@needle-tools/engine 4.7.4 → 4.8.0-next.4eaf70a
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/gltf-progressive--2HtE1d8.umd.cjs +8 -0
- package/dist/gltf-progressive-CeuEsYpY.min.js +8 -0
- package/dist/gltf-progressive-DY5t1MFv.js +1370 -0
- package/dist/loader.worker-8olmVOL4.js +1 -0
- package/dist/needle-engine.bundle-1687n4dK.js +42600 -0
- package/dist/needle-engine.bundle-BayRUkg4.min.js +1607 -0
- package/dist/needle-engine.bundle-CooE_ge1.umd.cjs +1607 -0
- package/dist/needle-engine.d.ts +15 -15
- package/dist/needle-engine.js +591 -592
- package/dist/needle-engine.min.js +1 -1
- package/dist/needle-engine.umd.cjs +1 -1
- package/dist/{postprocessing-BzY0H7ry.min.js → postprocessing-ChsrvDkI.min.js} +54 -54
- package/dist/{postprocessing-vKBVFpSz.js → postprocessing-DElbMQgB.js} +479 -483
- package/dist/{postprocessing-Dw2OCMp4.umd.cjs → postprocessing-DtxaELce.umd.cjs} +66 -66
- package/dist/{three-examples-DUcCNw9s.umd.cjs → three-examples-BhQvv1B9.umd.cjs} +11 -11
- package/dist/{three-examples-tvuhV8Ne.js → three-examples-CM6Iip03.js} +23 -27
- package/dist/{three-examples-BMOhDaYR.min.js → three-examples-D2zemuAM.min.js} +12 -12
- package/dist/{three-mesh-ui-CxuWt7m-.js → three-mesh-ui-D6Mz5Yl7.js} +799 -810
- package/dist/three-mesh-ui-DWcMuyQ_.min.js +406 -0
- package/dist/three-mesh-ui-tt0buEDC.umd.cjs +406 -0
- package/dist/{vendor-BmYIgaS1.js → vendor-ClB-U1Hn.js} +10 -10
- package/dist/{vendor-Cavtu3CP.umd.cjs → vendor-bOWOWClg.umd.cjs} +1 -1
- package/lib/engine-components/export/usdz/extensions/behavior/Behaviour.d.ts +1 -1
- package/lib/engine-components/postprocessing/PostProcessingHandler.d.ts +1 -0
- package/lib/engine-components/postprocessing/PostProcessingHandler.js +8 -0
- package/lib/engine-components/postprocessing/PostProcessingHandler.js.map +1 -1
- package/package.json +5 -5
- package/src/engine-components/postprocessing/PostProcessingHandler.ts +14 -0
- package/dist/gltf-progressive-Bgh1c4Fd.js +0 -1224
- package/dist/gltf-progressive-D6f5talj.min.js +0 -8
- package/dist/gltf-progressive-otA_hxSA.umd.cjs +0 -8
- package/dist/needle-engine.bundle-Bb6xVcZE.min.js +0 -1607
- package/dist/needle-engine.bundle-BldBPoPh.js +0 -43846
- package/dist/needle-engine.bundle-ByrSH-zp.umd.cjs +0 -1607
- package/dist/three-mesh-ui-B3p3gyUz.min.js +0 -406
- package/dist/three-mesh-ui-CQiIQIlA.umd.cjs +0 -406
|
@@ -1,21 +1,18 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
var It = (e, t, i) => Qi(e, typeof t != "symbol" ? t + "" : t, i);
|
|
4
|
-
import { Uniform$1 as c, Vector4 as Be, Color as N, Vector2 as p, CanvasTexture as Vi, RepeatWrapping as se, ShaderMaterial as w, NoBlending as G, WebGLRenderTarget as T, NearestFilter as P, EventDispatcher as Tt, SRGBColorSpace as y, UnsignedByteType as Y, PerspectiveCamera as Ie, BasicDepthPacking as W, REVISION as Re, LinearFilter as R, RGBADepthPacking as ae, FloatType as J, LessDepth as Rt, MeshDepthMaterial as Wi, LinearSRGBColorSpace as je, NoColorSpace as tt, DepthTexture as ye, DepthStencilFormat as Zt, UnsignedInt248Type as jt, UnsignedIntType as Le, RGBAFormat as z, Scene as dt, Matrix4 as O, Vector3 as L, HalfFloatType as $, Data3DTexture as Xe, Loader as St, LoadingManager as Ne, FileLoader as Jt, ClampToEdgeWrapping as st, DataTexture as it, RedFormat as rt, MeshNormalMaterial as Yi, BackSide as ke, DoubleSide as Qe, FrontSide as Ki, Camera as Xi, Mesh as qt, Texture as Je, EqualDepth as vt, NotEqualDepth as _t, LinearMipmapLinearFilter as Zi, GreaterDepth as ji, GreaterEqualDepth as Ji, LessEqualDepth as qi, AlwaysDepth as _i, NeverDepth as $i, Material as $t, BufferGeometry as ei, BufferAttribute as qe, RGFormat as er, DepthFormat as bt, OrthographicCamera as tr, Sphere as ir } from "./three-DrqIzZTH.js";
|
|
5
|
-
import { Pass as rr } from "./three-examples-tvuhV8Ne.js";
|
|
1
|
+
import { Uniform$1 as c, Vector4 as Be, Color as N, Vector2 as p, CanvasTexture as Gi, RepeatWrapping as se, ShaderMaterial as w, NoBlending as G, WebGLRenderTarget as T, NearestFilter as P, EventDispatcher as Tt, SRGBColorSpace as y, UnsignedByteType as Y, PerspectiveCamera as Ie, BasicDepthPacking as W, REVISION as Re, LinearFilter as R, RGBADepthPacking as ae, FloatType as J, LessDepth as It, MeshDepthMaterial as ki, LinearSRGBColorSpace as je, NoColorSpace as tt, DepthTexture as ye, DepthStencilFormat as Xt, UnsignedInt248Type as Zt, UnsignedIntType as Le, RGBAFormat as z, Scene as dt, Matrix4 as O, Vector3 as L, HalfFloatType as $, Data3DTexture as Xe, Loader as St, LoadingManager as Ne, FileLoader as jt, ClampToEdgeWrapping as st, DataTexture as it, RedFormat as rt, MeshNormalMaterial as Qi, BackSide as ke, DoubleSide as Qe, FrontSide as Vi, Camera as Wi, Mesh as Jt, Texture as Je, EqualDepth as vt, NotEqualDepth as qt, LinearMipmapLinearFilter as Yi, GreaterDepth as Ki, GreaterEqualDepth as Xi, LessEqualDepth as Zi, AlwaysDepth as ji, NeverDepth as Ji, Material as _t, BufferGeometry as $t, BufferAttribute as qe, RGFormat as qi, DepthFormat as Rt, OrthographicCamera as _i, Sphere as $i } from "./three-DrqIzZTH.js";
|
|
2
|
+
import { Pass as er } from "./three-examples-CM6Iip03.js";
|
|
6
3
|
/**
|
|
7
4
|
* postprocessing v6.37.7 build Mon Aug 04 2025
|
|
8
5
|
* https://github.com/pmndrs/postprocessing
|
|
9
6
|
* Copyright 2015-2025 Raoul van Rüschen
|
|
10
7
|
* @license Zlib
|
|
11
8
|
*/
|
|
12
|
-
var
|
|
9
|
+
var tr = "6.37.7", ir = class {
|
|
13
10
|
/**
|
|
14
11
|
* Frees internal resources.
|
|
15
12
|
*/
|
|
16
13
|
dispose() {
|
|
17
14
|
}
|
|
18
|
-
}, nt = 1 / 1e3,
|
|
15
|
+
}, nt = 1 / 1e3, rr = 1e3, ei = class {
|
|
19
16
|
/**
|
|
20
17
|
* Constructs a new timer.
|
|
21
18
|
*/
|
|
@@ -44,7 +41,7 @@ var ar = "6.37.7", sr = class {
|
|
|
44
41
|
return this._fixedDelta * nt;
|
|
45
42
|
}
|
|
46
43
|
set fixedDelta(e) {
|
|
47
|
-
this._fixedDelta = e *
|
|
44
|
+
this._fixedDelta = e * rr;
|
|
48
45
|
}
|
|
49
46
|
get elapsed() {
|
|
50
47
|
return this._elapsed * nt;
|
|
@@ -75,8 +72,8 @@ var ar = "6.37.7", sr = class {
|
|
|
75
72
|
dispose() {
|
|
76
73
|
this.autoReset = !1;
|
|
77
74
|
}
|
|
78
|
-
},
|
|
79
|
-
const e = new Float32Array([-1, -1, 0, 3, -1, 0, -1, 3, 0]), t = new Float32Array([0, 0, 2, 0, 0, 2]), i = new
|
|
75
|
+
}, ar = /* @__PURE__ */ (() => {
|
|
76
|
+
const e = new Float32Array([-1, -1, 0, 3, -1, 0, -1, 3, 0]), t = new Float32Array([0, 0, 2, 0, 0, 2]), i = new $t();
|
|
80
77
|
return i.setAttribute("position", new qe(e, 3)), i.setAttribute("uv", new qe(t, 2)), i;
|
|
81
78
|
})(), H = class pt {
|
|
82
79
|
/**
|
|
@@ -88,7 +85,7 @@ var ar = "6.37.7", sr = class {
|
|
|
88
85
|
* @internal
|
|
89
86
|
*/
|
|
90
87
|
static get fullscreenGeometry() {
|
|
91
|
-
return
|
|
88
|
+
return ar;
|
|
92
89
|
}
|
|
93
90
|
/**
|
|
94
91
|
* Constructs a new pass.
|
|
@@ -97,7 +94,7 @@ var ar = "6.37.7", sr = class {
|
|
|
97
94
|
* @param {Scene} [scene] - The scene to render. The default scene contains a single mesh that fills the screen.
|
|
98
95
|
* @param {Camera} [camera] - A camera. Fullscreen effect passes don't require a camera.
|
|
99
96
|
*/
|
|
100
|
-
constructor(t = "Pass", i = new dt(), r = new
|
|
97
|
+
constructor(t = "Pass", i = new dt(), r = new Wi()) {
|
|
101
98
|
this.name = t, this.renderer = null, this.scene = i, this.camera = r, this.screen = null, this.rtt = !0, this.needsSwap = !0, this.needsDepthTexture = !1, this.enabled = !0;
|
|
102
99
|
}
|
|
103
100
|
/**
|
|
@@ -167,7 +164,7 @@ var ar = "6.37.7", sr = class {
|
|
|
167
164
|
}
|
|
168
165
|
set fullscreenMaterial(t) {
|
|
169
166
|
let i = this.screen;
|
|
170
|
-
i !== null ? i.material = t : (i = new
|
|
167
|
+
i !== null ? i.material = t : (i = new Jt(pt.fullscreenGeometry, t), i.frustumCulled = !1, this.scene === null && (this.scene = new dt()), this.scene.add(i), this.screen = i);
|
|
171
168
|
}
|
|
172
169
|
/**
|
|
173
170
|
* Returns the current fullscreen material.
|
|
@@ -254,11 +251,11 @@ var ar = "6.37.7", sr = class {
|
|
|
254
251
|
dispose() {
|
|
255
252
|
for (const t of Object.keys(this)) {
|
|
256
253
|
const i = this[t];
|
|
257
|
-
(i instanceof T || i instanceof
|
|
254
|
+
(i instanceof T || i instanceof _t || i instanceof Je || i instanceof pt) && this[t].dispose();
|
|
258
255
|
}
|
|
259
256
|
this.fullscreenMaterial !== null && this.fullscreenMaterial.dispose();
|
|
260
257
|
}
|
|
261
|
-
},
|
|
258
|
+
}, ti = class extends H {
|
|
262
259
|
/**
|
|
263
260
|
* Constructs a new clear mask pass.
|
|
264
261
|
*/
|
|
@@ -278,7 +275,7 @@ var ar = "6.37.7", sr = class {
|
|
|
278
275
|
const n = e.state.buffers.stencil;
|
|
279
276
|
n.setLocked(!1), n.setTest(!1);
|
|
280
277
|
}
|
|
281
|
-
},
|
|
278
|
+
}, sr = `#include <common>
|
|
282
279
|
#include <dithering_pars_fragment>
|
|
283
280
|
#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
284
281
|
uniform mediump sampler2D inputBuffer;
|
|
@@ -303,7 +300,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
|
|
|
303
300
|
toneMapped: !1,
|
|
304
301
|
depthWrite: !1,
|
|
305
302
|
depthTest: !1,
|
|
306
|
-
fragmentShader:
|
|
303
|
+
fragmentShader: sr,
|
|
307
304
|
vertexShader: ce
|
|
308
305
|
});
|
|
309
306
|
}
|
|
@@ -426,7 +423,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
|
|
|
426
423
|
initialize(e, t, i) {
|
|
427
424
|
i !== void 0 && (this.renderTarget.texture.type = i, i !== Y ? this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1" : e !== null && e.outputColorSpace === y && (this.renderTarget.texture.colorSpace = y));
|
|
428
425
|
}
|
|
429
|
-
},
|
|
426
|
+
}, bt = /* @__PURE__ */ new N(), ge = class extends H {
|
|
430
427
|
/**
|
|
431
428
|
* Constructs a new clear pass.
|
|
432
429
|
*
|
|
@@ -494,9 +491,9 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
|
|
|
494
491
|
*/
|
|
495
492
|
render(e, t, i, r, a) {
|
|
496
493
|
const n = this.overrideClearColor, s = this.overrideClearAlpha, o = e.getClearAlpha(), l = n !== null, u = s >= 0;
|
|
497
|
-
l ? (e.getClearColor(
|
|
494
|
+
l ? (e.getClearColor(bt), e.setClearColor(n, u ? s : o)) : u && e.setClearAlpha(s), e.setRenderTarget(this.renderToScreen ? null : t), e.clear(this.color, this.depth, this.stencil), l ? e.setClearColor(bt, o) : u && e.setClearAlpha(o);
|
|
498
495
|
}
|
|
499
|
-
},
|
|
496
|
+
}, ii = class extends H {
|
|
500
497
|
/**
|
|
501
498
|
* Constructs a new mask pass.
|
|
502
499
|
*
|
|
@@ -575,7 +572,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
|
|
|
575
572
|
const n = e.getContext(), s = e.state.buffers, o = this.scene, l = this.camera, u = this.clearPass, f = this.inverted ? 0 : 1, h = 1 - f;
|
|
576
573
|
s.color.setMask(!1), s.depth.setMask(!1), s.color.setLocked(!0), s.depth.setLocked(!0), s.stencil.setTest(!0), s.stencil.setOp(n.REPLACE, n.REPLACE, n.REPLACE), s.stencil.setFunc(n.ALWAYS, f, 4294967295), s.stencil.setClear(h), s.stencil.setLocked(!0), this.clearPass.enabled && (this.renderToScreen ? u.render(e, null) : (u.render(e, t), u.render(e, i))), this.renderToScreen ? (e.setRenderTarget(null), e.render(o, l)) : (e.setRenderTarget(t), e.render(o, l), e.setRenderTarget(i), e.render(o, l)), s.color.setLocked(!1), s.depth.setLocked(!1), s.stencil.setLocked(!1), s.stencil.setFunc(n.EQUAL, 1, 4294967295), s.stencil.setOp(n.KEEP, n.KEEP, n.KEEP), s.stencil.setLocked(!0);
|
|
577
574
|
}
|
|
578
|
-
},
|
|
575
|
+
}, nr = class {
|
|
579
576
|
/**
|
|
580
577
|
* Constructs a new effect composer.
|
|
581
578
|
*
|
|
@@ -593,7 +590,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
|
|
|
593
590
|
multisampling: r = 0,
|
|
594
591
|
frameBufferType: a
|
|
595
592
|
} = {}) {
|
|
596
|
-
this.renderer = null, this.inputBuffer = this.createBuffer(t, i, a, r), this.outputBuffer = this.inputBuffer.clone(), this.copyPass = new _e(), this.depthTexture = null, this.passes = [], this.timer = new
|
|
593
|
+
this.renderer = null, this.inputBuffer = this.createBuffer(t, i, a, r), this.outputBuffer = this.inputBuffer.clone(), this.copyPass = new _e(), this.depthTexture = null, this.passes = [], this.timer = new ei(), this.autoRenderToScreen = !0, this.setRenderer(e);
|
|
597
594
|
}
|
|
598
595
|
/**
|
|
599
596
|
* The current amount of samples used for multisample anti-aliasing.
|
|
@@ -677,7 +674,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
|
|
|
677
674
|
*/
|
|
678
675
|
createDepthTexture() {
|
|
679
676
|
const e = this.depthTexture = new ye();
|
|
680
|
-
return this.inputBuffer.depthTexture = e, this.inputBuffer.dispose(), this.inputBuffer.stencilBuffer ? (e.format =
|
|
677
|
+
return this.inputBuffer.depthTexture = e, this.inputBuffer.dispose(), this.inputBuffer.stencilBuffer ? (e.format = Xt, e.type = Zt) : e.type = Le, e;
|
|
681
678
|
}
|
|
682
679
|
/**
|
|
683
680
|
* Deletes the current depth texture.
