x0TDasiMCcA+TxdKgDY4s61MpZyI1+RUzeMfx1qh9MBXg1tI/HSKpcUj7+qTrwp35J3ezefo6UZiEWMPBtx0/tJyaej7NUmUHVRBJfB1q0bsw4yHfui2ZOPNh/6R2/I0j09t9QGeRxpuJzB6DNbaPTOmER6WTXYEGXq7DhzkvCP247uSz6r7MfaasDs419fVF4RAt4XoxkFRmk3sjrhpNSeuDoG5RpjE4pI3rH/ESPaF6RIIJBiAbVU/ct/nKrDmBQPBYlNob0WmW07GhOvvz0m/BXTsPB8qA8Iesm6PsDuOLEEm5+jbniDFyXfndwIXHgWBB1GCyGV52MU+5iXguncQS8T+WyxaPDqCCXMjwPJxGObdF8mBkG2+SpqaBQkeN+1IL8Cbb72d3ySQUR/uO+N9v36KAiKVEPx8EERU0vfKi53JWN50+LSYqgHmF0UrnnHCNpcwfX8ezokGL4sK/rgFZlXnIqg6a8EJh7DfMOwMgTwRjjZ+TrXsj7SA6EaMRroFgxXRIOGDPYZgkadllrCosfuVZqNQwAY1cDJzuD4ocR7PgZYXbCA3g9Jd1PRx7PyRTNad56qFMVIv/9AYYd32opL/KQOuEa2LIoyMUHWsHVeJEgDnTAizkdfigKSmZVUDrztoGXA+B+9B+MYT2q5BETXJUKRLiEw3upTpXnlh7hkEk8/0D3rV1lUxxSlnDzLfFArxdnXRhBNu085RxiTwTISjItGPuj0MQknBfLTi9AeLTT9QUKRG7bxHm7P2Kei6fVAeNBP31q/OVsTuBJZfKaxLodsCxObxFdyJNLV2tAt+2SCAO5/VWcDOd7Or0wzbVGwbXJr73+/PYn3VfNQ4CSxdqgXNPWDqh9ZFVRQbSeb+bFmOpdkO7C70y6dTSHVuHlIY33/KV1QHDJ226atG4ltS4fk0ZNDrmPZ2Lps6qyMYO+Wkmsyw/ECuxfXcZ0zM7vmLjkk/LsX/XG0vaL3KZb2C51I5TVf8fBJmMxHHzKvaXDwSTGiya0f8ZZ3olqbqcd2cjXM0jicXlX0cJsaB81POyuItwEiYZwsHn4gymrnlD0mfAro2YoSC7KxDdL1DQVO+0a7fN1fLkv8ElaXx46Z8EGJ/W6akIr6uEuiFIQB9fHujgNzIzAgaDEYVITJJO5XQkyimdgaTBvra1hUbw4jb8imqVpd7G9dSoQVNPatqBlbm7NLsdI/einfpw6HdFlo9bpLb/wBxf2BGK/YWhn6LhzEvBuRuBZJTDv7HV9WfnA2SyT3HV/F6f+23aOYC8rxO7QQ1FI4/0m/OAHdCwYedzx6F6TIlSh668B+Id3ZxNP3V+Z82Tt/AHYSzDsxyYC8mxyk+Za4Q6u8y70AKpUm1NPP2WMeSHfqCc5mUcG67RR+sJWZg7P5iG4FPnFmWKv1nwwk+fM0IIA5p7xmHnj1zbj89sN0hc81tzI6enBjIyPd6P5GXzsmp9IRHKS506SAEK7IxfjQLxkNK1x+M8YAYLrD1qWXqo03kTvXgYllmtbguZX1FQGpXYjbZzgqSLxcXTKqQ/GhYqBJzZtvPaYGODBTozt0Rw6/vP+hTUJGOAYcEWWr5Mqy4792lLWmElkf2k2HiF5268DSkEL2oQl+VXl2NXgbfa8xxQoI7lpuNkURcA/pNz/go3LD+w41q4eQy20ecjCwekr0XfODump0XPUm2vvNfk4P/tAVA2PLhl21zoFOrSKjd6D1AiMtz/f41uWlBWCDDY4tDRMhyGsls4GW7P8b0/dGx6VTgC6oCCWxMyJyOgl5RPaFDE/EzGGGL9XUm5X9L3crn0DvEELm/Vx6HwlGWtnfZK7dA8/zJkr9b7PBgLeFlmXyfUBxZHF8kxgW5tcxvkEz0roS70jNLvk3QNCTUIwCHnqk5NRDEaewDCzjTR5lKzNzx1RHHJNiZZJ0lXrAsSM03iKPyYNdJfMwUAvRlKP49yIx7XS9cvseBWVvGNAc2I0PmR6Xc9KjqauqjgG/Q8i16OIPtQ2Ll3qDkunTNq2O65AEFG5qycHaB2/159N4n67iMEpyNowNdkq/ZlDxsX4dRKNvBUJaYqhID70qa2Rgq8+AzqTaJhuYrqrDDO1n/0rWggrBcFsYwo7ujJZblKGamFf+3B5MTAXNUOKn5PW91Gx56gtqTqz1dYMML1dFR/KZUZom7Wky7v9EfKnYbBseAvDuBFBFFCuXnhvWc/JS4ipUIe59Ls/kL+W5lteo1xt5bkJYfug17vGw6cqrOjTG4nQXZ+RbEDCMTf5JZ4DBcuVv+tGPyucc3B6R9NMF/lc4ubulrqcBPhRUjGBILbQ+4uBJ9eUHMAj2ijfMskRMLcV5FdgqIWhiEvxNVlZSRrzTzySfBUjZHCJQtbgDZ8nRWLwk6rQKWD5aSHuJh0vBgvlNTP+a4P7p59l0FYBPtoNpiFl/dOo05KHesQCueTxj7IB6io9sqTWxTu2PK2C3ACiXWNyxs52441hxg3eco87pSRV1NUvQeac35o3tgUpXtmtl2yHh3QO1mQ55wSqIri3PtVxJ57l0nOuyav/0ixzLEq3QlLZmLb8Y2JVlrdQMjhpcC1j0DS+VHrYIB4JgyXacVu9PCRoC5Y2+p8qfeJA3OFreaabxWxz5omyn/l55+ufQkO5e9iODCdLWl2crwLrUpaMCi8EUcVXGb3Z8oBCUdwuuohn1sivwQp1O+DaRFYXIbHQibdPfq4dU8WeiYJ4WKMlNEuQr/BRIGwOrAIM3Ppjmzvh27Lyx6xK14sUHgNy2ggNG57CBbXznFP/0NVrUQef5mMdso3AJ33SJxInqYebzcZ2pEVYHYczXE/+mcptBHb4ANtGohwQabL1xmFHav/wFH/al8TKjzGnYiFLEifJHL7OJD0x/rtzWuCrDToEWPBNtRKXFZqz/kBH6gsxzy/TUzP6R+C/A456FbGm8soK/uYyafgNmX0re6fgXeehUvtDCXdAUJElJt7AMv+VMdIrrOK7TAaHo6E8Khx1rq48yOqMqtC08so9cQh/AV760CiEtSm6PBL7JKCZBV4m7t8Gbbc4TQRawpuwTFyS/vt1JBnAQUBDPdEddlJlVAfbGy+OKkohOw9BB/JY9rDZQK1o/kpfl82umHijUnj0gVqhJCsrzUxYl+ygkRPDEPZqUIo/+AtsGplmBSxL8bUE1iBc8lCtShF2iqMC1DdHIH1DcucbSNtxOF9LY4IMng4T9eTYzDr+gnOPVxWBYMambJUexTzxyvFOneFg3r4FBEHqG3QZRgnKISYUQKv9B23A8vhFRe8uNZpBtiMtXqOQlVEbO/HzkRbqVaGj4s2XRVlhO+ewkvEaTp4pNLXG1OVF6ncxf3Fq94KmGuG29LLsFI1fuX35J0TsRNGo+TCioyTrXLVEjPztNVQL1/q5tGSrMPhfJEaQxHcrnqhVVqN1gfF+JK9Pgcud/lGa+Ig7eKQpJuUN+PYhBYQ/b6ahi4nLNe5+d8rQlfK/gl3OQ3WDGWuUMOt1YlBKoX+99JWlZr6tTAVgDF0NSHs5fqbU0euO7cXKnvVB3taBFHP6/KKZCBfGqzNo6DgZgiAELh1EYOni64dmOWUuwAQCKu+L8tnTFLlL6uKkaNtO8YGlOBVU9mQFYx4aGPgGEI/HTycxYXBClfKbmSErtcsuhalOh73FnzRz/thPjvRJcRwPtZmCHs1nYjivLMWWGprl4fRUOlrCDiwNU+9TZuaVsuCxj/4DzKfcla139igH7Z+0uskWkEq/c0mrsRLlVpl8ln0G77hwK9rLKc+RLeI6KLKy3Um5C6Of3qiKNoY/7ad3EFvdP4VICsuTMTii/bee9efmKAiym0A+l3hS7SofuEJ46In7BEO+Kf597wnd6s5mL1d5zNRBdOEmfNKyPdUuCW3u/SfFQes7nYlfV/B1DOE9p/pmgK+bx+eZdZUMu44uBGlaPvej5wxU9aumiyt/uCCZ4PyO0OYfFAMMqTaYcI8GxYeHO/3tDJsJisLleLpS/gvPLbEksIm3R4OCJ21S4P//uyzQ4EJZyYmWZjtknKJbz0vFEi0zDWnZHl4kvpMSPlVI8cEAG5r0JoNN59joEsMhUcPZ1YtIDYX9cnR711x6SQEnBGgTz6d3b1iebIdotlgqE03w87xlD0+qEykcVizaOB3Z+ocaMGWybZTIdpR4niV9mDm65EzKK8VQq59iMlABk54A7zAlMdkYNmaRuWJN+bLJ7RqEZf8vrpM0+3cwD0NctuwJJA13JIJVFlPStNIXzAW4pp1OnTx3rMZQfF+o4p92WDkF2tx1MUdC14Er9l1RlYsEYnOubj2IotL4tkgKwnE219ZsjXb8PJFkzakaWhRBJAkgbR6myiYFsJgC/lellsN9g1ML0j4HX4rwIzHbq20FDkBdfqN9SUnIbJf0QQr+QxHx4f0kRekXaqKZYUXYMbRKa6OObLPOaKGft7xFAgT2pHuSw7kdfloER91zsJPWQJbkAzyDFkkgUg80kW7n7n+WBN3CMXA3lU6QR23Ipx/98577h2OGkpcp5YiTX/TikBkcza+iwBGNBi/j+GwW8tGbKxpiSNEQqUDdqfscbVMQ+OSYGoeQKSLwREfUGDjR/emc+ZAJsy3sraTZkpHFZAI69dwO1dvsOw/Q+O/2lgghmEsk6NKzmfI+OYuOG2UoagP9Le/y9UABk4VHk54+6fW891qe1yVDT2KUc5hNeePBaQwVb5BQYPt/+2xEpqsHC4GY37hXyRSGvfwYa7DGUDbMKd8vud28h67mpOl7fe4uFRe/HOKf3TFs+9RX+QpL0+C2b4R/8VfkUQOABt4tcaDV34nU/UFXBUDvPYMYe0F24AZPIWphY9bLwt+tWvmuWwhvAgPN1rxvo3hpXvQNSPsVKgFUKENrmSCjWPYCUoQfJFpepI6oqpsVwJt6IlBFGO4soABNOS2KtnF9P7E9sSLK1WWOdGvYNhxKO5/D5ACMSM3oLy6XvjzPe57hP26DKKsIbhLZqcz8tJOcm1zlVKV87cVqDh5iOgGkNIKp7JU8eBp4VRPvv6peu3DR+ROhro3GOnpo6Cdltkq395hUi+pDXzwcONA2YjC4BKvX3JGZi77wJboSzwwPelRCe5297Gau3hHdjkNfDMaoCdfo4BX1IthlFNEHUm2nTsuiPe/rOux7FSlxIwT09NqnvyBmWQYcleqlPEreuoCZRFvXL07v84AxlxNdJM/atDmCjpmzumIoYOf4uVqV/8ZnSwV78WW0S0R7AwI0EDq4B6IaI6AUBwPrNLY0eeSw24zQ6qVAgBGW5aK79Mg+Skj4XxdPl8axMl4x6nwmnAfEBIju1ssp4yr/gdi9kl+ScGW3r5NVqJ1fXRkW9O0A6JBottvWGypQioSH2C46bepNpt5dXRK28XY0hseEnW9fDBaUMHziavWy8Q7jttulrsjOd5WunqGz20rPiwX/3fdKuQgv0g4CDqGBMamo9htCyKqN0qTOxWP5MmZG0lur+eIMwtcrfYqJujT19J3dps8mrCySt1MRdmlNIykG8cIMszw/nMlRV1DmpxNn2zf3gflXm1sXSH00EqrICj29dnyNSbIteQOqjPLqBf2QDDVVCAgcCz7vER9m5X4XkTIeB4ppqaFa2UHE05QSkAhs7FkyPf40UFGlKG8GnrdKq0ZLUk9m5jleTBwhdDsYP8HCDKRE6LS48qLHD4pvSl3XFvmH8KBEmyeyNwwJzAJQd8MqhmKsdandB6Ec1bHOw8agmVGP/vvY2C60X8AnR2r2HhdkUbclW9+ozjmxmipA1AJIZnqxg4aa1Le0RHfU2vkpf68y/rFMYgCXue7eNqxoS0NkOw9a9/WcDFJOh0Grb8zYjPgaSDENIFMCM0H5OlIqq2r2FKGkaQSMzVm87r9L7fysa4xxVMD0h7CIExLBVbCe1/r/WavK3yPhHVe3XBjyVTDOqI4/90N/Cm5KnqxFrVYOHbwMIXa3GwNwVME+38OpXvNwD6l+jN8BDCRDEjGDFC+WObTdm+5/tfm0QeEfVUYFtA7gTobiCnl8rywroMyBHNClofz+W7OhssrGuos+fRhh8kBA+Ni0fYdhKK+qCZaY0LUDpn17UUKCX6dOZccCYzSsD2iSQP74pFnhlkOzACsapdT20zbjF6ZqLgELUPT8IglaX38zP6zfdyBF+NjNf247XNtmIz4QCO5iRy/GcS8jjaWMfTxI3EbUvzrprtgRQDOz/eMnyVQVbbFiTMZfhfQLeu+j6iY0Qs/QYGFdHefwzAYuVpPhVZK/tXsy6DAioLlmNDzAu1eQ5ihCnobO+MOZtSD0+uTpiOAvPwGWf52xDUHj4zbdFtZULPV4c1TmWflDGMkg/Ia6kPHprHErwFTGoBg+1D6oX8lSPdz5srAF0RbktUTmq44+USAYYowZQOVbM3BWMc603Oy9SQD3buNTgzJ7yaMBbo/pjkzVrpW5xYH0Ra11ykiz32vo4nBg9Zvm92KHWhJm7uQJV5DMPA1JHBWBMcjz/uZupwXqjoTffeHZ17N3waXUaR7cZDs94ewlhsbQrmI7/A4zJDUZj0qKiVQhn3f3AneEhDwl6GUdCBdKY14q9n6ay58twW2PRXXPJ6UE6TUs6oqH/0xgDpP3bx/mfcCUy5oo91agCPtpTfowGZ0tyw5mIOsUqvdURDhjuWLX/WIqaPlYx3zmJ3ahTcxtC5xQgKWrQskF57LaOvwYN0lzIwz/joNYkiZwLyB7Joi0CsWWRC6SapEN5TClIisNQtNPmfwKaKYb+Hguo76RtcQMXdRZWjEJNHq8KZKeg/uWWDOW6aygLP9JDrNNW7JfWDyHPR8GL+29zBAD5FY1WZXsmYfdKU1VTLLzAHERJJGTpwKZH5k0uZrDYM8zG9WX+RVDM8bsmN8cI2wKz0Td8GEq9T4DvY6FuhMsqPGHC1tkLdxuwBYP0Lu2RvjXaxodrZhKfkkIwGcfm+lFS4WMFPCz3FwWwuvNLNqv7c85xnk3aXWl49yCW0YTzTqwyKuKWSIFJum5G8BBjvxx2yDOZMh18M2WhRGX5VA0p3eAilBsGa54P+iEat2c0lLnTrXg7fzDLJrjO/213hRmT/92zHwHShntUiR+9KUWKWRcx9OrMWfefEo/p2FR7dbNWoP/P/se7JJUfBzJixcPvTzMvSTQrccDAmpwoLnh6pnsAF37U9Cakvwb0EZzywhYhfUyAZ4oAu4R1X55yrbJifKRbLIC6NaYqZxbpzV9ec4/SFSjJKEvmVGa9tHfUJayAvrPPbVHNaxlbdJOOn7f43GTTdGGufXu/daAhuYtol2y5rFVUxlDpyKCfYRz3fOyJZEjhxizetlF5kpK8kUuEpKNWnSG9VEdmcn7Tu0/U9Pho+IZiTincXepD9zQXGusmr6j19TKRCe4dmbGmRl1cDDNABYeOKT51fHc6+d1Q9T2n1UMmkd+aiSUgNIrogqtnInezaEs7HmtmpjKttWg7ulLhPvEEnGE5TqPY3iCItPzYojGET4V755b+cNmqdG6OBTlbYjDs4AAp+ho1Iq8R/eWa0/FOyB4K5JLQ/WqwpaNPuaoufHcJMEld4peiw/7uIRZ9U4otV2lACBY2PfSUUu7vJ/iZUtvPoJmd8K/BmbnNo2iumTtQxEeARnjsHdzf1JrE1L6NGFsI7t81c5GCgmWILKM5pWDA5HO53I6aju6916JkUl1YcYyk9Hwwf/waKzGbNaeXD2d1jBd+rriDyPgR5p32kxAb41vjMM5QjUrVztISMmbVDBnx2qArnLJ6ECRGZcfK4U6LCAMxRtE+Y32MobWIYqbeJLCsaF4pCXyZjPABVmN36NRAavX8RXO80JuF2m/Snmg2NL0dSW67EVH9I4fcFSjpL73r6ohLh/V+uK3786Tpz4u9p1byZEEFVjn4eK4wBNeQ7DGhdbFbRTt6/9b55EBMfJGakrqZ4U+Fgnh2uIpidUcG+iBjHE5HMRX2ZKkKLyYQElkw/Kbj2w8OvDaxd8rzWoSUnwkiP9DB4L1FBdrrf9anTqNfPehHTBlyG9cgcQLrR8tQEZN9zuxs8BV1Zf+cIk9kSStcCODphQCbZP7NYhgTuqPh967gyo6DhJVEeM/gq2arEo3NkVtX7D7mzM4zzsjwEazeZbygY6xwP5F5NLqPJ0Hxncni2XMn/GdHQmTbQF1zee4LOhZaDlBzMZLsKXcJ3sJsBmPODcSW/FKYiVgzz7wLdz0C3bFpTwedWpIZzG+H0kpS6hOFF5yNj/xUGHEQK75qxYUFuXq2vFITPVf7aaAWUF+eBV5VbBqFcUccHNaTmGaDdRTdXTurKJ8ATxX0DHWz2qNhGP4nrYJRCKI12hvvahdfR6RlR+zca42mjybVuHEEGrU2KvnHy9+mmlQDH4jYHZKC6knkne5Q28ldgrISAF0p2u8YVTy2bGLZqUkIV6zWDXi0DuZMiQhOJwUgZQNnrjzpboxif7CaCAFdxHukA5fPTubF6aLOTWCnS/EP8ZSOIyNGpkn86BVLEgxNoCo5XDdJHdnSB0Zy+5O4NQSsoKdZzikwg0eSvXAE6j6WW27irlXjNHHxiuOY/LaFsSgXv62JfK2/O09r1DMjpxv32Y457Wd8wFBf9V6i6CdLP2Z9qNFsxcP88S7N6b5FAkZAkO78T3f4mpUVnXed/QQC1AAudBr+gg118i202+jHf4m1tBvD2iwt/8PqoAWQSajReU2kDJ91lZ9cqfgKVbzge5mUlKDSh7aeClFOoVz9UEdTQyNyjj+u7JaX9DWyqtt6955fcvBJF1aKEjjPQjYV4+FQr9Fnd8NqWavBRL91OUcILzXVselzvLQtPmmvtdhkUNi8G+O+b/qcVyHvls9lJjRGbe0YWtuq9zXA02yIjtBjoQd1vY0EmEFvb3u3xiPt9Wix6NZ7ljWQVbw229SAPrh/hsIECHTLmxKxWD3/K6TUieQeqJIfpcIoOQcgmvHDyyRUevzKImeikRzg+ly1+qSicz7hh/DCm/39Fyk6M86XNkhcEgJKANNt1matUHBPuMmqkqR0Irsee0uIofjg8efSzC4Ml6OzAV1PuydANODV+SaVqKrg8qTvT2ROpiQHqoOAq3EdFRo1QW+1ak/AYmGEVA4cF99A82GRm5mLHhLHqOSqBVNF5d+tjFko2morW+bAtWqE3Mhi2uYPJEeL+puWOoJaLV9uHtQIj2GvjqEnPiF3gSNk2kq1rb+v31DDwcalu1nsmfE1n7J39uQgliDyyoBoudkZrUtnIUrDsC6iGs/DA1YU+EpC8VYQ4iw91D0O8kJIRK0Zo3YzUzYnm6vxq+9EDAP5SWf+Eyupwlhcyq7rgfu0UcsS/cyy18bZBvpooyg1q0GNkTJ+MwtXBtDoaChHEqMdF/a7GjUgboSb8jHDJrfqRhQ/bbI62r8nHoOa6UgOaJLxxg1EhXpXmkd3Rch7uNxgpPzxP/mBdrGsygnoth1z7Q/YLYJb7LwpuGREdhP+ef4imi3CBmJrq9pWR8/s43S4uxqNYHUv9ha9RBACBhuz+S4xTQTZaCKSoDHnxC8CxGhiHczvJUTlt4rrWQpu9+AvsrR2wMvwqpTTd2ETTsO/P3JJiLBUvcs0TXCPCRY2h9Nx8ZqMz8XSEqa9ByDLoNM8PxxK/62v/Wkztb9dlxfHsl4u4UjIZo5lD7knNDevOZvFRYHhwFE22lXrX+Sffrt3y9R1DKaG/GlAPLQQX/Hetzpmce0TT69U3cFZSUWj1hcJa25OoCXx3O5jXSizjPu68eF6JRu4ly0GPmihJAcdY54LAu+PeTtHdGWaRfb6RVp9zxwP+2PoTSQm+qFhD5LkhsYuT1IwWLIAUjU9P0z7IOUj2QP4sYABt2vX5hJCVUnjOBPVGQTmwyR8LSRc2WvhlmD4DMitovW8AmruHvsuxxMnY/ybXB0f6jgvY+7tMu0sJN5r4DBEBXa37SH5PepbiAlY5L6+09qF9dbg57qZdXr+Lkj+9ODwIdoY9Ogs9QXAMPBK9sNLNDM1mFaODMVpqeBBx3+/X8BkyPofOmxl+kYJsG1PP50FDBXj0A4uVUwSXOnyDvjHd5pupMiy5DyOMVDjPDi22YVTeKKPxtGz5/wLm/x/DzHO4PBKlriUyR2fdazZ8MZwZO2yzm40RwLqezNhsNT7aqhOqWBMfTbYcyVtVzrROKLQ/cw8h9MBYgLQZ5m7RtajLhjAmwWRubbOysVY9+MbTxulvSqQymjxTj0/yGmowXOk8LorLHbyciHZbi5Wipq5e028xOnXPq0SO1Ei/BmXFCr+iw4toQwld1d5KXZJaq1eDPduqLEuVRpKA9CzB7KJsTTpdrYpMaOsIFM7Wgr9Oh/caoRAohQN6A6HSrmbUuxffYlS4ymc4W40QYfauuqpQ/JTXe2l3gW1vBU3Q0CQWi+YnGMAlM7QCe806vIrrgQmejgYb3z21bFn0KNZj8qMbtk0fubcrDYYwmBhjZezZtAK7N3MQKKCODWwtmN/WYEGctudKJzRB3xrBGIXPbh2oyOsQ4psvw2packPl36ulG2AlW5rvS3xsDrZG0jPgcLNOBZVquBKudvtx5EyYnivmLREWPn30cbkfL4RsfTwuJVSFZZJFh6UkofGq/bkz/WqbPwyDk8xppCVNz7JQstijvxEWrb40THMQJebLnzyY2q2jx2SLecaR7/0b676f5ddR3aDQqQxzS6YlPvFcYbw+8vic5SAk75H9CSsEorQCVlJSk7DU5HBRkzDnV2QtTJe9fsfqy1sQNBXqUXzv+3HDVDSjlHNPKEmNGm5+zlEP/Pa0mLR8hxOG5PeuHfsO4YAaC+btxGwKVWC9Se7tv8fBJBx1n+Kox6GyPB1SVukkNQkjh9dl8s6dR8uwRo6Ep3zrpyoDHwNvpGU0zV5/27gpveUjCyrt2ZF4TOPsS/WygLkfE2dbNXsNDXjU0kggbh+REnbrOGVNbeYAoc4ZX0aRdyTYOFzlRKaGo4MoHLkMH9FMwYlY+jItBYVbIzsByLIUmu7xM7N3q4VtOAzdBtYpwYx/5yTIIJ9yh2VZWg/uPZimDRgASUeaIeF/TU+n3NBLOkQvsf4CKuJi9s4FqpE2p0HLaw6yIcFU8mcl8Jx6XPWv+eL9Uv+Eyr1QVYQfaJcVwJ6kjFn9GSZ3uvbIxaZMwi7x+nNLp60sgdzogotqc5oVT+LDsygUDk+S361me7L2BWYFkcDER/Rx+J0tgDZ6wwKRu7kFtxCpqtt19WgsF6LzpqmDlLORvOsY68JnuZgBdo7ozFmFR6uGXxbySNeCvPKl92vkVsYEYjZ70nSsNQz9WiIy0pcd4Cjnd16gHVj3X+IIr+ZH/gTnYy0JQvVtpoQKA3yqTH8ZK5WAWFLSXjNeHCwtYmaan6uJoOWW3ktmR0n9j0uxSEniCHfobcaa4adhh6U65iKCHer9DsvpoFJxkj5jhGLhPSjJ+hLddzatV/1Ocn1CE5uZoZAMtgkhUYN5zk9+VUjJxOTjDsX8kQFan+fCSw0rK8IhXNp3dynfHXSYCNq076Pn60lpsgbLC41pl75UNjAtdkXJ0OFBP9SOFxYd/qxoACmCf2c4BNjgll3P8P77ikGQPLbKe6Bprf5RR7SLTcoLj+WEriYD+XvlnCQ6gwN09MIkc6PH+xS8JfJD7iyBoSsLx/L/1AzaxG7e0eIP2dxroERhpC6jg8arrg7XQBksDHIJZIPRhy16WjWaucMUOLtxrgBU9rezETjoCtMnBYdaOAagkVHdueRkp+p0+SRoZ4ejQaCwhOiYRYYJC7NsV73oO8dwYLioC3qILoo9B/eMud5uERJdTB+L3gaZcXObntZ43fegezhpmSwHyw4dM10xfsXF1MY5XAR1XmGR9Qz8Yrc2BSBiUUf1wSye1tGQLKtmsheBI0zWEKzJu8/tdWQ84lcWgnXo9INPwDU5XiJi0OyBQbwRH1ahR14L10g9kAYWlDK/0N3VzcgYYursjTtw/2wSHmfTGJsx5NOXmMmVliBLLHGu6G0jFBLZtUkH7EzFzorhlKhKRrLqXXlXpO8crQ3CHEcZLu9XzwCc9SvkPe94gxwonijdizLHtGfLLKLF1cdtXMFa7Mf4P/JQHiBZIRXBzCKoqPaIuvh7X4/SQdEJnxbsIECUF90ZnrLUpBjTXiX4XAc3Mse7eTXKyZp8Q3Sf1S3esZyDQl+BBER4PmbGOeQ+K1112FbEeyqQZg56WiQ0jRCUmP+Kew9A1ZxSjutLVOfkpuBwoSkP4RGNoe7WrmyTXKI6nk1Tnz0oe2Vm3PjBDf8Gwhe+fwAYSAjlPra1TtCj1uu1GcdIAm6ViQn9Srqf1ym9fPIxInLxt48mCIl6DSTi4ZJ+XkJrz2dXWQqhpSF4nNWapdIjJH+p1Opedufkw0xHlr4vORb9BCJ3W8vAPdZSqI7VxbNaaOfqhI/8w7L9horVKv7MLnEr2l2XgUM6+i5Ix58xgRlYVxa+ltEdaupD5yktPEOlldMIatEHTM9j7h7hxVvQPEbtQP6BmDdVaPz2u/o7+Aiy4lsXGE+Km2ss6828uqY4y28croxcwQBaemP2+4hEA88WmmXnQTmIMFje/i5qVzP/dynhApy5GEB55hU7+jPdveexxyrULupZB1hjyqISvKscuKXOXZUnp8dPLlTkOIlOhMu9t4Vx5PLPIDK0SdUiZ95AlS0+/1macnq6hXYYejgXigt9NePxN2PY9CC0HftH0q8httvBeLZ48ootbmSIZgK7/Wm1zqq/lUDZBL6CYC5KDyLg/WfRKIQMNyN2X432uLr/f/9AoV132hvDNWvIbdgJKmzFwnqjd8+MjwrCINW480Y/0ve7EpvtXHg4WzJv5MuILg89gjdMk86QRO9Q/YKdmb+HV6eMqRTq/oudO/E6zvH3NzGgHNz/zI4Clc1kXUMDTrnDpBI2KbWe//7iI6d1A8nhX4F+4tGki7hfsA4VOK83fdLmcdAGqQRjtItVXa3J7vhE+x0h3K+fVJpM2FZDdY7gVF9ME1rtQmyQOE+F7b6vQAUregqMnIegpxtIKRhyTvfx+DFWZLf+VUZHUO+CicH8sE+9LpldACFUpG+WMfE56X+8xIB5l+Eu4ij2kBUNYythq4o1kyIEuD1kt9XQ97gS9+waaIHokWae6jm/Y8Govgmk31Z2M0SBZAIeudbA/y6RkBys3zsWVHoPxD73jIs92cougppJ3Uxf/pQcoOw/qt20epdVJgHhT5/Rg5mNf+bvQ4LJnwSxs7VE9Qc/myZF4IFBUAom49bMTIghVW6RJ2gfXkP6ovc0THTEpxZWx4zTkARVTfH75vftaIkZptS+h3ERciwL+zFBfxojqrdRqqdkYWAVmXpf+ueckOfXPrN5b9eEwl8OJWgoXwyPM73RDn5ix09+qYTUbhIRquBAIHnO03H3q5TFdSXzP+sPDF+FV61ALiJwLttts7/NF2qhFJI57p4sixeZfoEtm0Dg5wGwPCH6tc6aqO8oe5R+IkDR8TuyFEN2w2kBdTxxvejaSoap3bQlCW4svakUIjVrpe7zCbbcGL0xSe/T3hysCfb20Xj0oFitmmY1Q+1QAbHJj3MfeeZfxuvYYoF7mLnb9sF2SPQEFrRwt08qapY0ODw4ReEM3TamVg4j3BvgKWWLIeWrMXPSM+I3hBzjUn6TbqMNWIPDWj5FBYrWBwXYB71BOpmX+5iYomjHoQ7LUcQ867QRS3qZXYnBbLy/FO2tEGfzE/rGyNxED2nvMySIIs4Fx3fZIsIZn/tCkocG9krZ5TWha4eDI3zmyCQeBMYsXlRDNsMfjEEBFh6/Qhq12c9IUp606kEY5bwbG/QnU+IAyJhlftn2f8iRL5A7v4R9oAJGU2GYjNHqZUGg2z6az4YMtQyXcV9X9WBRlaYnfVIRsmuVGDhDBIoG6C8AkCK6LdXd0NgeShgVCNpx7iacd6L5r4rVi1Gco6rCBwBfwyIJs4Fhnq8IZrURn9zhkJ2FenUPijnbIom4cDNJT3zqMfvySGt4ko2KqwoGDH25QLfuWMbcuRhuQwYKgCX9VgClxETR6DM5DNjTv7F3ysG0kI8NKZ5AZDzjJnJD4VVPwVR/fNKHpzgM8QQGSapVEbQCuiSw0xjHphp0eDxZeames1Mp9WwQ2puhmhj5ql1Lv0eYJEpN8RFa01yfNY0KZkTpYzcO/Ckhbb36k9esVXSMPl1G/K7/sR9Mcqvz7tEmdFwGaO02c6azfLxlRg6byx5y5aqHXBgH+N8X+0pGSjHsaENs0tEcJU4XtLrRLBJGIFVEe3TvIYkvc3siaU1d3xi9t7TPq1L/+hMRqojqmp8jBLyo7KEuYZeOKHFM3mUkV+XkyhiFhmwxtLgSsGMbh8fE6hCR2rTOIinlmsF74yj7IpViQkLbyCbrvDt5/yX6I7Y1abrFs7QBI3D9QnlxlwbgZHvFTKeaFKcI3NvUQFQURMimQ5M+eF6vwSlYff+7/cWpYmvPrIh9BVONzVYOe2tQdAWWT5fJSYL5Upt0L6Dl/pZObBEdo+FPC4b2+iU09eJ6vb/kc2/uq9CvCUV9KB+C/CPAJdOu7vq8wf/Yxy8081PEnm7VGsIzzoFYnDvfYTUyPhdXV2yICWljxWqkyEe4e1n+SZCRACDyiLTdzj5Dq5ThMdA+CNJhV09iM2iW1Pgf2XiLDkIpNo8ugDtNdVTMEBsO+uHzrqEI+EwMOFr2gevD8TkmyjvrYH9Bw6rkARUFwc7DRpOCIaACn2Edjv7bmiS3MFeVgdj1y0Rv+v1DYqY6EwHst3CNlpq6XBW7Q/fu+F1R20aHUR5Z1LIZ7wvY0E/w99bKzAyUjG7671ZUYF6F5+Ynv4Cm0twLZ+GTrBp8VL/LMeq8XYgzYldrklMglyWJS7iWBhdA5GraO3m3rO2AorN4N62bHcpIhG8kbvIkybnRVTEWt5a5f7iIYJN61OO1gLp+lMKa9CuaUR/y9eoF3/jHgqh6iPSadglFYQ/GTsLkzIXMTFtBelXwJHtvmQtoXItuOsLGvL2IK/M295YD8SaNfSND8zTfgUXGYQRyrzsPYC1cxWOto+YkW9R3EinZBFUy/5HWXF6WeqLcPADGeJH3U642mjV9hMqA/GY+7DcN2bpls25VizlGv+FyH0qhDmmd0gUS8y90rDX+Xk6y6McJ6S7gM/DYcoTHv/2NeKg4rjMw8TqrlL9LBcLKWQxtuJxVX7ObKDCs6fNlfUj6iRrGPFdJD+ziFknCJKgixZ5RJQEQZi2MefRmUYi5crYu3Oh50a5Jf+upvNzFAo7KhxO8WRvoqnLO0wvvdcPsaVUOIcvfZoUierdTyFyoxwnJI91KCBroEodybtBGshuLseewOL8RJP+H2Oqsca/SYdeeRtivXY+FFQeTQ33eeX3DdtS0+wgHXVCCQk/CkG/az4aY+ExO9eyJRmpeKAXose57USPZEoRKo6m3uIY0rsGhjw0xAS7X1DuBTFVuo29v3dChgu70cPjpl5/xQmrPdA36PXNZRWOszr9FtTYYxG7dHUooremnYo1QnUGWsN/xygLq9TDGLLhVH/pc4pD+15uGiALFzU4PINmfD25G8LAsJea1dQlpC1s7rkYJUQqIwFNDY4Eh0dawLn8fCol/rhUCEbEHM1dJlCBpXxKfm7zt/ZpsbXgy68nEkEoLjs9rk0E9GFFZoYLZv/4qZR7nl7qBbeALu0FWvdWoNb4hCvlkME+i5nbMafn9uVxxXlpXBlOxHA7IKvKJLMXQanWkuK9A+2VI1JSDoY06+R0/g5TPJIHfO3roljfhM9ncx6Qrk66xY1H0+2UgF+oQgm28A27u9+T4rGo0sT6suA8Jdwthg1T9gojZro33dFb5pubkZ5ZHchLzsKkibaR3DHxf769V4iImNuKKrpgMMK8vcvF4YgFx9Asca63MVyNPtp5+zXPASns3bwdmsxnn1S54GTdkB4DwX4L7JXMnQGqIaS+mPgWxbIZbFcDNIrMilEIEGFczfvcACtmReTyzqnpITyfsh5QK4RKX9ZWtvUy4bWXjsLYbNV7MrrZsT82c9cmf4f8I0sSYqVIlcUYgI782imxBuEKs3OWcogWDmwlr9TGLtVSSTlyzHUW4PU9f7Wv06gLioBSoAf5esTj3FD9kKtTKQZfTKEIOcCYWcfIk4IkcfoFGKSLqsHhBpBOTfEJ6dxkBJXCSlknDrb8XJYO4/96XFd4ThAg4/Heg3u5p1kP3QG2yMuUrty2cFQaT3cWMABIB2diEu/1KfFFSKbfjTp8aUhb99C/ZA5m7h8JWsGwT5Ml9Uhw6CmNHyRA15TyVwIsOH0I1tFeVqQaoqT7wGjyqrJ9bI+WtpjMv5CAGQfj+k2aPOJZ/zLvxAtkd/Bzh9BZPEwVE0I0DI82uWK72P5+mHKig5zbXYrQE5bSNA9/gHvSND2qLV3hLPnoJp5q/NeZX7mhb2aWf7qkF8iM4HEHQ6YiYA+E+kPmfMGabHq62QBi8sSJ3yb68iTcA4YT6f+gJb6G3adGkY9eeu7XQZiQEi2fXRSKUOj/zLkyh4R3hOAX6xhT1yCvCHT2Jb9tAzSMxe0RFbM3g6b/VHgP8nyZkt45j1ZYBTwOpQIaFU7nU5focNbiclNOds9b6I+FOnBXwyAf1ViJPMKBBofmR8wg+77g5o3CiYUzQ+KdNxUo14XQc58/GKrIq3XSIefM9azql5sX7KlTsU8DGT1HlHIYnd10cJYsAEHoN0mLKcHTySHsjTFesKWsmK+siZFXhlavE6F44mweXOrX6FBoELRrvIrsst4OH+O47VaML4CK/cNrjlTodfRr3u2XZsHCcw9kXLGX/15sm10DYmP3G3387x7LDyVoplrs0pzIvfcy41eb2Ob/wM6tQNLxQKnfSbL0eyYL+RWR09qeHT/lWpCFvcISYlmdF/jMaIWDyxE/LA1tguYOSiQtSqHfgqHr1n/k5nFhnUBnU1J1eys/8qySmWwIplgfD3uNcFHlg6trf2B11Om/f7E9onO53sWHhas4nNuhBJsUn2OjOnOAFZi2dcAvexHytVxIdybjHcEdXUcp0jkab19hwZ0RddTUGjtyulBmpbfGD+4d+oynTEjmMlYS/pfoCyhEk9XbgbBf7wtFs5qleFrCmB0NrUYZLxmw+2wFqYEUy2hYP3ZxY8uhRZeFXZfhOD58zGBx7lo4yMjiBc0zvOGqVQm8d4tk1CRpyGJOGJWVU4EpHPxqgMP6hV7f0IxJugziIEJHavrZauRXe0/THYEOKpl/a4jm/fah+oAzHRBqwetjJBSjNp5LaZ3ZUNQElZJBDOF1e4muumSHF6da394Cvppq45QN1B2wYBfbx4Y9fnq5b+heTNTCmP9XhMQGniDhmdhGzfPUY5YPvTUhEcaaA2ucNDUO/xvaUVhXDIodrM/05R31bnFkjUjn34N7Aiuagl9VB9SjYsu83Ws9eoevaZVwZMC4uiZko2GtNzZCyMHRq6GKhvEGBiM1gLyvMZk3eR2dGcn19YX72JnDBY6RWncG7lGAg0YZR9lyoCyQ13gtnyBi05gPlO9yOeIYGqQrhgRpR+pAvx4czdaBMpVI7SgZMAhMSsdPUEQ9stTtwSabBmrln0uHsOMhDvi0bNRUWUmqnu3eiLgzk2XKGyTaHCe59vZZcmDkk8aOO6pTw5H+DWALBPMcCOmfIz4cF9E5zesXbQkQNDFk7vlnAcetbpid+Ce9MnTb3Clhv0lL7lyusJYCpLpalVXmQ67YNR+IIDh9vW7XeWnU3FFfdnO0yqCON1josSLVMTTaH/T3Q7Y+gOUofDwwXaGyGRB+4GRC2kk7zANlgd7PmE5kXda4IpmTbP2OqUJ/O9EXW4aslQR5PtYy3tNMamtk4Lwzb6WIFll7MVBneG5vPfEGslblvK4unzLLIvceI6WxhiZNc/nr10k9nn8ikKPz5jmA9oC+lWIE8QR4XYTcO6WZ7VMORykmWLBbTE1NQc8/TBpYSaYjlsyOK50EEwZC6/hyMiltFDU/OcVfSs/4s0Rk68qJkU5mIFxzQcySQSzLKmqQzkbb2ZlC8MLMP8Tt/ui2UK3r3IoyOWjDNfAV+2/iYAbaU/gcEuC9PqZbBCpHpobrsMSJpIpAbdk+lZArMaQfdQP2kY9Krk6TsjNb/ad7Ghc/HTlJyxRISEoijGyuLhUJB5Ch35PrR1oibmRE3vvhC5cWj/AFFMlliT5ELHoj9ieMLEG0BOkVRUXKuv2bfaF8AdXORnzTtMfXYqB8UVY5TvybX4Mkg9YXaiDDrp7KV8wVHpmx3MIlmRkznG4Q7DbYNTZBEi2yxQfQW37NrAOyCP8AXP/EHi/BLLFg/ip1tleZLojlnpdzKgSmJyi4IRDWNifCtFxTRjzh2z9DNa3KUZLZnixrksQWHwp2gRkmuu7HYPHYIQrdjih0WnNb7CL7hFDLjbfGaVLQh5Fu7SHtZTqDYzgY4QnM/x2PC8v6+qmCAMbOvWxZOIxjgpUF1ud2/e41K1bJAXPTZ0ctJLsigJDqNH6fNsXGGXNx7cwJPgP6INK3Qxc3ylfv0L1e9m37k+CqkJJTN6MvvQuae8WjO1l0JvBh6yHIrZgf/Bt/DNS1QULgHfUCLdwH6GVXxn8JChzrTEJL4dTZGD6nCwPWD+eeU/jxNc/wph/HYngIZcSTOnA7ZoHemc7pUYXx0Nr45Sbce9CyAvFnCzoIYbXxoDXYVwt/7sf509VEfvoLzjbFrRKr4vntb5dgeDiwRX6neO0yQZsOSoVjVvOOSAuP4PT+ezKgOTL5CMeBFh5fTyCTneXHNexLrs1pBpLHH3kmt/Gi6938ByjJyGR1wM7/rvRQQoS1drQjQ0vefqIJKlavxUAyi0PuILAyGGfaeCzz00DKjY1cowpRuwwf7rYPEZOByjttnqj6EUZ84F5gZp+4HJmTpMjNq0q/lyKFhwHKG0wkVp5h+gESx82VKGR+mbao8YOh23JnEy+eNJ45yos7d1gFc6GC67dt+OzE5TpAYicEpe2YtuuIHNt0hQpdLBdS8eqx9D9RSrya3h16jYIp9Ogfv58USTrQa6bOJgC6Fuw3VSohoUOQpQ/XY+PVKw2eV8Q1N6yxzymT6QIiLizm3kcA+jtFVJVj/IlTTGr7Tj6P8fQmh0ag3AJfRbLs8nmEQ1QHGUtaUv9djTgKNG5hVLyiujHLL77tNlHcYLwqquU6Z2V+WMoDwfBiMDqK39/tNhs7dXQhQTHYkold5VgNmV+WJr8ETyoKTHTS8g1RZL+KCbZw1LZoGTgR6eNleq+XGRggG9pbw1+WcW0jzJpvQle+pDWTA3yPaJogeuohg7EijR/48Se6kjwNpGStelAHWNOtzrfgmNxtH9r1eSRWLz79nRNF5th43Vy+rZ9FcwK7PlfJojQmk6yDIgDVpS2IJtFflHkl2pdrA/ZK4Grks9dfURGUNk54HimplKaYEZX5dE2M9W/60vxTLBE6XeIZ01h4YiHBHGMX+eAHZAHpSk2dFZUbQL/ylbq8VdzyOCnwzB532xAsz2XqmJFNJCZ6YuvEpyZtLa07GuhPki8MeZUI63KN4jC30SSX7/bWpsMyfpqrzmMI+cCYlmRUB0Mu4kG/untuIlFzWG2JnuSThOvNB87WuxDF4K9MPLtApA2nPV+2yMqZtQu/5eBgMzg8/6FBhddJz3kV0onK4Jbo71w6dhI4czF3ksh7/wVe0vAH8B/pVGb1v7xscPIhg6KL+hvTtq6g1+kCPpBURUhkj6yrfPgZ3/Xtc22MaQJp0ouI8smF0IW7P8ZfkCNRlxyoz5rOlXJ2YoBYf+hZJACLpIW6Ecg7s2fptIWtvuAgGvGV7dSNLkYv17ghjkJQx6tLucnApd6V56PAKNj/7Yyi6MOC9uwvXC4HnQSolMT49c6/5ZRIfWauOyw+arQBxET3gqjgZPldHDuhPDdYxffuJ1ityuwa75OUwVzCfQ3DhhKAfuieBFYqqN1i5usxjNFwKad4V39gjt2wLjcS1yX59qz0LCyVW9KbSYU9A28hy5DC7hdtdQxRU9PX4vfg8R4KZzpT7OhJe4Rwnuob88KsYJT3Xdb5uQj/iI2b9k+IAL2RazReg2nxwi3ia771jH8mWcStAs1NJu+cMgx6oarFqLe8b1HSRxQ7za0WtQhVKdhOSo+l5MyUbO7l4rtMf8vOidRDYSBoESyiDirZR/lirb7mNwOHR9B00U3KDHjR+/6/p0FjHCVpWNOzJcWfIRQkZ6XmbdXoGNbYi+/6K31kVQSpEiFHlf0XTAzQKDh03BJv6aoldSXInQfAEINY34mN7TGvaILI1iq1F8qQD9LdUyM1y1GkmIcoViAyaqPmTF6srtanuyTM4L1D0wyuj0tEVAfuycGdwEON4fnsCqlt5T6S1obgnUutprS4s5WpzQgzd4U9TRXJErli2+o2bS7A/uISBZhgh/679K/zLda6gWtuZwAvTGNdCbAN9uwZti3Hk9kKWrIq/zDHz00+fSYLcc5sgjgY5sWd/F9nGirgGojICMTxUzGmVVyjsC+0iZ7i++UKuLA2KCekIgylXj+DAZVKUFgBgXYW5+1bwyASMUltB5MhCcaMuivyyhZw3MJ7OjjmJyH+sH7zwWOwFaztw+KQpl6ETunGZ4wgXDkkep9RDpXHKdERy5R1KfOfi61l4kXklOVi+UvIPbGuKxTqSuKxjgg5aUU0X3V/EKdOugbYyeYKlYTyfe6Py6u2Z+A0k4k2giHiUVqkoC8MKxTXxmChSs68WryAMhUxyo84ORdwTONcLdmrVJbnyH+ugmyyx9iKEPADsMijuo2U3uJDa7Wnfr9gcycQq006VxIwrhk0FV/BDjqzquNOsEJXdrimGw0G+JVU4/5BNk+lE5kSCYz9cOOfNBtbtPUoVHnu1jfPwwGlaTc7GUxPcDFnEgwaHh5znVnSwPAAdXz5o6vI34Epz0NKfx11wmUjfW8nTAn60/CwPV4XjHM2yzXbq/EA9hUimpPyH+gMWQc8fiEpaTtk7l1iADxvDO8EMdlaQ0nXdXnhCuCrsoC+Uvlb9IaXpTbhDyzTzYYUPRsJ1khYU6+UMPk1YHn7mE5V3/F28Yia/wrwDdF+R6TmVzsqudzix7NyUGk46wXs0WaHIURcZDicGiV7SEhoVNTU0zgBoaSd49LNnCcmSgWRMUa0JKdpcVnfovdDcIyEcqOXD4VeP1baW1O5XKi8DuZzNuEL/drafxlkHz2RIla0Jp8ILNn7S3fdeg9UhAx9q0+SKtkZq2KsJrdjjyAjr3GfTjVIDAz98414NxYOtS7EWs2ZaFK7+4WBYoC5Hkeq4b/TVXen2W5sxGUXGVbea0PfIOieEzqtacY9iZH8JBwrLvaO9mQx8S8Xs1qoQA5mRuhLUFIcDGMj1wJK/K+vclB5Bl071Plrpq5+L4WJ77f/haemR3QBDVN+DYo/NMMFkqokI7b1nRwuzDmI5dEx4XMlGANd6UtZZVQ12+CHjwiLfAM9yPWaei6wRjGbxBRZUWxyt/lA3BanlqVbrdSdMBG5p3j4Pa9sSfYjUr77zB9h2qpnC6V8u1+XFmGBTP3y97KCCHykGfB6mbCNng2OYcDfFxSp12MaqtqOwry+xB9gUkHlnfW9DENAGqcYOxFOWwZHAJEeIuPuyLr3pc8euQGkJA6K1rmHJDoeAl370hmHY+Wk02WBNr6bOj8owlbEPXZobBQ/xU4JVN9l2GH0nnIedokXyCvBiq+jOf90wECFhhyXgaKiOos+J5t5i72+cySCooSeyr88ULT2mwUuMCLDw9Pty72PByiEtatpiqNeZF8Kladg4jD+8iY+w8ru/PveAVmrABMft/YevFyzmyB1LNidUz8yrnolKmitwK2bPJrQzSfyMg7RCZtnj801QmxB2Hh1RdODJ04NYCR84mkyeVmLrySQsPfWBiZawIPusj3W803YTrCIFZh55a7RhYSAh5uolGsv0TMC+pfZ8CJFMfhrjIkPX4iPlpoVij0m+1EDPaObMhssohxiQLjAb8un88eH/6Z8SnJxoDDY9JjIkM28xe9G9BMqE8CdRizNqXF+yzFoq+i0JXmGCunk6mGwVz7dw0Aht2yZLXL1jgrrUpP84ikBVljLiJmABWcOUt5aq4e2FLPP4IYwNw6/6kBGhUw92jqGvzzSz2IXFoSGkFThCZ6Hdi95k3hbTR+UyOtNXxKf3qOHtoG1+tO5u2H6XvCe4OZ0IsSdV2C22f4X0XRjnoLI9dkAJcmaPzyLbgrWgj/dizWHsrNz5PzGCCZ7zywhZMyk6RrEJ5ucZ5k4Fosm8+U94ZyJFHYaHthMhJSLgoHd9plpggxNFeaBMx2BdSg8d0qM1P9s3xHTr7n+uvFsfU5qJafAkyfAi/gC+OLxCw0uMl/XJ+id3bpdG4VxQwyKvZaxCWrPaRHIy9KcdR43jv9jfykGUTzB9KjyF1G0SkyMHMeY5wgAmcEp9B8ffD92GR4FQExXAD/Rm70xyf9mrg0HowJ+Y5o1trz3gJx6Em+pGPt0PvCVSXsmyA7BLMqIiL8iKyvmFzR0O7FJPoUD5dZJ1eKn4tDUJJ4Umb72XTHqR1qs8KsHPpu1Bas2jM6FoTMyoX5aScTz2RVJH0xso6SkxxuMBg3uUblz4fj83SnK1GADX8ZJtrY6l5lrbF1/ZuSi1BShVAdFnfBB3Sh1SW4KQz2mL+Y4svWwspzeGp4W6pTFKdMDjOxHzkJHkAfLjLjqf+T1Axa9og+Cl7gRTi70bSWjsQM9F19HqH1IdJOoerLMQTLpuVpFU//G6/hsxG6sFsnzMJ7n73SbIizBrcriqJQot6sKe+uP1gONUVuBIPlDJA49atkvafSdkS4NR+zciAFrwoHjdIsVSJKqDxAVrM15uFJb4cUI1Z5j3Wgo4gLqLZDMdNtYKJ1P7oBTGSBKZGTqguAYXj9FtcQ4sSbuwAvEKj0iSHfGzNYpAzMhIVEl+O5tVLe4s/3uEd9Gsrl6bogS5HKQwX3XK8Vnj7lf+5qIQiTSzRnfkEpdxxgU0LAZG7OSxjiHkVD2gFaZ1GjKhIedce7dFUwac8qA8Ut250wwH7O4rKHFECWEhhPfyyNNFFWeFrcIjCB9QkpXuz0U80DXFirexggv6bCvxlzrpYL2A02HykHogeIIum14ATyzZnKSfKNZqYUHkFr6qN2/mPO1WK01C9CpwXcl3fLEficn+qMiFNH5a/JFJBAF2ZZWJ5EP8mGzPCF9CDlr0z0YHruP+6bAUG47CNw5yDdR0WDTjq/DqDE8W+/fc6iTB4r9945YbHjR76ZqoOFAkp3KnRniRLdWK5iKvLCCH/Jf9vzHnX4LfdHlAiEucOADd6aaTJnMDTB0DnLoW9pvA/TvJPoH2GYOwUyBgDkGv7VLqRPzjz9nIWylnnWqIlm7L9YRAuucHIleKaTQCeUrXP0Wnyp2nmBxzeDiVOPsap6l6MYLHO4xg8HBAK3J1dgvBpIjcYDKZexJV5mf8c0hpw5ODKTwdkKCeeTezcPXh/9nI/FlRcIYy8sH3nKCQ0EEucVi+uinLNXGTmZXSuB5jYC2k1R6X8FYDLSs7G3qg+Wa30/SZZVsN+vbIWPDRqs9HMz/V2eXRrxClGwzMRZTnpwuqrD1GTjLUluOf9uPygJGxe+/EB6Ak5UCCsCWe2GLD5iZX8ywqGyaP9CGKOOsQ504tSVjAMPPpKo7Ex8LT3xYdh4QReijfasLvMKd8/bu689y+WY+S8IO9LXV7KYzmOOycnb7imsjeiBPCZgNd2Hd2fLIQOaLorPkKjFZcGRaNO6lp+pBPTMvw9QIbYuQZBlhu48VmV3i/3Y0m71BChUWR3cdNSS4D96YC5J0Y7ZFqMHBW6G9p9pf1EMvsoq2dzX2wSvNYXqdP47zyePLrk+nreb97cBNao7U34lHDXeFQ+HqT8XvcE26g42SyQZmHFRlH2UZ0kohpcgm7Li2wAo0IHMre/0XfRV0HtarB6og11KC3Z7/RUcqKzEPA7ZEJQgZNgBZE02MFT702HN67p516Nvqkm0Gjx83wQdQMeqxlml8LDK0V5SdTdnatEK7C+bhiQ3CLRBupVuTeGYhJY/BbrqiE1SY1vdXZ2SFuvNbcrI6ErGJV8/qH1acDEtu58Cm9IYXlR4R//8FS+sjKjiIPcuzVQ+9bV25MODrRYTzxFJYbLhp2Um/HKOncgLdKHj7tOrMZfxR6CrV1qRAGh+vD5dMMDkqvh3RtFI8M/B+95gOm4879zLjARkfVycAOqjJdoBfgWjWNsJnafTkmc7B3nIQv/Doeol9zaGW/DlpeEHHLSCVAFpPcoRFbXqIB0NIfCnsKcK8GmaNVe1S1WmDjR9kV2WjYdDpu3d+gX3edjZ363f9jQEbUhFXtuRXOQv+gmYCubqBrqUoagUdP7xj0HIFEZg93/KZ2CrZfN9t0A6WcpUJBI5WLyoLnqf11jJxzi7XP7icTGifXh8HPdPwOvmb7A1BFcfY2H1yrgpQ9LL1WPc8f4dqfuE91BNq8DtcEql3/06rGk4gsNyWI77GnH9IKwUsAFlrpUmA3zzUPojorig8/2Cbd3TjsCKM9wxliCLyKPngKsM1KFkqM6bMFtyxYYrU2eewcxYM6RkLIzuCbt2tjjkrWkSVoIS5lGaeH9ACsgsCD8uBJTg2FG+jOXwTTSCvGIWOiSPmrIKKcqEISVvUcMWhHEeUKjXTMdtBmPl8s4WipwTYa2j7rmaa0RNf7IXAOT77NGep/q0h0KdWRo5UPERTufgAqHgtum1dZEPq6OH8ILA+nokd8MXPhCko+zgkNqNlrLQew5ugiVBI+TSaF0+Nh/0lIpsCoBQWlDacVD+Vx3x3aSXTbkp6URafBo7r4W0YMJYL0MnwFM5mzSBvH459mHAZ0yzT09dEXgjVW9/ggg2LxRO6yGo5FTpGQS5EwMSjG3crtd3U4X4CO+KX5W46TC5B/X/DpEipFhWLaE6rpYO0r44KwsS9Ge9H2dfFY3QNvXA1sWHN6WR25HgQ091u/FmxcmTXpvXerH0b5xRi1MwmGmrK4ZAT1TapoD8+smzXuW4xfFWkVDOL7zk9xNtB53A3+dJrIzc5OTB601UXSFtQkX3hWaSnhB0fIWaxp9w7vGQDYtDAeTTDigrLMhVNfLUpJcIxhrMjO0Amicb+Ubauev6gApJbByzVQRTWq047GGRSYgxukHnlk5+xWTYTi31cQQCJ9ILZRJ3tV05M1AIgNeeDW2H8IBJqkzSl9nnKSajGYOD7eMyjHHWbG4SEV8CvAH8Iew6SodPSlX4spOyb4O8XdYQ2bne98jMMolgBIbc8j1VfPhmdPcqVcmf5qMjZcC2VzGSMF9s4863hYPVGq86Huy5cmg6zBz+qDU3yje9vmEr3yJ6kZhF5z8UdlkJdjq/581O9VuCR2B3lyEAfQoUZot9HdVILawreyRxAy11JlpE3UoO/fi5/5omkUs0A7Gvb5+bsteFVIW+9l+qR2dINow47smAidv0bLLEr/yqKcUanjvixyzAQCM5CVzq0r7rDR9M7wjLxBq9eBWRVmyK9TfSJqXHjL8T3l8phqzWGZrkRC5oiPO6C5Wf59fFDP+ituUaiEqytebX0Feyu7U5Leql5gBMTdDPsmK7KUOyA5TuWxjGc7dN7kJKEYpro0VWRhjMArMIGbutu6vN2OSHb6nvd508S4Q34uCRKu96bSAD7YHASNVhzXv8N8jroYf5Y7E9s4wTpkvo3BZkkWqpF0M1vka3jjUC/JuZvw9V8avX+D9bciICl12vr/bQJxDe+TN9MQwDJwOe5HRWZKtCtH/1/2brHVDE381FF3JIILjZf20UTFL4MLwmZtFv3M88Bv1x6hEyoaAlZ5p5QEWzlw8bJBt8orARhiododtduYtJBSF7octT9JzbeKdozaif0LBWL/u9RjbeVNLZ8UV44Ye6Sz56Vn8QlwftWL01WoPryii3ZZ930Zx6Ins/HGvGQmHAD+2qvuKQAs8Y6ublb+Dvhp3Y2NNMjsuzOvb6m4YtkPzbhlctKadex8tBQuo0zhmSxfDIZm5VnEDdG2vZ6kcykYFxgAz3wrkVyXQnwxyQIeYMIHQYT+257jBWD0yJIiC3PqmohMzTC/65XVgSsowG2kgnlR7pYY18nBQ8aVfJ64D79rH2pymM4xMU1Zk/OS14XiDcldhO0c0RhQxiPSY72XYxpiaKVYmzOcEvI1PzQa7+LVZ6pBIwn8ffWvhqa38b3IskTs4RBkYs9i+i9/AqdAQg2IOeWv2fuo5tEcFyefI9nATJXQchbBEQO2Cj3kaBe2X+81o97B22kYSwjOkgZybf53qZFQ6p/N0dL/VnuL1cYTGi8k6rMpkKGx4j+Mc/fcHUVNXTKhyO10FkvHiN+qSbJGepJ/aLXoLZ8RET0Bshv/4hAQgzeS7yl0n74cedqdnmAeHmQ2CyXvMM0MWpEvA2ezZIKU+WvUSaGpTt1kvMloerqnqxHLfT01Yh2n3iD29EWnrQsyjedi1I5SUgvQKBM9G+oAai15cO1con2QFz3UK7w7ZgzM+vPmbk2QqR87fzlbdTSAhrLXzqVfLnWBA/4+5aC+0BRMZ6iX9lH3QXtKU9D01K3HprdilL456y5lsl38VQaMbz9hk0LgquziMY01Znz2WE4ClHG9cF/e7stVmn89oNFUE9NZ1RAc97KzDEWHLoKwlCG6L20/2Gj7/M6PDhsvhY+FMzYRg+v/0jo2gPT0UTCfaLBDRVvKQgUSYPMG1dr6ox7ohepBUS0msHq/V7A6Y9WfKDgSLatqTzwhOXnuXAoFc1LsdlV/Nv7XHqg5TAohZGa1mOn44SyY1fyPMCxL1QmxvhBC7mxDyj9DUnBpbjdAzrBW0mUzZ51brDVW3f0A8oKL6FYBf0mwK6YxDMJogq94OPgpZyKHKBYvJXMfs6u0pYnEn/jPeTVQMK6uY9Egww5setjqwdQmwi1ea0/uoNw7QKPorCWZohFt4VB+HUy/ObjCDdxryIg/y0wXGMwFyftSyf0v/ESOVaUNOHg1aA0SQ0KOwx/oqBneMvSoxZc7SqvQaHcx3ZLg7I0FQgQ9799KuVGTfGNgWvzIMnHqMNnCyCLJMNoNQK9XA4Wkq+6tVuCUREehKj+szE6KlaSwgAPfb6JeGqIyBrjJK/wNw2yPaYB9wHia3A56M5r4OplAvdVjO1vrsc4I8LAy1zqqpo0yM1hfixHeLNDG6ufXaX/4mWxYpqL3hBHpPbnox49P3jj/wGgdZFaJe1JTer036xd0Xak5qCI6SV86xqAdAChv6sj7ESw0SU7w0leCi/08lfYfucRQHdzjO3JkA7lvHw0ouMCSCweP+ms5HlStT1HLlgQ/pkLQ0HiDkuoPtTY6fDW0UPlH3ebKJKJsiIlEwAnWQ1ExfQhfs1IRdbEO6sgyC7u2YqSye9WFoH3s0+d4P2X78UPcUsRitbiSflMds3+5ixk47wEAbwHOouv3l0AUb9zZIP32hh+8n3fJx3LXT4wqErJXRmufydvyJuKW5IkA+rD7B5y3hJGUFrf+je8x2WEZ93MMZZjKF3R4hY4E82J7y0z9znWEXqtnGce0dejOBkrf6CbP1VCh4ixhRvmOXO9yA0A2XQqeWYNfk1eUkRWlybRDBiE5SOOtjudxOpqC6Hv0XRqdL58/dsrEItVoppvb13l9MrZRKzOe/vtw9JP9aAkOa7ra6MbT/3YE4LlEJ5ticKWKe+rOGibg+N20Vx6Vg7J3byZG9+hIpULnZWH4Tq3LmlMA+oUfgAbbzPl3twbDuQozSElI95KSsXaBWevUxIWPQdY+4eolMlTtLwn+51SP6BWFEiioYy+r2Rza4OqKJPMbx7t0CZCtpMKxYQ5JCowbAH7J4Y3Eh3C04j1H/2a7qH3cVo01mg0KjVVR59qENmLLCnQ4LNMS3i2XshEK7QAIvi4D+egZPpMUywog3s+tqRiaGXIEMFp3rd3TuvLXVT9tpJGxjgQLGMKXmGL1MVjoN97by2NaOn0JoIbOQqeBIHTVbBYNON5DD3XP+rStPIfVbuHd+90TJpGh8BlfV0dLneK2wDMnndVGVvQLhvaQxu6sL3XsvtxmQzeFWUSHLeAlmTc9yNQKkXtOJWS9faewS8yotiXdJQ6EI1vpVOHgh46gljSllVDRx9qlH7i2QFU/dKpaQEbpAFUBI/eSUGbpgT2ORGcUGXXDWjQJQo+nCkQVnIMRUCP367os5Iw4Rb3LDvOi+/mwcBozzUa4WkjVcSIURKO3RTFCiY9j3O6C5MBS6Y0WbBooC0nOzhKxL8xMIIaM/tnyEzIdlABrz3f9XlCiQ0hh+C7/bNp14eUvnjcHWjBOSw8E7BjzeXkRQkpIuZSOriwZ8PiOLZxCkXFOQ4hbXa4Tu69lccJ9Hd0F1lxkg5QnAhhfx5WdcTkBH3SibBUMCLPb/cYypz6s4GGDMV5smYibldp//j9gbCEhqanpxLsoexOMik4SOt879z21iz+8V3wgG8CicQsmxcsqCc5QUqOZhnpO4qAFgzHF+noxN835P4xf5EsOcPvYWwtzK3WEYVGy5tuvxE5WZB246SGIDgeC4sMge0B4p70Tse4b6NjlPHW+90GmqnySqY83r0ilaew46qmwi4RzmOcPehbn4YPCoISjQ44RURV++dfU53vcKhkSj6cWuh75tdSSUNMysFwoP+lN2gGTwxOfrha9wWxDPpimhEBVrt6dcBIvdoUbCLTDQDZuUOVVhZP4sATqq8z7Ai0STnGxzKmAHG+3I+/tvrDN/OOTHwR6W5aWSRj+M5wmS5hfdvimlus2z4pE6RV+l6scSEX3XjFUVgbSuuufln4qZfmgBxNvIZmkPtMh4WHAtuqRVdgDOLksqdhjqc9jrNVpRsYL4L5fXaKhNXYNJfTorxbaoSpoqj6ZEp05xsc4y4Qryx7BRs3iYvuHRbCUsiCPmmGdUPXDn6H7woEjiz1YeriH6NPF5au5aVrtcw0DvEgLLKMuVq6QvzE1mu+x9AFhhIEE3jVvzGWs7x+IBGJ2hfG8Kb57q5sDsPmddrc0s2doavGt3j59SpKkbETAVxcSwwHbpAEsYTNPM1KhVl7EPpQp+gNotyPx7hI11xG47CrYE7+4xlCFpaDwvf9FWescjE9qNrcgCXvSeme0GAOo6QjsttWQcRguwWZb6OG1VPN2xZcfyUeEGLHhPkrziDDf4SHNaCcXXJ9CtFdyRMVueZNWqaoSKhpFI91MMLSXju3pGbSzJlM8FPf/oxZbRADvlZZCyb8fbb4mQVBZZ3GWV4hj4PCrLA1qQvEqs9XLsRnoal9WaSQhWRzLJmCurnGGRc6wxyAAejp0pAR70k0M8R+ziXphTbSz5jU2xp2cFe1EhegrqPqjFAtYWbYwsm9X969oYf76RSVpD5DfI8iDfFILBkfvnZaZtHikQ2tfNY1T0QOYafZ+dfiQjWZxqrDxXDWbc/jYZSbOzpgJ0HvC9wodOgTk5d5d9dmNrnM0LH8bvtI4zgktUZdf/DkYM10EF8yMhbFqvpMTi+TaLBUNd9aLSzSGAqu41xsKxsEYHFPhxozYZMPCafc4U5t8Ja7k34czb9pTsN2JFnwl8AmZSpI39KzBoEcD8fz0CAcio2KlaDIhPF8V0HkEbwc2c0mkpBazhOMI1d4cxnKG15nlJ+haP4D9g/H1z7jIEHS7enL9st+r19iJpqLFuJiKD2NT7LXyBzaAcFxIJ/fo4roeZSvHUyfgqUjSVcPiszEAuk4Fgqjxih+ln6TZW8b5sbDIvrB1Ul++c1B63XbFgHdVJTaRPzIXeh5f5u+QYvfa7pHyQV0ZUIv4SnfFMvTC0g0/fdaaBd9rcpxu/CBpbobKZgCIyVRDZGdPlZs8UGyu7+Hxb64E/k0YIIyG0d7ZSIcU1dOwyAQt25Ow5B4W/oUhgU+Gf+qB/Eqf+V11+GylEkiyGag2sSabnAwgaqTr549u7USX8FH6EnKLv1g9jl2zIU7C6GM3aeDn8kP+9aBM0Agrl165RV4/UHaXPnrBjs3YOHlrMK9jziNkwwt6+rC5FPPvSm2uVuOQouD4+Rk/8X2VoT+8bijB9PNpfsOsNhiSOVgntu7dzfzJItraFExs2ylPt0vanTgZJP3SIxPvZsgaDSBNmxIh0KPLS+EZkJ1Xy0gY8WVOZDbYF9v0GJta6+GUy7ek8lisYumJ1nyw90NF5n7L6H1aFMYqA/WI2COJA7pWaf9Ugf5pniETIJNyNXtonwZOLeCG380p2a2m5Fs4WDJIbVCtkJ77ah+h3HMvJJ0fzW8OXfnZDuzbWB935lP5zr2+vOc7CL44LjNt8p2deJJKd+d8n1mwKwxWxUjkxJRVlpIqwq1a+Sfeu1oNGDaOXyS/LVoiWAi4/RFFK77j8sVBWyTeqc13DCYWKdEbHTgEcIdtBewm3fvU99V8J4gYLJijdis2O/D+3FBz8kG/SwAXwjzKgO1TmXuA3syLPxxfnEUxttkUPpzQJgAzcN6o79tpHr3QWX3TVy4USKZJPX/G7/sFv7TB2RKaM9LvG8518UTl/oNK6/mqMpSOqsv0xRVzNjumgamqz/e3LG3e1lkrW5SquqlrDJIrN90AProjO2hsva2vAv1ZNPbHVfvH6K8KnMmDbXcZImS+YAXafdXLVILS/Q0MSKuRaLPQABT6AsH1SpBlkiSLXyhT/gT5IbfD6Z1Jx0n7l33o2uGW4lgd8BRn8WUeEHBHEn2SCXVQwlREQtvN7iSC2y8qSngF4ytc3vgOucrGccauebyUn9sdKmkhMom+XHRGLg4yr7NW/ZAq8UDCTjimw0unj204NYoihtZTNdXwgmCpqzA6Y4a3S/braI7FEXELgpjVSnB+dqkyFq3Tny2G8lAz1OtN0TZdE3wgbqL8XtsE5Ut1NayTqmPNmEhJVC0f6ZfMop0HP5VawTxA+lq1XoeRAoIGH0ojuV+9O13sh2V2zoxj5jVyNGuZDtqZVlEeSIRI05PVi7nZfKw+EuT5YTkdX/qnx/AmQXABJR8mEbt5A8Oab2RqMdG+P0zvDI0gODnGDSO2w4ZOrD1zi5LnYaIljibbOMhpDWcwsd6Ry5eUmiLQ24OpaErO6a3/sYLybm9xOJLqfn7DNg/5SKBxEfKNyyUYP4KtkSMQI5Xo7dHcIhqH4l3CRK/gB7WtFU6bj0mReNJIitL8grYbUyZpqDuMDT5s5WQsWjOEmRSbMiH7HIkEIPvRu0WxMnRCJKjGFWdlKGqK96T7jlsEHCjsPjk/9VEQ4W5qB2tRAFGJ5YGgbmyYxqxGxduvkNdd3IZKcIbvtEtH4X7aHeyV4Dcn4wkEzUNRRhISM51Av5I1mwi2lj3DP8d6K9iFzNVDCSb+eb9pBu+SEqYrvFC8WKSi8OcZDj50KV871120hgz6n6OZy1KOh8OzKNuCKFt9mVlUfJKzD9gcuL53q+oTHGGIKFz4+4/zLC13N3l3y4Fn9dzM02uGyBGoJXmF3jrwW9OguOsh1FVykE1suM6kC/e005VRngkgcn29tixbfGSx7k8JzTId+5wTXE1HgKXCtGlwA7L6FxS+RUGGP2az1Em91D7THACjjqlVdoDOltQ7Yb4S8n4kG/m/CvtFfQB0e/e/JMgICLGKds6v5THENB7WYOdJ0P5s3GQzdbeXjUAG5Y2WCUBs5LZ6xDZzv1L7jfUHqBbmnHW7U4g+UTYB/tW7B0Ya0JAbpzWFSoVQH6CbY6q9fM8ccelwWdxeWdjZm+TcmBAHpje+emw8T5mUgl7Omvks7D2xk04/HjynzVyBN2dI3dBgxTkB1keL9tMN0WgyjY0ddKI8pigHP9lOa8hb7F2bZIa/FqS6JJPPHnlyPbVl+weIG7j4ocmWH/OkvaT4qtcbnafk2ocwOkjSqUob66ehit1UDMwKXreD2R92MZugTHNe/PWAZesANg9eBbm2p+4kqK52j8MW3AhqaffDN+kK195DUM4FLVYm8BQhOF+OWoM5tTD8LImCNRenutbU6qRxpaMDXCBU37/K3Y7eobcg/IaZaBuw44FteI67Hdgufk5VqCDjlK7jDBUtVq07hpPI9ymWW/m3nNLQlusNGDSBNYXOUBDRWNnHira/1eo9GEwVgpXn2tG1PUUxT15p/fbfGXCvpsj0QlzwErC0ge/Oqlsh7E0QhpqDAcvlBJOiXDD/bv01SkM269rmghWHJPUbmpq4trj7H6cCMXMIwWgOLaTXR0w3tamzJpReC8FXDNwkxSCbmg/ag17JdPyptz7mR3k6KvXor6tFCfEv85TW7CDWLEap1AC12Ym+LK9/CxdKPnXz9Qz4xNXGn3sG1wAfthifQfjDyiCnLo2uhuMzI9yKxH4PUTt52mReMLmnHFrrLpDYcPC+cU7ge55guYhGv/ANB92YzoXrI+Hs6gdXnnfE8GGhfydGwvKBKCtpDecGnu41Mz28j9/LTVtSV9WZEoxANMgPGo4BDbY2p69ixYGQWATdyg9TRDAK7f/Lrlubat60yuVZ9wcwqZ7NBP71mX6NEgdvfK1EgMnkZzsDQl/wWDHdAoOYCo4pKwY5I/V26cKTO4aMYcV/YDdgglOtas2KtIXBJAcgotsV4YfF+CDN4T5WdX808VdXh3/UXLrAdcMDF3QIXj1HyUHIOkXBH7DXICbJt9eNiowRXiuB0d1J/FqjPFe2IlNdXnwFwpRusB5PLSv0Lk/AdI1gQmao8wwLmnoh/L9riMbMMsWAOI+5B71d+lGTKlxx4hQn4ixRfedyZUUsRcpGrgAS1XqCKzggl0/LFuyQpe9BsgvZGkEHQ4ELkl6bcLtiHZ+7uFxmRjnV7v8PP1Whug1igIT3OTMnmb/dGJPuGKY5fRdvWoatxfNU3ABi+fY7eHiPqC0gQDpAC19twVfWBtBur+ST+y7fzmSE5Q0C3mcp8/31XIdqm7sEZJHtFnXBgaTyG+fWRGAY70K10IBvKH2TE6IMzm1k92/Cn2payTupKTtojgP3uaWIgFVgV0lD0WGR0PanqiKtrBFwqznvb/rz2PgpSjWd2BESLQpxY+6tmKXZnjvY9xfR12CQ8o/aKz1t+XxCSzy0uE5f/kaFUCrwxjL8gT7SEUJshp//5/yvPFJHgJlgsvXp+gRQCSzz+vS6rl3BhMsbj/HzwJYz8GsWppOQDGVswlOHEaFE/qhImhDrt2DUfNxtt21GW7KwJRn9/mtYIjlnnwgESPEpwoLyTru3SsVGzRxnZG6x+BiseUs57lTdb3H8KG7UPeH1SSjy9wZHELnar9x5cOtOR7lOvyjWm4Ab18Q+qoMxxLCFit0V8SmOu7AU8XGY3eSXb6Ly+kaQmDkRlOstgmcj+rD34KNz7LTvLL0O1Z9J/nCjp+1flOFgtbd7Yg0t5eNrPuppxYxJfSpnJRNL4S3YTffnV+x+zVsuioseET/On2wNi/TnL2rAQIKswi7Er3Sv48D/+PLsa2WJOSk6DqcCLmusILDiz0FwKEhMewrxtNyM2IAE0/6hiopIQoUgC6U8CLirhWbfVibSnCGZlF5uywIcaUlcEaYP/evokbi1NSquO62XNnWR4+fB3M1N7LaI5pwdHYOKEjg9OaSiTtEDypKGOVxZhdQS0jEvZ46foNS4SBpwZfPn60p6pQldNUmimhWeU5LUnEpZYjPJU6hmAsh4AKaLFfJANrZ9ou428yoEIFuiY9UgOYkqtSUocWxyijxK+NTtuDdbh7NJcyLIl6CUBWQjZiL34Bk0Qe3vmT9tpIKus3r5CvEdEu5Va2Wxm8CQJT9bESzuFBeH0QIRybKFAUVqNa9tCXukd1jwLXYKWsuMuFda8R1UjVG2cvAZ+R3lBV+nLksL4Ti6lubX3hKFcSyFsG5rK9pJt5nlSGIkBLP/HFqLL/KX0S96NdOo4CS+GYPBk+lBZxz6Yie12vvUj8l4t1ik/5PmvbLOTPCcaoPeZ7APUQIKIcxcNUDin3R1okbeAUGwt7Ja3G0ntQokBhlajisyXeqbfPLrTTKpTauclKp+DGdyBsbzFHEYtIqZnlLe5wjluF/UID6EgwWPGj0FVKM59Jom3+0Y1QTb+IKqHZv/0FIEEuVItlJHSixdza2w0UN80Hyc/eUGv6SBybC/EEs9cOcLBR1eeQXXe7p7hfIhtxxBrGhk9n7jom/4LXF125WzPmMCUiNyE8iO7sVSmRf/iSNFBveZWGPeCirfJ8a43fk5jCfA3NPEJyMAamu3Q5im0DKo8aonWXtye9iE8vraixlVTAGSXFMjP3+XiOE9jrnXTDzARnt7+9gvHctQpaAI0za6N7bq9R1lb55jILwmx4Ih4OA0K1/Xx7B9jytPFBRhEO8xqXLhxotsIRjnGRvnkMK/KJ1YhE9T2mNmclLYgMSn+7dzik8BzoHt+EcXstV8yNpTspqsnS96ATq3A66NbF449w9JqViBt4gWi7yVzt3kR4XSJ8iEB5anMqG+EsSyrMQVv0sMeEysGx+yYs6G2xPJw3zqTq4RzDQXPhYra/VMlt7E8zzl4D7L3HS3kkWf4ZkmFmnjcENPQdkmohl6p/gqkOg+8McyzNxxb5Fl19DsSr3MTuSMqhSKDn95ibzYCEdrZXJiKaqu7BFBuju+jSObOPchog2IsE/u/3U/UK2mntvSnD0qNkPYoRTskBnLJ3NJamL0V4sEbryX8NMr7MKMJ0+h2+xMKY4KERpvUrd0c6ABXWHqLdY1QTugC/5dhdoLy3+KwgG5FnL0MZw6qvOvHkKQRoQrcKLuwUld15s05QxurH67A9eAr02a/vUWNBIgP6vOa69ZZuZKElWttIerRDGIAkZ54fw7HBctSZtfspPxaliwbOEH/Laxot3ZQonzvXknSVodzZHA1Jw7BcNRsYvl+KJ0Y6pMRPpIbaN/QSuHtnjUoej+vlVhq5021xMUPKxCK/D8rSRbOmduHG85/JrIimgo5wXWP83lLvRaxwCxeTGVt44fTUqsfUARmQcS3f5DbHR9SZ4nJYIEvcCjIqLezJ3I6S7xBop57j3ZyMQX0Xxr5mc6IUmrlOXM9fJG5iDZQQ9rWsGZ0Y26GzTAEsD6pjPuDa1XAT1MRpxyZ8zN53sl1YEV0E0EHvZqcnBnqMTXRh6zC9PwDXEk3OHs2zLLIjBhY5+7lDxp1X0qcm8XtWorat33mUx+kEDDgaDUdpclQq/ZM6mMYoF433nKbCKDxCozugSPVaRjNPosMDy8FujvIJSb763XuBGBIYLS9x+HZhYiUa9xod0xKV9aRt7yczWWlLgfK8qn4fULHMBSP48m/wTWfDBdTH8uDAKt5WM033+2bCpxDhmZtE+d7XP65yBTOf9/EWaCG+Gs9/5kVbWS0JlfoDH6Si2tVCzCRGfV0XZAUWfXOMJ5F9dkMagbwaeqVqqbVONDQGg8zID5MUV7IkazdAz4JLOXsn1RuZnoZNIGV2Na15+dRKYUAmXFmkWBJpPMBwT8N4bd8VZwBnhm3WzH9S0sbpoP0sgf2OmPvQ6smMyfkVK+OLjXYubmtioAhdwDb5/pLRg3PGwfHEz6v9OOe4AK8iw2cma49tV44In8Rc9jGcqSQlFXPdlC8366ke4U/ITFy0/SQBl1vWvGk40KycwWGaLf8cCtEi/4X2W8961i6lYnpfNQhGcQyC8s2oIOW+Pw545Thq3ZBEyNC8YDr/pzCEmBI8U3A4IiQJoHiD9kUMNd8wfzysC2Kqc4OGeWYsJxmDev4Jn4HV+vqpgN6xxSEMABhRMdTteHiJAgnQEX9BR2V1sNqh5EcMvQNYYa5+bblQn7Rli1UFCtQkP6ECmGkxmPNkg2CGS2mmf0/WEuTZSyPMtbbrnftPgleOmJ3jSm0m1EU9fQHQo1NZti+KczpJ8mSYIVtXzXh4rNJcL3Fm7Bbftpjmj5UnuDpPk8HvqKOj2DGJyk4R0Md1x7umiH0DTOXaLwO0EI94k7n6R8nfqiwekgUQZ1rRek0HViM5YN0JLWp4f4NRE8ErcGNSHZd58+9Kx8lmkc9ogfQmX0rX1kB8QQzNbH+eVDee0jOQNUgQcew3y+0QbifXrtLHXDIxsqsej41Kz7vfcQRE1zUnY2phYNILK8a657zyHNMzPiRhxs28s1JX2kiCMEloubOXnc8BzU+n7LM9wztf63eFWN/eWHXVivSdCWg5DfWsk2CF8aFJrOP277QEPdkWlOlewCVEkLjyd5wUn9ZzaKOJKnDQDLfliiRLTKlU8TOeQj8jOU8FfpM9tayJTDpxw6sVlZuJRAILfxn+QAGIB/W1FGDjuuVu62hFDBdvzVSfge95Ebf9pclp0GrpV3S+gwBWn5J7aGiim/fRyIN7YVVXJsnAnVeq90vDdAV0XearTqjT2Ck/AMkBW6T/ls/6VUVnFWs01wxkahKR0tRwyLRKgHefm3RWie/pTVQpUMZw+/7ozQSW+7vuZd8lsvT1iX5rwlpiaFnOnDbHsr1As6vLETd5HVbcBCGbJHcS7ax9Byd50jdYyagUtjAaHYX8ryyuR/bDkw1o4j8+hXMfbzy+CVmgrfRDyl4dn+5LxrqRAXLoDKpQREAHqdLSsVSJh1s8KnZ/SsUVq27cq+O6LMSBmhT4X3E750rmWwCsoCre6bT//oFWYALjp2SbcxnULBaTvnYDHtfEbO1m/3c9nJk8ZO5KHQTV88ivTWN/S2EXwmisTPdcupMrvI8e48QZdkZu9WHyKron7MKhGFJw6Z0KZ3tleVrvvJo89siUwByPY+Hs4gkKPBQbLQOaedcv/xeM+Ih8rl1eHEC/C65xWVciToVqSGp9HfbhVzFSrO6kBnv7mJwnRLvMEwqiNankVdJJMw4icU3lKyw/ecNSWIUddqlbThYMiq8nHjRRufs+28cq0OI9zhpvxFvFgSZE/eAYvm0x+9lZO+EH9NkBngaqU1NMYhdombNuy3awUN9p0mJQ//e9L65YbShgoc+ZUlNy+c6F6gDEHXV0JrzevPIZFAe2RyRa2dNqzLvihAAMCszYueqszzXRkSyobx5+LTLK2V3lfg3wbS9DzP3QW7VHdHbjZcttQRvtjrGveJnNn2DE2ZDIbvkCrT0H8RzbGDdmIq4P1ey+hoY/W6NuZKOz4dv4HUNznxdKV1Wf3MvqUv35r2jTKvpPWBUWNm5fytX/QJwp6qkIOsSx7Y67BSCbCDVLM8/VcMG+T0j+INrgL9sfT1ICtACH8BI0G6ViUZPVzzCmQHW2oVIwZjAoFl6+meO/pD8teO1E+1y03mCpYfW9S8qhtH2GhlFlebPf4NbezVv9xbXKWz0xezRNQWqUqtYRTUbuzK7KTvjG4rQHfzBpVmK4wDLnSIwdSzTSk1fPNeY0WOpPZTLlvQ59xwgfFrb326vT2hS1JAZ9E6sujFtKTiJ7bxI6o4cBhDaX+adXREThhR+MwA4TqD7rga/o9iY7d6TVRe14CS2S3iSQsD0R6ApnhG/2Wa0A0AY2NtWTjmabdKU+KgIRDP9RQYVjXiF1qC+xyNVG03I9vpmEpY/G/zC4nLOKgXAZ/uTikHI9Afbkhfgfgo9arWbix5eH7WUo9RQygDzwCnVSjbXc7MihEufVj6WGbK963pw8VjY3RS8IH1cy2yZbIcKLO5CgAUcXJfF2+McnDLKtXxyZaf7SPA6KJq+zF2NHyfoeTOwHhGqNcnHVr1hT73pcoyXyfvCYBnG1Bp/aR9t8hoI7CXM3UZOisWGA1SHZ2jf7k9GlRnp3mF/c1AV+JjvUsnZrsybEOQJg/dn/9eJkyykQHjbF56zgcPX6DdMG03WKUMlYz+uOZ+5DZy9E9MZOZ9GMoLFdrIPPQQLjv+GlCMpoyHPXkzIODjHAID2PrnaRpqWVHh0rnieDILKq+Emrd5RnjgE9pDUXWTmHaKuqqYlcgEz4zbi46dbWrAAFBjsQq1rLHIiPJEcwFLCOY4JNlXRXQJqCUKXk2d1RSBGzDP6HDSpo863BhVRFFF6uIpjQV7j5ebFe3UkkO/+coIo2BTAcgBqOtQ134s9a4QJvofuqBYMGOBMsWZ+sn/2AOxDx6SfAnDFGw==", Pn = Uint8Array.from(atob(Bn), (e) => e.charCodeAt(0));