|
|
@@ -777,7 +774,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
|
|
|
777
774
|
let r = this.inputBuffer, a = this.outputBuffer, n = !1, s, o, l;
|
|
778
775
|
e === void 0 && (this.timer.update(), e = this.timer.getDelta());
|
|
779
776
|
for (const u of this.passes)
|
|
780
|
-
u.enabled && (u.render(t, r, a, e, n), u.needsSwap && (n && (i.renderToScreen = u.renderToScreen, s = t.getContext(), o = t.state.buffers.stencil, o.setFunc(s.NOTEQUAL, 1, 4294967295), i.render(t, r, a, e, n), o.setFunc(s.EQUAL, 1, 4294967295)), l = r, r = a, a = l), u instanceof
|
|
777
|
+
u.enabled && (u.render(t, r, a, e, n), u.needsSwap && (n && (i.renderToScreen = u.renderToScreen, s = t.getContext(), o = t.state.buffers.stencil, o.setFunc(s.NOTEQUAL, 1, 4294967295), i.render(t, r, a, e, n), o.setFunc(s.EQUAL, 1, 4294967295)), l = r, r = a, a = l), u instanceof ii ? n = !0 : u instanceof ti && (n = !1));
|
|
781
778
|
}
|
|
782
779
|
/**
|
|
783
780
|
* Sets the size of the buffers, passes and the renderer.
|
|
@@ -818,7 +815,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
|
|
|
818
815
|
FRAGMENT_MAIN_IMAGE: "FRAGMENT_MAIN_IMAGE",
|
|
819
816
|
VERTEX_HEAD: "VERTEX_HEAD",
|
|
820
817
|
VERTEX_MAIN_SUPPORT: "VERTEX_MAIN_SUPPORT"
|
|
821
|
-
},
|
|
818
|
+
}, ri = class {
|
|
822
819
|
/**
|
|
823
820
|
* Constructs new shader data.
|
|
824
821
|
*/
|
|
@@ -832,7 +829,7 @@ uniform float opacity;varying vec2 vUv;void main(){vec4 texel=texture2D(inputBuf
|
|
|
832
829
|
]), this.defines = /* @__PURE__ */ new Map(), this.uniforms = /* @__PURE__ */ new Map(), this.blendModes = /* @__PURE__ */ new Map(), this.extensions = /* @__PURE__ */ new Set(), this.attributes = V.NONE, this.varyings = /* @__PURE__ */ new Set(), this.uvTransformation = !1, this.readDepth = !1, this.colorSpace = je;
|
|
833
830
|
}
|
|
834
831
|
};
|
|
835
|
-
function
|
|
832
|
+
function Ut(e) {
|
|
836
833
|
let t;
|
|
837
834
|
if (e === 0)
|
|
838
835
|
t = new Float64Array(0);
|
|
@@ -848,7 +845,7 @@ function Ft(e) {
|
|
|
848
845
|
}
|
|
849
846
|
return t;
|
|
850
847
|
}
|
|
851
|
-
var
|
|
848
|
+
var ai = class {
|
|
852
849
|
/**
|
|
853
850
|
* Constructs a new Gauss kernel.
|
|
854
851
|
*
|
|
@@ -884,7 +881,7 @@ var si = class {
|
|
|
884
881
|
generate(e, t) {
|
|
885
882
|
if (e < 3 || e > 1020)
|
|
886
883
|
throw new Error("The kernel size must be in the range [3, 1020]");
|
|
887
|
-
const i = e + t * 2, r = t > 0 ?
|
|
884
|
+
const i = e + t * 2, r = t > 0 ? Ut(i).slice(t, -t) : Ut(i), a = Math.floor((r.length - 1) / 2), n = r.reduce((h, d) => h + d, 0), s = r.slice(a), o = [...Array(a + 1).keys()], l = new Float64Array(Math.floor(o.length / 2)), u = new Float64Array(l.length);
|
|
888
885
|
l[0] = s[0] / n;
|
|
889
886
|
for (let h = 1, d = 1, v = o.length - 1; h < v; h += 2, ++d) {
|
|
890
887
|
const A = o[h], m = o[h + 1], E = s[h], C = s[h + 1], S = E + C, D = (A * E + m * C) / S;
|
|
@@ -898,7 +895,7 @@ var si = class {
|
|
|
898
895
|
l[h] *= v;
|
|
899
896
|
this.offsets = o, this.weights = s, this.linearOffsets = u, this.linearWeights = l;
|
|
900
897
|
}
|
|
901
|
-
},
|
|
898
|
+
}, or = class {
|
|
902
899
|
/**
|
|
903
900
|
* The current delta time in seconds.
|
|
904
901
|
*
|
|
@@ -915,7 +912,7 @@ var si = class {
|
|
|
915
912
|
getElapsed() {
|
|
916
913
|
return NaN;
|
|
917
914
|
}
|
|
918
|
-
},
|
|
915
|
+
}, lr = class {
|
|
919
916
|
/**
|
|
920
917
|
* Performs initialization tasks.
|
|
921
918
|
*
|
|
@@ -996,7 +993,7 @@ var si = class {
|
|
|
996
993
|
this.cloneMaterial(e)
|
|
997
994
|
];
|
|
998
995
|
for (const i of t)
|
|
999
|
-
i.uniforms = Object.assign({}, e.uniforms), i.side =
|
|
996
|
+
i.uniforms = Object.assign({}, e.uniforms), i.side = Vi;
|
|
1000
997
|
t[2].skinning = !0, this.materialsBackSide = t.map((i) => {
|
|
1001
998
|
const r = this.cloneMaterial(i);
|
|
1002
999
|
return r.uniforms = Object.assign({}, e.uniforms), r.side = ke, r;
|
|
@@ -1073,7 +1070,7 @@ var si = class {
|
|
|
1073
1070
|
static set workaroundEnabled(e) {
|
|
1074
1071
|
ot = e;
|
|
1075
1072
|
}
|
|
1076
|
-
},
|
|
1073
|
+
}, ur = class {
|
|
1077
1074
|
/**
|
|
1078
1075
|
* Sets the size of this object.
|
|
1079
1076
|
*
|
|
@@ -1339,7 +1336,7 @@ var si = class {
|
|
|
1339
1336
|
static get AUTO_SIZE() {
|
|
1340
1337
|
return oe;
|
|
1341
1338
|
}
|
|
1342
|
-
},
|
|
1339
|
+
}, cr = class {
|
|
1343
1340
|
/**
|
|
1344
1341
|
* Constructs a new ID manager.
|
|
1345
1342
|
*
|
|
@@ -1365,7 +1362,7 @@ var si = class {
|
|
|
1365
1362
|
reset(e = 0) {
|
|
1366
1363
|
return this.nextId = e, this;
|
|
1367
1364
|
}
|
|
1368
|
-
}, lt = /* @__PURE__ */ new
|
|
1365
|
+
}, lt = /* @__PURE__ */ new cr(2), Et = class extends Set {
|
|
1369
1366
|
/**
|
|
1370
1367
|
* Constructs a new selection.
|
|
1371
1368
|
*
|
|
@@ -1541,41 +1538,41 @@ var si = class {
|
|
|
1541
1538
|
SRC: 30,
|
|
1542
1539
|
SUBTRACT: 31,
|
|
1543
1540
|
VIVID_LIGHT: 32
|
|
1544
|
-
},
|
|
1545
|
-
[g.ADD,
|
|
1546
|
-
[g.ALPHA,
|
|
1547
|
-
[g.AVERAGE,
|
|
1548
|
-
[g.COLOR,
|
|
1549
|
-
[g.COLOR_BURN,
|
|
1550
|
-
[g.COLOR_DODGE,
|
|
1551
|
-
[g.DARKEN,
|
|
1552
|
-
[g.DIFFERENCE,
|
|
1553
|
-
[g.DIVIDE,
|
|
1541
|
+
}, fr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb+y.rgb,y.a),opacity);}", hr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,y,y.a*opacity);}", dr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4((x.rgb+y.rgb)*0.5,y.a),opacity);}", vr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(yHSL.xy,xHSL.z));return mix(x,vec4(z,y.a),opacity);}", pr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb,b=y.rgb;vec3 z=mix(step(0.0,b)*(1.0-min(vec3(1.0),(1.0-a)/b)),vec3(1.0),step(1.0,a));return mix(x,vec4(z,y.a),opacity);}", gr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb,b=y.rgb;vec3 z=step(0.0,a)*mix(min(vec3(1.0),a/max(1.0-b,1e-9)),vec3(1.0),step(1.0,b));return mix(x,vec4(z,y.a),opacity);}", mr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(min(x.rgb,y.rgb),y.a),opacity);}", Ar = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(abs(x.rgb-y.rgb),y.a),opacity);}", xr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb/max(y.rgb,1e-12),y.a),opacity);}", Dr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4((x.rgb+y.rgb-2.0*x.rgb*y.rgb),y.a),opacity);}", wr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=min(x.rgb,1.0);vec3 b=min(y.rgb,1.0);vec3 z=mix(2.0*a*b,1.0-2.0*(1.0-a)*(1.0-b),step(0.5,b));return mix(x,vec4(z,y.a),opacity);}", Tr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(step(1.0,x.rgb+y.rgb),y.a),opacity);}", Sr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(yHSL.x,xHSL.yz));return mix(x,vec4(z,y.a),opacity);}", Er = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(1.0-y.rgb,y.a),opacity);}", Cr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(y.rgb*(1.0-x.rgb),y.a),opacity);}", yr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(max(x.rgb,y.rgb),y.a),opacity);}", Mr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(clamp(y.rgb+x.rgb-1.0,0.0,1.0),y.a),opacity);}", Br = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(min(x.rgb+y.rgb,1.0),y.a),opacity);}", Pr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(clamp(2.0*y.rgb+x.rgb-1.0,0.0,1.0),y.a),opacity);}", Ir = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(xHSL.xy,yHSL.z));return mix(x,vec4(z,y.a),opacity);}", Rr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb*y.rgb,y.a),opacity);}", br = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(1.0-abs(1.0-x.rgb-y.rgb),y.a),opacity);}", Ur = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,y,opacity);}", Fr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(2.0*y.rgb*x.rgb,1.0-2.0*(1.0-y.rgb)*(1.0-x.rgb),step(0.5,x.rgb));return mix(x,vec4(z,y.a),opacity);}", Lr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 y2=2.0*y.rgb;vec3 z=mix(mix(y2,x.rgb,step(0.5*x.rgb,y.rgb)),max(y2-1.0,vec3(0.0)),step(x.rgb,y2-1.0));return mix(x,vec4(z,y.a),opacity);}", Or = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(min(x.rgb*x.rgb/max(1.0-y.rgb,1e-12),1.0),y.rgb,step(1.0,y.rgb));return mix(x,vec4(z,y.a),opacity);}", Nr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 xHSL=RGBToHSL(x.rgb);vec3 yHSL=RGBToHSL(y.rgb);vec3 z=HSLToRGB(vec3(xHSL.x,yHSL.y,xHSL.z));return mix(x,vec4(z,y.a),opacity);}", Hr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(x.rgb+y.rgb-min(x.rgb*y.rgb,1.0),y.a),opacity);}", zr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 a=x.rgb;vec3 b=y.rgb;vec3 y2=2.0*b;vec3 w=step(0.5,b);vec3 c=a-(1.0-y2)*a*(1.0-a);vec3 d=mix(a+(y2-1.0)*(sqrt(a)-a),a+(y2-1.0)*a*((16.0*a-12.0)*a+3.0),w*(1.0-step(0.25,a)));vec3 z=mix(c,d,w);return mix(x,vec4(z,y.a),opacity);}", Gr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return y;}", kr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){return mix(x,vec4(max(x.rgb+y.rgb-1.0,0.0),y.a),opacity);}", Qr = "vec4 blend(const in vec4 x,const in vec4 y,const in float opacity){vec3 z=mix(max(1.0-min((1.0-x.rgb)/(2.0*y.rgb),1.0),0.0),min(x.rgb/(2.0*(1.0-y.rgb)),1.0),step(0.5,y.rgb));return mix(x,vec4(z,y.a),opacity);}", Vr = /* @__PURE__ */ new Map([
|
|
1542
|
+
[g.ADD, fr],
|
|
1543
|
+
[g.ALPHA, hr],
|
|
1544
|
+
[g.AVERAGE, dr],
|
|
1545
|
+
[g.COLOR, vr],
|
|
1546
|
+
[g.COLOR_BURN, pr],
|
|
1547
|
+
[g.COLOR_DODGE, gr],
|
|
1548
|
+
[g.DARKEN, mr],
|
|
1549
|
+
[g.DIFFERENCE, Ar],
|
|
1550
|
+
[g.DIVIDE, xr],
|
|
1554
1551
|
[g.DST, null],
|
|
1555
|
-
[g.EXCLUSION,
|
|
1556
|
-
[g.HARD_LIGHT,
|
|
1557
|
-
[g.HARD_MIX,
|
|
1558
|
-
[g.HUE,
|
|
1559
|
-
[g.INVERT,
|
|
1560
|
-
[g.INVERT_RGB,
|
|
1561
|
-
[g.LIGHTEN,
|
|
1562
|
-
[g.LINEAR_BURN,
|
|
1563
|
-
[g.LINEAR_DODGE,
|
|
1564
|
-
[g.LINEAR_LIGHT,
|
|
1565
|
-
[g.LUMINOSITY,
|
|
1566
|
-
[g.MULTIPLY,
|
|
1567
|
-
[g.NEGATION,
|
|
1568
|
-
[g.NORMAL,
|
|
1569
|
-
[g.OVERLAY,
|
|
1570
|
-
[g.PIN_LIGHT,
|
|
1571
|
-
[g.REFLECT,
|
|
1572
|
-
[g.SATURATION,
|
|
1573
|
-
[g.SCREEN,
|
|
1574
|
-
[g.SOFT_LIGHT,
|
|
1575
|
-
[g.SRC,
|
|
1576
|
-
[g.SUBTRACT,
|
|
1577
|
-
[g.VIVID_LIGHT,
|
|
1578
|
-
]),
|
|
1552
|
+
[g.EXCLUSION, Dr],
|
|
1553
|
+
[g.HARD_LIGHT, wr],
|
|
1554
|
+
[g.HARD_MIX, Tr],
|
|
1555
|
+
[g.HUE, Sr],
|
|
1556
|
+
[g.INVERT, Er],
|
|
1557
|
+
[g.INVERT_RGB, Cr],
|
|
1558
|
+
[g.LIGHTEN, yr],
|
|
1559
|
+
[g.LINEAR_BURN, Mr],
|
|
1560
|
+
[g.LINEAR_DODGE, Br],
|
|
1561
|
+
[g.LINEAR_LIGHT, Pr],
|
|
1562
|
+
[g.LUMINOSITY, Ir],
|
|
1563
|
+
[g.MULTIPLY, Rr],
|
|
1564
|
+
[g.NEGATION, br],
|
|
1565
|
+
[g.NORMAL, Ur],
|
|
1566
|
+
[g.OVERLAY, Fr],
|
|
1567
|
+
[g.PIN_LIGHT, Lr],
|
|
1568
|
+
[g.REFLECT, Or],
|
|
1569
|
+
[g.SATURATION, Nr],
|
|
1570
|
+
[g.SCREEN, Hr],
|
|
1571
|
+
[g.SOFT_LIGHT, zr],
|
|
1572
|
+
[g.SRC, Gr],
|
|
1573
|
+
[g.SUBTRACT, kr],
|
|
1574
|
+
[g.VIVID_LIGHT, Qr]
|
|
1575
|
+
]), si = class extends Tt {
|
|
1579
1576
|
/**
|
|
1580
1577
|
* Constructs a new blend mode.
|
|
1581
1578
|
*
|
|
@@ -1636,9 +1633,9 @@ var si = class {
|
|
|
1636
1633
|
* @return {String} The blend function shader code.
|
|
1637
1634
|
*/
|
|
1638
1635
|
getShaderCode() {
|
|
1639
|
-
return
|
|
1636
|
+
return Vr.get(this.blendFunction);
|
|
1640
1637
|
}
|
|
1641
|
-
},
|
|
1638
|
+
}, ni = class extends Gi {
|
|
1642
1639
|
/**
|
|
1643
1640
|
* Constructs a new ASCII texture.
|
|
1644
1641
|
*
|
|
@@ -1694,7 +1691,7 @@ var si = class {
|
|
|
1694
1691
|
extensions: s = null,
|
|
1695
1692
|
vertexShader: o = null
|
|
1696
1693
|
} = {}) {
|
|
1697
|
-
super(), this.name = e, this.renderer = null, this.attributes = i, this.fragmentShader = t, this.vertexShader = o, this.defines = a, this.uniforms = n, this.extensions = s, this.blendMode = new
|
|
1694
|
+
super(), this.name = e, this.renderer = null, this.attributes = i, this.fragmentShader = t, this.vertexShader = o, this.defines = a, this.uniforms = n, this.extensions = s, this.blendMode = new si(r), this.blendMode.addEventListener("change", (l) => this.setChanged()), this._inputColorSpace = je, this._outputColorSpace = tt;
|
|
1698
1695
|
}
|
|
1699
1696
|
/**
|
|
1700
1697
|
* The input color space.
|
|
@@ -1922,10 +1919,10 @@ var si = class {
|
|
|
1922
1919
|
dispose() {
|
|
1923
1920
|
for (const e of Object.keys(this)) {
|
|
1924
1921
|
const t = this[e];
|
|
1925
|
-
(t instanceof T || t instanceof
|
|
1922
|
+
(t instanceof T || t instanceof _t || t instanceof Je || t instanceof H) && this[e].dispose();
|
|
1926
1923
|
}
|
|
1927
1924
|
}
|
|
1928
|
-
},
|
|
1925
|
+
}, Wr = `uniform sampler2D asciiTexture;uniform vec4 cellCount;
|
|
1929
1926
|
#ifdef USE_COLOR
|
|
1930
1927
|
uniform vec3 color;
|
|
1931
1928
|
#endif
|
|
@@ -1939,7 +1936,7 @@ outputColor=vec4(color*asciiCharacter,inputColor.a);
|
|
|
1939
1936
|
#else
|
|
1940
1937
|
outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
|
|
1941
1938
|
#endif
|
|
1942
|
-
}`,
|
|
1939
|
+
}`, Yr = class extends I {
|
|
1943
1940
|
/**
|
|
1944
1941
|
* Constructs a new ASCII effect.
|
|
1945
1942
|
*
|
|
@@ -1950,12 +1947,12 @@ outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
|
|
|
1950
1947
|
* @param {Boolean} [options.inverted=false] - Inverts the effect.
|
|
1951
1948
|
*/
|
|
1952
1949
|
constructor({
|
|
1953
|
-
asciiTexture: e = new
|
|
1950
|
+
asciiTexture: e = new ni(),
|
|
1954
1951
|
cellSize: t = 16,
|
|
1955
1952
|
color: i = null,
|
|
1956
1953
|
inverted: r = !1
|
|
1957
1954
|
} = {}) {
|
|
1958
|
-
super("ASCIIEffect",
|
|
1955
|
+
super("ASCIIEffect", Wr, {
|
|
1959
1956
|
uniforms: /* @__PURE__ */ new Map([
|
|
1960
1957
|
["asciiTexture", new c(null)],
|
|
1961
1958
|
["cellCount", new c(new Be())],
|
|
@@ -2042,14 +2039,14 @@ outputColor=vec4(texel.rgb*asciiCharacter,inputColor.a);
|
|
|
2042
2039
|
LARGE: 3,
|
|
2043
2040
|
VERY_LARGE: 4,
|
|
2044
2041
|
HUGE: 5
|
|
2045
|
-
},
|
|
2042
|
+
}, Kr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
2046
2043
|
uniform mediump sampler2D inputBuffer;
|
|
2047
2044
|
#else
|
|
2048
2045
|
uniform lowp sampler2D inputBuffer;
|
|
2049
2046
|
#endif
|
|
2050
2047
|
varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec4 sum=texture2D(inputBuffer,vUv0);sum+=texture2D(inputBuffer,vUv1);sum+=texture2D(inputBuffer,vUv2);sum+=texture2D(inputBuffer,vUv3);gl_FragColor=sum*0.25;
|
|
2051
2048
|
#include <colorspace_fragment>
|
|
2052
|
-
}`,
|
|
2049
|
+
}`, Xr = "uniform vec4 texelSize;uniform float kernel;uniform float scale;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vec2 dUv=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;vUv0=vec2(uv.x-dUv.x,uv.y+dUv.y);vUv1=vec2(uv.x+dUv.x,uv.y+dUv.y);vUv2=vec2(uv.x+dUv.x,uv.y-dUv.y);vUv3=vec2(uv.x-dUv.x,uv.y-dUv.y);gl_Position=vec4(position.xy,1.0,1.0);}", Zr = [
|
|
2053
2050
|
new Float32Array([0, 0]),
|
|
2054
2051
|
new Float32Array([0, 1, 1]),
|
|
2055
2052
|
new Float32Array([0, 1, 1, 2]),
|
|
@@ -2076,8 +2073,8 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
|
|
|
2076
2073
|
toneMapped: !1,
|
|
2077
2074
|
depthWrite: !1,
|
|
2078
2075
|
depthTest: !1,
|
|
2079
|
-
fragmentShader:
|
|
2080
|
-
vertexShader:
|
|
2076
|
+
fragmentShader: Kr,
|
|
2077
|
+
vertexShader: Xr
|
|
2081
2078
|
}), this.setTexelSize(e.x, e.y), this.kernelSize = te.MEDIUM;
|
|
2082
2079
|
}
|
|
2083
2080
|
/**
|
|
@@ -2103,7 +2100,7 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
|
|
|
2103
2100
|
* @type {Float32Array}
|
|
2104
2101
|
*/
|
|
2105
2102
|
get kernelSequence() {
|
|
2106
|
-
return
|
|
2103
|
+
return Zr[this.kernelSize];
|
|
2107
2104
|
}
|
|
2108
2105
|
/**
|
|
2109
2106
|
* The blur scale.
|
|
@@ -2411,7 +2408,7 @@ varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void mai
|
|
|
2411
2408
|
static get AUTO_SIZE() {
|
|
2412
2409
|
return x.AUTO_SIZE;
|
|
2413
2410
|
}
|
|
2414
|
-
},
|
|
2411
|
+
}, jr = `#include <common>
|
|
2415
2412
|
#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
2416
2413
|
uniform mediump sampler2D inputBuffer;
|
|
2417
2414
|
#else
|
|
@@ -2433,7 +2430,7 @@ gl_FragColor=texel*mask;
|
|
|
2433
2430
|
#else
|
|
2434
2431
|
gl_FragColor=vec4(l*mask);
|
|
2435
2432
|
#endif
|
|
2436
|
-
}`,
|
|
2433
|
+
}`, oi = class extends w {
|
|
2437
2434
|
/**
|
|
2438
2435
|
* Constructs a new luminance material.
|
|
2439
2436
|
*
|
|
@@ -2456,7 +2453,7 @@ gl_FragColor=vec4(l*mask);
|
|
|
2456
2453
|
toneMapped: !1,
|
|
2457
2454
|
depthWrite: !1,
|
|
2458
2455
|
depthTest: !1,
|
|
2459
|
-
fragmentShader:
|
|
2456
|
+
fragmentShader: jr,
|
|
2460
2457
|
vertexShader: ce
|
|
2461
2458
|
}), this.colorOutput = e, this.luminanceRange = t;
|
|
2462
2459
|
}
|
|
@@ -2638,7 +2635,7 @@ gl_FragColor=vec4(l*mask);
|
|
|
2638
2635
|
resolutionX: s = a,
|
|
2639
2636
|
resolutionY: o = n
|
|
2640
2637
|
} = {}) {
|
|
2641
|
-
super("LuminancePass"), this.fullscreenMaterial = new
|
|
2638
|
+
super("LuminancePass"), this.fullscreenMaterial = new oi(i, t), this.needsSwap = !1, this.renderTarget = e, this.renderTarget === void 0 && (this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "LuminancePass.Target");
|
|
2642
2639
|
const l = this.resolution = new x(this, s, o, r);
|
|
2643
2640
|
l.addEventListener("change", (u) => this.setSize(l.baseWidth, l.baseHeight));
|
|
2644
2641
|
}
|
|
@@ -2701,7 +2698,7 @@ gl_FragColor=vec4(l*mask);
|
|
|
2701
2698
|
initialize(e, t, i) {
|
|
2702
2699
|
i !== void 0 && i !== Y && (this.renderTarget.texture.type = i, this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1");
|
|
2703
2700
|
}
|
|
2704
|
-
},
|
|
2701
|
+
}, Jr = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
2705
2702
|
uniform mediump sampler2D inputBuffer;
|
|
2706
2703
|
#else
|
|
2707
2704
|
uniform lowp sampler2D inputBuffer;
|
|
@@ -2710,7 +2707,7 @@ uniform lowp sampler2D inputBuffer;
|
|
|
2710
2707
|
#define WEIGHT_OUTER 0.0555555
|
|
2711
2708
|
varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;float clampToBorder(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void main(){vec4 c=vec4(0.0);vec4 w=WEIGHT_INNER*vec4(clampToBorder(vUv00),clampToBorder(vUv01),clampToBorder(vUv02),clampToBorder(vUv03));c+=w.x*texture2D(inputBuffer,vUv00);c+=w.y*texture2D(inputBuffer,vUv01);c+=w.z*texture2D(inputBuffer,vUv02);c+=w.w*texture2D(inputBuffer,vUv03);w=WEIGHT_OUTER*vec4(clampToBorder(vUv04),clampToBorder(vUv05),clampToBorder(vUv06),clampToBorder(vUv07));c+=w.x*texture2D(inputBuffer,vUv04);c+=w.y*texture2D(inputBuffer,vUv05);c+=w.z*texture2D(inputBuffer,vUv06);c+=w.w*texture2D(inputBuffer,vUv07);w=WEIGHT_OUTER*vec4(clampToBorder(vUv08),clampToBorder(vUv09),clampToBorder(vUv10),clampToBorder(vUv11));c+=w.x*texture2D(inputBuffer,vUv08);c+=w.y*texture2D(inputBuffer,vUv09);c+=w.z*texture2D(inputBuffer,vUv10);c+=w.w*texture2D(inputBuffer,vUv11);c+=WEIGHT_OUTER*texture2D(inputBuffer,vUv);gl_FragColor=c;
|
|
2712
2709
|
#include <colorspace_fragment>
|
|
2713
|
-
}`,
|
|
2710
|
+
}`, qr = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varying vec2 vUv03;varying vec2 vUv04;varying vec2 vUv05;varying vec2 vUv06;varying vec2 vUv07;varying vec2 vUv08;varying vec2 vUv09;varying vec2 vUv10;varying vec2 vUv11;void main(){vUv=position.xy*0.5+0.5;vUv00=vUv+texelSize*vec2(-1.0,1.0);vUv01=vUv+texelSize*vec2(1.0,1.0);vUv02=vUv+texelSize*vec2(-1.0,-1.0);vUv03=vUv+texelSize*vec2(1.0,-1.0);vUv04=vUv+texelSize*vec2(-2.0,2.0);vUv05=vUv+texelSize*vec2(0.0,2.0);vUv06=vUv+texelSize*vec2(2.0,2.0);vUv07=vUv+texelSize*vec2(-2.0,0.0);vUv08=vUv+texelSize*vec2(2.0,0.0);vUv09=vUv+texelSize*vec2(-2.0,-2.0);vUv10=vUv+texelSize*vec2(0.0,-2.0);vUv11=vUv+texelSize*vec2(2.0,-2.0);gl_Position=vec4(position.xy,1.0,1.0);}", li = class extends w {
|
|
2714
2711
|
/**
|
|
2715
2712
|
* Constructs a new downsampling material.
|
|
2716
2713
|
*/
|
|
@@ -2725,8 +2722,8 @@ varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varyin
|
|
|
2725
2722
|
toneMapped: !1,
|
|
2726
2723
|
depthWrite: !1,
|
|
2727
2724
|
depthTest: !1,
|
|
2728
|
-
fragmentShader:
|
|
2729
|
-
vertexShader:
|
|
2725
|
+
fragmentShader: Jr,
|
|
2726
|
+
vertexShader: qr
|
|
2730
2727
|
});
|
|
2731
2728
|
}
|
|
2732
2729
|
/**
|
|
@@ -2746,14 +2743,14 @@ varying vec2 vUv;varying vec2 vUv00;varying vec2 vUv01;varying vec2 vUv02;varyin
|
|
|
2746
2743
|
setSize(e, t) {
|
|
2747
2744
|
this.uniforms.texelSize.value.set(1 / e, 1 / t);
|
|
2748
2745
|
}
|
|
2749
|
-
},
|
|
2746
|
+
}, _r = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
2750
2747
|
uniform mediump sampler2D inputBuffer;uniform mediump sampler2D supportBuffer;
|
|
2751
2748
|
#else
|
|
2752
2749
|
uniform lowp sampler2D inputBuffer;uniform lowp sampler2D supportBuffer;
|
|
2753
2750
|
#endif
|
|
2754
2751
|
uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vec4 c=vec4(0.0);c+=texture2D(inputBuffer,vUv0)*0.0625;c+=texture2D(inputBuffer,vUv1)*0.125;c+=texture2D(inputBuffer,vUv2)*0.0625;c+=texture2D(inputBuffer,vUv3)*0.125;c+=texture2D(inputBuffer,vUv)*0.25;c+=texture2D(inputBuffer,vUv4)*0.125;c+=texture2D(inputBuffer,vUv5)*0.0625;c+=texture2D(inputBuffer,vUv6)*0.125;c+=texture2D(inputBuffer,vUv7)*0.0625;vec4 baseColor=texture2D(supportBuffer,vUv);gl_FragColor=mix(baseColor,c,radius);
|
|
2755
2752
|
#include <colorspace_fragment>
|
|
2756
|
-
}`,
|
|
2753
|
+
}`, $r = "uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;varying vec2 vUv6;varying vec2 vUv7;void main(){vUv=position.xy*0.5+0.5;vUv0=vUv+texelSize*vec2(-1.0,1.0);vUv1=vUv+texelSize*vec2(0.0,1.0);vUv2=vUv+texelSize*vec2(1.0,1.0);vUv3=vUv+texelSize*vec2(-1.0,0.0);vUv4=vUv+texelSize*vec2(1.0,0.0);vUv5=vUv+texelSize*vec2(-1.0,-1.0);vUv6=vUv+texelSize*vec2(0.0,-1.0);vUv7=vUv+texelSize*vec2(1.0,-1.0);gl_Position=vec4(position.xy,1.0,1.0);}", ui = class extends w {
|
|
2757
2754
|
/**
|
|
2758
2755
|
* Constructs a new upsampling material.
|
|
2759
2756
|
*/
|
|
@@ -2770,8 +2767,8 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
|
|
|
2770
2767
|
toneMapped: !1,
|
|
2771
2768
|
depthWrite: !1,
|
|
2772
2769
|
depthTest: !1,
|
|
2773
|
-
fragmentShader:
|
|
2774
|
-
vertexShader:
|
|
2770
|
+
fragmentShader: _r,
|
|
2771
|
+
vertexShader: $r
|
|
2775
2772
|
});
|
|
2776
2773
|
}
|
|
2777
2774
|
/**
|
|
@@ -2810,14 +2807,14 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
|
|
|
2810
2807
|
setSize(e, t) {
|
|
2811
2808
|
this.uniforms.texelSize.value.set(1 / e, 1 / t);
|
|
2812
2809
|
}
|
|
2813
|
-
},
|
|
2810
|
+
}, ci = class extends H {
|
|
2814
2811
|
/**
|
|
2815
2812
|
* Constructs a new mipmap blur pass.
|
|
2816
2813
|
*
|
|
2817
2814
|
* @param {Object} [options] - The options.
|
|
2818
2815
|
*/
|
|
2819
2816
|
constructor() {
|
|
2820
|
-
super("MipmapBlurPass"), this.needsSwap = !1, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "Upsampling.Mipmap0", this.downsamplingMipmaps = [], this.upsamplingMipmaps = [], this.downsamplingMaterial = new
|
|
2817
|
+
super("MipmapBlurPass"), this.needsSwap = !1, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "Upsampling.Mipmap0", this.downsamplingMipmaps = [], this.upsamplingMipmaps = [], this.downsamplingMaterial = new li(), this.upsamplingMaterial = new ui(), this.resolution = new p();
|
|
2821
2818
|
}
|
|
2822
2819
|
/**
|
|
2823
2820
|
* A texture that contains the blurred result.
|
|
@@ -2925,12 +2922,12 @@ uniform float radius;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;varyin
|
|
|
2925
2922
|
for (const e of this.downsamplingMipmaps.concat(this.upsamplingMipmaps))
|
|
2926
2923
|
e.dispose();
|
|
2927
2924
|
}
|
|
2928
|
-
},
|
|
2925
|
+
}, ea = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
2929
2926
|
uniform mediump sampler2D map;
|
|
2930
2927
|
#else
|
|
2931
2928
|
uniform lowp sampler2D map;
|
|
2932
2929
|
#endif
|
|
2933
|
-
uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 texel=texture2D(map,uv);outputColor=vec4(texel.rgb*intensity,max(inputColor.a,texel.a));}`,
|
|
2930
|
+
uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 texel=texture2D(map,uv);outputColor=vec4(texel.rgb*intensity,max(inputColor.a,texel.a));}`, fi = class extends I {
|
|
2934
2931
|
/**
|
|
2935
2932
|
* Constructs a new bloom effect.