14218
- var Ni = Pn;
14219
- const In = parseInt(Re.replace(/\D+/g, "")), Hi = In >= 162 ? class extends T {
14213
+ }, Cn = "5L7pP4UXrOIr/VZ1G3f6p89FIWU7lqc7J3DPxKjJUXODJoHQzf/aNVM+ABlvhXeBGN7iC0WkmTjEaAqOItBfBdaK5KSGV1ET5SOKl3x9JOX5w2sAl6+6KjDhVUHgbqq7DZ5EeYzbdSNxtrQLW/KkPJoOTG4u5CBUZkCKHniY9l7DUgjuz708zG1HIC8qfohi1vPjPH9Lq47ksjRrjwXD4MlVCjdAqYFGodQ8tRmHkOfq4wVRIAHvoavPHvN1lpk3X4Y1yzAPGe8S9KBs3crc4GwlU1dEOXiWol/mgQqxkNqB1xd04+0Bmpwj0GcCc4NUi+c731FUxjvaexCkCJ0qhrJJ++htWqetNC4NewClu8aFRSwrqiJEGe+qtTg4CYCHaF1wJI0sy/ZBQAI0qAMyBvVjWZlv2pdkCaro9eWDLK5I4mbb8E4d7hZr9dDJiTJm6Bmb5S+2F7yal/JPdeLUfwq7jmVLaQfhv4tWMJAt7V4sG9LuAv2oPJgSj1nnlBvPibfHM2TrlWHwGCLGxW/5Jm2TotaDL+pHDM5pn1r0UuTZ24N8S5k68bLHW9tfD+2k4zGev23ExJb4YTRKWrj82N5LjJ26lj1BkGZ0CsXLGGELoPaYQomjTqPxYqhfwOwDliNGVqux9ffuybqOKgsbB51B1GbZfG8vHDBE2JQGib1mnCmWOWAMJcHN0cKeDHYTflbDTVXajtr68mwfRje6WueQ/6yWqmZMLWNH7P27zGFhMFqaqfg11Q88g/9UA/FROe9yfq0yOO0pnNAxvepFy2BpEbcgG+mCyjCC01JWlOZlIPdf1TtlyOt7L94ToYGCukoFt4OqwOrofamjECpSgKLLmrRM+sNRAw12eaqk8KtdFk7pn2IcDQiPXCh16t1a+psi+w9towHTKPyQM0StKr61b2BnN1HU+aezFNBLfHTiXwhGTbdxLLmrsAGIVSiNAeCGE8GlB0iOv2v78kP0CTmAPUEqnHYRSDlP+L6m/rYjEK6Q85GRDJi2W20/7NLPpSOaMR++IFvpkcwRuc59j8hh9tYlc1xjdt2jmp9KJczB7U9P43inuxLOv11P5/HYH5d6gLB0CsbGC8APjh+EcCP0zFWqlaACZweLhVfv3yiyd8R3bdVg8sRKsxPvhDaPpiFp9+MN+0Ua0bsPr+lhxfZhMhlevkLbR4ZvcSRP6ApQLy3+eMh9ehCB3z5DVAaN3P6J8pi5Qa88ZQsOuCTWyH6q8yMfBw8y8nm6jaOxJhPH6Hf0I4jmALUBsWKH4gWBnyijHh7z3/1HhQzFLRDRrIQwUtu11yk7U0gDw/FatOIZOJaBx3UqbUxSZ6dboFPm5pAyyXC2wYdSWlpZx/D2C6hDO2sJM4HT9IKWWmDkZIO2si/6BKHruXIEDpfAtz3xDlIdKnnlqnkfCyy6vNOPyuoWsSWBeiN0mcfIrnOtp2j7bxjOkr25skfS/lwOC692cEp7TKSlymbsyzoWg/0AN66SvQYo6BqpNwPpTaUu25zMWlwVUdfu1EEdc0O06TI0JmHk4f6GZQbfOs//OdgtGPO6uLoadJycR8Z80rkd88QoNmimZd8vcpQKScCFkxH1RMTkPlN3K7CL/NSMOiXEvxrn9VyUPFee63uRflgaPMSsafvqMgzTt3T1RaHNLLFatQbD0Vha4YXZ/6Ake7onM65nC9cyLkteYkDfHoJtef7wCrWXTK0+vH38VUBcFJP0+uUXpkiK0gDXNA39HL/qdVcaOA16kd2gzq8aHpNSaKtgMLJC6fdLLS/I/4lUWV2+djY9Rc3QuJOUrlHFQERtXN4xJaAHZERCUQZ9ND2pEtZg8dsnilcnqmqYn3c1sRyK0ziKpHNytEyi2gmzxEFchvT1uBWxZUikkAlWuyqvvhteSG9kFhTLNM97s3X1iS2UbE6cvApgbmeJ/KqtP0NNT3bZiG9TURInCZtVsNZzYus6On0wcdMlVfqo8XLhT5ojaOk4DtCyeoQkBt1mf5luFNaLFjI/1cnPefyCQwcq5ia/4pN4NB+xE/3SEPsliJypS964SI6o5fDVa0IERR8DoeQ+1iyRLU1qGYexB61ph4pkG1rf3c2YD6By1pFCmww9B0r2VjFeaubkIdgWx4RKLQRPLENdGo8ezI5mkNtdCws19aP1uHhenD+HKa8GDeLulb2fiMRhU2xJzzz9e4yOMPvEnGEfbCiQ17nUDpcFDWthr68mhZ4WiHUkRpaVWJNExuULcGkuyVLsQj59pf6OHFR7tofhy9FMrWPCEvX1d5sCVJt8yBFiB6NoOuwMy4wlso9I2G4E5/5B2c6vIZUUY9fFujT3hpkdTuVhbhBwLCtnlIjBpN4cq+waZ0wXSrmebcl+dcrb7sPh9jKxFINkScDTBgjSUfLkC3huJJs/M4M8AOFxbbSIVpBUarYFmLpGsv+V6TJnWNTwI41tubwo7QSI1VOdRKT/Pp8U3oK2ciDbeuWnAGAANvQjGfcewdAdo6H83XzqlK/4yudtFHJSv9Y+qJskwnVToH1I0+tJ3vsLBXtlvMzLIxUj/8LcqZnrNHfVRgabFNXW0qpUvDgxnP3f54KooR3NI+2Q/VHAYFigMkQE5dLH6C6fGs/TKeE6E2jOhZQcP9/rrJjJKcLYdn5cw6XLCUe9F7quk5Yhac+nYL5HOXvp6Q/5qbiQHkuebanX77YSNx34YaWYpcEHuY1u/lEVTCQ7taPaw3oNcn/qJhMzGPZUs3XAq48wj/hCIO2d5aFdfXnS0yg57/jxzDJBwkdOgeVnyyh19Iz1UqiysT4J1eeKwUuWEYln23ydtP7g3R1BnvnxqFPAnOMgOIop2dkXPfUh/9ZKV3ZQbZNactPD4ql5Qg9CxSBnIwzlj/tseQKWRstwNbf17neGwDFFWdm/8f+nDWt/WlKV3MUiAm3ci6xXMDSL5ubPXBg/gKEE7TsZVGUcrIbdXILcMngvGs7unvlPJh6oadeBDqiAviIZ/iyiUMdQZAuf/YBAY0VP1hcgInuWoKbx31AOjyTN2OOHrlthB3ny9JKHOAc8BMvqopikPldcwIQoFxTccKKIeI815GcwaKDLsMbCsxegrzXl8E0bpic/xffU9y1DCgeKZoF2PIY77RIn6kSRdBiGd8NtNwT74dyeFBMkYraPkudN26x9NPuBt4iCOAnBFaNSKVgKiZQruw22kM1fgBKG7cPYAxdHJ8M4V/jzBn2jEJg+jk/jjV4oMmMNOpKB5oVpVh7tK529Z+5vKZ0NSY2A4YdcT0x4BdkoNEDrpsTmekSTjvx9ZBiTHrm9M/n/hGmgpjz4WEjttRfAEy5DYH5vCK/9GuVPa4hoApFaNlrFD/n2PpKOw24iKujKhVIz41p1E0HwsCd/c17OA0H0RjZi1V/rjJLexUzpmXTMIMuzaOBbU4dxvQMgyvxJvR6DyF3BaHkaqT4P3FRYlm+zh8EEGgmkNqD1WRUubDW62VqLoH8UEelIpL7C8CguWWGGCAIDPma9bnh+7IJSt0Cn6ACER2mYk8dLsrN70RUVLiE0ig+08yPY9IOtuqHf/KYsT84BwhMcVq7t8q1WVjpJGNyXdtIPIjhAzabtrX03Itn29QO3TCixE9WpkHIOdAoGvqCrw1D3x9g9Px8u0yZZuulZuGy0veSY34KDSlhsO1zx2ZMrpDBzCHPB4niwApk6NevIvmBxU3+4yaewDvgEQDJ6Of5iRxjAIpp9UO8EzNY4blj4qh8SCSZTqbe/lShE6tNU9Y5IoWHeJxPcHF9KwYQD7lFcIpcscHrcfkHJfL2lL1zczKywEF7BwkjXEirgBcvNWayatqdTVT5oLbzTmED3EOYBSXFyb2VIYk3t0dOZWJdG1nP+W7Qfyeb8MSIyUGKEA57ptPxrPHKYGZPHsuBqQuVSrn0i8KJX+rlzAqo8AawchsJ26FckxTf5+joTcw+2y8c8bushpRYEbgrdr64ltEYPV2AbVgKXV3XACoD1gbs01CExbJALkuItjfYN3+6I8kbiTYmdzBLaNC+xu9z/eXcRQV1Lo8cJoSsKyWJPuTncu5vcmfMUAWmuwhjymK1rhYR8pQMXNQg9X+5ha5fEnap+LhUL1d5SURZz9rGdOWLhrMcMKSaU3LhOQ/6a6qSCwgzQxCW2gFs53fpvfWxhH+xDHdKRV6w29nQ6rNqd9by+zm1OpzYyJwvFyOkrVXQUwt4HaapnweCa7Tj2Mp/tT4YcY3Q/tk1czgkzlV5mpDrdp1spOYB8ionAwxujjdhj5y9qEHu0uc36PAKAYsKLaEoiwPnob0pdluPWdv4sNSlG8GWViI+x/Z4DkW/kSs2iE3ADFjg4TCvgCbX3v0Hz0KZkerrpzEIukAusidDs2g/w0zgmLnZXvVr5kkpwQTLZ0L6uaTHl0LVikIuNIVPmL3fOQJqIdfzymUN0zucIrDintBn6ICl/inj5zteISv5hEMGMqtHc2ghcFJvmH3ZhIZi34vqqTFCb9pltTYz582Y3dwYaHb9khdfve1YryzEwEKbI8qm62qv+NyllC+WxLLAJjz0ZaEF2aTn35qeFmkbP6LDYcbwqWxA0WKsteB7vy8bRHE4r8LhubWDc0pbe90XckSDDAkRej0TQlmWsWwaz18Tx2phykVvwuIRzf4kt9srT8N7gsMjMs0NLAAldabFf2tiMoaaxHcZSX51WPc1BrwApMxih227qTZkcgtkdK1h314XvZKUKh/XysWYnk1ST4kiBI1B9OlfTjB3WHzTAReFLofsGtikwpIXzQBc/gOjz2Thlj36WN0sxyf4RmAFtrYt64fwm+ThjbhlmUTZzebLl4yAkAqzJSfjPBZS2H/IvkkTUdVh0qdB6EuiHEjEil5lk9BTPzxmoW4Jx543hiyy4ASdYA2DNoprsR9iwGFwFG3F2vIROy4L5CZrl230+k733JwboSNBKngsaFPtqo+q3mFFSjC1k0kIAFmKihaYSwaSF7konmYHZWmchuaq15TpneA2ADSRvA07I7US0lTOOfKrgxhzRl0uJihcEZhhYWxObjvNTJ/5sR4Aa5wOQhGClGLb746cJhQ2E6Jie1hbGgWxUH7YSKETptrTeR/xfcMNk2WM12S0XElC9klR8O7jLYekEOZdscP0ypSdoCVZAoK+2ju2PHE869Q9rxCs9DVQco4BriiPbCjN/8tBjsah4IuboR5QbmbyDpcdXVxGMxvWKIjocBuKbjb+B4HvkunbG0wX0IFCjQKoNMFIKcJSJXtkP3EO+J16uh4img0LQlBAOYwBLupu5r1NALMo0g3xkd9b4f7KoCBWHeyk24FmYUCy/PGLv0xErOTyORp8TJ5nnc2k1dOVBTJok7iHye9dwxwRVP3c7eAS8pMmJYHGpzIHz6ii2WJm8HMTPAZdA4q+ugj3PNCL/N45kyglqvQV4f/+ryDDG5RPy5HVoV9FVuJcq2dxF9Y0heVoipV6q1LyfAeuMzbsUV+rsSBmCSV+1CdKlxy0T0Y6Om0X6701URm2Ml6DIQgJ/3KO6kwcMYRrmKsY7TfxWhSXZll+1PfyRXe9HS0t1IKTQMZL7ZqQ8D/o+en57Y9XAQ9C+kZYykNr0xOMxEwu2+Cppm69mQyTm3H7QX6kHvXF201r+KVAf354qypJC5OHSeBU47bM1bTaVmdVEWQ+9CcvvHdu8Ue5UndHM+EeukmR82voQpetZ7WJjyXs+tPS60nk09gymuORoHNtbm0VuvyigiEvOsyHiRBW7V6FyTCppLPEHvesan91SlEh1/QEunq+qgREFXByDwNKcAH5s8/RFg8hP4wcPmFqX0xXGSKY087bqRLsBZe52jThx0XLkhKQUWPvI18WQQS3g2Ra1pzQ1oNFKdfJJjyaH5tJH6w0/upJobwB8KZ5cIs9LnVGxfBaHXBfvLkNpab7dpU6TdcbBIc+A4bqXE/Xt8/xsGQOdoXra4Us5nDAM6v2BNBQaGMmgMfQQV+ikTteSHvyl8wUxULiYRIEKaiDxpBJnyf9OoqQdZVJ8ahqOvuwqq5mnDUAUzUr/Lvs1wLu2F+r4eZMfJPL4gV5mKLkITmozRnTvA7VABaxZmFRtkhvU5iH9RQ1z26ku7aABokvptx7RKZBVL6dveLKOzg0NC7HAxcg5kE1wuyJiEQLOpO0ma3AtWD2Q2Wmn2oPZeDYAwVyEpxuwDy7ivmdUDSL95ol3h2JByTMovOCgxZ1q4E5nwwa7+4WtDAse6bDdr27XgAi5Px3IWbyZ/vRiECKwOMeJSuIl8A4Ds0emI3SgKVVWVO5uyiEUET+ucEq0casA+DQyhzRc8j+Plo0pxKynB/t0uXod1FVV4fX1sC4kDfwFaUDGQ4p9HYgaMqIWX3OF/S8+vcR0JS0bDapWKJwAIIQiRUzvh5YwtzkjccbbrT9Ky/qt5X7MAGA0lzh43mDF9EB6lCGuO/aFCMhdOqNryvd73KdJNy3mxtT8AqgmG4xq7eE1jKu6rV0g8UGyMatzyIMjiOCf4lIJFzAfwDbIfC72TJ/TK+cGsLR8blpjlEILjD8Mxr7IffhbFhgo12CzXRQ2O8JqBJ70+t12385tSmFC8Or+U8svOaoGoojT1/EmjRMT7x2iTUZ7Ny02VGeMZTtGy029tGN1/9k7x3mFu63lYnaWjfJT1m1zpWO3HSXpGkFqVd/m3kDMv4X9rmLOpwEeu8r6TI6C2zUG+MT6v90OU3y5hKqLhpyFLGtkZhDmUg/W1JGSmA8N1TapR4Kny+P6+DuMadZ9+xBbv06nfOjMwkoTsjG0zFmNbvlxEjw+Pl5QYK+V8Qyb+nknZ0Nb/Ofi9+V0eoNtTrtD1/0wzUGGG5u2D/J1ouO/PjXFJVx6LurVnPOyFVbZx7s3ZSjSq+7YN3wzTbFbUvP8GBh7cKieJt56SIowQ2I577+UEXrxUKMFO+XaLLCALuiJWB2vUdpsT+kQ+adoeTfwOulXhd/KZ7ygjj6PhvGT1xzfT7hTwd6dzSB4xV70CesHC0dsg2VyujlMGBKjg5snbrHHX/LNj3SsoLGSX+bZNTDDCNTXh+dCVPlj4K8+hJ/kVddrbtZw26Hx5qYiv3oNNg5blHRSPtmojhZmBQAz8sLC9nAuWNSz1dIofFtlryEKklbdkhBCcx5dhj7pinXDNlCeatCeTCEjYCpZ3HRf5QzUcRR1Tdb3gwtYtpPdgMxmWfJGoZSu1EsCJbIhS16Ed97+8br4Ar1mB1GcnZVx/HPtJl4CgbHXrrDPwlE4od8deRQYLt9IlsvCqgesMmLAVxB+igH7WGTcY/e3lLHJ4rkBgh2p1QpUBRb/cSQsJCbosFDkalbJigimldVK7TIHKSq2w8mezku9hgw8fXJxGdXoL1ggma52kXzjP78l0d0zMwtTVlt0FqnRyGLPGEjmICzgSp7XPFlUr7AeMclQ4opqwBFInziM5F8oJJ8qeuckGOnAcZZOLl1+ZhGF17pfIuujipwFJL7ChIIB2vlo0IQZGTJPNa2YjNcGUw+a/gWYLkCp+bOGIYhWr08UIE709ZEHlUoEbumzgpJv1D0+hWYNEpj+laoZIK5weO2DFwLL6UBYNrXTm9YvvxeN9U9oKsB3zKBwzFFwDgid5ESMhy68xBnVa55sCZd+l5AnzT8etYjIwF/BGwEx1jjzFv32bk6EeJulESARh8RZ48o7rKw67UZpudPa15SDnL8AL8xMV2SC0D1P53p190zhCFkMmEiir2olwxcJppl/kLm6/0QSUQLNaxi1AC3Pg1CTosX2YQr73PjEIxIlg4mJ62vP7ZyoHE55B0SX9YrrrCPtNsrJEwtn6KOSt7nLT3n3DLJTPbLulcqQ1kETP6Huts29oP+JLEqRGWgnrqMD+mhCl1XCZifjgQ39AeudE8pyu2DqnYU3PyPbJhStq1HbP+VxgseWL+hQ+4w1okADlA9WqoaRuoS7IY77Cm40cJiE6FLomUMltT+xO3Upcv5dzSh9F57hodSBnMHukcH1kd9tqlpprBQ/Ij9E+wMQXrZG5PlzwYJ6jmRdnQtRj64wC/7vsDaaMFteBOUDR4ebRrNZJHhwlNEK9Bz3k7jqOV5KJpL74p2sQnd7vLE374Jz+G7H3RUbX17SobYOe9wKkL/Ja/zeiKExOBmPo0X29bURQMxJkN4ddbrHnOkn6+M1zTZHo0efsB23WSSsByfmye2ZuTEZ12J3Y8ffT6Fcv8XVfA/k+p+xJGreKHJRVUIBqfEIlRt987/QXkssXuvLkECSpVEBs+gE1meB6Xn1RWISG6sV3+KOVjiE9wGdRHS8rmTERRnk0mDNU/+kOQYN/6jdeq0IHeh9c6xlSNICo9OcX1MmAiEuvGay43xCZgxHeZqD7etZMigoJI5V2q7xDcXcPort7AEjLwWlEf4ouzy2iPa3lxpcJWdIcHjhLZf1zg/Kv3/yN1voOmCLrI1Fe0MuFbB0TFSUt+t4Wqe2Mj1o2KS0TFQPGRlFm26IvVP9OXKIQkjfueRtMPoqLfVgDhplKvWWJA673+52FgEEgm+HwEgzOjaTuBz639XtCTwaQL/DrCeRdXun0VU3HDmNmTkc6YrNR6tTVWnbqHwykSBswchFLnvouR0KRhDhZiTYYYNWdvXzY+61Jz5IBcTJavGXr9BcHdk/3tqaLbwCbfpwjxCFSUs1xfFcRzRfMAl+QYuCpsYGz9H01poc1LyzhXwmODmUSg/xFq/RosgYikz4Om/ni9QCcr28ZPISaKrY7O+CspM/s+sHtnA9o9WgFWhcBX2LDN2/AL5uB6UxL/RaBp7EI+JHGz6MeLfvSNJnBgI9THFdUwmg1AXb9pvd7ccLqRdmcHLRT1I2VuEAghBduBm7pHNrZIjb2UVrijpZPlGL68hr+SDlC31mdis0BjP4aZFEOcw+uB17y5u7WOnho60Vcy7gRr7BZ9z5zY1uIwo+tW1YKpuQpdR0Vi7AxKmaIa4jXTjUh7MRlNM0W/Ut/CSD7atFd4soMsX7QbcrUZZaWuN0KOVCL9E09UcJlX+esWK56mre/s6UO9ks0owQ+foaVopkuKG+HZYbE1L1e0VwY2J53aCpwC77HqtpyNtoIlBVzOPtFvzBpDV9TjiP3CcTTGqLKh+m7urHvtHSB/+cGuRk4SsTma9sPCVJ19UPvaAv5WB8u57lNeUewwKpXmmKm5XZV91+FqCCT6nVrrrOgXfYmGFlVjqsSn3/yufkGIdtmdD0yVBcYFR3hDx43e3E4iuiEtP3Me9gcsBqveQdKojKR//qD2nEDY0IktMgFvH+SqVWi9mAorym92NEGbY8MeDjp553MiTXCRSASPt+Ga5q7pB9vwFQCTpaoevx0yEfrq9rMs3eU6wclBMJ9Ve8m6QuLYZ58J41YG3jW/khW92h6M/vbFIUPuopZ6VVtpciesU74Ef7ic8iSymDohGeUn4ubT0vRsXmbsjaJaYhL8f+8I5EiD5l680MJbxX/4GYrOg4iPQqpKp0qddSu/HKtznHeVyxgTwhfEORMCwnaqetVSzvidaWN9P+fXtGXfEP9cTdwx2gKVfDdICq7hecgRhIs0qlCt6+5pGlCc6kWoplHa/KjP+FJdXBU/IDoKMxRjFhSYkggIkhvRKiN/b2ud8URPF+lB87AGAwyMjr/Wju2Uj5IrppXZWjI3d14BdKE2fhALyQPmHqqA+AXd2LwvRHcBq4mhOQ4oNRWH7wpzc6Pggfcbv9kqhLxrJKEaJqA6Rxi+TDNOJstd5DoRVCDjmVspCVyHJsFEWPg9+NA8l1e4X2PDvOd5MPZAGw6LRhWqeZoSQcPf9/dGJYAyzCmttlRnx0BfrKQ/G9i5DVJft9fuJwMi3OD/0Dv1bRoxcXAyZ0wMJ6rwk9RjRTF4ZK8JviCCNuVt/BqQYiphOzWCpnbwOZt6qXuiAabQWrS4mNXQ7cEErXR/yJcbdFp5nWE1bPBjD0fmG3ovMxmOq5blpcOs0DtNQpci1t+9DKERWAO53IVV/S4yhMklvIp0j0FIQgwjdUptqmoMYGVWSI5YkTKLHZdXRDv9zs+HdFZt1QVcdlGOgATro3fg6ticCrDQKUJC7bYX50wdvetilEwVenHhlr85HMLRLTD6nDXWId4ORLwwe5IXiOhpuZTVTv+xdkTxJofqeCRM/jcZqQlU0gFVTlYlfwMi6HKR2YG4fQ8TOtgR+yV+BMZb6L5OwDc/28/xdfD7GXFaVA2ZSObiIxBwT2Zev637EuvpM6rxcogdM4FJFa0ZhF7nrqtNsqWg5M7hZMORpjd4szf/wS+Ahs1shY54Ct5J1dOBO4sdEtSnRc0P9PhgyOCt6aQW98R22DpAcNTDe72AHK40vutKTPfpokghRPuGvz0dulBPKfC3O4KVDCyWrJGO7Ikdu06A0keKlVfi0tGcpO0NhzXEh75NHyMysAMV19fq7//sPC0For1k2uFEvq8lwrMAfmP7afR69U2RqaILHe7glpc8HmVf87Qb2ohsw+Di9U+ePdHLecS66MhB/0OwdcXR5WBcWTZLGq/kiAaT+bzkjR8GIpWdv6pfIgQ+Q0xdiKvo+gNB7/Nf9knNJGxnh7LeZEFtMn517tNc74PPS0M4K3I6HHZqNPA+VZcBc/g5a2ARyqKrJ4Z3krsuA+VOJJz2KJpBMgCCWFln3u7k6/q3DETAubKG/pt3ObaNT0NI0Qug90L2ip5dHnZJUjPTvK5E96aX/4mRU2u8n8kh6MKbY7ANBro3huF06U+JvfyELQP25oIaj+n0ITQ4KT9rXZD4EtBIOj95fYNldDN3io/VMIvWNj9P/b95WEMq8UAVfG2XG0N6fSYdnBEC7sUEbatbDICH9qA8TTuW9kEt9DlFOZFP7bdfYLa/khSY8W5K/AkIIAPXtMvyVKyESjKx9nfragssxC0jFMVY94d8lOAwRocdS/l/P43cBGa3IqDa0ihGPcmwS8O8Vj16Uy55rOrnN0shhRJZdW8I7F0Q0KeHc35GFo4aJOFc25gNafBu1V/VO0qS4Qkb6wjRrnlepUWjtYyaDABZceValuOMtoDdeIITWKOJiwGPpB12lQgwkmXh9M86podb0D117mNQ8ElluFvbaS8RTKQ6lyj88dUwoJU/ofOeubhoXWBF8eNumkVJu+As3ED/AvLlrV91UowIWI2m8HBG+a3k247ZKAGYsOcWe7fTWqL8eqwM5ZFuoXbeugPKuMOAtOsN+4dSwkhrSAlfGNTzFwEmCNWtzpa9CgPbYNcmoHtO8pj8qMvlGET6nrkJoQ2lp5MEUV1E2A4ZH70JUlCLXvqTIpZlzyxdr5p/GZiD1/BuFOGbyfFzhuxaC/l3lC2jjt6GNRBa06AqqPlYtdA7kiidYa5Qi0/XpXiMDyMXNOj3kmJEaXufW0GO8+DF8OoMULX1vvjCePKNis4AmxQKLCF+cjf/wyilCJvuiyLVPSdsuRTPZ0AhpdDF/1uFmDwG7iP3qYwNsKzqd3sYdnMolCOuQOIHWy1eQpWhuV+jmSeAC5zCc0/KsOIXkZPdiw8vtB33jEBpezpGDBP4JLY2wH1J7Fzp8y8RICqVd25mDT2tDb/L1mh4fv9TOfDH5dTeATqu+diOZi+/sIt18hiTovPsVQVaqXLPRx/4R/uH/86tBMcF+WBkThKLfblcVCIECc8DgNRVX97KdrsCeIK+CvJZMfwrftcDZDZyp7G8HeKl7bPYnTKX88dXAwAyz66O2chkPDHy/2K2XcT/61XnlAKgPwtI8yP9Vu45yh55KHhJu93mL4nfo8szp/IyDjmFHtSMqqoWsj8WaVhbjXgzZxcqZcyOe7pUK6aXF/Y32LnBOt0WN28UmHRiOpL525C63I2JQPX8vvOU0fz2ij74OeJ1Apgu3JRObfdo9xGDpp7cv3TdULEfNS6Gu3EJu7drBsBsogUqUc6wAUW3ux0/1hLVI/JEKJrAGm8g72C2aJSsGAsKFW4CBvBXVlNIKa5r7HvT1BeGYBfxTR1vhNlFFNN8WQYwr39yT/13XzRGiF2IsfE8HcN0+lN1zN/OnzekVBKkFY11GgrK5CLxrE/2HCEMwQb9yOuP2rTXiZzTEETp/ismFGcTWmbM9G1Sn2D/x3G74uWYZY4rgKB2Zo2bTKS6QnM5x1Yee66Y1L7K44AyiY5K2MH5wrTwxMFh+S8LzNQ25z6sunWZyiRwFIIvSnioltUXNiOr+XMZ6O9h9HcHxZJkfF0tUm6QkU7iJ2ozXARitiL86aqVsMOpmvdIBROhUoanPtCjgft8up3hAaKpw9Qs9MzYtBA2ijHXotzarkV3zKEK0dFFQUwT74NgCmGGuSCEDmFCezXPC9BhyGhmzNa6rQeQQz+r9CmGUZjIQEPsHwe86oCOQhWaHERsv5ia9rZvJ//7UXO7B329YUkLLAiqpLRsVV5XpcfdawlJqi/BVcCqO6dr9YJTFFRMVGhfUbB9YWNvYPY6RyaydAFYq1YIBQxuNAGfYWLMAHtt2XRHoOKCLz+qf5HCVBDOPOktQ3SdJBfxUkaiD585bmTzMwU3oeXUHZ55EC99Kz9kk4ZXMIENwVVpqW2JmGIcUiutIMj2KkpjE2QD+dIZUCxcX57kH7hiuUPnKCTdaw4KN95XPeFRvMcvo5L8LexWqvaJPECzwXCs/4XPAlSMpWUzBBjK3pEnkbueMkMJQrYcnXf7PjbAoJra1VLX4YuscQLpaeYWbT+h24hCFrfcHjxxx6WTSe4AGY/KHRZCQKqTuFWt0D8RmGWmvXSdg1ptIefYPshuIVZT7CV4Ny67fvjJugy0TNYHqoCO45CB88kxrvIsih19DqjD0UqiJsTFPcGW3P/ULOG3nb8CjpgVTIoa5nO9ZYEX4uEHu8hLXrJPjV1lTQ5xTdZVagg+Wj8V0EE4yPsTc345KM6lVXqLiHtm+G6edC4GVEiPgd98g+twSYm18gCsPnjqlLcFm9e72CLJbYD+ocIZOxuVjrX6IKh9fh7WqdIZ66x9PWkDGOVVGkx7jM76Ywe16DX9ng205kg5eq+R2q2MguTJxYv/wWHliD9mOYpzZKNXYC3Wr4iBGkm54hBwkPzFhiX/VBHdVH/KJ1ZIMOHxIN6arKdxrm6EBsgwDt0mPe0MX1HRUMq8ctcmysU6xX0bzM1J07kAvq33jw1q0Pq2cyMWme8F7aVkfhzZEFdyi8fVBQav0YZqvAjZ83WKH726rBx5Bn7GHFthR6H4lFsltu+jWmsAibJ3kpWMG/QbncU7n9skIBL0MuXXtj9sJg+4Dl0XhKJ1LcrMydaIgyrgZgScP4k8YQvcsBmD26X1iYXKLzMYfZn2IfRjznsrJ1e5cnl/3a5xiNoI6n1x1U36FWckJbyx+hiSZg0QqAqeeSvzFYMlZ2REnO/a6yoQhu7PdHMYEPFIvfyGeyCU8e7rpju4DrlOhszj9rOIpNsvCkuD+TLyf5J7D/wsPkBpscFVI1q7oUSU9bN30vH5AqnO7bsf+9rGhtVjOJQ32H9hHSAzR2ape4L0Cz4WxaySm4jvuGXwkFp5NMMLrgZ8LdA+5uLuyxO5SMOmJNDBcbbLefv7z6LyxBwltnfQLd7qqpG1MmNcoLUcx73BkNF/xpdS0cKd6G646ntChXSeTZJJTFYGw39T7fqXDPKoG2cF7/ZcTvME42gXLVjTqzAER1Rt5m7GYsh0X0+XgOeW9MJqE5j/rpGzY6vUu6ACcCTzDMdZHiWELpDnvgE1hmztLcSYz0MtNyUBLqvylUJJnJu79Sku9NMHCTkgqozTnhMFfduV2NLCSYvAI5HUvQp1h/M02vKFD6eosIkGTg6mujUo1W8hy5Knf/erkBQC9LzNqPAYCgR+hczgevta88NNqSlBZryq9QNeUK7RpbvHjoNhUKAAeNYH55LeTW36KyFaXdAkBvyNP9xmRuBokPi2OhqDby6IZ61mwfzG+GmACkS+G80A4WGON5izgJWeeDK91jzusfOi0RmEsVJXwbVUr8u/J2LCQaMnHhi+wJTEPN9tS2b6W4GRGCNmtjAMgPsP357nOeD3H2tcDAPu5xQBKMHf/j4ZhXlkvvy3YmBJsjsd4pSOlfPZCnw5JvzxEXM5JIc+E2mU4CgB0mdJnH4NEsCHYNeVRDXFNuyZUE4nuvaJf1h+11AWLdAZ72D9XNRcxfb2+XHZN/SN48U7yl+sNZhg5gn/PD8wkBtnRj1zBUPIWnoMP6yGUEEzuT+VaX3x2jEIZAZsr3rs9wCfY1Ss0EdIFFzBbyruUup4EPanbSYew5tf16/ZWVup5iykttuqL4xoC/jdZWsAZeSfDSd3fP9kbyAFYXkf0Q2lmxaTkKRZrCo9XCoiUG4yP1URJ5G7+HSOhhJp0Anz0N07QZtyFUye6rcgiOFbtyoO1lkuV0iQ602MTyFK9xLqNHtNy4cJaTO6hjtiwNynVc34ZA6H7k8ai6S6eF6jIG0xJx+JfP97lzuCZr8vU5SIzImaNpiQhyvDbz23//PJcOk7hD4iIvJzfIgOGIR6ZPEJpWHZQoacbF+omeHw8aWHaNOfaIyGeG4lEryMfhtNmWh4RAIpn8dLs7ZE2eTVDwK++xDoSUgh47WDmKlZ/k6OosEUoQjk7Q+Kp7OxwgMFShAv6z4pTW8loVj2+qXLQ0T3hmIue8qHy1o/HXjm089m71t6mrrUyDftqMYtmfvQXKDlZ+K1HR/FkqPSqcjGlcPPIwbMw3wIFKBdVMJ4pFLt+oOIkWZMw8pkoYZ3byw4LmAF+7BdicGXFcb5PWtDw5XNNVc6eB9dv0rAEpgr5J+bLr010bpfGw+IkRoxDbkDFmQdEQUSElP5bViLo1ur/23KN0jEwl+rGC6AUMKxHcv+T9F1Ktpn8jSSrKxJnVkK8UD/tH5DN6nXB8mjUdFU539e9ywLtLYCwmHYVEVqnFmdubduaSd1ivIo4pTsX+mJcOAkrR1D60RIoocCBIdwJhCBM1rOE2XSlPo0U+khALvw+zfxYzwzd4roWlLJkZheFRR8QB8v4USwmAcDswUZ2P/7v7Xa51Fs7orYebYyww4YW5869Y/c6Kq2eTR9HLSjYuChTkXaDygoo8nz/yJ0KzfX8oowaNAwz8HvQdlLU9V9hjqYMURyYvPzZ60G0itmUdZwB+sY6rUkMAZZtWStbDFmnk/dQorhwr3121XQWffrK3as0g29ASwxbsZ3dZAq/96b7/XWckbjmo8+jwdE680DzoEUUivnBgowMuBQxHXoGyp+w/cSGY88rWtmwoyNNIvChs/QsZRnbdV7y8x7t2RkliJV/j8e6qfctrTsMV22zoqgQuTSNFh7U7p/Q49L0kygXNnEYXCBDgi5BeNWxu7VjULcUHI+lGj+OTCEATzWrDmaynq3wT9IAejtvh3esCu6sEu9JOsXxMDpqxm4Tzl+pt2Wa5Bq3TM5TKH4N7KLir8FGIPA569+uJ1VEL3fW8Jyigz/nEUjAVYrdCWq2MnS4hQVgcvXq9aF7Xke/k++rAtIQqckPNwjKrV2t7HCOrA1ps88Y5Rw1Zp+9itnB71j8tNiQc7mV1kUCQXkoi5fOsq1uC6hUPUL7Z69NAM6lg0c/aeiifHoi35v+pVBh7CDM1XfvYpiK5JIbIQFHafmnhHfRTnMagKcjdE7zzgtxkTPKVrObTySTT51g9bB5ro/dzn/sB24fNM2LGJuRQsmC49PLi1jTRfZaLpo8Txxxczij5Pl2vur+S1wQW3W5qyVcIUySZHtFDQHv+EYDoZG1T1J7D91vEIV8dHzUBzW1UyuxRbP+M/CM/vsas6RzmS5traXnQ0Jzv9hYXxKHcs15TQCP744XsLjzFjILYURXFnhM+nnV0iO6nwls9TR4tlz1J9/NvE8FGg5mgpZA4htS05AK0NnU2gxuqf2vjCyWlm3ypKvaX4vxh8Um1MHGB2NTeAFhbDyGm+5w2zqJAWxVlj6dVePb5yR+aMhuz05YubCQJ0BOtoYQ6PoDoW5fCwCtXj5SHvCgL/3B5z2mcXWaRTf8/GsFAfX/ntdWZWFc2xg8MJeenwZ4dZUToce43If4zVb1ex3BMAWGhgkPwR5EgktZhW3Yi+nsnZTUr9FYI160YhAraB0zMV+ouHz6hYm25/ETDM0MTmcypoGgZISSkfwYAQaHGY45yZ91K4A4Mm4fnbMk8GTc4orypT3NLBqAxYdcY/qCH82PpIkmVOEHi1NoYaUymuImLLcib5pmd2MHTB3JR+4rLdRc3gtQ9zeFdciciRiWviu3HkqaLSxJeI2rgc7OKQslItumACQow89elXmi4P3gTZeCauvMH5nF4VrBcLjjwGD+KlKqe/RWIEgT2wGqAgSuL6b+RTTPnQZzxZ5y5HQJkEEKJp5NfoB8hJBM8qn6xbOFtyzBjVBrwSS1zCJR3lEc9ODQ5Wu/xct9/2Q6qLHnmNx6XwZus/i8rEd6UsVxGtoDrm+Br0L5oUojlwdcqyVV4PIMsR60JhZwJtgX7izQWj+GOeF9DA8Wexdmv6DWjgR8LEBp9YuPAM8tJDu3uCumNqHnF2ATYX/tuVO55OgQuiUhmDmJbF9jJyifBRtxOVI9DCNLUY71IXZYTuiYcnILQ/XHuVJ8aHDStL0N+3eYNvXwHi2vEiTPnBqzsC4TsPnFVnYY042j5i7C11AVdBZ1pGSa52jM9dIL119rry0mgGxFzI8xPs+7bmMfYKh37A4HtA081olG1m9S4Zch2hoNCGVvVhd6UL7C2d5hKIBHoB+Uxarq/4aQXhh7IWjSj+ca7Vhqb4+ZwY3nHXh2S9JH4XZxQojbe/eINxYlozTYtT2rpU/xbj+W2hXjFQ+z+dQ8wh9751MP0UpjutQdxz3/FJYAEG5BF400JXWCBs7KrCRf/l+F+d9EuwVk6thOPDB+HNS9iWlLmDgXvY6K0vgiyoeA3An+jWufdAG1suUMBuJT+/w0FNJZbObUT8c5q5WtQxASQF6E+/u8UwVBs1eo8jTamCrcdhZJlADJbqn3crcDHQlBQNGq7btcGKiJXW6q0cn3F0xzf+k1JJS2testB3rx15ZPTDXm8QV5XE2qxBOdM2n6t5YbxyNOmEdsHx+hMp+y9pWkcgw1NikeXuafJvzcjaNwE1Ad6gG79S68aO7jWpKgBETYLmV4ONHhBk7Be8tjf2WVvWMDQvQdOnk448yeMv1tQKU1xev0L171e/qxkMZbmkfKnd29XRCK2hgNNJhwt1qiYWZGKz7Di6K3fGDT7DO2YQ7WU33svE/WKGbWQEvzUV2w+VNYDocI4yxQ6i3i4zU2TjmjCwu5Pk+Ja9HSwLpEoUswq3tFJ1jimthgMXd7KjSl6Qd0K+vxWT8G4/+xITHsWDGSfQTSdFQth5uVVfa8wrkDZHTGVgpJys2ik+3I0dSf6TNo6A/sVptyY/kx1hdAWKPI6t/xj6s+fPMU3hg1vkEB0RRHq/tCy3KUUhzU/d0JKxTyjvUms5iy1GbOFco0NA4t83SK9sBmtLWm4kOLLflyxqgQYP08iyXwYXzKnlQ6VTipuaspSJ9g5H5Lu3eLMnPKbhcwuEg0VZ80ppJWjUnhS3rL35erzysp+fJhxsUs86m28/UwW+IgrS5Y0zWaxlFJ8xML5wk8sg1ragF+eNajyI0Y4mwStxt1RZH2BjaAhvu+SnNNIK88thEgZEsoHv+ii+OMmXJL7dnAiINVDz3tCnqDgpQX9OguNGgZj3axcjq1UgxDw785yNIpqNiLgv57399jVmJ0/RStNswaFIs6FtnkilFZldxj6m562jL4p5g3Y9XCiXRJX6nq2PGJFifFR7EyPG4jDMnBM4t+O8ZpEp3th7TCxEw+ZG4afHl4sNFaqxyLh6+979tt0Aq9BrqI+CS2U7HJoKiGmyVU1lFa3/0O5mNC1bzRgNMy+GXyifLwJP7FwUSUmxmVRpn+gnXWoIuswPutsiciurvN6lsMG7yqEc2Y5ZI3jrPgPq0xEKPZpF7teJa0TQn8BQL4Th+hjv2ByfwKookyXEmj0d1KMcsmfKaeKK3cZZubiYqmSCrnGpYTwgPk5itKucVtjViuswQsDR6TuyGSIHYvlz7wkLg1Rr0K9kV1o8RgABlhbLrN74cVWJW6TnfXN0q12JFMpUbEa8t1+j440FA+17o8qa8PQ9igkctVROVIfB3jU5vtGm5pYYHYSDvU2TEc15pIz19ka1q6c/7WXfF8+POkApdOw7nn7Kqz6V4tru7NXgnA/u0g6+fPRT3hp/QrDQwMsjwNCZxdWrR6pgCBDJNc7/KAlwC0UZ4yWQs0KsuwbbOgcTxQPK54wiXr7s+221hzZ8RVxfoRUKM3e4lpxHC83JllxlrV760tl06f7/65qhE1jhMfivAUXIXfRMe3uY/G2TpWYzDrw5Cm5cS062Bx9lhHq9gtJp8xZwAtSdSuW/Kd7+orEAiswA76N8ezmVGYgNaYlQ/xk930LAWAtKVBC4U6R08L45IohB1kFia7XJs0TcaT2zBZoLFuOGu4iJaoAnfjL3uS6gnRH7G7A+aT6ETlmkYUfgrBuaSLLDJfhPJe01PfN0oqBTeQURasl3N8BZiQSgdr0aDv3hPTiog4NSyfAUyy98WP7dnTDWQTY+Qwzgk1uxwRqHl5MpC/84Cuw1TXfRlgJrwPop10kCHjmffnFdxCe2J3R3J5j+3H/sZn3IUu3Suy+I+dAOMWvzwExNR3RRPVelZAhtarKlXPWNjPRIVP4JsAFSRXs3o/fSYAPaV/zP8q6DltH47/rYhCLdy/LrpOsbaLf09eACcClJosNefetNElkSFSuCgeY7oTAAl+8Y2zOXJb/bgEDpoDXfQqc6lnlBr/WsmVznkBS1M7ufiqpxvKXjwvR4WxLbh5NbMNy8LsnX4UiuAi8XonbSUcVZKQOWBYUecSOMj6jMG8gHu7WNreBHY90lV7FocDprSrSbexkAtMW9KlXcnrOyLnZdodGYdxz8aw71HztIqLhRdCOB6NyzHPoS2hDy6wLk0I5Jr2t+U0A+A7EsgSn/Ih03A5CspHnVF4MOic+Lck3m61Um+GHDEe4DrHBhmgtDlRQl1XJ/V/VumCHtUDDcZCkgjVMBOmVOGYW0Rcdi1ahdjhBcFlfjA+5cRjBop1aNDvdrf7CxkLVgxiCxhRctW8wczM8+kVmIrGtkaHGlr8y2D098HXE23r7fnJFUU68zyeyM265igNOGPzFG0dIgUDWN6S3ZcfMERJdWVvpGhVEHXNLeWqHiTcF3wOt0FbJY4XHEpmkoG9MQPJJ4ueQ01+MB+SR0rCSGzlE8zod19q75LlLWgzogpnJoD4gPxUYcX+Gpc5Ly4nk+Zm8LDXcNR7SNVxLh6NAcx8ekjb/AC7ADlRnfuHaHJaBodZr7RBX9FLTvocY6kY8bavdAkQicE9bbwGLkZu6whTCJ56lOvM39ijehpTOFqR3V53nQx4hfOvwRPU2y2w7UU8yiRbcyaX6jGJ9CRvl9ybV1tebTp5MMuMnwLcx/lven0w9T0atJuiUE2WtYGiVMaP3EchABl5AsyaCpu/BKAWDFvU2vaCL2/fJBKCKLjxG6xzT4Mh4wHhH3/EqsGSoQAHu2wbHmXHj2LvoW19GXDa2oyeKRwGG1PU+S7mE/S+UmjHiDF1oqJ0R5QsdjAZYN1MzpNX5YDqWYfhfdjAXyFQaVyGKkp1oEGTR8MK6jaGfRDFd41u2Ex8ac8jKPYu3pXsk8gu+m9tr1RVzTTuDsACW4S1h32yFHX7qpXSmA0QVEcR8W9j2Juu0pcYqTmdis88VgT3gq7iYue5Hx/3K6hFQa9rZrNSDcjaSQlNn4LSqs20bypnKqpzvnnxjMdz5StbzvoAJKgVZa4DLCVoJW765/KyTF4s4YztmAT1c0pTmKJHTpa106FegDo8p2zD6uOnwpYi0vJlRMDe9wPT6964UfAf6lq3qWypUOx9q6BbKEYt7K3gWMXDNN6wAm1fNnSOnZ4JkbPq7jLQrl0wL1V7QwO/sXneKGfTgUL28I5iPVG9dA2gS7Ki005JUR7Vmw4gX4TJvy1WS74cIXD08LCF5obqcZwamuoZ+FPMJEck0TLHjyH1baPr55/Cy0ptDfRJ7d89pbP48tLMHG5dO11Z8xSSpPGQSgXDWmpsNsmm+MvxJjMCi7OFDHxxpmTtjgnOCq+c7Fi1DybfhAntviKccz+sj+OPKPYOKeYYPLvq6MpUx/chSvBccg9dfbeqetQNCs3eiCFZTU1mrDido/mib64STMgsa+IKLk9PyxGGbVSQB9GsHto6f5prAFIbRDSItDedz3t5+Nn69FFS0nEfmkF7hKBmNVce5xv65USKGBoHYxJyutSGnRIq7vMDsAMvirOEJOzNi5Kt7fypuSU2c2Npo6UH5jMOkePH0TwgpammO3Fb2FX6f11309z/mqRmQ949HHRj/wMzKNx95M9pwKf+UQkMEwisL3YVotvHhCv4y00Ui0Ql8dR7tGqFcSdYtmoAOuAodkBNs4PZSjAAF7S/szwLddFMdCyB/dWPgFUiUE+WmUUCjYrKfJLQfNNpQ4NKaF57w7Kp/isZVwQPUJyjJavN3fQNKU+F74jVBJYQEcEdw0Niinyea0l9PJ1/AcTm/LI91RZjDvLI81pnat7RKU2P4/TnIAa3hIEfeg4iGQ+wTDlURK6YjNpN5s5VkQW9w7sDYKU4XmjyZsCQLxztqd4SDQvLyuPDhURAJXKfR1c7tq3mRu4usFHPqz7HgS0X7kNxiWWR3fb3uVwbgKpmgLYkwKrXKt09COw4MjhxeZlDXKy7nNLHXAIKPtferWQnZLboonQXK81x+BB3oUidBehK1swSXxVbscj/LsfONu/xYEXYPM3aMqIYd+2hAnFvDHbdrJLhGEd3sG5PyxqhzejhQJo9wauFK3xmPYqxB99J8zYU9/yzrEZNzzbvPoR9vUlE3Ha4zspVDzHHffPZMJ1VLZkKqGCf8ZqupqMt6T+NRPfmPm2xeDgvzMrRJEL4/zzlu7Z35smvzbgeC25VP2CUrZkRxEi15A0769ojdO1d7C9OG+swj1ROMM3NgKdeBADoRMeJkRZcZ1FbQu6C0BS9NNSaoxtFzYT4lX7+PQ7BKa84yrN+ujVVef+SgnEie1G0N+eOtbZF/UU+wkeerWjloYqFiqo0vBnmxh+TwNMo9I/8lfU2XTCT0K4OoWE08ipyNHjxHvfhY6qa3x4HzdQ8+jkiO5+j91YkihS5memfpFREHP/2veN5XcRue2zCVuAub8V6vDlOvyP+PBm+owyRhMmng5wwGGIXsOkQekXrXpE/6dFjkHwwoFoj5bIFiqp+4wHpSWRbv2xGrRpd2c87FzMP6Hfj/3LWIBqFiNOAxBw+AAP1XqUBszdZhzOSQrQS4Ein4fyV7MaGsB0VsMF4bPb4lx/foTGQRJv45LpoxDd84xCawHaX7jpXUrOdkFxx2oUvY2xqpgIvcVufwd+zAnaaVTnEyDXD7S/o/xrrk4mgTjXhcjj5Rzrbr23NmuZQvpdNzny5MCR9bwvIRIqzOZZLsstZSCDYa56JTvzxgBs20dYTtTUbe21uljlWqGfSh2bYAzOpf6UguK30ZxNXgLHs6Y6urtxFA5iLYvlue5mDONW0MOtQjhqr8fRbCkYneiDkvzHkQVT4F9v9vxh2SIGPBH8bZb8ugo/BSgXojeSdNXbBAIDsB6DUNSXnwlu/bFLaCqSbvu4+YLplwO1JbtrMf9ZUfsxerAZjB7E/zl3qwgK27FswemUmSM4i37YAVhQSocuV8AcDI/CSeCDNPavESshDQ8A/lVIrAJAMdP/rHXouiNU8RL/TIvfQiuZEb6dkIKMGGOW5kT8vO8pivWnT4v7qmwuJo52AS1r/RyQ2g/7c9ZJgmMIzf0GvJJRfMNu1utRNuLWHOm9JIMcJK3qiDtVpGCDP45W1oTTMUnMC91kYhP0GHjhCW8V38xhjHgFFBfuWMsmSQ9MvNqKXiqtUhDAkIy0PW7YSKaKUv6zctAiIk+Jt17kG6LpNVOeMvJnlVBaJSkKe0HTJJUMvf8R2zna35/yh2wNlWLzIP3BJR5aRNxkV94ICOlycI1/JYRZtzvWMNoIpQrdNvyBuBydhSwhRwPo079Xk/XQZpbhzN/KK4NbdJQV0JIMP+Y5UBIM3TTYlFGYVjcvA5yVozkimco91Fx/eo+ydgAx1gMezTh+bYxCtXPYkMoPdtaElRusxlmdSV9zgF4Np+iylun3LVxCycAFxGCFsmARf6y4I6zXY0tx81aQyalr3/ih+ZjxGNWdhItgNLdEZ/BOIJpPoAveh2bKbEFxU/M0+4xqDo3Ox8MnNn8Lmv15NJigSvJV+y2W/ZogEXNiv0/nuFzZGr0pKujOShzcdkEVlMw8mNZXZCbtM9V+mfawtLxCTvo+enFWhJcFv8LVTFycDjPGBXRQKNN+z68HJtYdpH++g5WdhQpCO+DE7Qdu6TmZgtetrpU2ZlgpslOx+4hb3aXaqbdc92LCh51er8vm1GQ9uWD9+fAPRV50ixhgc5zi2Jsg1xQVxzlaELRWJ5biyF+eCwNV0oFnTbBHr3Glm9qlGVOpoOsQC8hlNG88fxeAekkCGnHFn6i5WzyO7ShDYbZ2KM4eqndyy01v+6TFhmkxgc0dndt7EzRCcEfBxSaWZwcev6MDZcuvSZQ9CNSd4Tx25TY6UAbrhikuP1vNFfPdZhCG1pe6vx4D6Ez3zIb0zDa42FPpxWvIpEeXb7YTcfZOahSpSYaWLH/vq0F3U1KO7ZxliZpoMBBYJs91IE0bOkrPNQ/USYY0qKCO3CU+AFbOYxzKWBkIglrX34377BZ18MKQCv1KWfIHEeguSpvrNH5RQOD4LeiH2gdx1MOAKphlL41F4RpxaU4dy8xERFgqoyICQq9XmQ8WJSokwqvhQM0fLtsvyCO2PAkJ3BZg5IqoR5q/GdTLgOWPFR53Nqw9Ma5vBzZcQ4+iZgetmKg5ZIn+/7Jbi+VlViXuD9CaAUtdEmnwWTS7wZWuskVvc/SDaaKV+Jz6HrZTHo3UrAu0IZDBkXWmL+mTTjdTb1A+MdhKkY/hvFNwXj1FzUngsN58u/kTdJ3Xi0hy7efR6faAOi4SKGaiOty8lxDFkiD9wq2GW1EZEsoWGw/WzxXhWDzYY8CC7WuLFHc+x19jhH+FiLXwDIARRtnkJPF2BUPZ9+grZ3tjqAWhhN3h74w5pooRQUNATy05A9HDLnILGSCtfESoSilqtqAIQ/TV2t3KhOc+teDf5t+DqZDdB8Ob9YXyklrSO73pR0QAxPvQj57c6FIR5dOciqeHZ2LRABMROo8Jk8V6JFewCL8TCd/A5MSbXLky1cW7mXobqgeEXdFDoEydKo5oCuyn+2JYI/7pIGFAzErlHZ5hOaiT17HC3zp2HpJwsIAb4/oIoZ8x8ak43Yp83Ermq55Dg8HxKGHXbXs47sh0PzQELTGFsf5eO3lYAuJjMneoYWk8W/3tW2WLntEKBZEW4hOFgo8K58Rj0vk5KLyezu1d8SO/JcuxpOJqFUM2sxBmbQ/9qqwb90R0WulpR/Ju84bQ5/fTh7po/pbBb7AQaYNdK3fatD3K4TLHAaa66MQzp/+ZGyCjzo5OXRzJ8UHyg/YpNHvvlOpwQIOjakpLHwGV4WsLDPjEIqG23ily3LL0dlkYQxj3Xx0ApCo35zYGoGOtIclYS83MnI5TwVdQ+Hg453WFQN694DaqhGaL/dm0KncXYqXLi5polgT4DOrzD4oSVhrkh8GW2PaXjOFDCLPcn4RQj8dRGIJuV81LxMPZ0UL6zpkaebhbFBxcRJe38UiTbUPDjFWk2jBqzrBvXcKmgdDcmRyJhIpuq+3DQY464AlY42z2EM0yIK0I6b+VgpanMfpdWo7OxKY8RM5tSJv340/qD8SxrYsybMuUkF8fHj7HcvxEPC5YYrH4LW1YKg6QaeFZLvPbrHZHvi4OXLKkN8cGQO8019OKqcv6QnBlj01e7qS5evoGm53rv+VmDxxCXDiOrDg+IaPeMPrn8TJ1oReXYI3yb+4HQbikxP5TQXHk4YXPUv95+KmkxGsRgTwP71YiMpqNXp0loHZeXRp9i3euKrVtxMM0e6XAoACwNtcc6sOuhZVb1htBLudzahrDFt5GkdlwHjZl5y0LbvSHwII+qYeDwRKTTzyXaInHIM+8rc5TrjUlPRVwB5LKFpQnV8e7vLv7T7V/iJTW9h9TnRtNCSGcofBWYm5P7wZcAq3AFamEW/GMbo27ldz0plt5HI53ddWkn9IuCZY+Iy0MATUh3YenRTbVgdLYtu893SuN6EL4e9V4NhlzUjI8nOS6B99ecyC1Ot8sDahQpWHbmt2YvWGyL3S9tEVLKYs+LnghBmmSl2uPWfqPobPwBHNLW21LUjfZb7jfLMTsMp3icGO1npK/rCsUgdBVKVg0Ys+/WKuTmVJoC8Oe5h3PK1TQhbpZ2ytP9nlutQPtLAEt+CVT90DfVkn7lHLOX8AfS6HLzfHeAhu1alnl19RHKV1LI0G7RPzYgVaSpX7th9f06uo2WpxjL86i/2uzK2qj/ClHbGDyQr3F9/axmq4kJ7zZFVXVVwfiFr5bhUGVZeQJHKFAcsnqPKsb8vHyB9SpFpT9U1U7D4aS9vYgqajxhC+hOkolJV2dKAxysCkWBo3SPiPUrSQYZxOWwWCoQzbV0oeaDEcgUtqI3nq9TSmpQ688/+wb26P2CHLY1H7q5lypXSrnwnnztq/jN1o9lyvLmLyGguV0VJnDCREkiUNrZqGG06MsyA+Phd9CuFoM5M1Pyk7S6TJaHdTw0ni3n5ysAup0kyxr65lFc81NcH8xSmpp+iOEtQZrH/y01k1rGMRJAGFhi+nDecpUlnrh+qBOCMZCcSCovOPJrxjZnZJDMLdpMVu+tBSVS1nKxsYjY9Dtq1/++riVfLUVhzofIcIgQQPOqHioELxU3EpCcZMoL9laa5YlOZAMEp5apx7CphrkL+fyKbBAf8ctwVd93FTo7F5Oc/alNsCgK6lHruPROtN2RybiLqx8P5LTUZXU+Aoyz08zYHasR3U8hPDKj+6arWXR9yWdJoMn45prCSURKKy3+JHgvs2Ot6v6GbEtdCumgCttv2VNoU3KOqUwqNIWHqYm4eMijTM9VWB7umEyp7UPOI8fduHJY0W9xSCZdvc2xMjo3Zdu2o/WZKDMOSh9UmLvo45IBppD2dG++HJu8kbfFdlwuIxk2KHhgHQeNKcHhFkYGRzL2VJVMOAb0Co64wvds5CaYl9ZmBm4zuGDeaO2eI1XM4+rD/HmZyRF62SabgAe8TF43VuMutigJJMfbW2UK0azGLFbOfujnHD+GGBYmSmOQbUCOY99HYvswBQA6r9hrc2jtsUUxLVjxnZ4JnIrTwIVdWCTPtpJpvlA7m01/4tbUMyz9mv1jdN1jkiHQCJXXKg8bJ+aqW6rbwbn5yDSHBTcFXIegrhHGAjJOZI1pyP83Z3vMYTAJoo8V9IwyS+U6OVg78+IhSYHDYjRs8FrF8smHQ9h4qAYxp49rRP2d5uxLAuP72GvZaYvfeLOkMrcg0PkPuq7NsXhMFmiZa6PKBH1l+oKHI5DBLdZCvCwTPdXqmnz8gLzVRb/ixLTSdit2nrzt0x+5rDeZT+ac31NKNskQs6noKlQccyD3UxzfVZFmcbpmrfPsZD0Ve34xpKWk/E9Khn4A5yVPVq+dwnv0EyYecPqXGU7R8suTW0A6NJWweLI3iSGDlQXzMYsSWkSMhFTfyA2vTDt/3wXk+mVU6bRNkZvNnyVHYiA4tmnNwdh/RVsk/EgSerfTIf5VBmuAc2IKSeL5Nbrg3acgFj80mI8SWsc3dNAGCBLLMP89gH5UnLTKq78d9SxQH/g7DVnBh/qnBdw5CDrw/uMzcdXSxWqGIFcnQZt/1aOHxUg88MN2w+FPx/V75gy2wzEVe6G51PQIR2tZsxbv62HhgjwtlzrVREw/yzlaAiuXC26cnpvQzWXp2mOgihyPCWqq38nEadX2T7f1Y5zGxEGBaT//IcL/BsquAJX5EDbX8X1p8nLWR2yyjFRvqC/jssoCJBCDJOsZvoBfXqQSEKhNARH1YfueeKBslAwLi24/wAO1BHptlf1kQFNsOPlDvlYednrEp3a4SAz/G7LIVEsZBu0EKWZu/euB/XKdkGonP6t6lgEcCOw8mceuzvEVzyoPnMyzrqoNQXJb9C8ZCXSiedKiCgNwfNkpVlHbUgE2Rb9WFScOeEad+T+jT8XlSc8rcvkIuhAv/gxRu2eb2GonLTyokjcGF1EBpCJbhy2H3lhL0rdZIw1okA5pBg2oRfQceXTPzhuNKorTEF7t1UIgDqIo7/loxyTgbtKu29o9K9KujvCqUGyPY7upcfiZLNBVKh5uXAAZjQjhlhBp0ukmO4Avxu4xAVhCtnsOIA/tAm94U3HEuSr3wq+ZLo8pyoC9EB/q3pOzQRyCTkozmJwo1Ln/2xEbtNnS2S0NUIS3yz3/mBIdxONHxqP9FW+uoGI1F415lI1nZwK0SoPA0+flaokBGEoXgZnO4GOExU7VOjdPns59ekmDxqNhEHeAF5i5N/3W2NC1XGFjTpqLrnCECiwVkOTrLtp2ehUIaejOG6+1336YQSKMSsL4zhUjw6SQKryVRz5Ldn3R5/r8AOi02RJkQXPdvPsl/FMg96E/cJmIFLmEDzr1Gkh9G3zisG4pqM/MV6XIz+CtDUh6hmJB97VzN8jaPSS90vgDjvnaNlKky2/zIhE9ObugwrftI+Oi2a4VVaB/Mwn3VmaWjsU9NOf2usbcN/GLQMjvfeU/YvyEERPKw1leXZWWk1HXzY3P9MUq6MZq1hkEgFzds51mv8mnp1i4pQprPwY0TId1szXwe5TG+R5mMD76nGPQr7/EhQWksjsgGs7Zy5QYvMcGV5tcXJR+6hlHFIAc/M6XjkKYtwm673Bi+K1tNO9i1YBePTur4I+gMsOK7f7980mcJXhgdWdhNzUN2JvFsvXq3zZRG2V30sJtJYxj0aUv1u4/ppVHi1iHnTY3gDHsrQS8YwMX5XwZ2gcFYYe2wd7ZO9swr0gb8zf/fXx8QWKPXcK1UdJk3760B/TMlpWLCbhkqVoSTsOqzgkmFmFteCCTGhNyvFhw1RrTIWzRxq8Tj5FirvKvtkp2GAVhnZ7vnr71pyI0rKwQbVxKZuqM7GAvn2mRBj5p8djlHUsh/r/eBECptpbbjP5nFyuN4mvQLZCaxeTkDUzd/kNGLIzBFv1CElQO+xmf7Dzt1f7GM1Bh+wLDCJZlhcVDXbtPuGssdEie3lZNiWcXMTjZtWAT5MCmpq6JCRuFSHZYGKcSFZ9kOYJfEqLIcWdzpTA+Hmu+ktgSUwXVSwkaa/aHdZXh7IOyrudCBalCZpgXGRNbhN2XpEY60DXXO1Ci5ayZSoxtG0WRCC50+XtgWz7qgX5MRA5S+jzXCYy7O7Nn0ljVxiBxQNCZKZMTqi6mPfy2LZx76uyRUXHjnpJJEimflHDUxyX7fFg7iJvSrsZMH6Uv2xbfQNx5eCbx3oKycUrBY22KPmgfg/w07CDVsw6tb5VxPg5/X38cQtXI47U7MAGGjO28II12T+PjaXHlstPtkUQNn0DKkCYis+kVAkA1wyAJgYKLGnKD3nlVCarYqCkNIZbiVwO2Ydjl7N6iOtvvbAfuq7VKZLo0jEdw1YdsRaHcuJQulgb51JyELzYBkP1hd03IDcZfPg5XmNvYQSOINsCSn3BuLtkCPZRalK7+S97zxvJHiJCZJM9XP785NZ8B8fqDe/Ot0BS3PH1ptErwxBtpgfOj4d/41nrSjJQf9bV1kfdBHJxYbHILxOsWkZvoP/Z4Sl0Yx3bDjTF96xf96+6uIoQ351Ce6DeTwTnkPr20YwATlnhskWIddUohklNITCq/07zkiEc3B58uiBG6d9YAc4h/7s44FN2RG1UuZWeojrOZIhElvDP4KqHcOYbqqS95o7ilQH5ONJfy+aYiB+sPpn35HfHG3duLpNvBjXc+Klf4IKrFHjeVty02xPTNnbdL4gtkqPqMLhSgR/fDXzxJbSScqewiF1wdVoJ/fGL/nGWZfVlDHOQKD+/i/mqwXqvNqxtZeRHwoe/bodk66B9soOnZp36gdzVMRRQsQiBFf+HXjRcrRf9FsGghw3+qoN0JeeMvDJrkSBPsESDai/uVOzn2Ohge+UVdi050fdWpsjP0D/QuTdYs6QyI9xnhU8WT2+KBKzoZ7Bq8fOdKPeLulUhJjT34/EOnUloqus8+pzqNh/UdUOhgTlrbkuTfsaIYDm87u/GNIl3N53uaU8bgaBjpz0jdu1f59K4KFDtwUUeEUoeYx6DEkWKHdi7dtHhQF44lbysk7PqERrsuAQu2D5tDMl7kFoGdI8r/s8rMytJzYBU40wqeFvTl0ZVLdOB6Ya9E/f8VPbGx5MdpYqYMLMyB0QxVdnoJ+tgAQVWfH+jtOHD3PsjuT8dOTSrupuvHWRHQoGI1Qj1Hc6k+Mg84FAZ/gzl3SEzuGWZKFwuo2D3EiG95D2Z1szTqAuFRmT1nEh20tkC4ysmXx6JtN0taK1iRR62s2uNW5rSAvMEJ8yotr3UhJe22brlQn8Gvcq1I0aODaHJucQKVe6SXyfcDWODMw8xf+2C7Zx5a4Qlh7pJs550DictL4OxcDXKvVmLgVWRwb3moxv4kcxzm89EERJXCl7X/BziBkGQWOHPGF+6K5NFJYOFVv4+NyFq+OPMaSWZKoydplufY+CYyL63T8MCMmwqLTmAE8h0prhi174wnx7DHZWYuRJSYZ63uz97AGOzyI3aebclnud77znbZetbWUripe+AadLQeZPtWsF+FNiaXCy/98km137lWewyc7Gamai1Hd3Ls+KMMVh0R3NKTQ08TIClDfMKwUGKy/7YZlJHU3uW60X0r74Afh02v5MJgVOYkjmors6GAaDU7yKHydfkXYd6nEjYc76xws1LDLWCNNKBtUHNyLseOyNDgmHiJ41lXvq638RzDGis8WIniOb/pbTs+HsQVGPi6mxG+CU+oflMR6/qx3pVP+GPgqa0U0lo8MVmI1cBgSnPGgrh+J+m9TVg8nivua0EQP7xai44ruC5gsAVOp9bLsDXfHQujo6IpBmpfbbU8PDavZpTuJtmflVQuOImnRQ5kKoQz2NBFjdiHH3cF9QLgDP5vz/W5trCy22Uk+TCjXjdbCCHB3rJhKYTwiyQUf8xu6yTKtIwrbw4tzFgXDODmWYEnnpDupk3b4AP3qz4AZ2En5wi6aZV287AgCF4vH8TlWLni1E5Hd93vLxSYLBWSuj3eXGFtWyWpBkIeKu+YsBh19VeakA8OePM0ILu6dYYl9DNIK3kU1ybH+A5xYhFI/EqSX3vtNs6V5eQgxYLvu0hYFjiG+n8JzqLQVROiVa8XNQDYJtDAetPFSuEtGI3B8rnbbrNo9TJn/z3lRYq0ecBIe7a03vLESwhKOm1bGTk2kPMv/Sh9wyCOmIore7JhSFT9HIjonBfi+gcdDLfFt7dpShJmW1gkcXmitWwm1cC480CraHm/or2MHphB9Q1bmt/SBXFqXJdcv5GTt3IS2fRgqThhInCjRkh7Dk1iS2vMBLSGtRPppb4FEu762JehUMQxxLQre365CKoJGvJwVde91XQ+bDp5ZsMu/QHmLgITmwGXSpQFQlQBajqquxlwIOe2cyfezaSHIoRNLcwjW+epnmAtmmWA9KU29v/cA2iuWbj9ZV7HR4anhHkjbxnzKPHnIZ7Mm5wAf2o/3xUhnfH++quS20TdhalHgNhusidPKWyKWV8ZjFLgb1fX2r7ifLyUtxuKHHIfCWXQJ/DKeU61vxmPT34MTi2Q9r7/sK1CYuHVqMBsgtfenn31bUzCoyPN89KiO5wHveqnk3uyHnJSUBVTQQ3NyRPmeRKTQvWEBZ4QWcSgMyZF0RQgvUXRcp6KflF056fwahSioP622TdcTVYi4cAwSZLWDvfjoKFLMowPQpzn6ogXHc93fFA5NZmnwslSuesOyNI1EE3RM8kzat6thkmpOiGmm69Yn8yNuxz1YuuPWekoybkee106T9WTPXo44ea9E5QH2Ig6FZn716DBa2FyXHG1B+YfnmhbEpANlOi61BoGO4+G3WMJDokJXj9GhNsFqdaLjA1pkhLP+/mGCZoYsxNI+A+sMvWyoj+PMWeR8koRz+r9pNVEWT70WhiAkNTrojdr0sBLwxIM7D4zT+cVy96ZE+ABi9CqkM9VK7iOfkJVp7AqCqQ9EZ9emn8rB8zfoQZUBrVd6YS2AqiTFt0nJ8HfPGmnBWf3Xi5CgyWoLAmHJp/AfTdHB0+Ns5DlhL6UJ+O/6xys+CWVKtL9S8fVHkpwZZMJn6jVtiUTtXjywmiVXw9a6f/G7Qd4tZtcoS3aytxXYA9aGGmEeBobjiammhUaMDicH3nlOkDvvz19NqWOvHC2SMv7OQHtDIykYerPuoLz6SQNOBtw6oX2Sj3ZLITBDcWNx9CuZYYVaE+vleXnATrwn+PnuQ34jL52tp85aIOk684SUlQ8uyO2t+eIOHndZ3oxD+BcMAba/JVxRYUAUZoEw3D80WWOz0/ul+fYbhFnffx3PgOy2LLiu82D5FMSpi+Pd4EkIFTgfv7p/0vnX1wp0VpNzyXs/5S/4z0RFS21vIF67k1ERTfFuhLM/8fdbKognohMqTNF/+oqvXXLuJB7IHeDdn1X2eParLBEpz8y9CAN2g5VdE7EimekAOhkw+tTzqeEsgyQL4iVDnWrP/RcBd6CDm16/5t+I1SAxCn9wo8knzmpg8DYP8V/vHw8Stu7cliAt+G/VR4XPNZXWF2rZBeQO75os2jFJrbtkfhN9BzHT4HGgXTjyTy8NGsiQdeOw12GjYKCyxP+34kRHZqYsn0pFvVubB0+/emKRgiGXNRWQwMSvAB1xvTprD0Zyt08BjP/4W9HGNfNBcA0Qb9qF5hdQ4dDqpKAFLoIW2gFEVKOganw3M9/4WP9ckP0/g6kaJDRurtxNgT+PjvWYEWlFa80wKYCkd/0ZChV94njjGyg0t98Pz3AL2AFAhvRRiJwdfRcQqqhWkv/o6X45d5w1YLJOye3v7rgta7Ya0jAl/an42ng5Wz4S5we7n2+1W94JnpoGyV8WW2HYjKLkKmp4hBKlNtb5y4W1MrsG/wfq2N5Xrz2kqhdPQL/YoxgCQd6Y2KNkADVu7TxugQRWVuNL0BUj3JRFyWNeCmB74Wsz54OPnbq0GFFxzSkoiJ3Rtq8yEJMKvOMMalFKH7YFHKjb2nwrKVfuUUuRtTfJDiBuaEHHoX+MUrM2bBaAsSdnY5PjqcMBn/wwojQxzt2MoOCC3OEArr09ghhsj2M0mue5ntQcmcC1R/sK3zfShGJuazS+mJUeKxk5u36CYj8+SJCq8ZEv7bNf1+BywGeDQoTDGq6Yh1xW3Suwo2O/ykazTPK/TdVOICyiwK8MuQpK+FX3mqSPzxfLwFJ/iYDjs0WgW2kqXYgm+gkNToB5+jYH83Xlt0cbtEmkkBaVGlHz61rVuWzrK1yjn5nYHKvKCrBPPRth3AKDQQB83fdrbgIeIfB3iHya5NPpEyxbzmtN5Dnk7GqrQ4uu4h3QSoHU+74zs31cWqIx4SZ2bwWLvIxUtR6gufZhNZoMcmSB5z1O9TKvHMORD+VmuiqzsyJKA1OaApB+b9x6u9FTvUkalgl0r7raV+wRqimc2D7B1z/OiSagdd5UME2igLGUcgPlMSX1VsKQp/9yDiYei87KTBA2NPCUmgaLwVdvQFFFxWp2vGCY/KCUvxt3FOu6xIgwS4Vybvbj6feUCkrQPpO/wPHJPhAobSj/aa5YrUvjHMcQkDZwfc9mvghrk/PIPvcJa5InhVBfjh3Xr9vIvA4ac+m+pywS/EqkSX55xgiyj0TB1EE0NT3W2CPFdVD88P72SpdFzHS/6XsmbGtM8JE/m8eojzd4PM1bNADliZ+XG/9hbcKg6PftVKyKKt/8Bz4lGsHyT0VKj2vDGp/qDGBajSHrqzmpEjW5LXsb5kTV6HgbMcnPW2dzQju9N1sI/gPVlgGmk0bHKOX2Ws1q4aPizhcM/XiJ5EZNUK6bZNUeFaUJVTvGxglRUY7vdnoVOe0Raho3huh1XDeTlHpk/2gBjjhUQXe8FN5A4zcRqkNtKpSVq0xyw9j3yQlQxq/Lnqklpz8lXmzHkz8sX9HJjHwyn8UAjblvN0ZFIk4liejx0lVACoKvpsT9+pQoLY4weMHRzcuVC60DUFkaqLfclS4UJti5WK4FE3dYcc0OilX50uscLJomlR6pXriD6ELNNBWOSMt50CJjPkyt3Zn/xj1dlPVP1t6XExK+b3jMoULLPOrEGvjELfAMM1qcuBb0AijkIuFca8f8xapUlkvLjmmJW7RK94r8HaPzvmHHSqX9MXdivNI4A+JHy0VCe79UZZJvzMGzpnsj+Q6k3EItDBiA12fTMlSbEOMAWCdQq9TtyUiAaAqJozMzryEg0k+yVHqCc/DyJcCE2V4WXIhEnsOc5c8f4ChWfUaONhPPWogpDs/lyVCvp3m0NSfrAJKNiVy5aNC9gZ6c9BqwYgj/cDO3kdam6gCjhR+akALFYmt4ixHkWxKhDTGs5K+CwRiKJnvxP9dbxRPCBHbiVa8gsd2GuiNHZD98MNwXMdMC0MubVodd7dnyk3UQFfCIIL1osPxY0ZJ6DvZXwtZ2I0th6aqlTMULVo+lhSIU/5qO63lTSa3MgPRJEOi0AJ8/UlZuvgqLw9dyEDQoHTKWOsq+6fzoAyvIpv14fLaY+braPd6NkSaq0RClMenK1QLH87NZriUaeuCo6SZ7/CfUt2K6VOt0AjIK2jR0vorf6R8+TVzxZb+QdLimH9pU5tQc73xW93QRPMGy/gCK+R+YzmV4fHK52GWBEBL05EEoTY6OYG1WWji66dWnVTg0uPNw839p/yjLxkCfdTaH+v6hVUCd6HlROj6W8Mil6AYGC7NI2+qkZvJh/dAw/iQspXQNwwWHr6slLIp0hBHYTDh/J7Ba7ZR6cp3iU4bSXdmzhTahYDev4yKiIHyN64EANhI5OHYv1G4KXfIOvQizYWchPhzQg5eVGNMxsqrvWVxjtIbkKuHzE+IcA2NZ83GKz0D8z5zmgRnoJGKigseP9TmMS7BgAqtqyixA/SLc1KEUWrhXOQ6kA5ZQRazp3wwSa404cppBnfsS8EsEpbr/gXyW36cZ9pt1RhzyxGxDUmnZeBz/Uf1AP+gyLIg9x04u1fThm2w/H1ZXGvVqsO1VqutV5gUhFkdkwoCjzz3F3FUr1v0njGYT2mSZYvoF/fSd1W11c5VIhkEO06US5wYRmHVPYXmZnbK5YHQ8pkIDJ0yqssqFK34CuHE8RWb+Dr4omk779QOOcYomAMYQ9ILt2KUk2uNlahW/IjGtenuGLxb/t3aFoVz4oNwMZ7iyp4td8mdzgJAfnCcYtklubGAUB9k6bGC5DSkf5VFarnGEBWz600VGR8QywZ+jIYFZbtKT2QdDOYP6k7D8qVgEZByGmRedZRWaQDTggLyNgDD6pQwEeSs82+hTxWypqwU3zuAWqfwil+mytzVnKztyvMFJyJwPFaPr4Z3mTjyxCR2Jv674JVGGMUSWb0l+GtcYtd+NBGChwr8mB2hlyccget9liJhQEb0XgXfgVRlHlbO+jlZ9CcAew0Nw+tRcWgNnz/GL9Kur7RohRhaYZBBmQA6JhvzkazHRcdZDn0zDkfBmYP1PfQjP3d6qqx6gE7vrb3lBKEfK3Y/nCe4COdpr23oZCoIpssGXmqE8CGpO2bEwkSN6uqeqR4UtWR+xsgOzNeR49PTLJpFEAkXha5YaecJ8t/KR+eG7/HKV23zPZAMvHDC1rdxQ0l+6wlIgZbUybjBe6yusL7isRuuYYwg4+8+4lia2ox8RCdvmXlt00ZshBnAIfLkSwIqUzCcsD/d1ZG6Az728L4FCIqBKpbA6bzkJ87lYQpbaHpwPpqu3S0UqNDCwgg3q9MEn02X16E4xibz/rLx7NMDtHcwMOt9r1dVU6Hws9TvJVH7THrnSFESgN5eBy53Nq2Fdb8mySTxz5CitvVE+ZjHaYS3hq9Bax+uS7TxMIT4qJE7HGdsHM1/9uPNBylhP04Lck39JMe8v2dPOSJzyQoy8m/8Fc6h+X+5/mBVA9jAsG4vmx/KdUW+NXxgRt//SS2Ib7aGILsjOz+ZZQu/NMeuAsP1pFRTN90rqIVULbJ20ZJlrjoZD1VxHEoDFFGVWCVOT3jGK+vFD06gc3yDUSnZ7ZHjGmw4ZiAglY2nm78aUpXxI4BfUHqL6YQKFDCazUIryLi53RczlaTh0ry7WN4WpWK9sPJ0J49fu6RGUMYZd3+NrRvEdOrS5n+EJOTkr4lNzo8vawcYnR/n1Dq0rCHu5o2BGBEHABJbsFLi/mlWFO1MjpvUu6UPJjXlXse6MtBROT/mQfyegWGmFRQ7Q/O+rJp471+tQF10+bvkExfBoTQrewd5UwhAUODpyeW+aK6vx2AroUo2bGBZ/ZjcsJFfMYEMsm47LdQSq7T7peI2Ex+4/9oIAJGfhidbXA9UYPNhxigFTg83CETNYfYVkoambj3vv4MZNtE/wrIfTguBNqkQk9ebLPTmY2U4UCzbYqPKO5vjaZXeVksobDAJzhVjoU7p9TdFmNMyLyCQJryBSOcm0hFk/pcwcV15KZ/+IIqeQGPkTbiY1haWSnuQYBeyW5uSPHGtYw28cQS/v3rToNAUGVBSQ6zpBt4CHvaOfEJhuDJYZCcxvPeOStdCzaoSQn9nDe8wDc1MXrJ0+9N9TAKcS6u8ANLCLY4UfHLGf884/LFIn