|
|
2936
2933
|
*
|
|
@@ -2964,13 +2961,13 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
|
|
|
2964
2961
|
resolutionX: h = u,
|
|
2965
2962
|
resolutionY: d = f
|
|
2966
2963
|
} = {}) {
|
|
2967
|
-
super("BloomEffect",
|
|
2964
|
+
super("BloomEffect", ea, {
|
|
2968
2965
|
blendFunction: e,
|
|
2969
2966
|
uniforms: /* @__PURE__ */ new Map([
|
|
2970
2967
|
["map", new c(null)],
|
|
2971
2968
|
["intensity", new c(a)]
|
|
2972
2969
|
])
|
|
2973
|
-
}), this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "Bloom.Target", this.blurPass = new pe({ kernelSize: o }), this.luminancePass = new Ct({ colorOutput: !0 }), this.luminanceMaterial.threshold = t, this.luminanceMaterial.smoothing = i, this.mipmapBlurPass = new
|
|
2970
|
+
}), this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "Bloom.Target", this.blurPass = new pe({ kernelSize: o }), this.luminancePass = new Ct({ colorOutput: !0 }), this.luminanceMaterial.threshold = t, this.luminanceMaterial.smoothing = i, this.mipmapBlurPass = new ci(), this.mipmapBlurPass.enabled = r, this.mipmapBlurPass.radius = n, this.mipmapBlurPass.levels = s, this.uniforms.get("map").value = r ? this.mipmapBlurPass.texture : this.renderTarget.texture;
|
|
2974
2971
|
const v = this.resolution = new x(this, h, d, l);
|
|
2975
2972
|
v.addEventListener("change", (A) => this.setSize(v.baseWidth, v.baseHeight));
|
|
2976
2973
|
}
|
|
@@ -3171,13 +3168,13 @@ uniform float intensity;void mainImage(const in vec4 inputColor,const in vec2 uv
|
|
|
3171
3168
|
initialize(e, t, i) {
|
|
3172
3169
|
this.blurPass.initialize(e, t, i), this.luminancePass.initialize(e, t, i), this.mipmapBlurPass.initialize(e, t, i), i !== void 0 && (this.renderTarget.texture.type = i, e !== null && e.outputColorSpace === y && (this.renderTarget.texture.colorSpace = y));
|
|
3173
3170
|
}
|
|
3174
|
-
},
|
|
3171
|
+
}, ta = `uniform float focus;uniform float dof;uniform float aperture;uniform float maxBlur;void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){vec2 aspectCorrection=vec2(1.0,aspect);
|
|
3175
3172
|
#ifdef PERSPECTIVE_CAMERA
|
|
3176
3173
|
float viewZ=perspectiveDepthToViewZ(depth,cameraNear,cameraFar);float linearDepth=viewZToOrthographicDepth(viewZ,cameraNear,cameraFar);
|
|
3177
3174
|
#else
|
|
3178
3175
|
float linearDepth=depth;
|
|
3179
3176
|
#endif
|
|
3180
|
-
float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0);float low=step(linearDepth,focusNear);float high=step(focusFar,linearDepth);float factor=(linearDepth-focusNear)*low+(linearDepth-focusFar)*high;vec2 dofBlur=vec2(clamp(factor*aperture,-maxBlur,maxBlur));vec2 dofblur9=dofBlur*0.9;vec2 dofblur7=dofBlur*0.7;vec2 dofblur4=dofBlur*0.4;vec4 color=inputColor;color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur4);outputColor=color/41.0;}`,
|
|
3177
|
+
float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0);float low=step(linearDepth,focusNear);float high=step(focusFar,linearDepth);float factor=(linearDepth-focusNear)*low+(linearDepth-focusFar)*high;vec2 dofBlur=vec2(clamp(factor*aperture,-maxBlur,maxBlur));vec2 dofblur9=dofBlur*0.9;vec2 dofblur7=dofBlur*0.7;vec2 dofblur4=dofBlur*0.4;vec4 color=inputColor;color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofBlur);color+=texture2D(inputBuffer,uv+(vec2(0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.15,0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.37,0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(-0.37,-0.15)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.15,-0.37)*aspectCorrection)*dofblur9);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.40,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur7);color+=texture2D(inputBuffer,uv+(vec2(0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,-0.4)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.4,0.0)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(-0.29,-0.29)*aspectCorrection)*dofblur4);color+=texture2D(inputBuffer,uv+(vec2(0.0,0.4)*aspectCorrection)*dofblur4);outputColor=color/41.0;}`, ia = class extends I {
|
|
3181
3178
|
/**
|
|
3182
3179
|
* Constructs a new bokeh effect.
|
|
3183
3180
|
*
|
|
@@ -3195,7 +3192,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3195
3192
|
aperture: r = 0.015,
|
|
3196
3193
|
maxBlur: a = 1
|
|
3197
3194
|
} = {}) {
|
|
3198
|
-
super("BokehEffect",
|
|
3195
|
+
super("BokehEffect", ta, {
|
|
3199
3196
|
blendFunction: e,
|
|
3200
3197
|
attributes: V.CONVOLUTION | V.DEPTH,
|
|
3201
3198
|
uniforms: /* @__PURE__ */ new Map([
|
|
@@ -3206,7 +3203,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3206
3203
|
])
|
|
3207
3204
|
});
|
|
3208
3205
|
}
|
|
3209
|
-
},
|
|
3206
|
+
}, ra = "uniform float brightness;uniform float contrast;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=inputColor.rgb+vec3(brightness-0.5);if(contrast>0.0){color/=vec3(1.0-contrast);}else{color*=vec3(1.0+contrast);}outputColor=vec4(color+vec3(0.5),inputColor.a);}", aa = class extends I {
|
|
3210
3207
|
/**
|
|
3211
3208
|
* Constructs a new brightness/contrast effect.
|
|
3212
3209
|
*
|
|
@@ -3216,7 +3213,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3216
3213
|
* @param {Number} [options.contrast=0.0] - The contrast factor, ranging from -1 to 1, where 0 means no change.
|
|
3217
3214
|
*/
|
|
3218
3215
|
constructor({ blendFunction: e = g.SRC, brightness: t = 0, contrast: i = 0 } = {}) {
|
|
3219
|
-
super("BrightnessContrastEffect",
|
|
3216
|
+
super("BrightnessContrastEffect", ra, {
|
|
3220
3217
|
blendFunction: e,
|
|
3221
3218
|
uniforms: /* @__PURE__ */ new Map([
|
|
3222
3219
|
["brightness", new c(t)],
|
|
@@ -3282,16 +3279,16 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3282
3279
|
setContrast(e) {
|
|
3283
3280
|
this.contrast = e;
|
|
3284
3281
|
}
|
|
3285
|
-
},
|
|
3282
|
+
}, sa = "void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(vec3(average(inputColor.rgb)),inputColor.a);}", na = class extends I {
|
|
3286
3283
|
/**
|
|
3287
3284
|
* Constructs a new color average effect.
|
|
3288
3285
|
*
|
|
3289
3286
|
* @param {BlendFunction} [blendFunction] - The blend function of this effect.
|
|
3290
3287
|
*/
|
|
3291
3288
|
constructor(e) {
|
|
3292
|
-
super("ColorAverageEffect",
|
|
3289
|
+
super("ColorAverageEffect", sa, { blendFunction: e });
|
|
3293
3290
|
}
|
|
3294
|
-
},
|
|
3291
|
+
}, oa = "uniform float factor;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(floor(inputColor.rgb*factor+0.5)/factor,inputColor.a);}", la = class extends I {
|
|
3295
3292
|
/**
|
|
3296
3293
|
* Constructs a new color depth effect.
|
|
3297
3294
|
*
|
|
@@ -3300,7 +3297,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3300
3297
|
* @param {Number} [options.bits=16] - The color bit depth.
|
|
3301
3298
|
*/
|
|
3302
3299
|
constructor({ blendFunction: e, bits: t = 16 } = {}) {
|
|
3303
|
-
super("ColorDepthEffect",
|
|
3300
|
+
super("ColorDepthEffect", oa, {
|
|
3304
3301
|
blendFunction: e,
|
|
3305
3302
|
uniforms: /* @__PURE__ */ new Map([
|
|
3306
3303
|
["factor", new c(1)]
|
|
@@ -3336,7 +3333,7 @@ float focusNear=clamp(focus-dof,0.0,1.0);float focusFar=clamp(focus+dof,0.0,1.0)
|
|
|
3336
3333
|
setBitDepth(e) {
|
|
3337
3334
|
this.bitDepth = e;
|
|
3338
3335
|
}
|
|
3339
|
-
},
|
|
3336
|
+
}, ua = `#ifdef RADIAL_MODULATION
|
|
3340
3337
|
uniform float modulationOffset;
|
|
3341
3338
|
#endif
|
|
3342
3339
|
varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec2 ra=inputColor.ra;vec2 ba=inputColor.ba;
|
|
@@ -3345,7 +3342,7 @@ const vec2 center=vec2(0.5);float d=distance(uv,center)*2.0;d=max(d-modulationOf
|
|
|
3345
3342
|
#else
|
|
3346
3343
|
if(vActive>0.0){ra=texture2D(inputBuffer,vUvR).ra;ba=texture2D(inputBuffer,vUvB).ba;}
|
|
3347
3344
|
#endif
|
|
3348
|
-
outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`,
|
|
3345
|
+
outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, ca = "uniform vec2 offset;varying float vActive;varying vec2 vUvR;varying vec2 vUvB;void mainSupport(const in vec2 uv){vec2 shift=offset*vec2(1.0,aspect);vActive=(shift.x!=0.0||shift.y!=0.0)?1.0:0.0;vUvR=uv+shift;vUvB=uv-shift;}", fa = class extends I {
|
|
3349
3346
|
/**
|
|
3350
3347
|
* Constructs a new chromatic aberration effect.
|
|
3351
3348
|
*
|
|
@@ -3359,8 +3356,8 @@ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, da
|
|
|
3359
3356
|
radialModulation: t = !1,
|
|
3360
3357
|
modulationOffset: i = 0.15
|
|
3361
3358
|
} = {}) {
|
|
3362
|
-
super("ChromaticAberrationEffect",
|
|
3363
|
-
vertexShader:
|
|
3359
|
+
super("ChromaticAberrationEffect", ua, {
|
|
3360
|
+
vertexShader: ca,
|
|
3364
3361
|
attributes: V.CONVOLUTION,
|
|
3365
3362
|
uniforms: /* @__PURE__ */ new Map([
|
|
3366
3363
|
["offset", new c(e)],
|
|
@@ -3421,13 +3418,13 @@ outputColor=vec4(ra.x,inputColor.g,ba.x,max(max(ra.y,ba.y),inputColor.a));}`, da
|
|
|
3421
3418
|
setOffset(e) {
|
|
3422
3419
|
this.offset = e;
|
|
3423
3420
|
}
|
|
3424
|
-
},
|
|
3421
|
+
}, ha = `void mainImage(const in vec4 inputColor,const in vec2 uv,const in float depth,out vec4 outputColor){
|
|
3425
3422
|
#ifdef INVERTED
|
|
3426
3423
|
vec3 color=vec3(1.0-depth);
|
|
3427
3424
|
#else
|
|
3428
3425
|
vec3 color=vec3(depth);
|
|
3429
3426
|
#endif
|
|
3430
|
-
outputColor=vec4(color,inputColor.a);}`,
|
|
3427
|
+
outputColor=vec4(color,inputColor.a);}`, da = class extends I {
|
|
3431
3428
|
/**
|
|
3432
3429
|
* Constructs a new depth effect.
|
|
3433
3430
|
*
|
|
@@ -3436,7 +3433,7 @@ outputColor=vec4(color,inputColor.a);}`, ga = class extends I {
|
|
|
3436
3433
|
* @param {Boolean} [options.inverted=false] - Whether the depth should be inverted.
|
|
3437
3434
|
*/
|
|
3438
3435
|
constructor({ blendFunction: e = g.SRC, inverted: t = !1 } = {}) {
|
|
3439
|
-
super("DepthEffect",
|
|
3436
|
+
super("DepthEffect", ha, {
|
|
3440
3437
|
blendFunction: e,
|
|
3441
3438
|
attributes: V.DEPTH
|
|
3442
3439
|
}), this.inverted = t;
|
|
@@ -3480,7 +3477,7 @@ outputColor=vec4(color,inputColor.a);}`, ga = class extends I {
|
|
|
3480
3477
|
MULTIPLY: 1,
|
|
3481
3478
|
MULTIPLY_RGB_SET_ALPHA: 2,
|
|
3482
3479
|
MULTIPLY_RGB: 3
|
|
3483
|
-
},
|
|
3480
|
+
}, va = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
3484
3481
|
uniform mediump sampler2D inputBuffer;
|
|
3485
3482
|
#else
|
|
3486
3483
|
uniform lowp sampler2D inputBuffer;
|
|
@@ -3532,7 +3529,7 @@ vec4 maxValue=texture2D(inputBuffer,vUv);for(int i=0;i<8;++i){vec4 kernel=kernel
|
|
|
3532
3529
|
toneMapped: !1,
|
|
3533
3530
|
depthWrite: !1,
|
|
3534
3531
|
depthTest: !1,
|
|
3535
|
-
fragmentShader:
|
|
3532
|
+
fragmentShader: va,
|
|
3536
3533
|
vertexShader: ce
|
|
3537
3534
|
}), t && (this.defines.FOREGROUND = "1"), this.generateKernel();
|
|
3538
3535
|
}
|
|
@@ -3639,7 +3636,7 @@ function de(e, t, i) {
|
|
|
3639
3636
|
function le(e, t, i) {
|
|
3640
3637
|
return Math.min(Math.max((e + t) / (t - i), 0), 1);
|
|
3641
3638
|
}
|
|
3642
|
-
var
|
|
3639
|
+
var pa = `#include <common>
|
|
3643
3640
|
#include <packing>
|
|
3644
3641
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
3645
3642
|
uniform highp sampler2D depthBuffer;
|
|
@@ -3661,7 +3658,7 @@ float viewZ=perspectiveDepthToViewZ(depth,cameraNear,cameraFar);float linearDept
|
|
|
3661
3658
|
#else
|
|
3662
3659
|
float linearDepth=depth;
|
|
3663
3660
|
#endif
|
|
3664
|
-
float signedDistance=linearDepth-focusDistance;float magnitude=smoothstep(0.0,focusRange,abs(signedDistance));gl_FragColor.rg=magnitude*vec2(step(signedDistance,0.0),step(0.0,signedDistance));}`,
|
|
3661
|
+
float signedDistance=linearDepth-focusDistance;float magnitude=smoothstep(0.0,focusRange,abs(signedDistance));gl_FragColor.rg=magnitude*vec2(step(signedDistance,0.0),step(0.0,signedDistance));}`, hi = class extends w {
|
|
3665
3662
|
/**
|
|
3666
3663
|
* Constructs a new CoC material.
|
|
3667
3664
|
*
|
|
@@ -3684,7 +3681,7 @@ float signedDistance=linearDepth-focusDistance;float magnitude=smoothstep(0.0,fo
|
|
|
3684
3681
|
toneMapped: !1,
|
|
3685
3682
|
depthWrite: !1,
|
|
3686
3683
|
depthTest: !1,
|
|
3687
|
-
fragmentShader:
|
|
3684
|
+
fragmentShader: pa,
|
|
3688
3685
|
vertexShader: ce
|
|
3689
3686
|
}), this.uniforms.focalLength = this.uniforms.focusRange, this.copyCameraSettings(e);
|
|
3690
3687
|
}
|
|
@@ -3841,7 +3838,7 @@ float signedDistance=linearDepth-focusDistance;float magnitude=smoothstep(0.0,fo
|
|
|
3841
3838
|
copyCameraSettings(e) {
|
|
3842
3839
|
e && (this.uniforms.cameraNear.value = e.near, this.uniforms.cameraFar.value = e.far, e instanceof Ie ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
|
|
3843
3840
|
}
|
|
3844
|
-
},
|
|
3841
|
+
}, ga = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
3845
3842
|
uniform mediump sampler2D inputBuffer;
|
|
3846
3843
|
#else
|
|
3847
3844
|
uniform lowp sampler2D inputBuffer;
|
|
@@ -3883,7 +3880,7 @@ gl_FragColor=vec4(mask*texture2D(inputBuffer,vUv).rgb,mask);
|
|
|
3883
3880
|
#else
|
|
3884
3881
|
gl_FragColor=mask*texture2D(inputBuffer,vUv);
|
|
3885
3882
|
#endif
|
|
3886
|
-
}`,
|
|
3883
|
+
}`, di = class extends w {
|
|
3887
3884
|
/**
|
|
3888
3885
|
* Constructs a new mask material.
|
|
3889
3886
|
*
|
|
@@ -3901,7 +3898,7 @@ gl_FragColor=mask*texture2D(inputBuffer,vUv);
|
|
|
3901
3898
|
toneMapped: !1,
|
|
3902
3899
|
depthWrite: !1,
|
|
3903
3900
|
depthTest: !1,
|
|
3904
|
-
fragmentShader:
|
|
3901
|
+
fragmentShader: ga,
|
|
3905
3902
|
vertexShader: ce
|
|
3906
3903
|
}), this.colorChannel = he.RED, this.maskFunction = yt.DISCARD;
|
|
3907
3904
|
}
|
|
@@ -4077,7 +4074,7 @@ gl_FragColor=mask*texture2D(inputBuffer,vUv);
|
|
|
4077
4074
|
initialize(e, t, i) {
|
|
4078
4075
|
i !== void 0 && i !== Y && (this.fullscreenMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1");
|
|
4079
4076
|
}
|
|
4080
|
-
},
|
|
4077
|
+
}, ma = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
4081
4078
|
uniform mediump sampler2D nearColorBuffer;uniform mediump sampler2D farColorBuffer;
|
|
4082
4079
|
#else
|
|
4083
4080
|
uniform lowp sampler2D nearColorBuffer;uniform lowp sampler2D farColorBuffer;
|
|
@@ -4088,7 +4085,7 @@ vec2 cocNearFar=vec2(texture2D(nearCoCBuffer,uv).r,colorFar.a);cocNearFar.x=min(
|
|
|
4088
4085
|
#else
|
|
4089
4086
|
vec2 cocNearFar=vec2(texture2D(nearCoCBuffer,uv).r,texture2D(farCoCBuffer,uv).g);cocNearFar=min(cocNearFar*scale,1.0);
|
|
4090
4087
|
#endif
|
|
4091
|
-
vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,cocNearFar.x);outputColor=result;}`,
|
|
4088
|
+
vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,cocNearFar.x);outputColor=result;}`, Aa = class extends I {
|
|
4092
4089
|
/**
|
|
4093
4090
|
* Constructs a new depth of field effect.
|
|
4094
4091
|
*
|
|
@@ -4121,7 +4118,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
|
|
|
4121
4118
|
resolutionX: h = u,
|
|
4122
4119
|
resolutionY: d = f
|
|
4123
4120
|
} = {}) {
|
|
4124
|
-
super("DepthOfFieldEffect",
|
|
4121
|
+
super("DepthOfFieldEffect", ma, {
|
|
4125
4122
|
blendFunction: t,
|
|
4126
4123
|
attributes: V.DEPTH,
|
|
4127
4124
|
uniforms: /* @__PURE__ */ new Map([
|
|
@@ -4131,9 +4128,9 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
|
|
|
4131
4128
|
["farCoCBuffer", new c(null)],
|
|
4132
4129
|
["scale", new c(1)]
|
|
4133
4130
|
])
|
|
4134
|
-
}), this.camera = e, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "DoF.Intermediate", this.renderTargetMasked = this.renderTarget.clone(), this.renderTargetMasked.texture.name = "DoF.Masked.Far", this.renderTargetNear = this.renderTarget.clone(), this.renderTargetNear.texture.name = "DoF.Bokeh.Near", this.uniforms.get("nearColorBuffer").value = this.renderTargetNear.texture, this.renderTargetFar = this.renderTarget.clone(), this.renderTargetFar.texture.name = "DoF.Bokeh.Far", this.uniforms.get("farColorBuffer").value = this.renderTargetFar.texture, this.renderTargetCoC = this.renderTarget.clone(), this.renderTargetCoC.texture.name = "DoF.CoC", this.uniforms.get("farCoCBuffer").value = this.renderTargetCoC.texture, this.renderTargetCoCBlurred = this.renderTargetCoC.clone(), this.renderTargetCoCBlurred.texture.name = "DoF.CoC.Blurred", this.uniforms.get("nearCoCBuffer").value = this.renderTargetCoCBlurred.texture, this.cocPass = new q(new
|
|
4131
|
+
}), this.camera = e, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "DoF.Intermediate", this.renderTargetMasked = this.renderTarget.clone(), this.renderTargetMasked.texture.name = "DoF.Masked.Far", this.renderTargetNear = this.renderTarget.clone(), this.renderTargetNear.texture.name = "DoF.Bokeh.Near", this.uniforms.get("nearColorBuffer").value = this.renderTargetNear.texture, this.renderTargetFar = this.renderTarget.clone(), this.renderTargetFar.texture.name = "DoF.Bokeh.Far", this.uniforms.get("farColorBuffer").value = this.renderTargetFar.texture, this.renderTargetCoC = this.renderTarget.clone(), this.renderTargetCoC.texture.name = "DoF.CoC", this.uniforms.get("farCoCBuffer").value = this.renderTargetCoC.texture, this.renderTargetCoCBlurred = this.renderTargetCoC.clone(), this.renderTargetCoCBlurred.texture.name = "DoF.CoC.Blurred", this.uniforms.get("nearCoCBuffer").value = this.renderTargetCoCBlurred.texture, this.cocPass = new q(new hi(e));
|
|
4135
4132
|
const v = this.cocMaterial;
|
|
4136
|
-
v.focusDistance = a, v.focusRange = s, i !== void 0 && (v.worldFocusDistance = i), r !== void 0 && (v.worldFocusRange = r), this.blurPass = new pe({ resolutionScale: l, resolutionX: h, resolutionY: d, kernelSize: te.MEDIUM }), this.maskPass = new q(new
|
|
4133
|
+
v.focusDistance = a, v.focusRange = s, i !== void 0 && (v.worldFocusDistance = i), r !== void 0 && (v.worldFocusRange = r), this.blurPass = new pe({ resolutionScale: l, resolutionX: h, resolutionY: d, kernelSize: te.MEDIUM }), this.maskPass = new q(new di(this.renderTargetCoC.texture));
|
|
4137
4134
|
const A = this.maskPass.fullscreenMaterial;
|
|
4138
4135
|
A.colorChannel = he.GREEN, this.maskFunction = yt.MULTIPLY_RGB, this.bokehNearBasePass = new q(new Fe(!1, !0)), this.bokehNearBasePass.fullscreenMaterial.cocBuffer = this.renderTargetCoCBlurred.texture, this.bokehNearFillPass = new q(new Fe(!0, !0)), this.bokehNearFillPass.fullscreenMaterial.cocBuffer = this.renderTargetCoCBlurred.texture, this.bokehFarBasePass = new q(new Fe(!1, !1)), this.bokehFarBasePass.fullscreenMaterial.cocBuffer = this.renderTargetCoC.texture, this.bokehFarFillPass = new q(new Fe(!0, !1)), this.bokehFarFillPass.fullscreenMaterial.cocBuffer = this.renderTargetCoC.texture, this.target = null;
|
|
4139
4136
|
const m = this.resolution = new x(this, h, d, l);
|
|
@@ -4308,7 +4305,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
|
|
|
4308
4305
|
initialize(e, t, i) {
|
|
4309
4306
|
this.cocPass.initialize(e, t, i), this.maskPass.initialize(e, t, i), this.bokehNearBasePass.initialize(e, t, i), this.bokehNearFillPass.initialize(e, t, i), this.bokehFarBasePass.initialize(e, t, i), this.bokehFarFillPass.initialize(e, t, i), this.blurPass.initialize(e, t, Y), e.capabilities.logarithmicDepthBuffer && (this.cocPass.fullscreenMaterial.defines.LOG_DEPTH = "1"), i !== void 0 && (this.renderTarget.texture.type = i, this.renderTargetNear.texture.type = i, this.renderTargetFar.texture.type = i, this.renderTargetMasked.texture.type = i, e !== null && e.outputColorSpace === y && (this.renderTarget.texture.colorSpace = y, this.renderTargetNear.texture.colorSpace = y, this.renderTargetFar.texture.colorSpace = y, this.renderTargetMasked.texture.colorSpace = y));
|
|
4310
4307
|
}
|
|
4311
|
-
},
|
|
4308
|
+
}, xa = "uniform vec2 angle;uniform float scale;float pattern(const in vec2 uv){vec2 point=scale*vec2(dot(angle.yx,vec2(uv.x,-uv.y)),dot(angle,uv));return(sin(point.x)*sin(point.y))*4.0;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(inputColor.rgb*10.0-5.0+pattern(uv*resolution));outputColor=vec4(color,inputColor.a);}", Da = class extends I {
|
|
4312
4309
|
/**
|
|
4313
4310
|
* Constructs a new dot screen effect.
|
|
4314
4311
|
*
|
|
@@ -4318,7 +4315,7 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
|
|
|
4318
4315
|
* @param {Number} [options.scale=1.0] - The scale of the dot pattern.
|
|
4319
4316
|
*/
|
|
4320
4317
|
constructor({ blendFunction: e, angle: t = Math.PI * 0.5, scale: i = 1 } = {}) {
|
|
4321
|
-
super("DotScreenEffect",
|
|
4318
|
+
super("DotScreenEffect", xa, {
|
|
4322
4319
|
blendFunction: e,
|
|
4323
4320
|
uniforms: /* @__PURE__ */ new Map([
|
|
4324
4321
|
["angle", new c(new p())],
|
|
@@ -4366,9 +4363,9 @@ vec4 result=inputColor*(1.0-cocNearFar.y)+colorFar;result=mix(result,colorNear,c
|
|
|
4366
4363
|
set scale(e) {
|
|
4367
4364
|
this.uniforms.get("scale").value = e;
|
|
4368
4365
|
}
|
|
4369
|
-
},
|
|
4366
|
+
}, wa = `#define QUALITY(q) ((q) < 5 ? 1.0 : ((q) > 5 ? ((q) < 10 ? 2.0 : ((q) < 11 ? 4.0 : 8.0)) : 1.5))
|
|
4370
4367
|
#define ONE_OVER_TWELVE 0.08333333333333333
|
|
4371
|
-
varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;vec4 fxaa(const in vec4 inputColor,const in vec2 uv){float lumaCenter=luminance(inputColor.rgb);float lumaDown=luminance(texture2D(inputBuffer,vUvDown).rgb);float lumaUp=luminance(texture2D(inputBuffer,vUvUp).rgb);float lumaLeft=luminance(texture2D(inputBuffer,vUvLeft).rgb);float lumaRight=luminance(texture2D(inputBuffer,vUvRight).rgb);float lumaMin=min(lumaCenter,min(min(lumaDown,lumaUp),min(lumaLeft,lumaRight)));float lumaMax=max(lumaCenter,max(max(lumaDown,lumaUp),max(lumaLeft,lumaRight)));float lumaRange=lumaMax-lumaMin;if(lumaRange<max(EDGE_THRESHOLD_MIN,lumaMax*EDGE_THRESHOLD_MAX)){return inputColor;}float lumaDownLeft=luminance(texture2D(inputBuffer,vUvDownLeft).rgb);float lumaUpRight=luminance(texture2D(inputBuffer,vUvUpRight).rgb);float lumaUpLeft=luminance(texture2D(inputBuffer,vUvUpLeft).rgb);float lumaDownRight=luminance(texture2D(inputBuffer,vUvDownRight).rgb);float lumaDownUp=lumaDown+lumaUp;float lumaLeftRight=lumaLeft+lumaRight;float lumaLeftCorners=lumaDownLeft+lumaUpLeft;float lumaDownCorners=lumaDownLeft+lumaDownRight;float lumaRightCorners=lumaDownRight+lumaUpRight;float lumaUpCorners=lumaUpRight+lumaUpLeft;float edgeHorizontal=(abs(-2.0*lumaLeft+lumaLeftCorners)+abs(-2.0*lumaCenter+lumaDownUp)*2.0+abs(-2.0*lumaRight+lumaRightCorners));float edgeVertical=(abs(-2.0*lumaUp+lumaUpCorners)+abs(-2.0*lumaCenter+lumaLeftRight)*2.0+abs(-2.0*lumaDown+lumaDownCorners));bool isHorizontal=(edgeHorizontal>=edgeVertical);float stepLength=isHorizontal?texelSize.y:texelSize.x;float luma1=isHorizontal?lumaDown:lumaLeft;float luma2=isHorizontal?lumaUp:lumaRight;float gradient1=abs(luma1-lumaCenter);float gradient2=abs(luma2-lumaCenter);bool is1Steepest=gradient1>=gradient2;float gradientScaled=0.25*max(gradient1,gradient2);float lumaLocalAverage=0.0;if(is1Steepest){stepLength=-stepLength;lumaLocalAverage=0.5*(luma1+lumaCenter);}else{lumaLocalAverage=0.5*(luma2+lumaCenter);}vec2 currentUv=uv;if(isHorizontal){currentUv.y+=stepLength*0.5;}else{currentUv.x+=stepLength*0.5;}vec2 offset=isHorizontal?vec2(texelSize.x,0.0):vec2(0.0,texelSize.y);vec2 uv1=currentUv-offset*QUALITY(0);vec2 uv2=currentUv+offset*QUALITY(0);float lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);float lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd1-=lumaLocalAverage;lumaEnd2-=lumaLocalAverage;bool reached1=abs(lumaEnd1)>=gradientScaled;bool reached2=abs(lumaEnd2)>=gradientScaled;bool reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(1);}if(!reached2){uv2+=offset*QUALITY(1);}if(!reachedBoth){for(int i=2;i<SAMPLES;++i){if(!reached1){lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);lumaEnd1=lumaEnd1-lumaLocalAverage;}if(!reached2){lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd2=lumaEnd2-lumaLocalAverage;}reached1=abs(lumaEnd1)>=gradientScaled;reached2=abs(lumaEnd2)>=gradientScaled;reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(i);}if(!reached2){uv2+=offset*QUALITY(i);}if(reachedBoth){break;}}}float distance1=isHorizontal?(uv.x-uv1.x):(uv.y-uv1.y);float distance2=isHorizontal?(uv2.x-uv.x):(uv2.y-uv.y);bool isDirection1=distance1<distance2;float distanceFinal=min(distance1,distance2);float edgeThickness=(distance1+distance2);bool isLumaCenterSmaller=lumaCenter<lumaLocalAverage;bool correctVariation1=(lumaEnd1<0.0)!=isLumaCenterSmaller;bool correctVariation2=(lumaEnd2<0.0)!=isLumaCenterSmaller;bool correctVariation=isDirection1?correctVariation1:correctVariation2;float pixelOffset=-distanceFinal/edgeThickness+0.5;float finalOffset=correctVariation?pixelOffset:0.0;float lumaAverage=ONE_OVER_TWELVE*(2.0*(lumaDownUp+lumaLeftRight)+lumaLeftCorners+lumaRightCorners);float subPixelOffset1=clamp(abs(lumaAverage-lumaCenter)/lumaRange,0.0,1.0);float subPixelOffset2=(-2.0*subPixelOffset1+3.0)*subPixelOffset1*subPixelOffset1;float subPixelOffsetFinal=subPixelOffset2*subPixelOffset2*SUBPIXEL_QUALITY;finalOffset=max(finalOffset,subPixelOffsetFinal);vec2 finalUv=uv;if(isHorizontal){finalUv.y+=finalOffset*stepLength;}else{finalUv.x+=finalOffset*stepLength;}return texture2D(inputBuffer,finalUv);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=fxaa(inputColor,uv);}`,
|
|
4368
|
+
varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;vec4 fxaa(const in vec4 inputColor,const in vec2 uv){float lumaCenter=luminance(inputColor.rgb);float lumaDown=luminance(texture2D(inputBuffer,vUvDown).rgb);float lumaUp=luminance(texture2D(inputBuffer,vUvUp).rgb);float lumaLeft=luminance(texture2D(inputBuffer,vUvLeft).rgb);float lumaRight=luminance(texture2D(inputBuffer,vUvRight).rgb);float lumaMin=min(lumaCenter,min(min(lumaDown,lumaUp),min(lumaLeft,lumaRight)));float lumaMax=max(lumaCenter,max(max(lumaDown,lumaUp),max(lumaLeft,lumaRight)));float lumaRange=lumaMax-lumaMin;if(lumaRange<max(EDGE_THRESHOLD_MIN,lumaMax*EDGE_THRESHOLD_MAX)){return inputColor;}float lumaDownLeft=luminance(texture2D(inputBuffer,vUvDownLeft).rgb);float lumaUpRight=luminance(texture2D(inputBuffer,vUvUpRight).rgb);float lumaUpLeft=luminance(texture2D(inputBuffer,vUvUpLeft).rgb);float lumaDownRight=luminance(texture2D(inputBuffer,vUvDownRight).rgb);float lumaDownUp=lumaDown+lumaUp;float lumaLeftRight=lumaLeft+lumaRight;float lumaLeftCorners=lumaDownLeft+lumaUpLeft;float lumaDownCorners=lumaDownLeft+lumaDownRight;float lumaRightCorners=lumaDownRight+lumaUpRight;float lumaUpCorners=lumaUpRight+lumaUpLeft;float edgeHorizontal=(abs(-2.0*lumaLeft+lumaLeftCorners)+abs(-2.0*lumaCenter+lumaDownUp)*2.0+abs(-2.0*lumaRight+lumaRightCorners));float edgeVertical=(abs(-2.0*lumaUp+lumaUpCorners)+abs(-2.0*lumaCenter+lumaLeftRight)*2.0+abs(-2.0*lumaDown+lumaDownCorners));bool isHorizontal=(edgeHorizontal>=edgeVertical);float stepLength=isHorizontal?texelSize.y:texelSize.x;float luma1=isHorizontal?lumaDown:lumaLeft;float luma2=isHorizontal?lumaUp:lumaRight;float gradient1=abs(luma1-lumaCenter);float gradient2=abs(luma2-lumaCenter);bool is1Steepest=gradient1>=gradient2;float gradientScaled=0.25*max(gradient1,gradient2);float lumaLocalAverage=0.0;if(is1Steepest){stepLength=-stepLength;lumaLocalAverage=0.5*(luma1+lumaCenter);}else{lumaLocalAverage=0.5*(luma2+lumaCenter);}vec2 currentUv=uv;if(isHorizontal){currentUv.y+=stepLength*0.5;}else{currentUv.x+=stepLength*0.5;}vec2 offset=isHorizontal?vec2(texelSize.x,0.0):vec2(0.0,texelSize.y);vec2 uv1=currentUv-offset*QUALITY(0);vec2 uv2=currentUv+offset*QUALITY(0);float lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);float lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd1-=lumaLocalAverage;lumaEnd2-=lumaLocalAverage;bool reached1=abs(lumaEnd1)>=gradientScaled;bool reached2=abs(lumaEnd2)>=gradientScaled;bool reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(1);}if(!reached2){uv2+=offset*QUALITY(1);}if(!reachedBoth){for(int i=2;i<SAMPLES;++i){if(!reached1){lumaEnd1=luminance(texture2D(inputBuffer,uv1).rgb);lumaEnd1=lumaEnd1-lumaLocalAverage;}if(!reached2){lumaEnd2=luminance(texture2D(inputBuffer,uv2).rgb);lumaEnd2=lumaEnd2-lumaLocalAverage;}reached1=abs(lumaEnd1)>=gradientScaled;reached2=abs(lumaEnd2)>=gradientScaled;reachedBoth=reached1&&reached2;if(!reached1){uv1-=offset*QUALITY(i);}if(!reached2){uv2+=offset*QUALITY(i);}if(reachedBoth){break;}}}float distance1=isHorizontal?(uv.x-uv1.x):(uv.y-uv1.y);float distance2=isHorizontal?(uv2.x-uv.x):(uv2.y-uv.y);bool isDirection1=distance1<distance2;float distanceFinal=min(distance1,distance2);float edgeThickness=(distance1+distance2);bool isLumaCenterSmaller=lumaCenter<lumaLocalAverage;bool correctVariation1=(lumaEnd1<0.0)!=isLumaCenterSmaller;bool correctVariation2=(lumaEnd2<0.0)!=isLumaCenterSmaller;bool correctVariation=isDirection1?correctVariation1:correctVariation2;float pixelOffset=-distanceFinal/edgeThickness+0.5;float finalOffset=correctVariation?pixelOffset:0.0;float lumaAverage=ONE_OVER_TWELVE*(2.0*(lumaDownUp+lumaLeftRight)+lumaLeftCorners+lumaRightCorners);float subPixelOffset1=clamp(abs(lumaAverage-lumaCenter)/lumaRange,0.0,1.0);float subPixelOffset2=(-2.0*subPixelOffset1+3.0)*subPixelOffset1*subPixelOffset1;float subPixelOffsetFinal=subPixelOffset2*subPixelOffset2*SUBPIXEL_QUALITY;finalOffset=max(finalOffset,subPixelOffsetFinal);vec2 finalUv=uv;if(isHorizontal){finalUv.y+=finalOffset*stepLength;}else{finalUv.x+=finalOffset*stepLength;}return texture2D(inputBuffer,finalUv);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=fxaa(inputColor,uv);}`, Ta = "varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRight;varying vec2 vUvDownLeft;varying vec2 vUvUpRight;varying vec2 vUvUpLeft;varying vec2 vUvDownRight;void mainSupport(const in vec2 uv){vUvDown=uv+vec2(0.0,-1.0)*texelSize;vUvUp=uv+vec2(0.0,1.0)*texelSize;vUvRight=uv+vec2(1.0,0.0)*texelSize;vUvLeft=uv+vec2(-1.0,0.0)*texelSize;vUvDownLeft=uv+vec2(-1.0,-1.0)*texelSize;vUvUpRight=uv+vec2(1.0,1.0)*texelSize;vUvUpLeft=uv+vec2(-1.0,1.0)*texelSize;vUvDownRight=uv+vec2(1.0,-1.0)*texelSize;}", Sa = class extends I {
|
|
4372
4369
|
/**
|
|
4373
4370
|
* Constructs a new FXAA effect.