4OLOlRcNl7FS1IJgu1/vLm4INkgHt5ISp2vC3MFJHz1zJnopnKS1AgJtCmhJRZDaW6wis8CJ0KAJW0Yy0+kWI3lJ9N8yqJht68FMNVgkgaAGi5LuKmkZWm+ztKvf9gT8hJrXZkM/QdHI6wy9BqVeWa7g7ZM1YLbUv37YSnLmGsCrl/UVi/tG+fZbzY4bGye0zH08VQpGmyd/v++fS9EtasmbkQEIYnmLZLxO+tNHp3myIGwYBZVXjlWvrCiQcsP/Fu9l0HWmLBu3gvuJ4phtJsXXllJdM8iZIQR8Z6zEMs+cqVL7+TYhxDd0c0l4sbyIEw6N+V0v3ZbUlidyekdcz/aIomGdZtmdI+1QUrrHw7eDXT+G3zbTZMXxpEgJc4zY5bH5az8eHzwoo8QUleUKpVRrsErGmSF6GPJ2OltKYL6/C4zx4rHdcfsrQTcWBmrBWMMiFiU4NGtpYeACqYafRyu8j8x7ltp3nxVbsPO0MSoaR8tv61/q+YCqHX3h4vy4HzjCYEl+4ZDtj2+mawuj4J0rBpcDw+spzuCQ2khFbks09lPGxK8HYJl0Y/lNLUxGLZ+2h6+EFSaD22bYzF7dk/EhCWh6u/v1HUVKC/r/Wl6JHtd1V68J9zdOTgbvJuQug4r4vUV3JJolQQ5tecHKqcNoYjOIs6BZTlfB+yHGfGdxTKsGxbU/4taKuH8Qpd/M7fIG5zebrpiDHV97T4jiUNt7K64/u1e/+erXV34aOjfddcKNO76EzIf1pfD+KivBsRlzlsjj17aDPq/lnKHQCLsD+3TK021HNzhZyuwpLRKS3KE0XH/0TqUOr3VqLMcsSZM6349QJDznPG+sUqeS6wwMWp28TAoDKdmjzW6f+2au71HsOzLIeWencRa5JapKkVTYpvwMIC8u2L+/hYGJmk0588rq6Nnqe041NMzU6lj1K5KmSj0ZRiVpzu2FSTl4PBYHAuhe5dtwnRQwvvNqIELVxKMFWedxxB7UO4zpYRe2x0zH4X6pI2m4g6YdCs08vR9B7omy/goQUYbUZA+wJamq7/c0FhkNm74Mp05NSCK1Dcy1+9qp82p8XVkUB4+SsVRJ/Tqtn8v2esmemr7zjCfjLicMb05JqNoL6zzz0KaYkXeStBrF9+T7EbZTo2Fa/wS5NhJvRoZc8QUfS46HX8HIZ8A6LK8zKtROnakAnEEFoonVlvYR71xYuBAXbjtxfu/bteN8WkArB3//qp+3btpi2SIMyK6rX03iCLnzOd2OrPnD6xqgVT35e6NUMpN7EJSz0DRRzyze1J+Dx3cfx0M577W84qifD51mZG8VNbBf+5PxmGGrGOmkO+Q41YnCkx51D+X3CXsNAjaz/XfcPJUXJ00vaQyfYDtmFq4kU1ZHdnep48T4IskzPsYT9or3rd/ubiYLqeBqjnGbuNWb9ZdPDxkeBmJwYTjsTU+VugQmtz5+C3QBX0piVh3d7BK+Hk4mO3q8qJVQXeIqs4hKuRvBfIwwUyKg9W1x8dv+EwESuk2Bgs1+Zc3wzx4eGasynWs3V360wH3fKXZFTckeHZdgtzTqcQPC2hCHhSXyFMyljvrneLE+c+b/YQ0XcDBam1oAPzvKmmcgER6AqnyC32Ic4HMP4FQN2rh4Y2ntrawByV+9oq/Z8hdwQEPYRYiELBCnuGGXDQbl3ZLuUo0vfKU/AuMwYfNXmNM2vkn/GRrpc5WDP+MEL80tbJDZfDNBRfpfcvVpf75u0LrkIIjnU4adaolZWzB2yjIVwNrF7zF//n4N5xHeaGc7Vh1EYRdc0h2l23qFvLBNQ5kHbmX8Yta2Vj4DU6eBN3XyJBvJf9iL4x+hw1hx/7Ej5U8EZr/Qhgoni5r9PxBfU3fdvXICGW9DzST7GV141bvyMDXblFG5PizNjJUVAWNSxIAStz6+eDAbkYeAKTj6DIR6ysFvZAloBLCgSdMFd3ol/WXDQh3BbBtLqO9hp08BfumZjLpTJGRAIHzDizXZfhbgqejNSS27BIXQLV0muwzgXGqYt9McSvtLWo1Fos3k6Nu2qGyFftqQyDz0/bmgvtZyiFce/SLYnjt2Q9BnlmUVBWOtbDPvUgOSizvJDhdiSkbLLP96MJ7dKO3eUK2nZnpb4s4b2XGF4T6gC4qo9TDv9z2SY4Rffb/RjPs76P0YiWADpPB/nQjC2tDRlxt4sdNCIjmMsLgU+cr8cpyaMSYI9maP4HHww2jTPkGKvF6H6+DFAF+jAZKT9oi23gpZ2zavE0xXPkF7a2FTNJ3bwxvsJV+o0fXZAkmouYq6B2+6ccHhnUIeL10QtZaPoZPJB7/Xry/2Nv+JJFmQ/p2NSiO5bYGA8ej1vh5QlWhaX3JMs5gMBnyyIfXIMf4im0WEUnCPAJzq9q04Tmxzy7nGKKEf31kAp6IFk95aj0AogL7iljLVJlOXNvV7BwZn4dKfuZweSEZBqy+Mvual0TVDHiwHuIuXbvaw+OkU7aeAfck0Hc6H0jgt9g6Rxb6dAuaiKEN1cUYtD88y0b9Arq1q6ML9B20/FunTnZNF+IHgsg641FfllDFpQ+dqrIPKQ8IkLx/2ppx0ivQSrehNaf5dwtBjnPHroRGzG/RWOdiW0COPzepxIqcsWjhfmBXSUD7YCvPm/qTGcSnhcriFKew6a5s0AgK03I1gEifX6y90cJBY9REbQ7yW/XB+zAXN1XZQVEs7r+0ajtx8KvVBKJksKj5YFGdhEennMbwgCJJIMdt/pJD6FIcNVegt2LiQS70DAJeiNNG86dQVNYNZmYEfo8oa002xKLh1+rHlBX40iY8Wlv7FqswQFktpyLn5oSdo1jBRz8V3aRIOmhSnrs2wxGwGBEVEXvRm8RZVvSQ0xlKMVWs9Y7nnmJ9jEVuDL08D2ES3plzvCNP3FpKQeSknFeVBXv5T1Yk0/X5vdj1J1LYa6Ffxxrv90ObLHARkCI+tz6+0i5cZTinvgIYLMVnV/OL+m4RCsTy/+9VQPsYv6X2qSSlVdQ3KM1SOntMNUBpb4C0MsDh10xHQ0cbJK0gsR6X93ru63BDYbRZmPISt1casVwVVE7+u3l55XJGJ0Ev6S+2zpNqOAH66RuzpVskXE6X8x6wHOfp5PAI/7YG3Zozh1U27IXGEEKIm13Rt/nTE3pKWA7i1NFdVQKQ0CNdqEsBkjiuM41dd5rIbR4DMnoDva07v1esxYBGU4JWJUJQyejYbI9p7pqjrpHZUNlz2exX1lTAks+WxY6CExoPlSlNNv6AIsE0VdPmHOj4m0a8bigDelTpIL1WoePLhblmhRlkPDKiZvkzz6eG8vLeJjCGJL1+VFa4QREBVyuhcpZm1ygJm9kuQ+8v4yEMw0VO+TKee6sMFRVc/kS4IirJupnw48LoR2aRk+GuDBZ25xnKFxdSYqZqvWlEcemsbzl7wvQg5z2xKxEUsquyGziyzd/X+XFl/ct9KRLzyyb6ComIL8Wam9x6LPNZXvhO0QQZmQ8T2MFjmRJ42WyRzfyLGkJKft94uO0Yy6Fflo3AoIEon3XBygpi3Je932ToU5EKoikvqkeLFACpsBN5dseemiMdHxOJKrVJDdTS0qCcTzPCyz506oyENFdelskwdghmUnWyXK2WeJX2CBXudNUBON/i8kMdtJm52REvmGqVmxe5aricuTCGLbgZtYvigT++E7xltEh/ZgUoMP+d8vaPU/HdhZaUjsgQ8OoqZeezvNR2JFm2on+IliVyYQ/58LmZ2stgKoBbs4SllwiTpNRw7ecL2WR8bbg05aTN00C8aGWtReWSsYsirJ0K0I97flI2gJRRN717wESryWahXUAFZAdyD08j9SIZQm+wq5GkoUkK5cQ3wk1x01x4fKLPgPIj6D6lZiylqvWGtl6KxCfoSQXlNZIHeDsrIRqhINxdrCinM0iMMkveNxhqrEzhnBn8F6nXVY5zUDLzOXpp338I2HycFa2pueObEof3HQgFEMnHS3/CDKwJAyYl3HyA4X5vXUE8MMa79gYELseTf0IEUJRsfSa873vl6n29lFq+GCqF1I+mB5PSyLFvgHv6hG5Hd14PAHTKhY+xzCgOwwRZxygPwNET0UiO9ynH0p3j7GAFEs+VSjl4ArhHJbySohRLfm6B7FxxYJLJxJlQr5UdD+5Vs0nM6CehSZZNYw4FzcpYoL6nS+wGGSNKLVLXgbgvzAbT4B1J4GMS16IKMlo5S/dzM/NM4NI+a1Fuk4qwaewoHqGp78vgp+SkuhLyAVhI2Or50Id4LlHwRon9o7JT3D2pibchFvFi2VTEx6cLX/qorW2YGSSmnu9+M8teW9DIRH1TfabuDIuLk16NFz3kNr5QLPGAd0JzN2IYFA140yqfi9LfBcZI3aUK/Gt2bfMMk8eqttN8c92OmUYKUaHbB9C9cpEwaOYs49MztuGtI0VMqDDHN8HiRP55BpRIJtIWbSyi0/LOC94XhzqGVyuzaVaBfg0f++sV8wy7ytxlQYA9w1ejE0XaCkpM9zbOrymf4OrEaIyQX84Z9e6wQ1czIvOihnSaq/fcFdkxJcMzE2kWcARwWT1U80dW6B+v6HdclWMyMWLYr49iKWrhm7o1yumJKxVGiv1Rx3Tw61jrh+vuNjikpFRxa0F9G7ZWs57nuhaIeT8ZRjYzuyq4WZBEXs4CyfvmZxGcS4/G2aWon2O/UkjqrfdbBUF0yavSPdNJacaaZxFQNejGDPK7SCF82XxiahbNpwFs/t07gbCJkDUvvKjqaYv1SNJBa21RKsOuGJNKO/F6HTjc1Q5t8lqLL4e83gWTT4aubYGtE+D4e9zdPPo2R3dvG7bDrCQosp62YhTaV3B/kEQGqtzvu59fbgA6lFyGe7urhYr3TWCBFYBmrEpB78fWnXUEd1z0LSzMcWL6vuh4CJYR0tg1jX4H0wkw9mkbM07MXopLJ2Rt7/aL3Hl3MjO8h/1lqNlK74QTbgkurmgd23XflEcMhjO52Y/Wsz+CqwkBCDN8SUcd0hvJ6srikURdDKw75ZZMyms8NdzvzfsXreeCzpVaPKbkgWo0BlD+qWqaXziVa7YTSezNkCD1UBphMwE3IFwG3+Oja0AILbwR+VMjirrIkRPt+DMtp+OKLpkiE15AVv3jn19brZGZkhhAsuT2sTiWSjLvxJkMICAGdQY6CcJ1bmQsycrXCCxoxrME8B5k7aYQkl31h4kmnvmUA1Uo5bGEJkzebQNuMeVIRwKr7shM3Y3iowzuO8Jm833ALhjeDbR9i+ajGdiv5nuQcBDW0PZ0CB/GHvnmE702e3iEmWKin/StmkbfvsVh9mXnjLzZCRfht3g5Fu6OpDSsq1DSVUie4hNThGTSTWkOhTKbARv54Bxp1m/BqW0CfvfUJMQYci+HzQBrAw7lHJI8klNzq1wbwtxf0zzTFIpYQcsU3ddDWDMuciKmN+BHJ47B6FkgX4uR5QSWzLqgN2wQK1aLp2hgMJGqMII4rLK56VcDk89QQhw6cy8PCM19olNpuDwdrQFvP+77wiyyKx8Z4MVJNxV5vJWOwvF+aDouZMW5HNno5d960qcPPO89qYm6Zh6UO7MyFx272aWYtu/0+UZ6eThOP3s/uMGRarrYNGVN2bkl0VbM7ZArP2AnCQLuPoIbkry4nTS/RsIdFmPg98zeYI4R0RY41FQsBym1OXnJcHtmKPjfEXuujVQGfCPrCZsaT+vFbMFWIvUy7OxquIvdi2DVp3+q3E3NGG06d/cz77wgHGWrfcy5LJIzCMZHkk6m2QnZCXYVXwMsVhJI9nJcgG/CrU5lgDb/DlVEsXG06BHIuqVfnTyLdAQZYmJlEEk43pdgF69V12XC+sB9W5Tfm3jPwiHn/VmGszkYx+Er49CLbyk3hDBSKuzDj+nzCo77ZO40EIP4ZROdSwWlf5S8wfYcAzjNdj/aZ8uknw3tur126RfCzMA+cUo5mPaZL9cVp33X0mRTUIS2vgtwDRgsSSX5xcJUWR8gZbdeqyqQEEAeDu3+BMlrgYP2SH/le2u1yfVFn5JX9VQ04X9mmABR/KOd3rAYqR+OQwLWao9MXVS1y+0OKo0FlXuirKuPaY1BQbY3Vo05Gf/+N+u4rDcFBQqiCrYhgRAEjvVW9eNCaOsukcJWEaDuo/pWCYGJLadm4ssTCPvVVEJNBfVXAcTIxH4EFtWFMJUy5of50QNXNZBl+oRuFIkdbt04DeU6j2A3vzzP+IkMahLD6zBVJv+xRBIc5fODvnJMmJRMI8kcyMFqxpeWZAHxC68tGFNyl6yyGN95SwNYXwDSIQCPlL9bzjZaWNWvs5puiP2lbEBlDw5vCHtVmb/sD8QBgOhRassChwM5o5g4lhlD4u86wmdmVmhmEXnCyLeQJ0rRtqYIWRhg72ieDnqmPvOkDTWtKR38TeJwrK/7IRYfbNspygrU6yV9YtJyw3I3uEkDgbPrpcNUpISYvzv3beFg3ZN+swedqf3IVKkcdiAezu/KpHGHPyvX9oT6qzTS342/DenW9ctM197UfFl4rk21KxSma1KnLIWlGGasMF4+G3dxTnqBscul4CqNda6Qy8ita7HCzKlYa86yljm+HQA2B5ArJoZy4LNxeT9izFuQhEoEhUTNJQj2pCc/O44h8GpQX6XgpaAvAQJLVNq0yXGFbzb3O54XQ6sm557+lT3A+VWPyCJn1MLbsssHIdFhJcMtBFQYi0bS+exQ4Rq74xNE2CIRSzi3nj5TNy2AoO0gdyBC0/2iH67UB581jmM92OHqgD4EzAzyxDauPnlIdZu0nWwB4dtxWN+meq/faIuQpK2hoRP/ULwIJ9r3xyxtXxfFwJ3YquXldSEnxoPiYD85u0OAHvKOG6+3eBraUiOgvdfp1EjiroeSLLFutuPPV9XqhAReYPaRy87OAkV5tzSqvyfufCvOMTtkpxApWsJ9n+cNM2uBWu4lj1oDjGasCfCt6cfgCzh6UbZanbL/qCgf/iHjKYaavIiRLJrU2BuzdsP97XHkXLYbbfsHVTlXSohKOXOJ+3LiR6ix9UFLo9qieejYk+P4e5wC64jGQLSxJzYt3cErx1Rtc2+xlJaEBynLN4hLl/qOrgBM7a+yswC0Mh2OieA4SR6MfM9WK/FOWbVyoUBIUAKOhhIZp2LOgukk0/DInn7sF7dRP6Nw77MaAcYg6k0gdjQN9/1wtGVSBm+6LwkI+xfcK9l+JiWepXul+/EEdV7XXp/9lUsW4RQmIkda9H38FJj3EYJTrG4hEU9YWtNd2lKI1683cXFVzSMkh+2nuu9K0JUBoAnrYkKVZpAKF9G7y5n/KMZrP2xPuUFSOaruqriffSEX9Euj/k5dgewEyQCFTif83LhkIjt5qJ1LyI4ynIznWl1SoAdecEp+I5WmKBB2fr5yw33NX94q6HIP0jW3Np2E0r1f7fUjqdxV+iCRULU+yAwPXFvTL7HqfFLj+wCfIbOg+nsW03rGTf1haLvAZA/nC52pSDnC4f0qOiA6WtK20BldZUaA6GO3m5ZOCGyemGK4a12hM3BXnbladA/yTRV+pH7IiT/9WOijGGNXzV+K4wmdmRjU3It+QwUCRat2mGkEHhOcQY06pWeQqBGjHkWcceX8/drkk+tYysHMXVk8hLhLGjUVgivK1Ra4K+RtUcZO5fkVkWQ4W8fyo2tafhGEDSsflUH7yj8wsATBE9YpskR+r7Ac8xqdxtEAfRioGXSprjbLI2DAZZz9HAYR7rUHzvh/UPpFvrLbd/hFf7sF3RimWNpiGsQRZ11RqfZkck9IJu/FPU2DYr/HWUdskJHuLufXCvDbKn0F9sM31Hn3zIuAMTUc+tQsO9ll6jnNnW9Ulo7d32jEQMqJIrWQL5+Se0a8lKRp+XhYp4IfyUaTRC58vFEjKupeFEpU4EOp1AjeALc7vZV0ovza8QSl3ru6xFpY0/ckElMOChkhLWSDHLCKaFK/qC/SIfT50GJZnkCr5SgXZRddXq8Gc6XNjIzSdCF+9YlUFKMiri/sn1Gp/dEMhARah97GidLqitLNBlF+H8XoQmdrM3GXBSCN6izNn2ON0OzpCxOuM917OZCw2ZC0DSvNuTOFCGGYf1TYgUbgK2KKc4zm/25dz3GhVpFqs6x4yhZBbiy/6FD1vXW/aIcDiSUoIhwrUtxuGGZijb47Jz8JfUTblzx4eNPbXeYpygkQo1xXonjeouTuJvAH/zH+FK50zOLAtbN9AO6xjfX09CsjKitMVlHWmmQybLoBHBPkC5IbAZxvs3cH1VAcy2X90WL6y/0SXNsGeLBdr1OWVuYg+/wUNiR7QnP2ec7jNrZZOosT6Olwn02Dh6zSwKoDnMFLfk7lBO0p9mWjex7gEFXNfxFO19qmaoISUZEgdTuy7sHgrD/36o3XeFdzLFoFnOJa4yaENBXdTSmVZacz+5IGdVkEgjQt/TxuhNGHGtQuzNDfM4iNZ28Ly9S9WkUGMNAfDRLr4ipZkJxUA6HnlOi4Yb04/Ze8rB+HEXpDGC5Jpr4fN62LQh8o6kxknE1P5/rNmz43jehFlRUvCyNi3Y5St7lC7a2ogCt3Za6M7AshQdbVV2+R2DuuiLEJz0MLhnn/1/F2Z2U3h560PrnhR0Gc/5GW5DwO/DGrR/4PvL046BKjUp1lfrtKfE4osRTS9/oB0GrNW3cYgvhU8ld61sHhKOf4P94t4n7h9zdRXDaFv4ORPHokkY+NA9QA49RmsGMfJLu1/RXuluq0J4fsUUBoa9dL9T0yDJXvGtuoln8aYrNzoapa7E8cR73/wX6KwBPpwCUUlxsBtOj0rnca7zu5FqJC5W0U8Yt529SAI0S6nmWnS8zguQLRzf/gRLaqSQ6E9T6Q84u1cs56dzBMv2eBG+zAKw2V0x1NJX1gC8M2MYZpScdXEKPG1442UFWTEUlkM9OjbR4FurtJNV4IqEu1htlgltESO0SeZMHZ1JM7bNtYegevwPSCmW+S8uEGj7FTSSV0HbDg1rOnt4Ws8DxqN2T/HOXNd5NGboZ8VTSD6g6rLWcoWOwsyeG08GPG6KHPiLRunEdTPNmY74ObRGT1VCHP7nmBYmjnH+kqK6rDyrEoNjdqc8uG8yZrHWBXU9weqD5rpQ6S/annq7P/GiYepA2ZDdJA/GbdxpHYatPgkXt5sop564gVHZamW6cq/cdADaLCXWt1WgK7y11WaQR90YOen8BECQ56pmJbLvzzfWBhUUJP+dAEEK4o4wZv2+IBAFEdNkNF3mKntsLE5PDLA/IEiV0rziyORzLJsoxRMCQV/HlpCkXsaizcHT/vxU9iadf2hOkKehGum3973fFs7uRlqxz/oDerFL0617PqG+VYIxjeRb2IRLZJGH8vp8ITzF7U7HUg8Crs3WpVY5r8wxn8tzGvUUwY5csVu15Vmm1xcs0UL/lUCkrOXdLtlaa4pHLeQgpd/vu1ZzjMOcgzfQaIwiZK+fMZjRLAHUf83TSCOkovb3xPkD0jElmb4TBqFrwn8G4KWr+RM58qhCnlVimQ390m8YLz+fNHbBRDs7GJgHSK+v5Z9cwZq4glnR2eTjnqTy8Wo7BEg24CL/RT1AKzOIE7muo8oegzn8R6qab08LzTcbb0ippsScfjQoJhsr4jKG2pMVczpCYqptZcGD5rxTHFbL3+NDnEUptRMyARhF2FMiM7pgaB/IpAna1AHa5EPt7oBdzMGg7kOdSOpxrPXbdP3l/+QCfCLMpCsxFd3VAxA/IPVvK8JaenCYCadhyZ6rJeGxTUh11+OOAjrXIJxb/EbIy8rv6h7hywPp9ZhPCcgt9BN808JhGIaKwtL85jO5nipQyAF690xJ9A2DMuCx55TSG88fN6rqBMYDI+I+DtFmoAqJB27B/xxN9xMLnQwLcLCHOx4GIFCq3/6i7gwJePjoG/HKNb0XjhuEQmYFzTgtt/uIo1bBX4C+y1jrb+R0mRj+RyaDkRus8W4WW73qbcjpjIh2tGUY6KJyhEaKiK+LHG5euQeYZO4zXoKbZOWiJTvJNNVrWugpXkIIIE4zK/g4JKATQjtaC1qbJ6khaJHxOTS2goU5zGyjmaPKvVPrBh27E7E2iZ/6omwpBARV/9EKeU1m4Msz8Q7y3MzEF0C8VIIqAxB+Fk8qG970lhV/ZIX6CsxiHqybemqil3Qv/cWKm96fPoMJWSA1dcF03dSwSyNMdvKKBCYVYLuqr2pISKPaNRJJw2R43RNE6avh/TNA1tGJ/ilW/e4LbOvIh7cS2OsbjyXcD6WS0DYaDa+og0lSxehZQiDSt2fVdtF+DO7/cEUAM3uju47Fl17rUPkRPaheA+6/jpSYK5Nh6rSwO8Pbi1y4/L0L5SStva0NcscpH0pw/3Y9+Eqw1SDVvRn2r2d8vRC6YhQywdhKWraKGBMILqjiU2l5d3jb1tnQIwi95QiTJW7MAjJD4Plr9FGRGlM4NQyAiG8wSAKUbRCpmxE+zk9YhXjiC/Rbt983pV0VzovJW+90dH65IOb2VS+Wk+MpsRgZ86uEuxeGPyB++07HlAwqFjq0sm5Lvom/rcHSaLduJrDdabujYJRWbbY2QZptvGwTHAiaqsAafE9NQa2oq6hV8+E2YRbdEcrirxyx9JVWpti7CsFfA/egMevH0MR40/X1jQzMYbw6mr01MI833RiE3EuU79cpspC8tuN6QxFB7ExHF8yrFQ4vRniEkTgKc8kT2tC2HgNJJ+l/FwYXky6qbHj1cMtBGVOw3SFMHn5l5odYVrLqhL6R4DujKq/CEsEj742QjUogvrSb9DOh1Mm5Z7n6MI+YHii3bWp2abi25FJIiX3GM/137MQVr4wwQ5IQETnYx0CoXX1nLeqLjQ2VlOulhy58iVxN5d0Q2TEV6MPr+wA6lluGEC5890db42elDUvTbbMcjHGrT7WA4eEhNLqVT35NhLruSPkwg1UCAUz94Dj23i6dqS1MPh40Oyi0W+wfoWYXIw+siweU3qKdQM/IWLUwDjgMQuiK+CTyRgR/Cg+XmfazCLiF1JChK7C2x+ROCl4t2WjYngGRxBWRQqqrNqx1EesLx8Z8GOimBJK3Ip3O0TWp1z6fhibUBvCtBpCBH7Wz0MrsYEtW/6gd/rLbB2IcMxOrxgW5u+/ZBOjd+9Zg9SRf7ln5tqXgM7wZE2rj4u7BOezWvuyca2TpJkQOR8U/bR+LRjmN6RAS7MCfYSPtJWSbZYnQL8vGmJb39SyiYiER2Via1nlShjJEe3JgCwTOTiIQJ5h+NQeEs7qWkpIDJiQHb7VwcR7T1gLGhKAqUT5DPO5zvGPny/DOh+Lo+Xhxf5wTkF5p5yY0vM1gw2UZQ2nhCedQ+PBxACaAeuBYTyBs9aNWvYATPBLUtXJ3H/+rMIUQ3Xz5MJKdV6OhLEEK73rb9hfjPlA0gKO4j120U6VHh4AJvL3WqjaY/KCbwpCzUCADZmnJdpD4p4U5ry6/YuhcWXcVV4dFm5J8qADBWw9jPITjUtkf0lhIJkzhXLTcXQBZaaunvCCxyWh6ifYzNTTCGJcUD6DyfGam2zj4qdBy7DwBaL2S2IxicF7F2ubPDvx0+DEQVydAIF4Utn+/niyxDQpGlaaG5eRQcfYEHaZeHBOfZ8x6KnSsZnB8YZbLVBcEF3Mv/87cj4r/BYDYAaUWrrm/rWPImSVpvPlB3xQvVG305B+bCj4kIW4ZWzFnX7/nApDibPZxncAV04laDsD872g54z55DZylkUKHXF7Y5iFwsc0HDovYpJ1P+XIAb4pKZnw/e2BrTZn6jCeAAvAt6Z8EdXqS/KoRwK37xhZL7w17n2PYpqnoCtRAvnU/CocUq+el+PFEwM2GkhLBAJXvVbqxBMfPWlA8XMNY1+dfsV9Uy0C+WgSzcXw/ylN23DlELK9DPZ1nzFCvyDWygh1ABv0LXhuVuDEraYOrX0J/NpbYoxjl/mfncXN1DorfumMjOo/dWEk/OvdZ8w/66CtISpGM2htGRpT929qEz+kRM+2XpAqcSS9GOrLWVVUVIm3Ez/yIqAWm019Td/ytbE6eeYJaY+mJpelcp0h+4Y1hmcF9J6cZQEJi7foY8n1psVTCzE0QYMX+ScYxKxb/bU9eproUaSNTxHeNhomtba4y/CfLAZYXndn5ndeIjFIsRWRpwX3HwrIsKxRgd52tRs/iun5uy44w8u2wZgayiPbOTWGXUn/BDqak5EZebXbdQHyE0yEhUO5HcDnE6xlAuZFDSKLDTTZz9bWcfe1wy8KhSOwh15cBRibt+faUQgl7/5na6Nl5d1o7iUWTjOhjQa4z2Pha1PNGSn0hZFeICMKGtHJ6EGQbB+HF6+M2e8YSQjJ2cnG2SVpdzXlnkzxYqwXv0s0WM8nggSh7Viq5joXNiF3RJ0A9637p1HFJd2I7GrQ4ZTOWRi8jcZaL/25Pox9feMT7VDPV6TT++0Ri3a1aLS8IABZh2dWfxnBmXDWPdvrxmBiF3eePVqd2ZM5bI9YAN23/3qVLElDeD61xvgRdjkXkl2tqif3zsX1gGp9mzEm6suh1kWL75XC2kXlrCreiNi2pfI+iWVFJDXPd3MBNp7VSAZRp1jpt3ug1pQEM470lZXwotpDljklvGxuNeKwTuKNJw0EK74nc0d851QXL9P4pxZdM7pkmbA7IU2S2Xa/AJRP2VOz3Kyp9oW6FgoQi4noNkoHeNnprbQod8n+dQSSbMzNRZIuL/riHaxoOHkaGYwROCZwqcbK1tUnU2Qt1J+3UTvklj6wOD/d8lrZG7ucjZiCyHxK5XVtzq9lDJ4N1FvARCTUfnLeOLc5bmrtGvb8mmsr0lDDyR5607k41wzglZH1fExfmsXrEjiNLSzSKGb7FVusl07/BgeCclDsQkds2G654GVeUpX7UHaqQBEmJsIyvfxvz85+WyRaoYuQfSH9WpJLeUoXpUt7+Crnl1Jqz+eARyCmzL59OUUBwBuoQAl5VddIrfG6xvDA/RZBOV5AfwjOrJ2xRo4N42rCSFCcnOY7xfewl6tVLetiM2tGLqRLc9k/owyHriX1A9BnluzfDc5xdEUKyuwzWPG+tZGNDV0WLl1JyHPflzcBpj92G0AR0lGaMSZuKui5/LUMn69X9wPKc6FVkNEHEjHjQKPQjuFCokjN+N/6DlMscpE48IhHIa0Ghrc36GwGEiPRymXWKD/di92yfjZjDM3fdHBdwSxJRSBVKHSwh6Ey1/zWZRZ4kk+KMS8HuroIw1UPa+PDVpsSIKvmqZnZisbfHFWNW/dl9n5+wM4VIzhmrETz3k9WU3s+z84SHh2f7dGT/G5WvoisBYAgwm+pqFS0A8xyhy4PiKfgS+6TgnQD5hDEerpzgFSaMcw3yvDZ0+xfL0yznf0uY8N6APiqHdoJZOWqTPnTIbeBLc5dvFdh+mvD+sDtl8BAWzYR7QkSgnx30Ru7TH5a/g4byacurCNvG0lTgpkj9w42uqBp1zMsKr2riOCQwfCRKkuSX9CGADOYGqCHh1JUsk6RwvI9OvM9fCJoL7Sap8NUQ7mAvdB2ougA01NdqxVo8NeGta0R9C7QybiN4uAtDxw2zLTG9+0we68JkqZrj9tJilUV/f4wOLc83GfstXOVF2bAJ6zf56YworQQEDj6QnC+lqyMkGAr0QuAikm0jqS7fy9bYSBz5hekPILc94b8aUau3Kt69QI1kFEmcb19aFQA4bSegA9/hFi61RDIVQ7iOBqViYdGaK8d3zH5qWIjed0hR9e6o4zELdXWhOVOcPCmZIYYXvgUsAyGUoCszsCiTdwOaPEL2kRnYh0mNSZGb6/kr8XfbyUdbEZ7mDBYy0yTDxhkrpIoJmVutN6FHk/E4cTEolaGnv7x+QxQIKZus8IEygpdtBDxj+lC5M6HaJ313pLDYbjpCA+oYl11ISRJ/fB2oIdDBHFLefQmF1uHk7vtSmIyI7Q9HG0qxu8QRWecP8ipKR1o4bGrAhR2KcGEDE6k8r2F7N9lNUZCswXi/EXaOlPb9fdsaw1Sspku1xrmyADIImEs//XiPqI3Jl8BlrsHf1mAVCBmlqE7usMbDEpilt45ia5CXzVqlIZ95Fesu48LEATS3dyXVEjwQAqVbFBttbLfXvX4LhaGKv6P3XBsKWvqEFfq1rPYdohHtQH03ehlVMpZ/BRCBFV6dffGCrIa7OngRAbORd6wsIcR/gQSxhfrfHFmb9Ws3Pk/SikwIvAIYljNbXbvIpKTROSiPcmBDp4hxLkrjR+MfBFZLV5I4usLY6WYmjhT2kzW9XAxxLYCELLIf6lg6p/GFgpoRTm+yQ6PYtmKVvdTHyBxv28y3vTiy+reYBZqmC7x0TDasiMCcA+TxdKgDY4s61MpZyI1+RUzeMfx1qh9MBXg1tI/HSKpcUj7+qTrwp35J3ezefo6UZiEWMPBtx0/tJyaej7NUmUHVRBJfB1q0bsw4yHfui2ZOPNh/6R2/I0j09t9QGeRxpuJzB6DNbaPTOmER6WTXYEGXq7DhzkvCP247uSz6r7MfaasDs419fVF4RAt4XoxkFRmk3sjrhpNSeuDoG5RpjE4pI3rH/ESPaF6RIIJBiAbVU/ct/nKrDmBQPBYlNob0WmW07GhOvvz0m/BXTsPB8qA8Iesm6PsDuOLEEm5+jbniDFyXfndwIXHgWBB1GCyGV52MU+5iXguncQS8T+WyxaPDqCCXMjwPJxGObdF8mBkG2+SpqaBQkeN+1IL8Cbb72d3ySQUR/uO+N9v36KAiKVEPx8EERU0vfKi53JWN50+LSYqgHmF0UrnnHCNpcwfX8ezokGL4sK/rgFZlXnIqg6a8EJh7DfMOwMgTwRjjZ+TrXsj7SA6EaMRroFgxXRIOGDPYZgkadllrCosfuVZqNQwAY1cDJzuD4ocR7PgZYXbCA3g9Jd1PRx7PyRTNad56qFMVIv/9AYYd32opL/KQOuEa2LIoyMUHWsHVeJEgDnTAizkdfigKSmZVUDrztoGXA+B+9B+MYT2q5BETXJUKRLiEw3upTpXnlh7hkEk8/0D3rV1lUxxSlnDzLfFArxdnXRhBNu085RxiTwTISjItGPuj0MQknBfLTi9AeLTT9QUKRG7bxHm7P2Kei6fVAeNBP31q/OVsTuBJZfKaxLodsCxObxFdyJNLV2tAt+2SCAO5/VWcDOd7Or0wzbVGwbXJr73+/PYn3VfNQ4CSxdqgXNPWDqh9ZFVRQbSeb+bFmOpdkO7C70y6dTSHVuHlIY33/KV1QHDJ226atG4ltS4fk0ZNDrmPZ2Lps6qyMYO+Wkmsyw/ECuxfXcZ0zM7vmLjkk/LsX/XG0vaL3KZb2C51I5TVf8fBJmMxHHzKvaXDwSTGiya0f8ZZ3olqbqcd2cjXM0jicXlX0cJsaB81POyuItwEiYZwsHn4gymrnlD0mfAro2YoSC7KxDdL1DQVO+0a7fN1fLkv8ElaXx46Z8EGJ/W6akIr6uEuiFIQB9fHujgNzIzAgaDEYVITJJO5XQkyimdgaTBvra1hUbw4jb8imqVpd7G9dSoQVNPatqBlbm7NLsdI/einfpw6HdFlo9bpLb/wBxf2BGK/YWhn6LhzEvBuRuBZJTDv7HV9WfnA2SyT3HV/F6f+23aOYC8rxO7QQ1FI4/0m/OAHdCwYedzx6F6TIlSh668B+Id3ZxNP3V+Z82Tt/AHYSzDsxyYC8mxyk+Za4Q6u8y70AKpUm1NPP2WMeSHfqCc5mUcG67RR+sJWZg7P5iG4FPnFmWKv1nwwk+fM0IIA5p7xmHnj1zbj89sN0hc81tzI6enBjIyPd6P5GXzsmp9IRHKS506SAEK7IxfjQLxkNK1x+M8YAYLrD1qWXqo03kTvXgYllmtbguZX1FQGpXYjbZzgqSLxcXTKqQ/GhYqBJzZtvPaYGODBTozt0Rw6/vP+hTUJGOAYcEWWr5Mqy4792lLWmElkf2k2HiF5268DSkEL2oQl+VXl2NXgbfa8xxQoI7lpuNkURcA/pNz/go3LD+w41q4eQy20ecjCwekr0XfODump0XPUm2vvNfk4P/tAVA2PLhl21zoFOrSKjd6D1AiMtz/f41uWlBWCDDY4tDRMhyGsls4GW7P8b0/dGx6VTgC6oCCWxMyJyOgl5RPaFDE/EzGGGL9XUm5X9L3crn0DvEELm/Vx6HwlGWtnfZK7dA8/zJkr9b7PBgLeFlmXyfUBxZHF8kxgW5tcxvkEz0roS70jNLvk3QNCTUIwCHnqk5NRDEaewDCzjTR5lKzNzx1RHHJNiZZJ0lXrAsSM03iKPyYNdJfMwUAvRlKP49yIx7XS9cvseBWVvGNAc2I0PmR6Xc9KjqauqjgG/Q8i16OIPtQ2Ll3qDkunTNq2O65AEFG5qycHaB2/159N4n67iMEpyNowNdkq/ZlDxsX4dRKNvBUJaYqhID70qa2Rgq8+AzqTaJhuYrqrDDO1n/0rWggrBcFsYwo7ujJZblKGamFf+3B5MTAXNUOKn5PW91Gx56gtqTqz1dYMML1dFR/KZUZom7Wky7v9EfKnYbBseAvDuBFBFFCuXnhvWc/JS4ipUIe59Ls/kL+W5lteo1xt5bkJYfug17vGw6cqrOjTG4nQXZ+RbEDCMTf5JZ4DBcuVv+tGPyucc3B6R9NMF/lc4ubulrqcBPhRUjGBILbQ+4uBJ9eUHMAj2ijfMskRMLcV5FdgqIWhiEvxNVlZSRrzTzySfBUjZHCJQtbgDZ8nRWLwk6rQKWD5aSHuJh0vBgvlNTP+a4P7p59l0FYBPtoNpiFl/dOo05KHesQCueTxj7IB6io9sqTWxTu2PK2C3ACiXWNyxs52441hxg3eco87pSRV1NUvQeac35o3tgUpXtmtl2yHh3QO1mQ55wSqIri3PtVxJ57l0nOuyav/0ixzLEq3QlLZmLb8Y2JVlrdQMjhpcC1j0DS+VHrYIB4JgyXacVu9PCRoC5Y2+p8qfeJA3OFreaabxWxz5omyn/l55+ufQkO5e9iODCdLWl2crwLrUpaMCi8EUcVXGb3Z8oBCUdwuuohn1sivwQp1O+DaRFYXIbHQibdPfq4dU8WeiYJ4WKMlNEuQr/BRIGwOrAIM3Ppjmzvh27Lyx6xK14sUHgNy2ggNG57CBbXznFP/0NVrUQef5mMdso3AJ33SJxInqYebzcZ2pEVYHYczXE/+mcptBHb4ANtGohwQabL1xmFHav/wFH/al8TKjzGnYiFLEifJHL7OJD0x/rtzWuCrDToEWPBNtRKXFZqz/kBH6gsxzy/TUzP6R+C/A456FbGm8soK/uYyafgNmX0re6fgXeehUvtDCXdAUJElJt7AMv+VMdIrrOK7TAaHo6E8Khx1rq48yOqMqtC08so9cQh/AV760CiEtSm6PBL7JKCZBV4m7t8Gbbc4TQRawpuwTFyS/vt1JBnAQUBDPdEddlJlVAfbGy+OKkohOw9BB/JY9rDZQK1o/kpfl82umHijUnj0gVqhJCsrzUxYl+ygkRPDEPZqUIo/+AtsGplmBSxL8bUE1iBc8lCtShF2iqMC1DdHIH1DcucbSNtxOF9LY4IMng4T9eTYzDr+gnOPVxWBYMambJUexTzxyvFOneFg3r4FBEHqG3QZRgnKISYUQKv9B23A8vhFRe8uNZpBtiMtXqOQlVEbO/HzkRbqVaGj4s2XRVlhO+ewkvEaTp4pNLXG1OVF6ncxf3Fq94KmGuG29LLsFI1fuX35J0TsRNGo+TCioyTrXLVEjPztNVQL1/q5tGSrMPhfJEaQxHcrnqhVVqN1gfF+JK9Pgcud/lGa+Ig7eKQpJuUN+PYhBYQ/b6ahi4nLNe5+d8rQlfK/gl3OQ3WDGWuUMOt1YlBKoX+99JWlZr6tTAVgDF0NSHs5fqbU0euO7cXKnvVB3taBFHP6/KKZCBfGqzNo6DgZgiAELh1EYOni64dmOWUuwAQCKu+L8tnTFLlL6uKkaNtO8YGlOBVU9mQFYx4aGPgGEI/HTycxYXBClfKbmSErtcsuhalOh73FnzRz/thPjvRJcRwPtZmCHs1nYjivLMWWGprl4fRUOlrCDiwNU+9TZuaVsuCxj/4DzKfcla139igH7Z+0uskWkEq/c0mrsRLlVpl8ln0G77hwK9rLKc+RLeI6KLKy3Um5C6Of3qiKNoY/7ad3EFvdP4VICsuTMTii/bee9efmKAiym0A+l3hS7SofuEJ46In7BEO+Kf597wnd6s5mL1d5zNRBdOEmfNKyPdUuCW3u/SfFQes7nYlfV/B1DOE9p/pmgK+bx+eZdZUMu44uBGlaPvej5wxU9aumiyt/uCCZ4PyO0OYfFAMMqTaYcI8GxYeHO/3tDJsJisLleLpS/gvPLbEksIm3R4OCJ21S4P//uyzQ4EJZyYmWZjtknKJbz0vFEi0zDWnZHl4kvpMSPlVI8cEAG5r0JoNN59joEsMhUcPZ1YtIDYX9cnR711x6SQEnBGgTz6d3b1iebIdotlgqE03w87xlD0+qEykcVizaOB3Z+ocaMGWybZTIdpR4niV9mDm65EzKK8VQq59iMlABk54A7zAlMdkYNmaRuWJN+bLJ7RqEZf8vrpM0+3cwD0NctuwJJA13JIJVFlPStNIXzAW4pp1OnTx3rMZQfF+o4p92WDkF2tx1MUdC14Er9l1RlYsEYnOubj2IotL4tkgKwnE219ZsjXb8PJFkzakaWhRBJAkgbR6myiYFsJgC/lellsN9g1ML0j4HX4rwIzHbq20FDkBdfqN9SUnIbJf0QQr+QxHx4f0kRekXaqKZYUXYMbRKa6OObLPOaKGft7xFAgT2pHuSw7kdfloER91zsJPWQJbkAzyDFkkgUg80kW7n7n+WBN3CMXA3lU6QR23Ipx/98577h2OGkpcp5YiTX/TikBkcza+iwBGNBi/j+GwW8tGbKxpiSNEQqUDdqfscbVMQ+OSYGoeQKSLwREfUGDjR/emc+ZAJsy3sraTZkpHFZAI69dwO1dvsOw/Q+O/2lgghmEsk6NKzmfI+OYuOG2UoagP9Le/y9UABk4VHk54+6fW891qe1yVDT2KUc5hNeePBaQwVb5BQYPt/+2xEpqsHC4GY37hXyRSGvfwYa7DGUDbMKd8vud28h67mpOl7fe4uFRe/HOKf3TFs+9RX+QpL0+C2b4R/8VfkUQOABt4tcaDV34nU/UFXBUDvPYMYe0F24AZPIWphY9bLwt+tWvmuWwhvAgPN1rxvo3hpXvQNSPsVKgFUKENrmSCjWPYCUoQfJFpepI6oqpsVwJt6IlBFGO4soABNOS2KtnF9P7E9sSLK1WWOdGvYNhxKO5/D5ACMSM3oLy6XvjzPe57hP26DKKsIbhLZqcz8tJOcm1zlVKV87cVqDh5iOgGkNIKp7JU8eBp4VRPvv6peu3DR+ROhro3GOnpo6Cdltkq395hUi+pDXzwcONA2YjC4BKvX3JGZi77wJboSzwwPelRCe5297Gau3hHdjkNfDMaoCdfo4BX1IthlFNEHUm2nTsuiPe/rOux7FSlxIwT09NqnvyBmWQYcleqlPEreuoCZRFvXL07v84AxlxNdJM/atDmCjpmzumIoYOf4uVqV/8ZnSwV78WW0S0R7AwI0EDq4B6IaI6AUBwPrNLY0eeSw24zQ6qVAgBGW5aK79Mg+Skj4XxdPl8axMl4x6nwmnAfEBIju1ssp4yr/gdi9kl+ScGW3r5NVqJ1fXRkW9O0A6JBottvWGypQioSH2C46bepNpt5dXRK28XY0hseEnW9fDBaUMHziavWy8Q7jttulrsjOd5WunqGz20rPiwX/3fdKuQgv0g4CDqGBMamo9htCyKqN0qTOxWP5MmZG0lur+eIMwtcrfYqJujT19J3dps8mrCySt1MRdmlNIykG8cIMszw/nMlRV1DmpxNn2zf3gflXm1sXSH00EqrICj29dnyNSbIteQOqjPLqBf2QDDVVCAgcCz7vER9m5X4XkTIeB4ppqaFa2UHE05QSkAhs7FkyPf40UFGlKG8GnrdKq0ZLUk9m5jleTBwhdDsYP8HCDKRE6LS48qLHD4pvSl3XFvmH8KBEmyeyNwwJzAJQd8MqhmKsdandB6Ec1bHOw8agmVGP/vvY2C60X8AnR2r2HhdkUbclW9+ozjmxmipA1AJIZnqxg4aa1Le0RHfU2vkpf68y/rFMYgCXue7eNqxoS0NkOw9a9/WcDFJOh0Grb8zYjPgaSDENIFMCM0H5OlIqq2r2FKGkaQSMzVm87r9L7fysa4xxVMD0h7CIExLBVbCe1/r/WavK3yPhHVe3XBjyVTDOqI4/90N/Cm5KnqxFrVYOHbwMIXa3GwNwVME+38OpXvNwD6l+jN8BDCRDEjGDFC+WObTdm+5/tfm0QeEfVUYFtA7gTobiCnl8rywroMyBHNClofz+W7OhssrGuos+fRhh8kBA+Ni0fYdhKK+qCZaY0LUDpn17UUKCX6dOZccCYzSsD2iSQP74pFnhlkOzACsapdT20zbjF6ZqLgELUPT8IglaX38zP6zfdyBF+NjNf247XNtmIz4QCO5iRy/GcS8jjaWMfTxI3EbUvzrprtgRQDOz/eMnyVQVbbFiTMZfhfQLeu+j6iY0Qs/QYGFdHefwzAYuVpPhVZK/tXsy6DAioLlmNDzAu1eQ5ihCnobO+MOZtSD0+uTpiOAvPwGWf52xDUHj4zbdFtZULPV4c1TmWflDGMkg/Ia6kPHprHErwFTGoBg+1D6oX8lSPdz5srAF0RbktUTmq44+USAYYowZQOVbM3BWMc603Oy9SQD3buNTgzJ7yaMBbo/pjkzVrpW5xYH0Ra11ykiz32vo4nBg9Zvm92KHWhJm7uQJV5DMPA1JHBWBMcjz/uZupwXqjoTffeHZ17N3waXUaR7cZDs94ewlhsbQrmI7/A4zJDUZj0qKiVQhn3f3AneEhDwl6GUdCBdKY14q9n6ay58twW2PRXXPJ6UE6TUs6oqH/0xgDpP3bx/mfcCUy5oo91agCPtpTfowGZ0tyw5mIOsUqvdURDhjuWLX/WIqaPlYx3zmJ3ahTcxtC5xQgKWrQskF57LaOvwYN0lzIwz/joNYkiZwLyB7Joi0CsWWRC6SapEN5TClIisNQtNPmfwKaKYb+Hguo76RtcQMXdRZWjEJNHq8KZKeg/uWWDOW6aygLP9JDrNNW7JfWDyHPR8GL+29zBAD5FY1WZXsmYfdKU1VTLLzAHERJJGTpwKZH5k0uZrDYM8zG9WX+RVDM8bsmN8cI2wKz0Td8GEq9T4DvY6FuhMsqPGHC1tkLdxuwBYP0Lu2RvjXaxodrZhKfkkIwGcfm+lFS4WMFPCz3FwWwuvNLNqv7c85xnk3aXWl49yCW0YTzTqwyKuKWSIFJum5G8BBjvxx2yDOZMh18M2WhRGX5VA0p3eAilBsGa54P+iEat2c0lLnTrXg7fzDLJrjO/213hRmT/92zHwHShntUiR+9KUWKWRcx9OrMWfefEo/p2FR7dbNWoP/P/se7JJUfBzJixcPvTzMvSTQrccDAmpwoLnh6pnsAF37U9Cakvwb0EZzywhYhfUyAZ4oAu4R1X55yrbJifKRbLIC6NaYqZxbpzV9ec4/SFSjJKEvmVGa9tHfUJayAvrPPbVHNaxlbdJOOn7f43GTTdGGufXu/daAhuYtol2y5rFVUxlDpyKCfYRz3fOyJZEjhxizetlF5kpK8kUuEpKNWnSG9VEdmcn7Tu0/U9Pho+IZiTincXepD9zQXGusmr6j19TKRCe4dmbGmRl1cDDNABYeOKT51fHc6+d1Q9T2n1UMmkd+aiSUgNIrogqtnInezaEs7HmtmpjKttWg7ulLhPvEEnGE5TqPY3iCItPzYojGET4V755b+cNmqdG6OBTlbYjDs4AAp+ho1Iq8R/eWa0/FOyB4K5JLQ/WqwpaNPuaoufHcJMEld4peiw/7uIRZ9U4otV2lACBY2PfSUUu7vJ/iZUtvPoJmd8K/BmbnNo2iumTtQxEeARnjsHdzf1JrE1L6NGFsI7t81c5GCgmWILKM5pWDA5HO53I6aju6916JkUl1YcYyk9Hwwf/waKzGbNaeXD2d1jBd+rriDyPgR5p32kxAb41vjMM5QjUrVztISMmbVDBnx2qArnLJ6ECRGZcfK4U6LCAMxRtE+Y32MobWIYqbeJLCsaF4pCXyZjPABVmN36NRAavX8RXO80JuF2m/Snmg2NL0dSW67EVH9I4fcFSjpL73r6ohLh/V+uK3786Tpz4u9p1byZEEFVjn4eK4wBNeQ7DGhdbFbRTt6/9b55EBMfJGakrqZ4U+Fgnh2uIpidUcG+iBjHE5HMRX2ZKkKLyYQElkw/Kbj2w8OvDaxd8rzWoSUnwkiP9DB4L1FBdrrf9anTqNfPehHTBlyG9cgcQLrR8tQEZN9zuxs8BV1Zf+cIk9kSStcCODphQCbZP7NYhgTuqPh967gyo6DhJVEeM/gq2arEo3NkVtX7D7mzM4zzsjwEazeZbygY6xwP5F5NLqPJ0Hxncni2XMn/GdHQmTbQF1zee4LOhZaDlBzMZLsKXcJ3sJsBmPODcSW/FKYiVgzz7wLdz0C3bFpTwedWpIZzG+H0kpS6hOFF5yNj/xUGHEQK75qxYUFuXq2vFITPVf7aaAWUF+eBV5VbBqFcUccHNaTmGaDdRTdXTurKJ8ATxX0DHWz2qNhGP4nrYJRCKI12hvvahdfR6RlR+zca42mjybVuHEEGrU2KvnHy9+mmlQDH4jYHZKC6knkne5Q28ldgrISAF0p2u8YVTy2bGLZqUkIV6zWDXi0DuZMiQhOJwUgZQNnrjzpboxif7CaCAFdxHukA5fPTubF6aLOTWCnS/EP8ZSOIyNGpkn86BVLEgxNoCo5XDdJHdnSB0Zy+5O4NQSsoKdZzikwg0eSvXAE6j6WW27irlXjNHHxiuOY/LaFsSgXv62JfK2/O09r1DMjpxv32Y457Wd8wFBf9V6i6CdLP2Z9qNFsxcP88S7N6b5FAkZAkO78T3f4mpUVnXed/QQC1AAudBr+gg118i202+jHf4m1tBvD2iwt/8PqoAWQSajReU2kDJ91lZ9cqfgKVbzge5mUlKDSh7aeClFOoVz9UEdTQyNyjj+u7JaX9DWyqtt6955fcvBJF1aKEjjPQjYV4+FQr9Fnd8NqWavBRL91OUcILzXVselzvLQtPmmvtdhkUNi8G+O+b/qcVyHvls9lJjRGbe0YWtuq9zXA02yIjtBjoQd1vY0EmEFvb3u3xiPt9Wix6NZ7ljWQVbw229SAPrh/hsIECHTLmxKxWD3/K6TUieQeqJIfpcIoOQcgmvHDyyRUevzKImeikRzg+ly1+qSicz7hh/DCm/39Fyk6M86XNkhcEgJKANNt1matUHBPuMmqkqR0Irsee0uIofjg8efSzC4Ml6OzAV1PuydANODV+SaVqKrg8qTvT2ROpiQHqoOAq3EdFRo1QW+1ak/AYmGEVA4cF99A82GRm5mLHhLHqOSqBVNF5d+tjFko2morW+bAtWqE3Mhi2uYPJEeL+puWOoJaLV9uHtQIj2GvjqEnPiF3gSNk2kq1rb+v31DDwcalu1nsmfE1n7J39uQgliDyyoBoudkZrUtnIUrDsC6iGs/DA1YU+EpC8VYQ4iw91D0O8kJIRK0Zo3YzUzYnm6vxq+9EDAP5SWf+Eyupwlhcyq7rgfu0UcsS/cyy18bZBvpooyg1q0GNkTJ+MwtXBtDoaChHEqMdF/a7GjUgboSb8jHDJrfqRhQ/bbI62r8nHoOa6UgOaJLxxg1EhXpXmkd3Rch7uNxgpPzxP/mBdrGsygnoth1z7Q/YLYJb7LwpuGREdhP+ef4imi3CBmJrq9pWR8/s43S4uxqNYHUv9ha9RBACBhuz+S4xTQTZaCKSoDHnxC8CxGhiHczvJUTlt4rrWQpu9+AvsrR2wMvwqpTTd2ETTsO/P3JJiLBUvcs0TXCPCRY2h9Nx8ZqMz8XSEqa9ByDLoNM8PxxK/62v/Wkztb9dlxfHsl4u4UjIZo5lD7knNDevOZvFRYHhwFE22lXrX+Sffrt3y9R1DKaG/GlAPLQQX/Hetzpmce0TT69U3cFZSUWj1hcJa25OoCXx3O5jXSizjPu68eF6JRu4ly0GPmihJAcdY54LAu+PeTtHdGWaRfb6RVp9zxwP+2PoTSQm+qFhD5LkhsYuT1IwWLIAUjU9P0z7IOUj2QP4sYABt2vX5hJCVUnjOBPVGQTmwyR8LSRc2WvhlmD4DMitovW8AmruHvsuxxMnY/ybXB0f6jgvY+7tMu0sJN5r4DBEBXa37SH5PepbiAlY5L6+09qF9dbg57qZdXr+Lkj+9ODwIdoY9Ogs9QXAMPBK9sNLNDM1mFaODMVpqeBBx3+/X8BkyPofOmxl+kYJsG1PP50FDBXj0A4uVUwSXOnyDvjHd5pupMiy5DyOMVDjPDi22YVTeKKPxtGz5/wLm/x/DzHO4PBKlriUyR2fdazZ8MZwZO2yzm40RwLqezNhsNT7aqhOqWBMfTbYcyVtVzrROKLQ/cw8h9MBYgLQZ5m7RtajLhjAmwWRubbOysVY9+MbTxulvSqQymjxTj0/yGmowXOk8LorLHbyciHZbi5Wipq5e028xOnXPq0SO1Ei/BmXFCr+iw4toQwld1d5KXZJaq1eDPduqLEuVRpKA9CzB7KJsTTpdrYpMaOsIFM7Wgr9Oh/caoRAohQN6A6HSrmbUuxffYlS4ymc4W40QYfauuqpQ/JTXe2l3gW1vBU3Q0CQWi+YnGMAlM7QCe806vIrrgQmejgYb3z21bFn0KNZj8qMbtk0fubcrDYYwmBhjZezZtAK7N3MQKKCODWwtmN/WYEGctudKJzRB3xrBGIXPbh2oyOsQ4psvw2packPl36ulG2AlW5rvS3xsDrZG0jPgcLNOBZVquBKudvtx5EyYnivmLREWPn30cbkfL4RsfTwuJVSFZZJFh6UkofGq/bkz/WqbPwyDk8xppCVNz7JQstijvxEWrb40THMQJebLnzyY2q2jx2SLecaR7/0b676f5ddR3aDQqQxzS6YlPvFcYbw+8vic5SAk75H9CSsEorQCVlJSk7DU5HBRkzDnV2QtTJe9fsfqy1sQNBXqUXzv+3HDVDSjlHNPKEmNGm5+zlEP/Pa0mLR8hxOG5PeuHfsO4YAaC+btxGwKVWC9Se7tv8fBJBx1n+Kox6GyPB1SVukkNQkjh9dl8s6dR8uwRo6Ep3zrpyoDHwNvpGU0zV5/27gpveUjCyrt2ZF4TOPsS/WygLkfE2dbNXsNDXjU0kggbh+REnbrOGVNbeYAoc4ZX0aRdyTYOFzlRKaGo4MoHLkMH9FMwYlY+jItBYVbIzsByLIUmu7xM7N3q4VtOAzdBtYpwYx/5yTIIJ9yh2VZWg/uPZimDRgASUeaIeF/TU+n3NBLOkQvsf4CKuJi9s4FqpE2p0HLaw6yIcFU8mcl8Jx6XPWv+eL9Uv+Eyr1QVYQfaJcVwJ6kjFn9GSZ3uvbIxaZMwi7x+nNLp60sgdzogotqc5oVT+LDsygUDk+S361me7L2BWYFkcDER/Rx+J0tgDZ6wwKRu7kFtxCpqtt19WgsF6LzpqmDlLORvOsY68JnuZgBdo7ozFmFR6uGXxbySNeCvPKl92vkVsYEYjZ70nSsNQz9WiIy0pcd4Cjnd16gHVj3X+IIr+ZH/gTnYy0JQvVtpoQKA3yqTH8ZK5WAWFLSXjNeHCwtYmaan6uJoOWW3ktmR0n9j0uxSEniCHfobcaa4adhh6U65iKCHer9DsvpoFJxkj5jhGLhPSjJ+hLddzatV/1Ocn1CE5uZoZAMtgkhUYN5zk9+VUjJxOTjDsX8kQFan+fCSw0rK8IhXNp3dynfHXSYCNq076Pn60lpsgbLC41pl75UNjAtdkXJ0OFBP9SOFxYd/qxoACmCf2c4BNjgll3P8P77ikGQPLbKe6Bprf5RR7SLTcoLj+WEriYD+XvlnCQ6gwN09MIkc6PH+xS8JfJD7iyBoSsLx/L/1AzaxG7e0eIP2dxroERhpC6jg8arrg7XQBksDHIJZIPRhy16WjWaucMUOLtxrgBU9rezETjoCtMnBYdaOAagkVHdueRkp+p0+SRoZ4ejQaCwhOiYRYYJC7NsV73oO8dwYLioC3qILoo9B/eMud5uERJdTB+L3gaZcXObntZ43fegezhpmSwHyw4dM10xfsXF1MY5XAR1XmGR9Qz8Yrc2BSBiUUf1wSye1tGQLKtmsheBI0zWEKzJu8/tdWQ84lcWgnXo9INPwDU5XiJi0OyBQbwRH1ahR14L10g9kAYWlDK/0N3VzcgYYursjTtw/2wSHmfTGJsx5NOXmMmVliBLLHGu6G0jFBLZtUkH7EzFzorhlKhKRrLqXXlXpO8crQ3CHEcZLu9XzwCc9SvkPe94gxwonijdizLHtGfLLKLF1cdtXMFa7Mf4P/JQHiBZIRXBzCKoqPaIuvh7X4/SQdEJnxbsIECUF90ZnrLUpBjTXiX4XAc3Mse7eTXKyZp8Q3Sf1S3esZyDQl+BBER4PmbGOeQ+K1112FbEeyqQZg56WiQ0jRCUmP+Kew9A1ZxSjutLVOfkpuBwoSkP4RGNoe7WrmyTXKI6nk1Tnz0oe2Vm3PjBDf8Gwhe+fwAYSAjlPra1TtCj1uu1GcdIAm6ViQn9Srqf1ym9fPIxInLxt48mCIl6DSTi4ZJ+XkJrz2dXWQqhpSF4nNWapdIjJH+p1Opedufkw0xHlr4vORb9BCJ3W8vAPdZSqI7VxbNaaOfqhI/8w7L9horVKv7MLnEr2l2XgUM6+i5Ix58xgRlYVxa+ltEdaupD5yktPEOlldMIatEHTM9j7h7hxVvQPEbtQP6BmDdVaPz2u/o7+Aiy4lsXGE+Km2ss6828uqY4y28croxcwQBaemP2+4hEA88WmmXnQTmIMFje/i5qVzP/dynhApy5GEB55hU7+jPdveexxyrULupZB1hjyqISvKscuKXOXZUnp8dPLlTkOIlOhMu9t4Vx5PLPIDK0SdUiZ95AlS0+/1macnq6hXYYejgXigt9NePxN2PY9CC0HftH0q8httvBeLZ48ootbmSIZgK7/Wm1zqq/lUDZBL6CYC5KDyLg/WfRKIQMNyN2X432uLr/f/9AoV132hvDNWvIbdgJKmzFwnqjd8+MjwrCINW480Y/0ve7EpvtXHg4WzJv5MuILg89gjdMk86QRO9Q/YKdmb+HV6eMqRTq/oudO/E6zvH3NzGgHNz/zI4Clc1kXUMDTrnDpBI2KbWe//7iI6d1A8nhX4F+4tGki7hfsA4VOK83fdLmcdAGqQRjtItVXa3J7vhE+x0h3K+fVJpM2FZDdY7gVF9ME1rtQmyQOE+F7b6vQAUregqMnIegpxtIKRhyTvfx+DFWZLf+VUZHUO+CicH8sE+9LpldACFUpG+WMfE56X+8xIB5l+Eu4ij2kBUNYythq4o1kyIEuD1kt9XQ97gS9+waaIHokWae6jm/Y8Govgmk31Z2M0SBZAIeudbA/y6RkBys3zsWVHoPxD73jIs92cougppJ3Uxf/pQcoOw/qt20epdVJgHhT5/Rg5mNf+bvQ4LJnwSxs7VE9Qc/myZF4IFBUAom49bMTIghVW6RJ2gfXkP6ovc0THTEpxZWx4zTkARVTfH75vftaIkZptS+h3ERciwL+zFBfxojqrdRqqdkYWAVmXpf+ueckOfXPrN5b9eEwl8OJWgoXwyPM73RDn5ix09+qYTUbhIRquBAIHnO03H3q5TFdSXzP+sPDF+FV61ALiJwLttts7/NF2qhFJI57p4sixeZfoEtm0Dg5wGwPCH6tc6aqO8oe5R+IkDR8TuyFEN2w2kBdTxxvejaSoap3bQlCW4svakUIjVrpe7zCbbcGL0xSe/T3hysCfb20Xj0oFitmmY1Q+1QAbHJj3MfeeZfxuvYYoF7mLnb9sF2SPQEFrRwt08qapY0ODw4ReEM3TamVg4j3BvgKWWLIeWrMXPSM+I3hBzjUn6TbqMNWIPDWj5FBYrWBwXYB71BOpmX+5iYomjHoQ7LUcQ867QRS3qZXYnBbLy/FO2tEGfzE/rGyNxED2nvMySIIs4Fx3fZIsIZn/tCkocG9krZ5TWha4eDI3zmyCQeBMYsXlRDNsMfjEEBFh6/Qhq12c9IUp606kEY5bwbG/QnU+IAyJhlftn2f8iRL5A7v4R9oAJGU2GYjNHqZUGg2z6az4YMtQyXcV9X9WBRlaYnfVIRsmuVGDhDBIoG6C8AkCK6LdXd0NgeShgVCNpx7iacd6L5r4rVi1Gco6rCBwBfwyIJs4Fhnq8IZrURn9zhkJ2FenUPijnbIom4cDNJT3zqMfvySGt4ko2KqwoGDH25QLfuWMbcuRhuQwYKgCX9VgClxETR6DM5DNjTv7F3ysG0kI8NKZ5AZDzjJnJD4VVPwVR/fNKHpzgM8QQGSapVEbQCuiSw0xjHphp0eDxZeames1Mp9WwQ2puhmhj5ql1Lv0eYJEpN8RFa01yfNY0KZkTpYzcO/Ckhbb36k9esVXSMPl1G/K7/sR9Mcqvz7tEmdFwGaO02c6azfLxlRg6byx5y5aqHXBgH+N8X+0pGSjHsaENs0tEcJU4XtLrRLBJGIFVEe3TvIYkvc3siaU1d3xi9t7TPq1L/+hMRqojqmp8jBLyo7KEuYZeOKHFM3mUkV+XkyhiFhmwxtLgSsGMbh8fE6hCR2rTOIinlmsF74yj7IpViQkLbyCbrvDt5/yX6I7Y1abrFs7QBI3D9QnlxlwbgZHvFTKeaFKcI3NvUQFQURMimQ5M+eF6vwSlYff+7/cWpYmvPrIh9BVONzVYOe2tQdAWWT5fJSYL5Upt0L6Dl/pZObBEdo+FPC4b2+iU09eJ6vb/kc2/uq9CvCUV9KB+C/CPAJdOu7vq8wf/Yxy8081PEnm7VGsIzzoFYnDvfYTUyPhdXV2yICWljxWqkyEe4e1n+SZCRACDyiLTdzj5Dq5ThMdA+CNJhV09iM2iW1Pgf2XiLDkIpNo8ugDtNdVTMEBsO+uHzrqEI+EwMOFr2gevD8TkmyjvrYH9Bw6rkARUFwc7DRpOCIaACn2Edjv7bmiS3MFeVgdj1y0Rv+v1DYqY6EwHst3CNlpq6XBW7Q/fu+F1R20aHUR5Z1LIZ7wvY0E/w99bKzAyUjG7671ZUYF6F5+Ynv4Cm0twLZ+GTrBp8VL/LMeq8XYgzYldrklMglyWJS7iWBhdA5GraO3m3rO2AorN4N62bHcpIhG8kbvIkybnRVTEWt5a5f7iIYJN61OO1gLp+lMKa9CuaUR/y9eoF3/jHgqh6iPSadglFYQ/GTsLkzIXMTFtBelXwJHtvmQtoXItuOsLGvL2IK/M295YD8SaNfSND8zTfgUXGYQRyrzsPYC1cxWOto+YkW9R3EinZBFUy/5HWXF6WeqLcPADGeJH3U642mjV9hMqA/GY+7DcN2bpls25VizlGv+FyH0qhDmmd0gUS8y90rDX+Xk6y6McJ6S7gM/DYcoTHv/2NeKg4rjMw8TqrlL9LBcLKWQxtuJxVX7ObKDCs6fNlfUj6iRrGPFdJD+ziFknCJKgixZ5RJQEQZi2MefRmUYi5crYu3Oh50a5Jf+upvNzFAo7KhxO8WRvoqnLO0wvvdcPsaVUOIcvfZoUierdTyFyoxwnJI91KCBroEodybtBGshuLseewOL8RJP+H2Oqsca/SYdeeRtivXY+FFQeTQ33eeX3DdtS0+wgHXVCCQk/CkG/az4aY+ExO9eyJRmpeKAXose57USPZEoRKo6m3uIY0rsGhjw0xAS7X1DuBTFVuo29v3dChgu70cPjpl5/xQmrPdA36PXNZRWOszr9FtTYYxG7dHUooremnYo1QnUGWsN/xygLq9TDGLLhVH/pc4pD+15uGiALFzU4PINmfD25G8LAsJea1dQlpC1s7rkYJUQqIwFNDY4Eh0dawLn8fCol/rhUCEbEHM1dJlCBpXxKfm7zt/ZpsbXgy68nEkEoLjs9rk0E9GFFZoYLZv/4qZR7nl7qBbeALu0FWvdWoNb4hCvlkME+i5nbMafn9uVxxXlpXBlOxHA7IKvKJLMXQanWkuK9A+2VI1JSDoY06+R0/g5TPJIHfO3roljfhM9ncx6Qrk66xY1H0+2UgF+oQgm28A27u9+T4rGo0sT6suA8Jdwthg1T9gojZro33dFb5pubkZ5ZHchLzsKkibaR3DHxf769V4iImNuKKrpgMMK8vcvF4YgFx9Asca63MVyNPtp5+zXPASns3bwdmsxnn1S54GTdkB4DwX4L7JXMnQGqIaS+mPgWxbIZbFcDNIrMilEIEGFczfvcACtmReTyzqnpITyfsh5QK4RKX9ZWtvUy4bWXjsLYbNV7MrrZsT82c9cmf4f8I0sSYqVIlcUYgI782imxBuEKs3OWcogWDmwlr9TGLtVSSTlyzHUW4PU9f7Wv06gLioBSoAf5esTj3FD9kKtTKQZfTKEIOcCYWcfIk4IkcfoFGKSLqsHhBpBOTfEJ6dxkBJXCSlknDrb8XJYO4/96XFd4ThAg4/Heg3u5p1kP3QG2yMuUrty2cFQaT3cWMABIB2diEu/1KfFFSKbfjTp8aUhb99C/ZA5m7h8JWsGwT5Ml9Uhw6CmNHyRA15TyVwIsOH0I1tFeVqQaoqT7wGjyqrJ9bI+WtpjMv5CAGQfj+k2aPOJZ/zLvxAtkd/Bzh9BZPEwVE0I0DI82uWK72P5+mHKig5zbXYrQE5bSNA9/gHvSND2qLV3hLPnoJp5q/NeZX7mhb2aWf7qkF8iM4HEHQ6YiYA+E+kPmfMGabHq62QBi8sSJ3yb68iTcA4YT6f+gJb6G3adGkY9eeu7XQZiQEi2fXRSKUOj/zLkyh4R3hOAX6xhT1yCvCHT2Jb9tAzSMxe0RFbM3g6b/VHgP8nyZkt45j1ZYBTwOpQIaFU7nU5focNbiclNOds9b6I+FOnBXwyAf1ViJPMKBBofmR8wg+77g5o3CiYUzQ+KdNxUo14XQc58/GKrIq3XSIefM9azql5sX7KlTsU8DGT1HlHIYnd10cJYsAEHoN0mLKcHTySHsjTFesKWsmK+siZFXhlavE6F44mweXOrX6FBoELRrvIrsst4OH+O47VaML4CK/cNrjlTodfRr3u2XZsHCcw9kXLGX/15sm10DYmP3G3387x7LDyVoplrs0pzIvfcy41eb2Ob/wM6tQNLxQKnfSbL0eyYL+RWR09qeHT/lWpCFvcISYlmdF/jMaIWDyxE/LA1tguYOSiQtSqHfgqHr1n/k5nFhnUBnU1J1eys/8qySmWwIplgfD3uNcFHlg6trf2B11Om/f7E9onO53sWHhas4nNuhBJsUn2OjOnOAFZi2dcAvexHytVxIdybjHcEdXUcp0jkab19hwZ0RddTUGjtyulBmpbfGD+4d+oynTEjmMlYS/pfoCyhEk9XbgbBf7wtFs5qleFrCmB0NrUYZLxmw+2wFqYEUy2hYP3ZxY8uhRZeFXZfhOD58zGBx7lo4yMjiBc0zvOGqVQm8d4tk1CRpyGJOGJWVU4EpHPxqgMP6hV7f0IxJugziIEJHavrZauRXe0/THYEOKpl/a4jm/fah+oAzHRBqwetjJBSjNp5LaZ3ZUNQElZJBDOF1e4muumSHF6da394Cvppq45QN1B2wYBfbx4Y9fnq5b+heTNTCmP9XhMQGniDhmdhGzfPUY5YPvTUhEcaaA2ucNDUO/xvaUVhXDIodrM/05R31bnFkjUjn34N7Aiuagl9VB9SjYsu83Ws9eoevaZVwZMC4uiZko2GtNzZCyMHRq6GKhvEGBiM1gLyvMZk3eR2dGcn19YX72JnDBY6RWncG7lGAg0YZR9lyoCyQ13gtnyBi05gPlO9yOeIYGqQrhgRpR+pAvx4czdaBMpVI7SgZMAhMSsdPUEQ9stTtwSabBmrln0uHsOMhDvi0bNRUWUmqnu3eiLgzk2XKGyTaHCe59vZZcmDkk8aOO6pTw5H+DWALBPMcCOmfIz4cF9E5zesXbQkQNDFk7vlnAcetbpid+Ce9MnTb3Clhv0lL7lyusJYCpLpalVXmQ67YNR+IIDh9vW7XeWnU3FFfdnO0yqCON1josSLVMTTaH/T3Q7Y+gOUofDwwXaGyGRB+4GRC2kk7zANlgd7PmE5kXda4IpmTbP2OqUJ/O9EXW4aslQR5PtYy3tNMamtk4Lwzb6WIFll7MVBneG5vPfEGslblvK4unzLLIvceI6WxhiZNc/nr10k9nn8ikKPz5jmA9oC+lWIE8QR4XYTcO6WZ7VMORykmWLBbTE1NQc8/TBpYSaYjlsyOK50EEwZC6/hyMiltFDU/OcVfSs/4s0Rk68qJkU5mIFxzQcySQSzLKmqQzkbb2ZlC8MLMP8Tt/ui2UK3r3IoyOWjDNfAV+2/iYAbaU/gcEuC9PqZbBCpHpobrsMSJpIpAbdk+lZArMaQfdQP2kY9Krk6TsjNb/ad7Ghc/HTlJyxRISEoijGyuLhUJB5Ch35PrR1oibmRE3vvhC5cWj/AFFMlliT5ELHoj9ieMLEG0BOkVRUXKuv2bfaF8AdXORnzTtMfXYqB8UVY5TvybX4Mkg9YXaiDDrp7KV8wVHpmx3MIlmRkznG4Q7DbYNTZBEi2yxQfQW37NrAOyCP8AXP/EHi/BLLFg/ip1tleZLojlnpdzKgSmJyi4IRDWNifCtFxTRjzh2z9DNa3KUZLZnixrksQWHwp2gRkmuu7HYPHYIQrdjih0WnNb7CL7hFDLjbfGaVLQh5Fu7SHtZTqDYzgY4QnM/x2PC8v6+qmCAMbOvWxZOIxjgpUF1ud2/e41K1bJAXPTZ0ctJLsigJDqNH6fNsXGGXNx7cwJPgP6INK3Qxc3ylfv0L1e9m37k+CqkJJTN6MvvQuae8WjO1l0JvBh6yHIrZgf/Bt/DNS1QULgHfUCLdwH6GVXxn8JChzrTEJL4dTZGD6nCwPWD+eeU/jxNc/wph/HYngIZcSTOnA7ZoHemc7pUYXx0Nr45Sbce9CyAvFnCzoIYbXxoDXYVwt/7sf509VEfvoLzjbFrRKr4vntb5dgeDiwRX6neO0yQZsOSoVjVvOOSAuP4PT+ezKgOTL5CMeBFh5fTyCTneXHNexLrs1pBpLHH3kmt/Gi6938ByjJyGR1wM7/rvRQQoS1drQjQ0vefqIJKlavxUAyi0PuILAyGGfaeCzz00DKjY1cowpRuwwf7rYPEZOByjttnqj6EUZ84F5gZp+4HJmTpMjNq0q/lyKFhwHKG0wkVp5h+gESx82VKGR+mbao8YOh23JnEy+eNJ45yos7d1gFc6GC67dt+OzE5TpAYicEpe2YtuuIHNt0hQpdLBdS8eqx9D9RSrya3h16jYIp9Ogfv58USTrQa6bOJgC6Fuw3VSohoUOQpQ/XY+PVKw2eV8Q1N6yxzymT6QIiLizm3kcA+jtFVJVj/IlTTGr7Tj6P8fQmh0ag3AJfRbLs8nmEQ1QHGUtaUv9djTgKNG5hVLyiujHLL77tNlHcYLwqquU6Z2V+WMoDwfBiMDqK39/tNhs7dXQhQTHYkold5VgNmV+WJr8ETyoKTHTS8g1RZL+KCbZw1LZoGTgR6eNleq+XGRggG9pbw1+WcW0jzJpvQle+pDWTA3yPaJogeuohg7EijR/48Se6kjwNpGStelAHWNOtzrfgmNxtH9r1eSRWLz79nRNF5th43Vy+rZ9FcwK7PlfJojQmk6yDIgDVpS2IJtFflHkl2pdrA/ZK4Grks9dfURGUNk54HimplKaYEZX5dE2M9W/60vxTLBE6XeIZ01h4YiHBHGMX+eAHZAHpSk2dFZUbQL/ylbq8VdzyOCnwzB532xAsz2XqmJFNJCZ6YuvEpyZtLa07GuhPki8MeZUI63KN4jC30SSX7/bWpsMyfpqrzmMI+cCYlmRUB0Mu4kG/untuIlFzWG2JnuSThOvNB87WuxDF4K9MPLtApA2nPV+2yMqZtQu/5eBgMzg8/6FBhddJz3kV0onK4Jbo71w6dhI4czF3ksh7/wVe0vAH8B/pVGb1v7xscPIhg6KL+hvTtq6g1+kCPpBURUhkj6yrfPgZ3/Xtc22MaQJp0ouI8smF0IW7P8ZfkCNRlxyoz5rOlXJ2YoBYf+hZJACLpIW6Ecg7s2fptIWtvuAgGvGV7dSNLkYv17ghjkJQx6tLucnApd6V56PAKNj/7Yyi6MOC9uwvXC4HnQSolMT49c6/5ZRIfWauOyw+arQBxET3gqjgZPldHDuhPDdYxffuJ1ityuwa75OUwVzCfQ3DhhKAfuieBFYqqN1i5usxjNFwKad4V39gjt2wLjcS1yX59qz0LCyVW9KbSYU9A28hy5DC7hdtdQxRU9PX4vfg8R4KZzpT7OhJe4Rwnuob88KsYJT3Xdb5uQj/iI2b9k+IAL2RazReg2nxwi3ia771jH8mWcStAs1NJu+cMgx6oarFqLe8b1HSRxQ7za0WtQhVKdhOSo+l5MyUbO7l4rtMf8vOidRDYSBoESyiDirZR/lirb7mNwOHR9B00U3KDHjR+/6/p0FjHCVpWNOzJcWfIRQkZ6XmbdXoGNbYi+/6K31kVQSpEiFHlf0XTAzQKDh03BJv6aoldSXInQfAEINY34mN7TGvaILI1iq1F8qQD9LdUyM1y1GkmIcoViAyaqPmTF6srtanuyTM4L1D0wyuj0tEVAfuycGdwEON4fnsCqlt5T6S1obgnUutprS4s5WpzQgzd4U9TRXJErli2+o2bS7A/uISBZhgh/679K/zLda6gWtuZwAvTGNdCbAN9uwZti3Hk9kKWrIq/zDHz00+fSYLcc5sgjgY5sWd/F9nGirgGojICMTxUzGmVVyjsC+0iZ7i++UKuLA2KCekIgylXj+DAZVKUFgBgXYW5+1bwyASMUltB5MhCcaMuivyyhZw3MJ7OjjmJyH+sH7zwWOwFaztw+KQpl6ETunGZ4wgXDkkep9RDpXHKdERy5R1KfOfi61l4kXklOVi+UvIPbGuKxTqSuKxjgg5aUU0X3V/EKdOugbYyeYKlYTyfe6Py6u2Z+A0k4k2giHiUVqkoC8MKxTXxmChSs68WryAMhUxyo84ORdwTONcLdmrVJbnyH+ugmyyx9iKEPADsMijuo2U3uJDa7Wnfr9gcycQq006VxIwrhk0FV/BDjqzquNOsEJXdrimGw0G+JVU4/5BNk+lE5kSCYz9cOOfNBtbtPUoVHnu1jfPwwGlaTc7GUxPcDFnEgwaHh5znVnSwPAAdXz5o6vI34Epz0NKfx11wmUjfW8nTAn60/CwPV4XjHM2yzXbq/EA9hUimpPyH+gMWQc8fiEpaTtk7l1iADxvDO8EMdlaQ0nXdXnhCuCrsoC+Uvlb9IaXpTbhDyzTzYYUPRsJ1khYU6+UMPk1YHn7mE5V3/F28Yia/wrwDdF+R6TmVzsqudzix7NyUGk46wXs0WaHIURcZDicGiV7SEhoVNTU0zgBoaSd49LNnCcmSgWRMUa0JKdpcVnfovdDcIyEcqOXD4VeP1baW1O5XKi8DuZzNuEL/drafxlkHz2RIla0Jp8ILNn7S3fdeg9UhAx9q0+SKtkZq2KsJrdjjyAjr3GfTjVIDAz98414NxYOtS7EWs2ZaFK7+4WBYoC5Hkeq4b/TVXen2W5sxGUXGVbea0PfIOieEzqtacY9iZH8JBwrLvaO9mQx8S8Xs1qoQA5mRuhLUFIcDGMj1wJK/K+vclB5Bl071Plrpq5+L4WJ77f/haemR3QBDVN+DYo/NMMFkqokI7b1nRwuzDmI5dEx4XMlGANd6UtZZVQ12+CHjwiLfAM9yPWaei6wRjGbxBRZUWxyt/lA3BanlqVbrdSdMBG5p3j4Pa9sSfYjUr77zB9h2qpnC6V8u1+XFmGBTP3y97KCCHykGfB6mbCNng2OYcDfFxSp12MaqtqOwry+xB9gUkHlnfW9DENAGqcYOxFOWwZHAJEeIuPuyLr3pc8euQGkJA6K1rmHJDoeAl370hmHY+Wk02WBNr6bOj8owlbEPXZobBQ/xU4JVN9l2GH0nnIedokXyCvBiq+jOf90wECFhhyXgaKiOos+J5t5i72+cySCooSeyr88ULT2mwUuMCLDw9Pty72PByiEtatpiqNeZF8Kladg4jD+8iY+w8ru/PveAVmrABMft/YevFyzmyB1LNidUz8yrnolKmitwK2bPJrQzSfyMg7RCZtnj801QmxB2Hh1RdODJ04NYCR84mkyeVmLrySQsPfWBiZawIPusj3W803YTrCIFZh55a7RhYSAh5uolGsv0TMC+pfZ8CJFMfhrjIkPX4iPlpoVij0m+1EDPaObMhssohxiQLjAb8un88eH/6Z8SnJxoDDY9JjIkM28xe9G9BMqE8CdRizNqXF+yzFoq+i0JXmGCunk6mGwVz7dw0Aht2yZLXL1jgrrUpP84ikBVljLiJmABWcOUt5aq4e2FLPP4IYwNw6/6kBGhUw92jqGvzzSz2IXFoSGkFThCZ6Hdi95k3hbTR+UyOtNXxKf3qOHtoG1+tO5u2H6XvCe4OZ0IsSdV2C22f4X0XRjnoLI9dkAJcmaPzyLbgrWgj/dizWHsrNz5PzGCCZ7zywhZMyk6RrEJ5ucZ5k4Fosm8+U94ZyJFHYaHthMhJSLgoHd9plpggxNFeaBMx2BdSg8d0qM1P9s3xHTr7n+uvFsfU5qJafAkyfAi/gC+OLxCw0uMl/XJ+id3bpdG4VxQwyKvZaxCWrPaRHIy9KcdR43jv9jfykGUTzB9KjyF1G0SkyMHMeY5wgAmcEp9B8ffD92GR4FQExXAD/Rm70xyf9mrg0HowJ+Y5o1trz3gJx6Em+pGPt0PvCVSXsmyA7BLMqIiL8iKyvmFzR0O7FJPoUD5dZJ1eKn4tDUJJ4Umb72XTHqR1qs8KsHPpu1Bas2jM6FoTMyoX5aScTz2RVJH0xso6SkxxuMBg3uUblz4fj83SnK1GADX8ZJtrY6l5lrbF1/ZuSi1BShVAdFnfBB3Sh1SW4KQz2mL+Y4svWwspzeGp4W6pTFKdMDjOxHzkJHkAfLjLjqf+T1Axa9og+Cl7gRTi70bSWjsQM9F19HqH1IdJOoerLMQTLpuVpFU//G6/hsxG6sFsnzMJ7n73SbIizBrcriqJQot6sKe+uP1gONUVuBIPlDJA49atkvafSdkS4NR+zciAFrwoHjdIsVSJKqDxAVrM15uFJb4cUI1Z5j3Wgo4gLqLZDMdNtYKJ1P7oBTGSBKZGTqguAYXj9FtcQ4sSbuwAvEKj0iSHfGzNYpAzMhIVEl+O5tVLe4s/3uEd9Gsrl6bogS5HKQwX3XK8Vnj7lf+5qIQiTSzRnfkEpdxxgU0LAZG7OSxjiHkVD2gFaZ1GjKhIedce7dFUwac8qA8Ut250wwH7O4rKHFECWEhhPfyyNNFFWeFrcIjCB9QkpXuz0U80DXFirexggv6bCvxlzrpYL2A02HykHogeIIum14ATyzZnKSfKNZqYUHkFr6qN2/mPO1WK01C9CpwXcl3fLEficn+qMiFNH5a/JFJBAF2ZZWJ5EP8mGzPCF9CDlr0z0YHruP+6bAUG47CNw5yDdR0WDTjq/DqDE8W+/fc6iTB4r9945YbHjR76ZqoOFAkp3KnRniRLdWK5iKvLCCH/Jf9vzHnX4LfdHlAiEucOADd6aaTJnMDTB0DnLoW9pvA/TvJPoH2GYOwUyBgDkGv7VLqRPzjz9nIWylnnWqIlm7L9YRAuucHIleKaTQCeUrXP0Wnyp2nmBxzeDiVOPsap6l6MYLHO4xg8HBAK3J1dgvBpIjcYDKZexJV5mf8c0hpw5ODKTwdkKCeeTezcPXh/9nI/FlRcIYy8sH3nKCQ0EEucVi+uinLNXGTmZXSuB5jYC2k1R6X8FYDLSs7G3qg+Wa30/SZZVsN+vbIWPDRqs9HMz/V2eXRrxClGwzMRZTnpwuqrD1GTjLUluOf9uPygJGxe+/EB6Ak5UCCsCWe2GLD5iZX8ywqGyaP9CGKOOsQ504tSVjAMPPpKo7Ex8LT3xYdh4QReijfasLvMKd8/bu689y+WY+S8IO9LXV7KYzmOOycnb7imsjeiBPCZgNd2Hd2fLIQOaLorPkKjFZcGRaNO6lp+pBPTMvw9QIbYuQZBlhu48VmV3i/3Y0m71BChUWR3cdNSS4D96YC5J0Y7ZFqMHBW6G9p9pf1EMvsoq2dzX2wSvNYXqdP47zyePLrk+nreb97cBNao7U34lHDXeFQ+HqT8XvcE26g42SyQZmHFRlH2UZ0kohpcgm7Li2wAo0IHMre/0XfRV0HtarB6og11KC3Z7/RUcqKzEPA7ZEJQgZNgBZE02MFT702HN67p516Nvqkm0Gjx83wQdQMeqxlml8LDK0V5SdTdnatEK7C+bhiQ3CLRBupVuTeGYhJY/BbrqiE1SY1vdXZ2SFuvNbcrI6ErGJV8/qH1acDEtu58Cm9IYXlR4R//8FS+sjKjiIPcuzVQ+9bV25MODrRYTzxFJYbLhp2Um/HKOncgLdKHj7tOrMZfxR6CrV1qRAGh+vD5dMMDkqvh3RtFI8M/B+95gOm4879zLjARkfVycAOqjJdoBfgWjWNsJnafTkmc7B3nIQv/Doeol9zaGW/DlpeEHHLSCVAFpPcoRFbXqIB0NIfCnsKcK8GmaNVe1S1WmDjR9kV2WjYdDpu3d+gX3edjZ363f9jQEbUhFXtuRXOQv+gmYCubqBrqUoagUdP7xj0HIFEZg93/KZ2CrZfN9t0A6WcpUJBI5WLyoLnqf11jJxzi7XP7icTGifXh8HPdPwOvmb7A1BFcfY2H1yrgpQ9LL1WPc8f4dqfuE91BNq8DtcEql3/06rGk4gsNyWI77GnH9IKwUsAFlrpUmA3zzUPojorig8/2Cbd3TjsCKM9wxliCLyKPngKsM1KFkqM6bMFtyxYYrU2eewcxYM6RkLIzuCbt2tjjkrWkSVoIS5lGaeH9ACsgsCD8uBJTg2FG+jOXwTTSCvGIWOiSPmrIKKcqEISVvUcMWhHEeUKjXTMdtBmPl8s4WipwTYa2j7rmaa0RNf7IXAOT77NGep/q0h0KdWRo5UPERTufgAqHgtum1dZEPq6OH8ILA+nokd8MXPhCko+zgkNqNlrLQew5ugiVBI+TSaF0+Nh/0lIpsCoBQWlDacVD+Vx3x3aSXTbkp6URafBo7r4W0YMJYL0MnwFM5mzSBvH459mHAZ0yzT09dEXgjVW9/ggg2LxRO6yGo5FTpGQS5EwMSjG3crtd3U4X4CO+KX5W46TC5B/X/DpEipFhWLaE6rpYO0r44KwsS9Ge9H2dfFY3QNvXA1sWHN6WR25HgQ091u/FmxcmTXpvXerH0b5xRi1MwmGmrK4ZAT1TapoD8+smzXuW4xfFWkVDOL7zk9xNtB53A3+dJrIzc5OTB601UXSFtQkX3hWaSnhB0fIWaxp9w7vGQDYtDAeTTDigrLMhVNfLUpJcIxhrMjO0Amicb+Ubauev6gApJbByzVQRTWq047GGRSYgxukHnlk5+xWTYTi31cQQCJ9ILZRJ3tV05M1AIgNeeDW2H8IBJqkzSl9nnKSajGYOD7eMyjHHWbG4SEV8CvAH8Iew6SodPSlX4spOyb4O8XdYQ2bne98jMMolgBIbc8j1VfPhmdPcqVcmf5qMjZcC2VzGSMF9s4863hYPVGq86Huy5cmg6zBz+qDU3yje9vmEr3yJ6kZhF5z8UdlkJdjq/581O9VuCR2B3lyEAfQoUZot9HdVILawreyRxAy11JlpE3UoO/fi5/5omkUs0A7Gvb5+bsteFVIW+9l+qR2dINow47smAidv0bLLEr/yqKcUanjvixyzAQCM5CVzq0r7rDR9M7wjLxBq9eBWRVmyK9TfSJqXHjL8T3l8phqzWGZrkRC5oiPO6C5Wf59fFDP+ituUaiEqytebX0Feyu7U5Leql5gBMTdDPsmK7KUOyA5TuWxjGc7dN7kJKEYpro0VWRhjMArMIGbutu6vN2OSHb6nvd508S4Q34uCRKu96bSAD7YHASNVhzXv8N8jroYf5Y7E9s4wTpkvo3BZkkWqpF0M1vka3jjUC/JuZvw9V8avX+D9bciICl12vr/bQJxDe+TN9MQwDJwOe5HRWZKtCtH/1/2brHVDE381FF3JIILjZf20UTFL4MLwmZtFv3M88Bv1x6hEyoaAlZ5p5QEWzlw8bJBt8orARhiododtduYtJBSF7octT9JzbeKdozaif0LBWL/u9RjbeVNLZ8UV44Ye6Sz56Vn8QlwftWL01WoPryii3ZZ930Zx6Ins/HGvGQmHAD+2qvuKQAs8Y6ublb+Dvhp3Y2NNMjsuzOvb6m4YtkPzbhlctKadex8tBQuo0zhmSxfDIZm5VnEDdG2vZ6kcykYFxgAz3wrkVyXQnwxyQIeYMIHQYT+257jBWD0yJIiC3PqmohMzTC/65XVgSsowG2kgnlR7pYY18nBQ8aVfJ64D79rH2pymM4xMU1Zk/OS14XiDcldhO0c0RhQxiPSY72XYxpiaKVYmzOcEvI1PzQa7+LVZ6pBIwn8ffWvhqa38b3IskTs4RBkYs9i+i9/AqdAQg2IOeWv2fuo5tEcFyefI9nATJXQchbBEQO2Cj3kaBe2X+81o97B22kYSwjOkgZybf53qZFQ6p/N0dL/VnuL1cYTGi8k6rMpkKGx4j+Mc/fcHUVNXTKhyO10FkvHiN+qSbJGepJ/aLXoLZ8RET0Bshv/4hAQgzeS7yl0n74cedqdnmAeHmQ2CyXvMM0MWpEvA2ezZIKU+WvUSaGpTt1kvMloerqnqxHLfT01Yh2n3iD29EWnrQsyjedi1I5SUgvQKBM9G+oAai15cO1con2QFz3UK7w7ZgzM+vPmbk2QqR87fzlbdTSAhrLXzqVfLnWBA/4+5aC+0BRMZ6iX9lH3QXtKU9D01K3HprdilL456y5lsl38VQaMbz9hk0LgquziMY01Znz2WE4ClHG9cF/e7stVmn89oNFUE9NZ1RAc97KzDEWHLoKwlCG6L20/2Gj7/M6PDhsvhY+FMzYRg+v/0jo2gPT0UTCfaLBDRVvKQgUSYPMG1dr6ox7ohepBUS0msHq/V7A6Y9WfKDgSLatqTzwhOXnuXAoFc1LsdlV/Nv7XHqg5TAohZGa1mOn44SyY1fyPMCxL1QmxvhBC7mxDyj9DUnBpbjdAzrBW0mUzZ51brDVW3f0A8oKL6FYBf0mwK6YxDMJogq94OPgpZyKHKBYvJXMfs6u0pYnEn/jPeTVQMK6uY9Egww5setjqwdQmwi1ea0/uoNw7QKPorCWZohFt4VB+HUy/ObjCDdxryIg/y0wXGMwFyftSyf0v/ESOVaUNOHg1aA0SQ0KOwx/oqBneMvSoxZc7SqvQaHcx3ZLg7I0FQgQ9799KuVGTfGNgWvzIMnHqMNnCyCLJMNoNQK9XA4Wkq+6tVuCUREehKj+szE6KlaSwgAPfb6JeGqIyBrjJK/wNw2yPaYB9wHia3A56M5r4OplAvdVjO1vrsc4I8LAy1zqqpo0yM1hfixHeLNDG6ufXaX/4mWxYpqL3hBHpPbnox49P3jj/wGgdZFaJe1JTer036xd0Xak5qCI6SV86xqAdAChv6sj7ESw0SU7w0leCi/08lfYfucRQHdzjO3JkA7lvHw0ouMCSCweP+ms5HlStT1HLlgQ/pkLQ0HiDkuoPtTY6fDW0UPlH3ebKJKJsiIlEwAnWQ1ExfQhfs1IRdbEO6sgyC7u2YqSye9WFoH3s0+d4P2X78UPcUsRitbiSflMds3+5ixk47wEAbwHOouv3l0AUb9zZIP32hh+8n3fJx3LXT4wqErJXRmufydvyJuKW5IkA+rD7B5y3hJGUFrf+je8x2WEZ93MMZZjKF3R4hY4E82J7y0z9znWEXqtnGce0dejOBkrf6CbP1VCh4ixhRvmOXO9yA0A2XQqeWYNfk1eUkRWlybRDBiE5SOOtjudxOpqC6Hv0XRqdL58/dsrEItVoppvb13l9MrZRKzOe/vtw9JP9aAkOa7ra6MbT/3YE4LlEJ5ticKWKe+rOGibg+N20Vx6Vg7J3byZG9+hIpULnZWH4Tq3LmlMA+oUfgAbbzPl3twbDuQozSElI95KSsXaBWevUxIWPQdY+4eolMlTtLwn+51SP6BWFEiioYy+r2Rza4OqKJPMbx7t0CZCtpMKxYQ5JCowbAH7J4Y3Eh3C04j1H/2a7qH3cVo01mg0KjVVR59qENmLLCnQ4LNMS3i2XshEK7QAIvi4D+egZPpMUywog3s+tqRiaGXIEMFp3rd3TuvLXVT9tpJGxjgQLGMKXmGL1MVjoN97by2NaOn0JoIbOQqeBIHTVbBYNON5DD3XP+rStPIfVbuHd+90TJpGh8BlfV0dLneK2wDMnndVGVvQLhvaQxu6sL3XsvtxmQzeFWUSHLeAlmTc9yNQKkXtOJWS9faewS8yotiXdJQ6EI1vpVOHgh46gljSllVDRx9qlH7i2QFU/dKpaQEbpAFUBI/eSUGbpgT2ORGcUGXXDWjQJQo+nCkQVnIMRUCP367os5Iw4Rb3LDvOi+/mwcBozzUa4WkjVcSIURKO3RTFCiY9j3O6C5MBS6Y0WbBooC0nOzhKxL8xMIIaM/tnyEzIdlABrz3f9XlCiQ0hh+C7/bNp14eUvnjcHWjBOSw8E7BjzeXkRQkpIuZSOriwZ8PiOLZxCkXFOQ4hbXa4Tu69lccJ9Hd0F1lxkg5QnAhhfx5WdcTkBH3SibBUMCLPb/cYypz6s4GGDMV5smYibldp//j9gbCEhqanpxLsoexOMik4SOt879z21iz+8V3wgG8CicQsmxcsqCc5QUqOZhnpO4qAFgzHF+noxN835P4xf5EsOcPvYWwtzK3WEYVGy5tuvxE5WZB246SGIDgeC4sMge0B4p70Tse4b6NjlPHW+90GmqnySqY83r0ilaew46qmwi4RzmOcPehbn4YPCoISjQ44RURV++dfU53vcKhkSj6cWuh75tdSSUNMysFwoP+lN2gGTwxOfrha9wWxDPpimhEBVrt6dcBIvdoUbCLTDQDZuUOVVhZP4sATqq8z7Ai0STnGxzKmAHG+3I+/tvrDN/OOTHwR6W5aWSRj+M5wmS5hfdvimlus2z4pE6RV+l6scSEX3XjFUVgbSuuufln4qZfmgBxNvIZmkPtMh4WHAtuqRVdgDOLksqdhjqc9jrNVpRsYL4L5fXaKhNXYNJfTorxbaoSpoqj6ZEp05xsc4y4Qryx7BRs3iYvuHRbCUsiCPmmGdUPXDn6H7woEjiz1YeriH6NPF5au5aVrtcw0DvEgLLKMuVq6QvzE1mu+x9AFhhIEE3jVvzGWs7x+IBGJ2hfG8Kb57q5sDsPmddrc0s2doavGt3j59SpKkbETAVxcSwwHbpAEsYTNPM1KhVl7EPpQp+gNotyPx7hI11xG47CrYE7+4xlCFpaDwvf9FWescjE9qNrcgCXvSeme0GAOo6QjsttWQcRguwWZb6OG1VPN2xZcfyUeEGLHhPkrziDDf4SHNaCcXXJ9CtFdyRMVueZNWqaoSKhpFI91MMLSXju3pGbSzJlM8FPf/oxZbRADvlZZCyb8fbb4mQVBZZ3GWV4hj4PCrLA1qQvEqs9XLsRnoal9WaSQhWRzLJmCurnGGRc6wxyAAejp0pAR70k0M8R+ziXphTbSz5jU2xp2cFe1EhegrqPqjFAtYWbYwsm9X969oYf76RSVpD5DfI8iDfFILBkfvnZaZtHikQ2tfNY1T0QOYafZ+dfiQjWZxqrDxXDWbc/jYZSbOzpgJ0HvC9wodOgTk5d5d9dmNrnM0LH8bvtI4zgktUZdf/DkYM10EF8yMhbFqvpMTi+TaLBUNd9aLSzSGAqu41xsKxsEYHFPhxozYZMPCafc4U5t8Ja7k34czb9pTsN2JFnwl8AmZSpI39KzBoEcD8fz0CAcio2KlaDIhPF8V0HkEbwc2c0mkpBazhOMI1d4cxnKG15nlJ+haP4D9g/H1z7jIEHS7enL9st+r19iJpqLFuJiKD2NT7LXyBzaAcFxIJ/fo4roeZSvHUyfgqUjSVcPiszEAuk4Fgqjxih+ln6TZW8b5sbDIvrB1Ul++c1B63XbFgHdVJTaRPzIXeh5f5u+QYvfa7pHyQV0ZUIv4SnfFMvTC0g0/fdaaBd9rcpxu/CBpbobKZgCIyVRDZGdPlZs8UGyu7+Hxb64E/k0YIIyG0d7ZSIcU1dOwyAQt25Ow5B4W/oUhgU+Gf+qB/Eqf+V11+GylEkiyGag2sSabnAwgaqTr549u7USX8FH6EnKLv1g9jl2zIU7C6GM3aeDn8kP+9aBM0Agrl165RV4/UHaXPnrBjs3YOHlrMK9jziNkwwt6+rC5FPPvSm2uVuOQouD4+Rk/8X2VoT+8bijB9PNpfsOsNhiSOVgntu7dzfzJItraFExs2ylPt0vanTgZJP3SIxPvZsgaDSBNmxIh0KPLS+EZkJ1Xy0gY8WVOZDbYF9v0GJta6+GUy7ek8lisYumJ1nyw90NF5n7L6H1aFMYqA/WI2COJA7pWaf9Ugf5pniETIJNyNXtonwZOLeCG380p2a2m5Fs4WDJIbVCtkJ77ah+h3HMvJJ0fzW8OXfnZDuzbWB935lP5zr2+vOc7CL44LjNt8p2deJJKd+d8n1mwKwxWxUjkxJRVlpIqwq1a+Sfeu1oNGDaOXyS/LVoiWAi4/RFFK77j8sVBWyTeqc13DCYWKdEbHTgEcIdtBewm3fvU99V8J4gYLJijdis2O/D+3FBz8kG/SwAXwjzKgO1TmXuA3syLPxxfnEUxttkUPpzQJgAzcN6o79tpHr3QWX3TVy4USKZJPX/G7/sFv7TB2RKaM9LvG8518UTl/oNK6/mqMpSOqsv0xRVzNjumgamqz/e3LG3e1lkrW5SquqlrDJIrN90AProjO2hsva2vAv1ZNPbHVfvH6K8KnMmDbXcZImS+YAXafdXLVILS/Q0MSKuRaLPQABT6AsH1SpBlkiSLXyhT/gT5IbfD6Z1Jx0n7l33o2uGW4lgd8BRn8WUeEHBHEn2SCXVQwlREQtvN7iSC2y8qSngF4ytc3vgOucrGccauebyUn9sdKmkhMom+XHRGLg4yr7NW/ZAq8UDCTjimw0unj204NYoihtZTNdXwgmCpqzA6Y4a3S/braI7FEXELgpjVSnB+dqkyFq3Tny2G8lAz1OtN0TZdE3wgbqL8XtsE5Ut1NayTqmPNmEhJVC0f6ZfMop0HP5VawTxA+lq1XoeRAoIGH0ojuV+9O13sh2V2zoxj5jVyNGuZDtqZVlEeSIRI05PVi7nZfKw+EuT5YTkdX/qnx/AmQXABJR8mEbt5A8Oab2RqMdG+P0zvDI0gODnGDSO2w4ZOrD1zi5LnYaIljibbOMhpDWcwsd6Ry5eUmiLQ24OpaErO6a3/sYLybm9xOJLqfn7DNg/5SKBxEfKNyyUYP4KtkSMQI5Xo7dHcIhqH4l3CRK/gB7WtFU6bj0mReNJIitL8grYbUyZpqDuMDT5s5WQsWjOEmRSbMiH7HIkEIPvRu0WxMnRCJKjGFWdlKGqK96T7jlsEHCjsPjk/9VEQ4W5qB2tRAFGJ5YGgbmyYxqxGxduvkNdd3IZKcIbvtEtH4X7aHeyV4Dcn4wkEzUNRRhISM51Av5I1mwi2lj3DP8d6K9iFzNVDCSb+eb9pBu+SEqYrvFC8WKSi8OcZDj50KV871120hgz6n6OZy1KOh8OzKNuCKFt9mVlUfJKzD9gcuL53q+oTHGGIKFz4+4/zLC13N3l3y4Fn9dzM02uGyBGoJXmF3jrwW9OguOsh1FVykE1suM6kC/e005VRngkgcn29tixbfGSx7k8JzTId+5wTXE1HgKXCtGlwA7L6FxS+RUGGP2az1Em91D7THACjjqlVdoDOltQ7Yb4S8n4kG/m/CvtFfQB0e/e/JMgICLGKds6v5THENB7WYOdJ0P5s3GQzdbeXjUAG5Y2WCUBs5LZ6xDZzv1L7jfUHqBbmnHW7U4g+UTYB/tW7B0Ya0JAbpzWFSoVQH6CbY6q9fM8ccelwWdxeWdjZm+TcmBAHpje+emw8T5mUgl7Omvks7D2xk04/HjynzVyBN2dI3dBgxTkB1keL9tMN0WgyjY0ddKI8pigHP9lOa8hb7F2bZIa/FqS6JJPPHnlyPbVl+weIG7j4ocmWH/OkvaT4qtcbnafk2ocwOkjSqUob66ehit1UDMwKXreD2R92MZugTHNe/PWAZesANg9eBbm2p+4kqK52j8MW3AhqaffDN+kK195DUM4FLVYm8BQhOF+OWoM5tTD8LImCNRenutbU6qRxpaMDXCBU37/K3Y7eobcg/IaZaBuw44FteI67Hdgufk5VqCDjlK7jDBUtVq07hpPI9ymWW/m3nNLQlusNGDSBNYXOUBDRWNnHira/1eo9GEwVgpXn2tG1PUUxT15p/fbfGXCvpsj0QlzwErC0ge/Oqlsh7E0QhpqDAcvlBJOiXDD/bv01SkM269rmghWHJPUbmpq4trj7H6cCMXMIwWgOLaTXR0w3tamzJpReC8FXDNwkxSCbmg/ag17JdPyptz7mR3k6KvXor6tFCfEv85TW7CDWLEap1AC12Ym+LK9/CxdKPnXz9Qz4xNXGn3sG1wAfthifQfjDyiCnLo2uhuMzI9yKxH4PUTt52mReMLmnHFrrLpDYcPC+cU7ge55guYhGv/ANB92YzoXrI+Hs6gdXnnfE8GGhfydGwvKBKCtpDecGnu41Mz28j9/LTVtSV9WZEoxANMgPGo4BDbY2p69ixYGQWATdyg9TRDAK7f/Lrlubat60yuVZ9wcwqZ7NBP71mX6NEgdvfK1EgMnkZzsDQl/wWDHdAoOYCo4pKwY5I/V26cKTO4aMYcV/YDdgglOtas2KtIXBJAcgotsV4YfF+CDN4T5WdX808VdXh3/UXLrAdcMDF3QIXj1HyUHIOkXBH7DXICbJt9eNiowRXiuB0d1J/FqjPFe2IlNdXnwFwpRusB5PLSv0Lk/AdI1gQmao8wwLmnoh/L9riMbMMsWAOI+5B71d+lGTKlxx4hQn4ixRfedyZUUsRcpGrgAS1XqCKzggl0/LFuyQpe9BsgvZGkEHQ4ELkl6bcLtiHZ+7uFxmRjnV7v8PP1Whug1igIT3OTMnmb/dGJPuGKY5fRdvWoatxfNU3ABi+fY7eHiPqC0gQDpAC19twVfWBtBur+ST+y7fzmSE5Q0C3mcp8/31XIdqm7sEZJHtFnXBgaTyG+fWRGAY70K10IBvKH2TE6IMzm1k92/Cn2payTupKTtojgP3uaWIgFVgV0lD0WGR0PanqiKtrBFwqznvb/rz2PgpSjWd2BESLQpxY+6tmKXZnjvY9xfR12CQ8o/aKz1t+XxCSzy0uE5f/kaFUCrwxjL8gT7SEUJshp//5/yvPFJHgJlgsvXp+gRQCSzz+vS6rl3BhMsbj/HzwJYz8GsWppOQDGVswlOHEaFE/qhImhDrt2DUfNxtt21GW7KwJRn9/mtYIjlnnwgESPEpwoLyTru3SsVGzRxnZG6x+BiseUs57lTdb3H8KG7UPeH1SSjy9wZHELnar9x5cOtOR7lOvyjWm4Ab18Q+qoMxxLCFit0V8SmOu7AU8XGY3eSXb6Ly+kaQmDkRlOstgmcj+rD34KNz7LTvLL0O1Z9J/nCjp+1flOFgtbd7Yg0t5eNrPuppxYxJfSpnJRNL4S3YTffnV+x+zVsuioseET/On2wNi/TnL2rAQIKswi7Er3Sv48D/+PLsa2WJOSk6DqcCLmusILDiz0FwKEhMewrxtNyM2IAE0/6hiopIQoUgC6U8CLirhWbfVibSnCGZlF5uywIcaUlcEaYP/evokbi1NSquO62XNnWR4+fB3M1N7LaI5pwdHYOKEjg9OaSiTtEDypKGOVxZhdQS0jEvZ46foNS4SBpwZfPn60p6pQldNUmimhWeU5LUnEpZYjPJU6hmAsh4AKaLFfJANrZ9ou428yoEIFuiY9UgOYkqtSUocWxyijxK+NTtuDdbh7NJcyLIl6CUBWQjZiL34Bk0Qe3vmT9tpIKus3r5CvEdEu5Va2Wxm8CQJT9bESzuFBeH0QIRybKFAUVqNa9tCXukd1jwLXYKWsuMuFda8R1UjVG2cvAZ+R3lBV+nLksL4Ti6lubX3hKFcSyFsG5rK9pJt5nlSGIkBLP/HFqLL/KX0S96NdOo4CS+GYPBk+lBZxz6Yie12vvUj8l4t1ik/5PmvbLOTPCcaoPeZ7APUQIKIcxcNUDin3R1okbeAUGwt7Ja3G0ntQokBhlajisyXeqbfPLrTTKpTauclKp+DGdyBsbzFHEYtIqZnlLe5wjluF/UID6EgwWPGj0FVKM59Jom3+0Y1QTb+IKqHZv/0FIEEuVItlJHSixdza2w0UN80Hyc/eUGv6SBybC/EEs9cOcLBR1eeQXXe7p7hfIhtxxBrGhk9n7jom/4LXF125WzPmMCUiNyE8iO7sVSmRf/iSNFBveZWGPeCirfJ8a43fk5jCfA3NPEJyMAamu3Q5im0DKo8aonWXtye9iE8vraixlVTAGSXFMjP3+XiOE9jrnXTDzARnt7+9gvHctQpaAI0za6N7bq9R1lb55jILwmx4Ih4OA0K1/Xx7B9jytPFBRhEO8xqXLhxotsIRjnGRvnkMK/KJ1YhE9T2mNmclLYgMSn+7dzik8BzoHt+EcXstV8yNpTspqsnS96ATq3A66NbF449w9JqViBt4gWi7yVzt3kR4XSJ8iEB5anMqG+EsSyrMQVv0sMeEysGx+yYs6G2xPJw3zqTq4RzDQXPhYra/VMlt7E8zzl4D7L3HS3kkWf4ZkmFmnjcENPQdkmohl6p/gqkOg+8McyzNxxb5Fl19DsSr3MTuSMqhSKDn95ibzYCEdrZXJiKaqu7BFBuju+jSObOPchog2IsE/u/3U/UK2mntvSnD0qNkPYoRTskBnLJ3NJamL0V4sEbryX8NMr7MKMJ0+h2+xMKY4KERpvUrd0c6ABXWHqLdY1QTugC/5dhdoLy3+KwgG5FnL0MZw6qvOvHkKQRoQrcKLuwUld15s05QxurH67A9eAr02a/vUWNBIgP6vOa69ZZuZKElWttIerRDGIAkZ54fw7HBctSZtfspPxaliwbOEH/Laxot3ZQonzvXknSVodzZHA1Jw7BcNRsYvl+KJ0Y6pMRPpIbaN/QSuHtnjUoej+vlVhq5021xMUPKxCK/D8rSRbOmduHG85/JrIimgo5wXWP83lLvRaxwCxeTGVt44fTUqsfUARmQcS3f5DbHR9SZ4nJYIEvcCjIqLezJ3I6S7xBop57j3ZyMQX0Xxr5mc6IUmrlOXM9fJG5iDZQQ9rWsGZ0Y26GzTAEsD6pjPuDa1XAT1MRpxyZ8zN53sl1YEV0E0EHvZqcnBnqMTXRh6zC9PwDXEk3OHs2zLLIjBhY5+7lDxp1X0qcm8XtWorat33mUx+kEDDgaDUdpclQq/ZM6mMYoF433nKbCKDxCozugSPVaRjNPosMDy8FujvIJSb763XuBGBIYLS9x+HZhYiUa9xod0xKV9aRt7yczWWlLgfK8qn4fULHMBSP48m/wTWfDBdTH8uDAKt5WM033+2bCpxDhmZtE+d7XP65yBTOf9/EWaCG+Gs9/5kVbWS0JlfoDH6Si2tVCzCRGfV0XZAUWfXOMJ5F9dkMagbwaeqVqqbVONDQGg8zID5MUV7IkazdAz4JLOXsn1RuZnoZNIGV2Na15+dRKYUAmXFmkWBJpPMBwT8N4bd8VZwBnhm3WzH9S0sbpoP0sgf2OmPvQ6smMyfkVK+OLjXYubmtioAhdwDb5/pLRg3PGwfHEz6v9OOe4AK8iw2cma49tV44In8Rc9jGcqSQlFXPdlC8366ke4U/ITFy0/SQBl1vWvGk40KycwWGaLf8cCtEi/4X2W8961i6lYnpfNQhGcQyC8s2oIOW+Pw545Thq3ZBEyNC8YDr/pzCEmBI8U3A4IiQJoHiD9kUMNd8wfzysC2Kqc4OGeWYsJxmDev4Jn4HV+vqpgN6xxSEMABhRMdTteHiJAgnQEX9BR2V1sNqh5EcMvQNYYa5+bblQn7Rli1UFCtQkP6ECmGkxmPNkg2CGS2mmf0/WEuTZSyPMtbbrnftPgleOmJ3jSm0m1EU9fQHQo1NZti+KczpJ8mSYIVtXzXh4rNJcL3Fm7Bbftpjmj5UnuDpPk8HvqKOj2DGJyk4R0Md1x7umiH0DTOXaLwO0EI94k7n6R8nfqiwekgUQZ1rRek0HViM5YN0JLWp4f4NRE8ErcGNSHZd58+9Kx8lmkc9ogfQmX0rX1kB8QQzNbH+eVDee0jOQNUgQcew3y+0QbifXrtLHXDIxsqsej41Kz7vfcQRE1zUnY2phYNILK8a657zyHNMzPiRhxs28s1JX2kiCMEloubOXnc8BzU+n7LM9wztf63eFWN/eWHXVivSdCWg5DfWsk2CF8aFJrOP277QEPdkWlOlewCVEkLjyd5wUn9ZzaKOJKnDQDLfliiRLTKlU8TOeQj8jOU8FfpM9tayJTDpxw6sVlZuJRAILfxn+QAGIB/W1FGDjuuVu62hFDBdvzVSfge95Ebf9pclp0GrpV3S+gwBWn5J7aGiim/fRyIN7YVVXJsnAnVeq90vDdAV0XearTqjT2Ck/AMkBW6T/ls/6VUVnFWs01wxkahKR0tRwyLRKgHefm3RWie/pTVQpUMZw+/7ozQSW+7vuZd8lsvT1iX5rwlpiaFnOnDbHsr1As6vLETd5HVbcBCGbJHcS7ax9Byd50jdYyagUtjAaHYX8ryyuR/bDkw1o4j8+hXMfbzy+CVmgrfRDyl4dn+5LxrqRAXLoDKpQREAHqdLSsVSJh1s8KnZ/SsUVq27cq+O6LMSBmhT4X3E750rmWwCsoCre6bT//oFWYALjp2SbcxnULBaTvnYDHtfEbO1m/3c9nJk8ZO5KHQTV88ivTWN/S2EXwmisTPdcupMrvI8e48QZdkZu9WHyKron7MKhGFJw6Z0KZ3tleVrvvJo89siUwByPY+Hs4gkKPBQbLQOaedcv/xeM+Ih8rl1eHEC/C65xWVciToVqSGp9HfbhVzFSrO6kBnv7mJwnRLvMEwqiNankVdJJMw4icU3lKyw/ecNSWIUddqlbThYMiq8nHjRRufs+28cq0OI9zhpvxFvFgSZE/eAYvm0x+9lZO+EH9NkBngaqU1NMYhdombNuy3awUN9p0mJQ//e9L65YbShgoc+ZUlNy+c6F6gDEHXV0JrzevPIZFAe2RyRa2dNqzLvihAAMCszYueqszzXRkSyobx5+LTLK2V3lfg3wbS9DzP3QW7VHdHbjZcttQRvtjrGveJnNn2DE2ZDIbvkCrT0H8RzbGDdmIq4P1ey+hoY/W6NuZKOz4dv4HUNznxdKV1Wf3MvqUv35r2jTKvpPWBUWNm5fytX/QJwp6qkIOsSx7Y67BSCbCDVLM8/VcMG+T0j+INrgL9sfT1ICtACH8BI0G6ViUZPVzzCmQHW2oVIwZjAoFl6+meO/pD8teO1E+1y03mCpYfW9S8qhtH2GhlFlebPf4NbezVv9xbXKWz0xezRNQWqUqtYRTUbuzK7KTvjG4rQHfzBpVmK4wDLnSIwdSzTSk1fPNeY0WOpPZTLlvQ59xwgfFrb326vT2hS1JAZ9E6sujFtKTiJ7bxI6o4cBhDaX+adXREThhR+MwA4TqD7rga/o9iY7d6TVRe14CS2S3iSQsD0R6ApnhG/2Wa0A0AY2NtWTjmabdKU+KgIRDP9RQYVjXiF1qC+xyNVG03I9vpmEpY/G/zC4nLOKgXAZ/uTikHI9Afbkhfgfgo9arWbix5eH7WUo9RQygDzwCnVSjbXc7MihEufVj6WGbK963pw8VjY3RS8IH1cy2yZbIcKLO5CgAUcXJfF2+McnDLKtXxyZaf7SPA6KJq+zF2NHyfoeTOwHhGqNcnHVr1hT73pcoyXyfvCYBnG1Bp/aR9t8hoI7CXM3UZOisWGA1SHZ2jf7k9GlRnp3mF/c1AV+JjvUsnZrsybEOQJg/dn/9eJkyykQHjbF56zgcPX6DdMG03WKUMlYz+uOZ+5DZy9E9MZOZ9GMoLFdrIPPQQLjv+GlCMpoyHPXkzIODjHAID2PrnaRpqWVHh0rnieDILKq+Emrd5RnjgE9pDUXWTmHaKuqqYlcgEz4zbi46dbWrAAFBjsQq1rLHIiPJEcwFLCOY4JNlXRXQJqCUKXk2d1RSBGzDP6HDSpo863BhVRFFF6uIpjQV7j5ebFe3UkkO/+coIo2BTAcgBqOtQ134s9a4QJvofuqBYMGOBMsWZ+sn/2AOxDx6SfAnDFGw==", yn = Uint8Array.from(atob(Cn), (e) => e.charCodeAt(0));
14214
+ var Oi = yn;
14215
+ const Mn = parseInt(Re.replace(/\D+/g, "")), Ni = Mn >= 162 ? class extends T {
14220
14216
  constructor(e = 1, t = 1, i = 1, r = {}) {
14221
14217
  super(e, t, {
14222
14218
  ...r,
@@ -14250,16 +14246,16 @@ const In = parseInt(Re.replace(/\D+/g, "")), Hi = In >= 162 ? class extends T {
14250
14246
  return this;
14251
14247
  }
14252
14248
  };
14253
- function zi(e, t, i) {
14249
+ function Hi(e, t, i) {
14254
14250
  if (t.getQueryParameter(e, t.QUERY_RESULT_AVAILABLE)) {
14255
14251
  const n = t.getQueryParameter(e, t.QUERY_RESULT) / 1e6;
14256
14252
  i.lastTime = i.lastTime === 0 ? n : i.timeRollingAverage * i.lastTime + (1 - i.timeRollingAverage) * n;
14257
14253
  } else
14258
14254
  setTimeout(() => {
14259
- zi(e, t, i);
14255
+ Hi(e, t, i);
14260
14256
  }, 1);
14261
14257
  }
14262
- class Rn extends H {
14258
+ class Bn extends H {
14263
14259
  /**
14264
14260
  *
14265
14261
  * @param {THREE.Scene} scene
@@ -14369,10 +14365,10 @@ class Rn extends H {
14369
14365
  gl_FragColor = vec4(color.rgb, 1.0 / (frame + 1.0));
14370
14366
  }
14371
14367
  `
14372
- })), this.bluenoise = new it(Ni, 128, 128), this.bluenoise.colorSpace = tt, this.bluenoise.wrapS = se, this.bluenoise.wrapT = se, this.bluenoise.minFilter = P, this.bluenoise.magFilter = P, this.bluenoise.needsUpdate = !0, this.lastTime = 0, this.timeRollingAverage = 0.99, this.needsDepthTexture = !0, this.needsSwap = !0, this._r = new p(), this._c = new N();
14368
+ })), this.bluenoise = new it(Oi, 128, 128), this.bluenoise.colorSpace = tt, this.bluenoise.wrapS = se, this.bluenoise.wrapT = se, this.bluenoise.minFilter = P, this.bluenoise.magFilter = P, this.bluenoise.needsUpdate = !0, this.lastTime = 0, this.timeRollingAverage = 0.99, this.needsDepthTexture = !0, this.needsSwap = !0, this._r = new p(), this._c = new N();
14373
14369
  }
14374
14370
  configureHalfResTargets() {
14375
- this.firstFrame(), this.configuration.halfRes ? (this.depthDownsampleTarget = new Hi(this.width / 2, this.height / 2, 2), this.depthDownsampleTarget.textures[0].format = rt, this.depthDownsampleTarget.textures[0].type = J, this.depthDownsampleTarget.textures[0].minFilter = P, this.depthDownsampleTarget.textures[0].magFilter = P, this.depthDownsampleTarget.textures[0].depthBuffer = !1, this.depthDownsampleTarget.textures[1].format = z, this.depthDownsampleTarget.textures[1].type = $, this.depthDownsampleTarget.textures[1].minFilter = P, this.depthDownsampleTarget.textures[1].magFilter = P, this.depthDownsampleTarget.textures[1].depthBuffer = !1, this.depthDownsampleQuad = new _(new w(Oi))) : (this.depthDownsampleTarget && (this.depthDownsampleTarget.dispose(), this.depthDownsampleTarget = null), this.depthDownsampleQuad && (this.depthDownsampleQuad.dispose(), this.depthDownsampleQuad = null));