|
|
4374
4371
|
*
|
|
@@ -4376,8 +4373,8 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
|
|
|
4376
4373
|
* @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
|
|
4377
4374
|
*/
|
|
4378
4375
|
constructor({ blendFunction: e = g.SRC } = {}) {
|
|
4379
|
-
super("FXAAEffect",
|
|
4380
|
-
vertexShader:
|
|
4376
|
+
super("FXAAEffect", wa, {
|
|
4377
|
+
vertexShader: Ta,
|
|
4381
4378
|
blendFunction: e,
|
|
4382
4379
|
defines: /* @__PURE__ */ new Map([
|
|
4383
4380
|
["EDGE_THRESHOLD_MIN", "0.0312"],
|
|
@@ -4431,7 +4428,7 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
|
|
|
4431
4428
|
set samples(e) {
|
|
4432
4429
|
this.defines.set("SAMPLES", e.toFixed(0)), this.setChanged();
|
|
4433
4430
|
}
|
|
4434
|
-
},
|
|
4431
|
+
}, Ea = "uniform float gamma;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=LinearToGamma(max(inputColor,0.0),gamma);}", Ca = class extends I {
|
|
4435
4432
|
/**
|
|
4436
4433
|
* Constructs a new gamma correction effect.
|
|
4437
4434
|
*
|
|
@@ -4440,7 +4437,7 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
|
|
|
4440
4437
|
* @param {Number} [options.gamma=2.0] - The gamma factor.
|
|
4441
4438
|
*/
|
|
4442
4439
|
constructor({ blendFunction: e = g.SRC, gamma: t = 2 } = {}) {
|
|
4443
|
-
super("GammaCorrectionEffect",
|
|
4440
|
+
super("GammaCorrectionEffect", Ea, {
|
|
4444
4441
|
blendFunction: e,
|
|
4445
4442
|
uniforms: /* @__PURE__ */ new Map([
|
|
4446
4443
|
["gamma", new c(t)]
|
|
@@ -4453,10 +4450,10 @@ varying vec2 vUvDown;varying vec2 vUvUp;varying vec2 vUvLeft;varying vec2 vUvRig
|
|
|
4453
4450
|
CONSTANT_MILD: 2,
|
|
4454
4451
|
CONSTANT_WILD: 3
|
|
4455
4452
|
};
|
|
4456
|
-
function
|
|
4453
|
+
function ya(e, t, i) {
|
|
4457
4454
|
const r = /* @__PURE__ */ new Map([
|
|
4458
4455
|
[rt, 1],
|
|
4459
|
-
[
|
|
4456
|
+
[qi, 2],
|
|
4460
4457
|
[z, 4]
|
|
4461
4458
|
]);
|
|
4462
4459
|
let a;
|
|
@@ -4483,13 +4480,13 @@ var et = class extends it {
|
|
|
4483
4480
|
* @param {Number} [type=UnsignedByteType] - The texture type.
|
|
4484
4481
|
*/
|
|
4485
4482
|
constructor(e, t, i = rt, r = Y) {
|
|
4486
|
-
super(
|
|
4483
|
+
super(ya(e * t, i, r), e, t, i, r), this.needsUpdate = !0;
|
|
4487
4484
|
}
|
|
4488
|
-
},
|
|
4485
|
+
}, Ma = "uniform lowp sampler2D perturbationMap;uniform bool active;uniform float columns;uniform float random;uniform vec2 seeds;uniform vec2 distortion;void mainUv(inout vec2 uv){if(active){if(uv.y<distortion.x+columns&&uv.y>distortion.x-columns*random){float sx=clamp(ceil(seeds.x),0.0,1.0);uv.y=sx*(1.0-(uv.y+distortion.y))+(1.0-sx)*distortion.y;}if(uv.x<distortion.y+columns&&uv.x>distortion.y-columns*random){float sy=clamp(ceil(seeds.y),0.0,1.0);uv.x=sy*distortion.x+(1.0-sy)*(1.0-(uv.x+distortion.x));}vec2 normal=texture2D(perturbationMap,uv*random*random).rg;uv+=normal*seeds*(random*0.2);}}", Ve = "Glitch.Generated";
|
|
4489
4486
|
function Z(e, t) {
|
|
4490
4487
|
return e + Math.random() * (t - e);
|
|
4491
4488
|
}
|
|
4492
|
-
var
|
|
4489
|
+
var Ba = class extends I {
|
|
4493
4490
|
/**
|
|
4494
4491
|
* Constructs a new glitch effect.
|
|
4495
4492
|
*
|
|
@@ -4514,7 +4511,7 @@ var Ra = class extends I {
|
|
|
4514
4511
|
perturbationMap: s = null,
|
|
4515
4512
|
dtSize: o = 64
|
|
4516
4513
|
} = {}) {
|
|
4517
|
-
if (super("GlitchEffect",
|
|
4514
|
+
if (super("GlitchEffect", Ma, {
|
|
4518
4515
|
uniforms: /* @__PURE__ */ new Map([
|
|
4519
4516
|
["perturbationMap", new c(null)],
|
|
4520
4517
|
["columns", new c(a)],
|
|
@@ -4885,7 +4882,7 @@ var Ra = class extends I {
|
|
|
4885
4882
|
DEFAULT: 0,
|
|
4886
4883
|
KEEP_MAX_DEPTH: 1,
|
|
4887
4884
|
DISCARD_MAX_DEPTH: 2
|
|
4888
|
-
},
|
|
4885
|
+
}, Pa = `#include <common>
|
|
4889
4886
|
#include <packing>
|
|
4890
4887
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
4891
4888
|
uniform highp sampler2D depthBuffer0;uniform highp sampler2D depthBuffer1;
|
|
@@ -4949,9 +4946,9 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Mt = class e
|
|
|
4949
4946
|
toneMapped: !1,
|
|
4950
4947
|
depthWrite: !1,
|
|
4951
4948
|
depthTest: !1,
|
|
4952
|
-
fragmentShader:
|
|
4949
|
+
fragmentShader: Pa,
|
|
4953
4950
|
vertexShader: ce
|
|
4954
|
-
}), this.depthMode =
|
|
4951
|
+
}), this.depthMode = It;
|
|
4955
4952
|
}
|
|
4956
4953
|
/**
|
|
4957
4954
|
* The primary depth buffer.
|
|
@@ -5087,28 +5084,28 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Mt = class e
|
|
|
5087
5084
|
set depthMode(e) {
|
|
5088
5085
|
let t;
|
|
5089
5086
|
switch (e) {
|
|
5090
|
-
case
|
|
5087
|
+
case Ji:
|
|
5091
5088
|
t = "false";
|
|
5092
5089
|
break;
|
|
5093
|
-
case
|
|
5090
|
+
case ji:
|
|
5094
5091
|
t = "true";
|
|
5095
5092
|
break;
|
|
5096
5093
|
case vt:
|
|
5097
5094
|
t = "abs(d1 - d0) <= DEPTH_EPSILON";
|
|
5098
5095
|
break;
|
|
5099
|
-
case
|
|
5096
|
+
case qt:
|
|
5100
5097
|
t = "abs(d1 - d0) > DEPTH_EPSILON";
|
|
5101
5098
|
break;
|
|
5102
|
-
case
|
|
5099
|
+
case It:
|
|
5103
5100
|
t = "d0 > d1";
|
|
5104
5101
|
break;
|
|
5105
|
-
case
|
|
5102
|
+
case Zi:
|
|
5106
5103
|
t = "d0 >= d1";
|
|
5107
5104
|
break;
|
|
5108
|
-
case
|
|
5105
|
+
case Xi:
|
|
5109
5106
|
t = "d0 <= d1";
|
|
5110
5107
|
break;
|
|
5111
|
-
case
|
|
5108
|
+
case Ki:
|
|
5112
5109
|
default:
|
|
5113
5110
|
t = "d0 < d1";
|
|
5114
5111
|
break;
|
|
@@ -5150,7 +5147,7 @@ if(keep){gl_FragColor=texture2D(inputBuffer,vUv);}else{discard;}}`, Mt = class e
|
|
|
5150
5147
|
copyCameraSettings(e) {
|
|
5151
5148
|
e && (this.uniforms.cameraNearFar.value.set(e.near, e.far), e instanceof Ie ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
|
|
5152
5149
|
}
|
|
5153
|
-
},
|
|
5150
|
+
}, Ia = `#include <common>
|
|
5154
5151
|
#include <dithering_pars_fragment>
|
|
5155
5152
|
#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
5156
5153
|
uniform mediump sampler2D inputBuffer;
|
|
@@ -5159,7 +5156,7 @@ uniform lowp sampler2D inputBuffer;
|
|
|
5159
5156
|
#endif
|
|
5160
5157
|
uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform float density;uniform float weight;uniform float clampMax;varying vec2 vUv;void main(){vec2 coord=vUv;vec2 delta=lightPosition-coord;delta*=1.0/SAMPLES_FLOAT*density;float illuminationDecay=1.0;vec4 color=vec4(0.0);for(int i=0;i<SAMPLES_INT;++i){coord+=delta;vec4 texel=texture2D(inputBuffer,coord);texel*=illuminationDecay*weight;color+=texel;illuminationDecay*=decay;}gl_FragColor=clamp(color*exposure,0.0,clampMax);
|
|
5161
5158
|
#include <dithering_fragment>
|
|
5162
|
-
}`,
|
|
5159
|
+
}`, vi = class extends w {
|
|
5163
5160
|
/**
|
|
5164
5161
|
* Constructs a new god rays material.
|
|
5165
5162
|
*
|
|
@@ -5186,7 +5183,7 @@ uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform fl
|
|
|
5186
5183
|
toneMapped: !1,
|
|
5187
5184
|
depthWrite: !1,
|
|
5188
5185
|
depthTest: !1,
|
|
5189
|
-
fragmentShader:
|
|
5186
|
+
fragmentShader: Ia,
|
|
5190
5187
|
vertexShader: ce
|
|
5191
5188
|
});
|
|
5192
5189
|
}
|
|
@@ -5550,12 +5547,12 @@ uniform vec2 lightPosition;uniform float exposure;uniform float decay;uniform fl
|
|
|
5550
5547
|
const n = this.scene, s = this.camera, o = this.selection, l = s.layers.mask, u = n.background, f = e.shadowMap.autoUpdate, h = this.renderToScreen ? null : t;
|
|
5551
5548
|
o !== null && s.layers.set(o.getLayer()), this.skipShadowMapUpdate && (e.shadowMap.autoUpdate = !1), (this.ignoreBackground || this.clearPass.overrideClearColor !== null) && (n.background = null), this.clearPass.enabled && this.clearPass.render(e, t), e.setRenderTarget(h), this.overrideMaterialManager !== null ? this.overrideMaterialManager.render(e, n, s) : e.render(n, s), s.layers.mask = l, n.background = u, e.shadowMap.autoUpdate = f;
|
|
5552
5549
|
}
|
|
5553
|
-
},
|
|
5550
|
+
}, Ra = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
5554
5551
|
uniform mediump sampler2D map;
|
|
5555
5552
|
#else
|
|
5556
5553
|
uniform lowp sampler2D map;
|
|
5557
5554
|
#endif
|
|
5558
|
-
void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv);}`, ut = /* @__PURE__ */ new L(),
|
|
5555
|
+
void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=texture2D(map,uv);}`, ut = /* @__PURE__ */ new L(), Ft = /* @__PURE__ */ new O(), ba = class extends I {
|
|
5559
5556
|
/**
|
|
5560
5557
|
* Constructs a new god rays effect.
|
|
5561
5558
|
*
|
|
@@ -5593,7 +5590,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5593
5590
|
resolutionX: A = d,
|
|
5594
5591
|
resolutionY: m = v
|
|
5595
5592
|
} = {}) {
|
|
5596
|
-
super("GodRaysEffect",
|
|
5593
|
+
super("GodRaysEffect", Ra, {
|
|
5597
5594
|
blendFunction: i,
|
|
5598
5595
|
attributes: V.DEPTH,
|
|
5599
5596
|
uniforms: /* @__PURE__ */ new Map([
|
|
@@ -5601,7 +5598,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5601
5598
|
])
|
|
5602
5599
|
}), this.camera = e, this._lightSource = t, this.lightSource = t, this.lightScene = new dt(), this.screenPosition = new p(), this.renderTargetA = new T(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "GodRays.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "GodRays.Target.B", this.uniforms.get("map").value = this.renderTargetB.texture, this.renderTargetLight = new T(1, 1), this.renderTargetLight.texture.name = "GodRays.Light", this.renderTargetLight.depthTexture = new ye(), this.renderPassLight = new ze(this.lightScene, e), this.renderPassLight.clearPass.overrideClearColor = new N(0), this.clearPass = new ge(!0, !1, !1), this.clearPass.overrideClearColor = new N(0), this.blurPass = new pe({ kernelSize: f }), this.blurPass.enabled = u, this.depthMaskPass = new q(new Mt());
|
|
5603
5600
|
const E = this.depthMaskMaterial;
|
|
5604
|
-
E.depthBuffer1 = this.renderTargetLight.depthTexture, E.copyCameraSettings(e), this.godRaysPass = new q(new
|
|
5601
|
+
E.depthBuffer1 = this.renderTargetLight.depthTexture, E.copyCameraSettings(e), this.godRaysPass = new q(new vi(this.screenPosition));
|
|
5605
5602
|
const C = this.godRaysMaterial;
|
|
5606
5603
|
C.density = a, C.decay = n, C.weight = s, C.exposure = o, C.maxIntensity = l, C.samples = r;
|
|
5607
5604
|
const S = this.resolution = new x(this, A, m, h);
|
|
@@ -5797,7 +5794,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5797
5794
|
*/
|
|
5798
5795
|
update(e, t, i) {
|
|
5799
5796
|
const r = this.lightSource, a = r.parent, n = r.matrixAutoUpdate, s = this.renderTargetA, o = this.renderTargetLight;
|
|
5800
|
-
r.material.depthWrite = !0, r.matrixAutoUpdate = !1, r.updateWorldMatrix(!0, !1), a !== null && (n ||
|
|
5797
|
+
r.material.depthWrite = !0, r.matrixAutoUpdate = !1, r.updateWorldMatrix(!0, !1), a !== null && (n || Ft.copy(r.matrix), r.matrix.copy(r.matrixWorld)), this.lightScene.add(r), this.renderPassLight.render(e, o), this.clearPass.render(e, s), this.depthMaskPass.render(e, o, s), r.material.depthWrite = !1, r.matrixAutoUpdate = n, a !== null && (n || r.matrix.copy(Ft), a.add(r)), ut.setFromMatrixPosition(r.matrixWorld).project(this.camera), this.screenPosition.set(
|
|
5801
5798
|
Math.min(Math.max((ut.x + 1) * 0.5, -1), 2),
|
|
5802
5799
|
Math.min(Math.max((ut.y + 1) * 0.5, -1), 2)
|
|
5803
5800
|
), this.blurPass.enabled && this.blurPass.render(e, s, s), this.godRaysPass.render(e, s, this.renderTargetB);
|
|
@@ -5824,7 +5821,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5824
5821
|
initialize(e, t, i) {
|
|
5825
5822
|
this.blurPass.initialize(e, t, i), this.renderPassLight.initialize(e, t, i), this.depthMaskPass.initialize(e, t, i), this.godRaysPass.initialize(e, t, i), i !== void 0 && (this.renderTargetA.texture.type = i, this.renderTargetB.texture.type = i, this.renderTargetLight.texture.type = i, e !== null && e.outputColorSpace === y && (this.renderTargetA.texture.colorSpace = y, this.renderTargetB.texture.colorSpace = y, this.renderTargetLight.texture.colorSpace = y));
|
|
5826
5823
|
}
|
|
5827
|
-
},
|
|
5824
|
+
}, Ua = "uniform vec2 scale;uniform float lineWidth;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float grid=0.5-max(abs(mod(uv.x*scale.x,1.0)-0.5),abs(mod(uv.y*scale.y,1.0)-0.5));outputColor=vec4(vec3(smoothstep(0.0,lineWidth,grid)),inputColor.a);}", Fa = class extends I {
|
|
5828
5825
|
/**
|
|
5829
5826
|
* Constructs a new grid effect.
|
|
5830
5827
|
*
|
|
@@ -5834,7 +5831,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5834
5831
|
* @param {Number} [options.lineWidth=0.0] - The line width of the grid pattern.
|
|
5835
5832
|
*/
|
|
5836
5833
|
constructor({ blendFunction: e = g.OVERLAY, scale: t = 1, lineWidth: i = 0 } = {}) {
|
|
5837
|
-
super("GridEffect",
|
|
5834
|
+
super("GridEffect", Ua, {
|
|
5838
5835
|
blendFunction: e,
|
|
5839
5836
|
uniforms: /* @__PURE__ */ new Map([
|
|
5840
5837
|
["scale", new c(new p())],
|
|
@@ -5911,7 +5908,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5911
5908
|
const i = e / t, r = this.scale * (t * 0.125);
|
|
5912
5909
|
this.uniforms.get("scale").value.set(i * r, r), this.uniforms.get("lineWidth").value = r / t + this.lineWidth;
|
|
5913
5910
|
}
|
|
5914
|
-
},
|
|
5911
|
+
}, La = "uniform vec3 hue;uniform float saturation;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,hue.xyz),dot(inputColor.rgb,hue.zxy),dot(inputColor.rgb,hue.yzx));float average=(color.r+color.g+color.b)/3.0;vec3 diff=average-color;if(saturation>0.0){color+=diff*(1.0-1.0/(1.001-saturation));}else{color+=diff*-saturation;}outputColor=vec4(min(color,1.0),inputColor.a);}", Oa = class extends I {
|
|
5915
5912
|
/**
|
|
5916
5913
|
* Constructs a new hue/saturation effect.
|
|
5917
5914
|
*
|
|
@@ -5921,7 +5918,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5921
5918
|
* @param {Number} [options.saturation=0.0] - The saturation factor, ranging from -1 to 1, where 0 means no change.
|
|
5922
5919
|
*/
|
|
5923
5920
|
constructor({ blendFunction: e = g.SRC, hue: t = 0, saturation: i = 0 } = {}) {
|
|
5924
|
-
super("HueSaturationEffect",
|
|
5921
|
+
super("HueSaturationEffect", La, {
|
|
5925
5922
|
blendFunction: e,
|
|
5926
5923
|
uniforms: /* @__PURE__ */ new Map([
|
|
5927
5924
|
["hue", new c(new L())],
|
|
@@ -5993,7 +5990,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
5993
5990
|
setHue(e) {
|
|
5994
5991
|
this.hue = e;
|
|
5995
5992
|
}
|
|
5996
|
-
},
|
|
5993
|
+
}, Na = "uniform vec2 distortion;uniform vec2 principalPoint;uniform vec2 focalLength;uniform float skew;float mask(const in vec2 uv){return float(uv.s>=0.0&&uv.s<=1.0&&uv.t>=0.0&&uv.t<=1.0);}void mainUv(inout vec2 uv){vec2 xn=2.0*(uv.st-0.5);vec3 xDistorted=vec3((1.0+distortion*dot(xn,xn))*xn,1.0);mat3 kk=mat3(vec3(focalLength.x,0.0,0.0),vec3(skew*focalLength.x,focalLength.y,0.0),vec3(principalPoint.x,principalPoint.y,1.0));uv=(kk*xDistorted).xy*0.5+0.5;}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=mask(uv)*inputColor;}", Ha = class extends I {
|
|
5997
5994
|
/**
|
|
5998
5995
|
* Constructs a new lens distortion effect.
|
|
5999
5996
|
*
|
|
@@ -6009,7 +6006,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
6009
6006
|
focalLength: i = new p(1, 1),
|
|
6010
6007
|
skew: r = 0
|
|
6011
6008
|
} = {}) {
|
|
6012
|
-
super("LensDistortionEffect",
|
|
6009
|
+
super("LensDistortionEffect", Na, {
|
|
6013
6010
|
uniforms: /* @__PURE__ */ new Map([
|
|
6014
6011
|
["distortion", new c(e)],
|
|
6015
6012
|
["principalPoint", new c(t)],
|
|
@@ -6062,7 +6059,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
6062
6059
|
set skew(e) {
|
|
6063
6060
|
this.uniforms.get("skew").value = e;
|
|
6064
6061
|
}
|
|
6065
|
-
},
|
|
6062
|
+
}, za = `#ifdef LUT_PRECISION_HIGH
|
|
6066
6063
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
6067
6064
|
uniform highp sampler2D lut;
|
|
6068
6065
|
#else
|
|
@@ -6071,7 +6068,7 @@ uniform mediump sampler2D lut;
|
|
|
6071
6068
|
#else
|
|
6072
6069
|
uniform lowp sampler2D lut;
|
|
6073
6070
|
#endif
|
|
6074
|
-
void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(texture2D(lut,vec2(inputColor.r,0.5)).r,texture2D(lut,vec2(inputColor.g,0.5)).r,texture2D(lut,vec2(inputColor.b,0.5)).r,inputColor.a);}`,
|
|
6071
|
+
void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){outputColor=vec4(texture2D(lut,vec2(inputColor.r,0.5)).r,texture2D(lut,vec2(inputColor.g,0.5)).r,texture2D(lut,vec2(inputColor.b,0.5)).r,inputColor.a);}`, Ga = class extends I {
|
|
6075
6072
|
/**
|
|
6076
6073
|
* Constructs a new color grading effect.
|
|
6077
6074
|
*
|
|
@@ -6080,7 +6077,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
6080
6077
|
* @param {BlendFunction} [options.blendFunction=BlendFunction.SRC] - The blend function of this effect.
|
|
6081
6078
|
*/
|
|
6082
6079
|
constructor(e, { blendFunction: t = g.SRC } = {}) {
|
|
6083
|
-
super("LUT1DEffect",
|
|
6080
|
+
super("LUT1DEffect", za, {
|
|
6084
6081
|
blendFunction: t,
|
|
6085
6082
|
uniforms: /* @__PURE__ */ new Map([["lut", new c(null)]])
|
|
6086
6083
|
}), this.lut = e;
|
|
@@ -6096,10 +6093,10 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){o
|
|
|
6096
6093
|
set lut(e) {
|
|
6097
6094
|
this.uniforms.get("lut").value = e, e !== null && (e.type === J || e.type === $) && this.defines.set("LUT_PRECISION_HIGH", "1");
|
|
6098
6095
|
}
|
|
6099
|
-
},
|
|
6096
|
+
}, pi = {
|
|
6100
6097
|
SCALE_UP: "lut.scaleup"
|
|
6101
6098
|
};
|
|
6102
|
-
function
|
|
6099
|
+
function Lt(e, t, i) {
|
|
6103
6100
|
const r = document.createElement("canvas"), a = r.getContext("2d");
|
|
6104
6101
|
if (r.width = e, r.height = t, i instanceof Image)
|
|
6105
6102
|
a.drawImage(i, 0, 0);
|
|
@@ -6109,7 +6106,7 @@ function Ot(e, t, i) {
|
|
|
6109
6106
|
}
|
|
6110
6107
|
return r;
|
|
6111
6108
|
}
|
|
6112
|
-
var ue = class
|
|
6109
|
+
var ue = class gi {
|
|
6113
6110
|
/**
|
|
6114
6111
|
* Constructs a new image data container.
|
|
6115
6112
|
*
|
|
@@ -6126,7 +6123,7 @@ var ue = class mi {
|
|
|
6126
6123
|
* @return {Canvas} The canvas, or null if it couldn't be created.
|
|
6127
6124
|
*/
|
|
6128
6125
|
toCanvas() {
|
|
6129
|
-
return typeof document > "u" ? null :
|
|
6126
|
+
return typeof document > "u" ? null : Lt(this.width, this.height, this.data);
|
|
6130
6127
|
}
|
|
6131
6128
|
/**
|
|
6132
6129
|
* Creates a new image data container.
|
|
@@ -6138,14 +6135,14 @@ var ue = class mi {
|
|
|
6138
6135
|
const { width: i, height: r } = t;
|
|
6139
6136
|
let a;
|
|
6140
6137
|
if (t instanceof Image) {
|
|
6141
|
-
const n =
|
|
6138
|
+
const n = Lt(i, r, t);
|
|
6142
6139
|
n !== null && (a = n.getContext("2d").getImageData(0, 0, i, r).data);
|
|
6143
6140
|
} else
|
|
6144
6141
|
a = t.data;
|
|
6145
|
-
return new
|
|
6142
|
+
return new gi(i, r, a);
|
|
6146
6143
|
}
|
|
6147
|
-
},
|
|
6148
|
-
`,
|
|
6144
|
+
}, ka = `"use strict";(()=>{var O={SCALE_UP:"lut.scaleup"};var _=[new Float32Array(3),new Float32Array(3)],n=[new Float32Array(3),new Float32Array(3),new Float32Array(3),new Float32Array(3)],Z=[[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([1,0,0]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([1,0,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([1,1,0]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,1,0]),new Float32Array([0,1,1]),new Float32Array([1,1,1])],[new Float32Array([0,0,0]),new Float32Array([0,0,1]),new Float32Array([0,1,1]),new Float32Array([1,1,1])]];function d(a,t,r,m){let i=r[0]-t[0],e=r[1]-t[1],y=r[2]-t[2],h=a[0]-t[0],A=a[1]-t[1],w=a[2]-t[2],c=e*w-y*A,l=y*h-i*w,x=i*A-e*h,u=Math.sqrt(c*c+l*l+x*x),b=u*.5,s=c/u,F=l/u,f=x/u,p=-(a[0]*s+a[1]*F+a[2]*f),M=m[0]*s+m[1]*F+m[2]*f;return Math.abs(M+p)*b/3}function V(a,t,r,m,i,e){let y=(r+m*t+i*t*t)*4;e[0]=a[y+0],e[1]=a[y+1],e[2]=a[y+2]}function k(a,t,r,m,i,e){let y=r*(t-1),h=m*(t-1),A=i*(t-1),w=Math.floor(y),c=Math.floor(h),l=Math.floor(A),x=Math.ceil(y),u=Math.ceil(h),b=Math.ceil(A),s=y-w,F=h-c,f=A-l;if(w===y&&c===h&&l===A)V(a,t,y,h,A,e);else{let p;s>=F&&F>=f?p=Z[0]:s>=f&&f>=F?p=Z[1]:f>=s&&s>=F?p=Z[2]:F>=s&&s>=f?p=Z[3]:F>=f&&f>=s?p=Z[4]:f>=F&&F>=s&&(p=Z[5]);let[M,g,X,Y]=p,P=_[0];P[0]=s,P[1]=F,P[2]=f;let o=_[1],L=x-w,S=u-c,U=b-l;o[0]=L*M[0]+w,o[1]=S*M[1]+c,o[2]=U*M[2]+l,V(a,t,o[0],o[1],o[2],n[0]),o[0]=L*g[0]+w,o[1]=S*g[1]+c,o[2]=U*g[2]+l,V(a,t,o[0],o[1],o[2],n[1]),o[0]=L*X[0]+w,o[1]=S*X[1]+c,o[2]=U*X[2]+l,V(a,t,o[0],o[1],o[2],n[2]),o[0]=L*Y[0]+w,o[1]=S*Y[1]+c,o[2]=U*Y[2]+l,V(a,t,o[0],o[1],o[2],n[3]);let T=d(g,X,Y,P)*6,q=d(M,X,Y,P)*6,C=d(M,g,Y,P)*6,E=d(M,g,X,P)*6;n[0][0]*=T,n[0][1]*=T,n[0][2]*=T,n[1][0]*=q,n[1][1]*=q,n[1][2]*=q,n[2][0]*=C,n[2][1]*=C,n[2][2]*=C,n[3][0]*=E,n[3][1]*=E,n[3][2]*=E,e[0]=n[0][0]+n[1][0]+n[2][0]+n[3][0],e[1]=n[0][1]+n[1][1]+n[2][1]+n[3][1],e[2]=n[0][2]+n[1][2]+n[2][2]+n[3][2]}}var v=class{static expand(t,r){let m=Math.cbrt(t.length/4),i=new Float32Array(3),e=new t.constructor(r**3*4),y=t instanceof Uint8Array?255:1,h=r**2,A=1/(r-1);for(let w=0;w<r;++w)for(let c=0;c<r;++c)for(let l=0;l<r;++l){let x=l*A,u=c*A,b=w*A,s=Math.round(l+c*r+w*h)*4;k(t,m,x,u,b,i),e[s+0]=i[0],e[s+1]=i[1],e[s+2]=i[2],e[s+3]=y}return e}};self.addEventListener("message",a=>{let t=a.data,r=t.data;switch(t.operation){case O.SCALE_UP:r=v.expand(r,t.size);break}postMessage(r,[r.buffer]),close()});})();
|
|
6145
|
+
`, Ot = /* @__PURE__ */ new N(), Oe = class Ze extends Xe {
|
|
6149
6146
|
/**
|
|
6150
6147
|
* Constructs a cubic 3D lookup texture.