14371
+ this.firstFrame(), this.configuration.halfRes ? (this.depthDownsampleTarget = new Ni(this.width / 2, this.height / 2, 2), this.depthDownsampleTarget.textures[0].format = rt, this.depthDownsampleTarget.textures[0].type = J, this.depthDownsampleTarget.textures[0].minFilter = P, this.depthDownsampleTarget.textures[0].magFilter = P, this.depthDownsampleTarget.textures[0].depthBuffer = !1, this.depthDownsampleTarget.textures[1].format = z, this.depthDownsampleTarget.textures[1].type = $, this.depthDownsampleTarget.textures[1].minFilter = P, this.depthDownsampleTarget.textures[1].magFilter = P, this.depthDownsampleTarget.textures[1].depthBuffer = !1, this.depthDownsampleQuad = new _(new w(Li))) : (this.depthDownsampleTarget && (this.depthDownsampleTarget.dispose(), this.depthDownsampleTarget = null), this.depthDownsampleQuad && (this.depthDownsampleQuad.dispose(), this.depthDownsampleQuad = null));
14376
14372
  }
14377
14373
  detectTransparency() {
14378
14374
  if (this.autoDetectTransparency) {
@@ -14452,7 +14448,7 @@ class Rn extends H {
14452
14448
  configureAOPass(t = M.Default, i = !1) {
14453
14449
  this.firstFrame(), this.samples = this.generateHemisphereSamples(this.configuration.aoSamples);
14454
14450
  const r = {
14455
- ...Ui
14451
+ ...bi
14456
14452
  };
14457
14453
  r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14458
14454
  ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
@@ -14463,7 +14459,7 @@ class Rn extends H {
14463
14459
  configureDenoisePass(t = M.Default, i = !1) {
14464
14460
  this.firstFrame(), this.samplesDenoise = this.generateDenoiseSamples(this.configuration.denoiseSamples, 11);
14465
14461
  const r = {
14466
- ...Li
14462
+ ...Fi
14467
14463
  };
14468
14464
  r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14469
14465
  ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
@@ -14473,7 +14469,7 @@ class Rn extends H {
14473
14469
  configureEffectCompositer(t = M.Default, i = !1) {
14474
14470
  this.firstFrame();
14475
14471
  const r = {
14476
- ...Fi
14472
+ ...Ui
14477
14473
  };
14478
14474
  t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14479
14475
  ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
@@ -14539,7 +14535,7 @@ class Rn extends H {
14539
14535
  /* this.renderToScreen ? null :
14540
14536
  outputBuffer*/
14541
14537
  this.outputTargetInternal
14542
- ), this.effectCompositerQuad.render(t), t.setRenderTarget(this.renderToScreen ? null : r), this.copyQuad.material.uniforms.tDiffuse.value = this.outputTargetInternal.texture, this.copyQuad.render(t), this.debugMode && (n.endQuery(s.TIME_ELAPSED_EXT), zi(o, n, this)), t.xr.enabled = a;
14538
+ ), this.effectCompositerQuad.render(t), t.setRenderTarget(this.renderToScreen ? null : r), this.copyQuad.material.uniforms.tDiffuse.value = this.outputTargetInternal.texture, this.copyQuad.render(t), this.debugMode && (n.endQuery(s.TIME_ELAPSED_EXT), Hi(o, n, this)), t.xr.enabled = a;
14543
14539
  }
14544
14540
  /**
14545
14541
  * Enables the debug mode of the AO, meaning the lastTime value will be updated.
@@ -14574,13 +14570,13 @@ class Rn extends H {
14574
14570
  t === "Performance" ? (this.configuration.aoSamples = 8, this.configuration.denoiseSamples = 4, this.configuration.denoiseRadius = 12) : t === "Low" ? (this.configuration.aoSamples = 16, this.configuration.denoiseSamples = 4, this.configuration.denoiseRadius = 12) : t === "Medium" ? (this.configuration.aoSamples = 16, this.configuration.denoiseSamples = 8, this.configuration.denoiseRadius = 12) : t === "High" ? (this.configuration.aoSamples = 64, this.configuration.denoiseSamples = 8, this.configuration.denoiseRadius = 6) : t === "Ultra" && (this.configuration.aoSamples = 64, this.configuration.denoiseSamples = 16, this.configuration.denoiseRadius = 6);
14575
14571
  }
14576
14572
  }
14577
- function Gi(e, t, i) {
14573
+ function zi(e, t, i) {
14578
14574
  if (t.getQueryParameter(e, t.QUERY_RESULT_AVAILABLE)) {
14579
14575
  const n = t.getQueryParameter(e, t.QUERY_RESULT) / 1e6;
14580
14576
  i.lastTime = i.lastTime === 0 ? n : i.timeRollingAverage * i.lastTime + (1 - i.timeRollingAverage) * n;
14581
14577
  } else
14582
14578
  setTimeout(() => {
14583
- Gi(e, t, i);
14579
+ zi(e, t, i);
14584
14580
  }, 1);
14585
14581
  }
14586
14582
  const M = {
@@ -14588,7 +14584,7 @@ const M = {
14588
14584
  Log: 2,
14589
14585
  Reverse: 3
14590
14586
  };
14591
- class bn extends rr {
14587
+ class Pn extends er {
14592
14588
  /**
14593
14589
  *
14594
14590
  * @param {THREE.Scene} scene
@@ -14634,7 +14630,7 @@ class bn extends rr {
14634
14630
  type: $,
14635
14631
  format: z,
14636
14632
  stencilBuffer: o
14637
- }), this.beautyRenderTarget.depthTexture = new ye(this.width, this.height, o ? jt : Le), this.beautyRenderTarget.depthTexture.format = o ? Zt : bt), !0;
14633
+ }), this.beautyRenderTarget.depthTexture = new ye(this.width, this.height, o ? Zt : Le), this.beautyRenderTarget.depthTexture.format = o ? Xt : Rt), !0;
14638
14634
  }
14639
14635
  }), this.samples = [], this.samplesDenoise = [], this.autoDetectTransparency = !0, this.frame = 0, this.lastViewMatrix = new O(), this.lastProjectionMatrix = new O(), this.beautyRenderTarget = new T(this.width, this.height, {
14640
14636
  minFilter: R,
@@ -14642,7 +14638,7 @@ class bn extends rr {
14642
14638
  type: $,
14643
14639
  format: z,
14644
14640
  stencilBuffer: !1
14645
- }), this.beautyRenderTarget.depthTexture = new ye(this.width, this.height, Le), this.beautyRenderTarget.depthTexture.format = bt, this.configureEffectCompositer(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureSampleDependentPasses(), this.configureHalfResTargets(), this.detectTransparency(), this.configureTransparencyTarget(), this.writeTargetInternal = new T(this.width, this.height, {
14641
+ }), this.beautyRenderTarget.depthTexture = new ye(this.width, this.height, Le), this.beautyRenderTarget.depthTexture.format = Rt, this.configureEffectCompositer(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureSampleDependentPasses(), this.configureHalfResTargets(), this.detectTransparency(), this.configureTransparencyTarget(), this.writeTargetInternal = new T(this.width, this.height, {
14646
14642
  minFilter: R,
14647
14643
  magFilter: R,
14648
14644
  depthBuffer: !1,
@@ -14661,7 +14657,7 @@ class bn extends rr {
14661
14657
  stencilBuffer: !1,
14662
14658
  depthBuffer: !1,
14663
14659
  alpha: !0
14664
- }), this.bluenoise = new it(Ni, 128, 128), this.accumulationQuad = new _(new w({
14660
+ }), this.bluenoise = new it(Oi, 128, 128), this.accumulationQuad = new _(new w({
14665
14661
  uniforms: {
14666
14662
  frame: {
14667
14663
  value: 0
@@ -14691,9 +14687,9 @@ class bn extends rr {
14691
14687
  }
14692
14688
  configureHalfResTargets() {
14693
14689
  if (this.firstFrame(), this.configuration.halfRes) {
14694
- this.depthDownsampleTarget = new Hi(this.width / 2, this.height / 2, 2), this.depthDownsampleTarget.textures[0].format = rt, this.depthDownsampleTarget.textures[0].type = J, this.depthDownsampleTarget.textures[0].minFilter = P, this.depthDownsampleTarget.textures[0].magFilter = P, this.depthDownsampleTarget.textures[0].depthBuffer = !1, this.depthDownsampleTarget.textures[1].format = z, this.depthDownsampleTarget.textures[1].type = $, this.depthDownsampleTarget.textures[1].minFilter = P, this.depthDownsampleTarget.textures[1].magFilter = P, this.depthDownsampleTarget.textures[1].depthBuffer = !1;
14690
+ this.depthDownsampleTarget = new Ni(this.width / 2, this.height / 2, 2), this.depthDownsampleTarget.textures[0].format = rt, this.depthDownsampleTarget.textures[0].type = J, this.depthDownsampleTarget.textures[0].minFilter = P, this.depthDownsampleTarget.textures[0].magFilter = P, this.depthDownsampleTarget.textures[0].depthBuffer = !1, this.depthDownsampleTarget.textures[1].format = z, this.depthDownsampleTarget.textures[1].type = $, this.depthDownsampleTarget.textures[1].minFilter = P, this.depthDownsampleTarget.textures[1].magFilter = P, this.depthDownsampleTarget.textures[1].depthBuffer = !1;
14695
14691
  const t = {
14696
- ...Oi
14692
+ ...Li
14697
14693
  };
14698
14694
  this.configuration.depthBufferType === M.Reverse && (t.fragmentShader = `#define REVERSEDEPTH
14699
14695
  ` + t.fragmentShader), this.depthDownsampleQuad = new _(new w(t));
@@ -14778,7 +14774,7 @@ class bn extends rr {
14778
14774
  configureAOPass(t = M.Default, i = !1) {
14779
14775
  this.firstFrame(), this.samples = this.generateHemisphereSamples(this.configuration.aoSamples);
14780
14776
  const r = {
14781
- ...Ui
14777
+ ...bi
14782
14778
  };
14783
14779
  r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14784
14780
  ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
@@ -14789,7 +14785,7 @@ class bn extends rr {
14789
14785
  configureDenoisePass(t = M.Default, i = !1) {
14790
14786
  this.firstFrame(), this.samplesDenoise = this.generateDenoiseSamples(this.configuration.denoiseSamples, 11);
14791
14787
  const r = {
14792
- ...Li
14788
+ ...Fi
14793
14789
  };
14794
14790
  r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14795
14791
  ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
@@ -14799,7 +14795,7 @@ class bn extends rr {
14799
14795
  configureEffectCompositer(t = M.Default, i = !1) {
14800
14796
  this.firstFrame();
14801
14797
  const r = {
14802
- ...Fi
14798
+ ...Ui
14803
14799
  };
14804
14800
  t === M.Log ? r.fragmentShader = `#define LOGDEPTH
14805
14801
  ` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
@@ -14861,7 +14857,7 @@ class bn extends rr {
14861
14857
  const h = t.autoClear;
14862
14858
  t.autoClear = !1, this.accumulationQuad.material.uniforms.tDiffuse.value = this.writeTargetInternal.texture, this.accumulationQuad.material.uniforms.frame.value = this.frame, this.accumulationQuad.render(t), t.autoClear = h;
14863
14859
  }
14864
- this.configuration.transparencyAware && (this.effectCompositerQuad.material.uniforms.transparencyDWFalse.value = this.transparencyRenderTargetDWFalse.texture, this.effectCompositerQuad.material.uniforms.transparencyDWTrue.value = this.transparencyRenderTargetDWTrue.texture, this.effectCompositerQuad.material.uniforms.transparencyDWTrueDepth.value = this.transparencyRenderTargetDWTrue.depthTexture, this.effectCompositerQuad.material.uniforms.transparencyAware.value = !0), this.effectCompositerQuad.material.uniforms.sceneDiffuse.value = this.beautyRenderTarget.texture, this.effectCompositerQuad.material.uniforms.sceneDepth.value = this.beautyRenderTarget.depthTexture, this.effectCompositerQuad.material.uniforms.aoTones.value = this.configuration.aoTones, this.effectCompositerQuad.material.uniforms.near.value = this.camera.near, this.effectCompositerQuad.material.uniforms.far.value = this.camera.far, this.effectCompositerQuad.material.uniforms.projectionMatrixInv.value = this.camera.projectionMatrixInverse, this.effectCompositerQuad.material.uniforms.viewMatrixInv.value = this.camera.matrixWorld, this.effectCompositerQuad.material.uniforms.ortho.value = this.camera.isOrthographicCamera, this.effectCompositerQuad.material.uniforms.downsampledDepth.value = this.configuration.halfRes ? this.depthDownsampleTarget.textures[0] : this.beautyRenderTarget.depthTexture, this.effectCompositerQuad.material.uniforms.resolution.value = this._r, this.effectCompositerQuad.material.uniforms.blueNoise.value = this.bluenoise, this.effectCompositerQuad.material.uniforms.intensity.value = this.configuration.intensity, this.effectCompositerQuad.material.uniforms.renderMode.value = this.configuration.renderMode, this.effectCompositerQuad.material.uniforms.screenSpaceRadius.value = this.configuration.screenSpaceRadius, this.effectCompositerQuad.material.uniforms.radius.value = f, this.effectCompositerQuad.material.uniforms.distanceFalloff.value = this.configuration.distanceFalloff, this.effectCompositerQuad.material.uniforms.gammaCorrection.value = this.configuration.gammaCorrection, this.effectCompositerQuad.material.uniforms.tDiffuse.value = this.accumulationRenderTarget.texture, this.effectCompositerQuad.material.uniforms.color.value = this._c.copy(this.configuration.color).convertSRGBToLinear(), this.effectCompositerQuad.material.uniforms.colorMultiply.value = this.configuration.colorMultiply, this.effectCompositerQuad.material.uniforms.cameraPos.value = this.camera.getWorldPosition(new L()), this.effectCompositerQuad.material.uniforms.fog.value = !!this.scene.fog, this.scene.fog && (this.scene.fog.isFog ? (this.effectCompositerQuad.material.uniforms.fogExp.value = !1, this.effectCompositerQuad.material.uniforms.fogNear.value = this.scene.fog.near, this.effectCompositerQuad.material.uniforms.fogFar.value = this.scene.fog.far) : this.scene.fog.isFogExp2 ? (this.effectCompositerQuad.material.uniforms.fogExp.value = !0, this.effectCompositerQuad.material.uniforms.fogDensity.value = this.scene.fog.density) : console.error(`Unsupported fog type ${this.scene.fog.constructor.name} in SSAOPass.`)), t.setRenderTarget(this.renderToScreen ? null : i), this.effectCompositerQuad.render(t), this.debugMode && (s.endQuery(o.TIME_ELAPSED_EXT), Gi(l, s, this)), t.xr.enabled = u;
14860
+ this.configuration.transparencyAware && (this.effectCompositerQuad.material.uniforms.transparencyDWFalse.value = this.transparencyRenderTargetDWFalse.texture, this.effectCompositerQuad.material.uniforms.transparencyDWTrue.value = this.transparencyRenderTargetDWTrue.texture, this.effectCompositerQuad.material.uniforms.transparencyDWTrueDepth.value = this.transparencyRenderTargetDWTrue.depthTexture, this.effectCompositerQuad.material.uniforms.transparencyAware.value = !0), this.effectCompositerQuad.material.uniforms.sceneDiffuse.value = this.beautyRenderTarget.texture, this.effectCompositerQuad.material.uniforms.sceneDepth.value = this.beautyRenderTarget.depthTexture, this.effectCompositerQuad.material.uniforms.aoTones.value = this.configuration.aoTones, this.effectCompositerQuad.material.uniforms.near.value = this.camera.near, this.effectCompositerQuad.material.uniforms.far.value = this.camera.far, this.effectCompositerQuad.material.uniforms.projectionMatrixInv.value = this.camera.projectionMatrixInverse, this.effectCompositerQuad.material.uniforms.viewMatrixInv.value = this.camera.matrixWorld, this.effectCompositerQuad.material.uniforms.ortho.value = this.camera.isOrthographicCamera, this.effectCompositerQuad.material.uniforms.downsampledDepth.value = this.configuration.halfRes ? this.depthDownsampleTarget.textures[0] : this.beautyRenderTarget.depthTexture, this.effectCompositerQuad.material.uniforms.resolution.value = this._r, this.effectCompositerQuad.material.uniforms.blueNoise.value = this.bluenoise, this.effectCompositerQuad.material.uniforms.intensity.value = this.configuration.intensity, this.effectCompositerQuad.material.uniforms.renderMode.value = this.configuration.renderMode, this.effectCompositerQuad.material.uniforms.screenSpaceRadius.value = this.configuration.screenSpaceRadius, this.effectCompositerQuad.material.uniforms.radius.value = f, this.effectCompositerQuad.material.uniforms.distanceFalloff.value = this.configuration.distanceFalloff, this.effectCompositerQuad.material.uniforms.gammaCorrection.value = this.configuration.gammaCorrection, this.effectCompositerQuad.material.uniforms.tDiffuse.value = this.accumulationRenderTarget.texture, this.effectCompositerQuad.material.uniforms.color.value = this._c.copy(this.configuration.color).convertSRGBToLinear(), this.effectCompositerQuad.material.uniforms.colorMultiply.value = this.configuration.colorMultiply, this.effectCompositerQuad.material.uniforms.cameraPos.value = this.camera.getWorldPosition(new L()), this.effectCompositerQuad.material.uniforms.fog.value = !!this.scene.fog, this.scene.fog && (this.scene.fog.isFog ? (this.effectCompositerQuad.material.uniforms.fogExp.value = !1, this.effectCompositerQuad.material.uniforms.fogNear.value = this.scene.fog.near, this.effectCompositerQuad.material.uniforms.fogFar.value = this.scene.fog.far) : this.scene.fog.isFogExp2 ? (this.effectCompositerQuad.material.uniforms.fogExp.value = !0, this.effectCompositerQuad.material.uniforms.fogDensity.value = this.scene.fog.density) : console.error(`Unsupported fog type ${this.scene.fog.constructor.name} in SSAOPass.`)), t.setRenderTarget(this.renderToScreen ? null : i), this.effectCompositerQuad.render(t), this.debugMode && (s.endQuery(o.TIME_ELAPSED_EXT), zi(l, s, this)), t.xr.enabled = u;
14865
14861
  }
14866
14862
  /**
14867
14863
  * Enables the debug mode of the AO, meaning the lastTime value will be updated.
@@ -14896,14 +14892,14 @@ class bn extends rr {
14896
14892
  t === "Performance" ? (this.configuration.aoSamples = 8, this.configuration.denoiseSamples = 4, this.configuration.denoiseRadius = 12) : t === "Low" ? (this.configuration.aoSamples = 16, this.configuration.denoiseSamples = 4, this.configuration.denoiseRadius = 12) : t === "Medium" ? (this.configuration.aoSamples = 16, this.configuration.denoiseSamples = 8, this.configuration.denoiseRadius = 12) : t === "High" ? (this.configuration.aoSamples = 64, this.configuration.denoiseSamples = 8, this.configuration.denoiseRadius = 6) : t === "Ultra" && (this.configuration.aoSamples = 64, this.configuration.denoiseSamples = 16, this.configuration.denoiseRadius = 6);
14897
14893
  }
14898
14894
  }
14899
- const Nn = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
14895
+ const Un = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
14900
14896
  __proto__: null,
14901
14897
  DepthType: M,
14902
- N8AOPass: bn,
14903
- N8AOPostPass: Rn
14898
+ N8AOPass: Pn,
14899
+ N8AOPostPass: Bn
14904
14900
  }, Symbol.toStringTag, { value: "Module" }));
14905
14901
  export {
14906
14902
  V as EffectAttribute,
14907
- Nn as N8AO,
14908
- On as index
14903
+ Un as N8AO,
14904
+ bn as index
14909
14905
  };