|
|
6151
6148
|
*
|
|
@@ -6175,7 +6172,7 @@ var ue = class mi {
|
|
|
6175
6172
|
const r = this.image;
|
|
6176
6173
|
let a;
|
|
6177
6174
|
return t <= r.width ? a = Promise.reject(new Error("The target size must be greater than the current size")) : a = new Promise((n, s) => {
|
|
6178
|
-
const o = URL.createObjectURL(new Blob([
|
|
6175
|
+
const o = URL.createObjectURL(new Blob([ka], {
|
|
6179
6176
|
type: "text/javascript"
|
|
6180
6177
|
})), l = new Worker(o);
|
|
6181
6178
|
l.addEventListener("error", (f) => s(f.error)), l.addEventListener("message", (f) => {
|
|
@@ -6184,7 +6181,7 @@ var ue = class mi {
|
|
|
6184
6181
|
});
|
|
6185
6182
|
const u = i ? [r.data.buffer] : [];
|
|
6186
6183
|
l.postMessage({
|
|
6187
|
-
operation:
|
|
6184
|
+
operation: pi.SCALE_UP,
|
|
6188
6185
|
data: r.data,
|
|
6189
6186
|
size: t
|
|
6190
6187
|
}, u);
|
|
@@ -6262,7 +6259,7 @@ var ue = class mi {
|
|
|
6262
6259
|
const t = this.image.data;
|
|
6263
6260
|
if (this.type === J) {
|
|
6264
6261
|
for (let i = 0, r = t.length; i < r; i += 4)
|
|
6265
|
-
|
|
6262
|
+
Ot.fromArray(t, i).convertLinearToSRGB().toArray(t, i);
|
|
6266
6263
|
this.colorSpace = y, this.needsUpdate = !0;
|
|
6267
6264
|
} else
|
|
6268
6265
|
console.error("Color space conversion requires FloatType data");
|
|
@@ -6277,7 +6274,7 @@ var ue = class mi {
|
|
|
6277
6274
|
const t = this.image.data;
|
|
6278
6275
|
if (this.type === J) {
|
|
6279
6276
|
for (let i = 0, r = t.length; i < r; i += 4)
|
|
6280
|
-
|
|
6277
|
+
Ot.fromArray(t, i).convertSRGBToLinear().toArray(t, i);
|
|
6281
6278
|
this.colorSpace = je, this.needsUpdate = !0;
|
|
6282
6279
|
} else
|
|
6283
6280
|
console.error("Color space conversion requires FloatType data");
|
|
@@ -6339,7 +6336,7 @@ var ue = class mi {
|
|
|
6339
6336
|
const n = new Ze(i, t);
|
|
6340
6337
|
return n.name = "neutral", n;
|
|
6341
6338
|
}
|
|
6342
|
-
},
|
|
6339
|
+
}, Qa = `uniform vec3 scale;uniform vec3 offset;
|
|
6343
6340
|
#ifdef CUSTOM_INPUT_DOMAIN
|
|
6344
6341
|
uniform vec3 domainMin;uniform vec3 domainMax;
|
|
6345
6342
|
#endif
|
|
@@ -6387,7 +6384,7 @@ c=clamp(c,0.0,1.0);
|
|
|
6387
6384
|
#endif
|
|
6388
6385
|
c=applyLUT(scale*c+offset).rgb;
|
|
6389
6386
|
#endif
|
|
6390
|
-
outputColor=vec4(c,inputColor.a);}`,
|
|
6387
|
+
outputColor=vec4(c,inputColor.a);}`, Nt = class extends I {
|
|
6391
6388
|
/**
|
|
6392
6389
|
* Constructs a new color grading effect.
|
|
6393
6390
|
*
|
|
@@ -6402,7 +6399,7 @@ outputColor=vec4(c,inputColor.a);}`, Ht = class extends I {
|
|
|
6402
6399
|
tetrahedralInterpolation: i = !1,
|
|
6403
6400
|
inputColorSpace: r = y
|
|
6404
6401
|
} = {}) {
|
|
6405
|
-
super("LUT3DEffect",
|
|
6402
|
+
super("LUT3DEffect", Qa, {
|
|
6406
6403
|
blendFunction: t,
|
|
6407
6404
|
uniforms: /* @__PURE__ */ new Map([
|
|
6408
6405
|
["lut", new c(null)],
|
|
@@ -6510,7 +6507,7 @@ outputColor=vec4(c,inputColor.a);}`, Ht = class extends I {
|
|
|
6510
6507
|
DEPTH: 0,
|
|
6511
6508
|
LUMA: 1,
|
|
6512
6509
|
COLOR: 2
|
|
6513
|
-
},
|
|
6510
|
+
}, mi = {
|
|
6514
6511
|
DISABLED: 0,
|
|
6515
6512
|
DEPTH: 1,
|
|
6516
6513
|
CUSTOM: 2
|
|
@@ -6533,18 +6530,18 @@ outputColor=vec4(c,inputColor.a);}`, Ht = class extends I {
|
|
|
6533
6530
|
}, Ee = {
|
|
6534
6531
|
DEFAULT: 0,
|
|
6535
6532
|
ESKIL: 1
|
|
6536
|
-
},
|
|
6533
|
+
}, Va = {
|
|
6537
6534
|
DERIVATIVES: "derivatives",
|
|
6538
6535
|
FRAG_DEPTH: "fragDepth",
|
|
6539
6536
|
DRAW_BUFFERS: "drawBuffers",
|
|
6540
6537
|
SHADER_TEXTURE_LOD: "shaderTextureLOD"
|
|
6541
|
-
},
|
|
6538
|
+
}, Wa = `void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 noise=vec3(rand(uv*(1.0+time)));
|
|
6542
6539
|
#ifdef PREMULTIPLY
|
|
6543
6540
|
outputColor=vec4(min(inputColor.rgb*noise,vec3(1.0)),inputColor.a);
|
|
6544
6541
|
#else
|
|
6545
6542
|
outputColor=vec4(noise,inputColor.a);
|
|
6546
6543
|
#endif
|
|
6547
|
-
}`,
|
|
6544
|
+
}`, Ya = class extends I {
|
|
6548
6545
|
/**
|
|
6549
6546
|
* Constructs a new noise effect.
|
|
6550
6547
|
*
|
|
@@ -6553,7 +6550,7 @@ outputColor=vec4(noise,inputColor.a);
|
|
|
6553
6550
|
* @param {Boolean} [options.premultiply=false] - Whether the noise should be multiplied with the input colors prior to blending.
|
|
6554
6551
|
*/
|
|
6555
6552
|
constructor({ blendFunction: e = g.SCREEN, premultiply: t = !1 } = {}) {
|
|
6556
|
-
super("NoiseEffect",
|
|
6553
|
+
super("NoiseEffect", Wa, { blendFunction: e }), this.premultiply = t;
|
|
6557
6554
|
}
|
|
6558
6555
|
/**
|
|
6559
6556
|
* Indicates whether noise will be multiplied with the input colors prior to blending.
|
|
@@ -6584,7 +6581,7 @@ outputColor=vec4(noise,inputColor.a);
|
|
|
6584
6581
|
setPremultiplied(e) {
|
|
6585
6582
|
this.premultiply = e;
|
|
6586
6583
|
}
|
|
6587
|
-
},
|
|
6584
|
+
}, Ka = `#include <packing>
|
|
6588
6585
|
#include <clipping_planes_pars_fragment>
|
|
6589
6586
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
6590
6587
|
uniform highp sampler2D depthBuffer;
|
|
@@ -6604,7 +6601,7 @@ float viewZ=perspectiveDepthToViewZ(fragCoordZ,cameraNear,cameraFar);
|
|
|
6604
6601
|
#else
|
|
6605
6602
|
float viewZ=orthographicDepthToViewZ(fragCoordZ,cameraNear,cameraFar);
|
|
6606
6603
|
#endif
|
|
6607
|
-
float depthTest=(-vViewZ>-viewZ)?1.0:0.0;gl_FragColor.rg=vec2(0.0,depthTest);}`,
|
|
6604
|
+
float depthTest=(-vViewZ>-viewZ)?1.0:0.0;gl_FragColor.rg=vec2(0.0,depthTest);}`, Xa = `#include <common>
|
|
6608
6605
|
#include <morphtarget_pars_vertex>
|
|
6609
6606
|
#include <skinning_pars_vertex>
|
|
6610
6607
|
#include <clipping_planes_pars_vertex>
|
|
@@ -6616,7 +6613,7 @@ varying float vViewZ;varying vec4 vProjTexCoord;void main(){
|
|
|
6616
6613
|
#include <project_vertex>
|
|
6617
6614
|
vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
|
|
6618
6615
|
#include <clipping_planes_vertex>
|
|
6619
|
-
}`,
|
|
6616
|
+
}`, Ai = class extends w {
|
|
6620
6617
|
/**
|
|
6621
6618
|
* Constructs a new depth comparison material.
|
|
6622
6619
|
*
|
|
@@ -6638,8 +6635,8 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
|
|
|
6638
6635
|
toneMapped: !1,
|
|
6639
6636
|
depthWrite: !1,
|
|
6640
6637
|
depthTest: !1,
|
|
6641
|
-
fragmentShader:
|
|
6642
|
-
vertexShader:
|
|
6638
|
+
fragmentShader: Ka,
|
|
6639
|
+
vertexShader: Xa
|
|
6643
6640
|
}), this.depthBuffer = e, this.depthPacking = ae, this.copyCameraSettings(t);
|
|
6644
6641
|
}
|
|
6645
6642
|
/**
|
|
@@ -6685,7 +6682,7 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
|
|
|
6685
6682
|
copyCameraSettings(e) {
|
|
6686
6683
|
e && (this.uniforms.cameraNear.value = e.near, this.uniforms.cameraFar.value = e.far, e instanceof Ie ? this.defines.PERSPECTIVE_CAMERA = "1" : delete this.defines.PERSPECTIVE_CAMERA, this.needsUpdate = !0);
|
|
6687
6684
|
}
|
|
6688
|
-
},
|
|
6685
|
+
}, Za = "uniform lowp sampler2D inputBuffer;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 c0=texture2D(inputBuffer,vUv0).rg;vec2 c1=texture2D(inputBuffer,vUv1).rg;vec2 c2=texture2D(inputBuffer,vUv2).rg;vec2 c3=texture2D(inputBuffer,vUv3).rg;float d0=(c0.x-c1.x)*0.5;float d1=(c2.x-c3.x)*0.5;float d=length(vec2(d0,d1));float a0=min(c0.y,c1.y);float a1=min(c2.y,c3.y);float visibilityFactor=min(a0,a1);gl_FragColor.rg=(1.0-visibilityFactor>0.001)?vec2(d,0.0):vec2(0.0,d);}", ja = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=vec2(uv.x+texelSize.x,uv.y);vUv1=vec2(uv.x-texelSize.x,uv.y);vUv2=vec2(uv.x,uv.y+texelSize.y);vUv3=vec2(uv.x,uv.y-texelSize.y);gl_Position=vec4(position.xy,1.0,1.0);}", mt = class extends w {
|
|
6689
6686
|
/**
|
|
6690
6687
|
* Constructs a new outline material.
|
|
6691
6688
|
*
|
|
@@ -6703,8 +6700,8 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
|
|
|
6703
6700
|
toneMapped: !1,
|
|
6704
6701
|
depthWrite: !1,
|
|
6705
6702
|
depthTest: !1,
|
|
6706
|
-
fragmentShader:
|
|
6707
|
-
vertexShader:
|
|
6703
|
+
fragmentShader: Za,
|
|
6704
|
+
vertexShader: ja
|
|
6708
6705
|
}), this.uniforms.texelSize.value.set(e.x, e.y), this.uniforms.maskTexture = this.uniforms.inputBuffer;
|
|
6709
6706
|
}
|
|
6710
6707
|
/**
|
|
@@ -6765,7 +6762,7 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
|
|
|
6765
6762
|
resolutionX: s = a,
|
|
6766
6763
|
resolutionY: o = n
|
|
6767
6764
|
} = {}) {
|
|
6768
|
-
super("DepthPass"), this.needsSwap = !1, this.renderPass = new ze(e, t, new
|
|
6765
|
+
super("DepthPass"), this.needsSwap = !1, this.renderPass = new ze(e, t, new ki({
|
|
6769
6766
|
depthPacking: ae
|
|
6770
6767
|
}));
|
|
6771
6768
|
const l = this.renderPass;
|
|
@@ -6851,7 +6848,7 @@ vViewZ=mvPosition.z;vProjTexCoord=gl_Position;
|
|
|
6851
6848
|
const i = this.resolution;
|
|
6852
6849
|
i.setBaseSize(e, t), this.renderTarget.setSize(i.width, i.height);
|
|
6853
6850
|
}
|
|
6854
|
-
},
|
|
6851
|
+
}, Ja = `uniform lowp sampler2D edgeTexture;uniform lowp sampler2D maskTexture;uniform vec3 visibleEdgeColor;uniform vec3 hiddenEdgeColor;uniform float pulse;uniform float edgeStrength;
|
|
6855
6852
|
#ifdef USE_PATTERN
|
|
6856
6853
|
uniform lowp sampler2D patternTexture;varying vec2 vUvPattern;
|
|
6857
6854
|
#endif
|
|
@@ -6875,7 +6872,7 @@ outputColor=vec4(color,alpha);
|
|
|
6875
6872
|
#else
|
|
6876
6873
|
outputColor=vec4(color,max(alpha,inputColor.a));
|
|
6877
6874
|
#endif
|
|
6878
|
-
}`,
|
|
6875
|
+
}`, qa = "uniform float patternScale;varying vec2 vUvPattern;void mainSupport(const in vec2 uv){vUvPattern=uv*vec2(aspect,1.0)*patternScale;}", _a = class extends I {
|
|
6879
6876
|
/**
|
|
6880
6877
|
* Constructs a new outline effect.
|
|
6881
6878
|
*
|
|
@@ -6917,7 +6914,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
|
|
|
6917
6914
|
resolutionX: E = A,
|
|
6918
6915
|
resolutionY: C = m
|
|
6919
6916
|
} = {}) {
|
|
6920
|
-
super("OutlineEffect",
|
|
6917
|
+
super("OutlineEffect", Ja, {
|
|
6921
6918
|
uniforms: /* @__PURE__ */ new Map([
|
|
6922
6919
|
["maskTexture", new c(null)],
|
|
6923
6920
|
["edgeTexture", new c(null)],
|
|
@@ -6930,7 +6927,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
|
|
|
6930
6927
|
])
|
|
6931
6928
|
}), this.blendMode.addEventListener("change", (ee) => {
|
|
6932
6929
|
this.blendMode.blendFunction === g.ALPHA ? this.defines.set("ALPHA", "1") : this.defines.delete("ALPHA"), this.setChanged();
|
|
6933
|
-
}), this.blendMode.blendFunction = i, this.patternTexture = r, this.xRay = h, this.scene = e, this.camera = t, this.renderTargetMask = new T(1, 1), this.renderTargetMask.samples = d, this.renderTargetMask.texture.name = "Outline.Mask", this.uniforms.get("maskTexture").value = this.renderTargetMask.texture, this.renderTargetOutline = new T(1, 1, { depthBuffer: !1 }), this.renderTargetOutline.texture.name = "Outline.Edges", this.uniforms.get("edgeTexture").value = this.renderTargetOutline.texture, this.clearPass = new ge(), this.clearPass.overrideClearColor = new N(0), this.clearPass.overrideClearAlpha = 1, this.depthPass = new Pt(e, t), this.maskPass = new ze(e, t, new
|
|
6930
|
+
}), this.blendMode.blendFunction = i, this.patternTexture = r, this.xRay = h, this.scene = e, this.camera = t, this.renderTargetMask = new T(1, 1), this.renderTargetMask.samples = d, this.renderTargetMask.texture.name = "Outline.Mask", this.uniforms.get("maskTexture").value = this.renderTargetMask.texture, this.renderTargetOutline = new T(1, 1, { depthBuffer: !1 }), this.renderTargetOutline.texture.name = "Outline.Edges", this.uniforms.get("edgeTexture").value = this.renderTargetOutline.texture, this.clearPass = new ge(), this.clearPass.overrideClearColor = new N(0), this.clearPass.overrideClearAlpha = 1, this.depthPass = new Pt(e, t), this.maskPass = new ze(e, t, new Ai(this.depthPass.texture, t));
|
|
6934
6931
|
const S = this.maskPass.clearPass;
|
|
6935
6932
|
S.overrideClearColor = new N(16777215), S.overrideClearAlpha = 1, this.blurPass = new pe({ resolutionScale: v, resolutionX: E, resolutionY: C, kernelSize: u }), this.blurPass.enabled = f;
|
|
6936
6933
|
const D = this.blurPass.resolution;
|
|
@@ -7164,7 +7161,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
|
|
|
7164
7161
|
return this.uniforms.get("patternTexture").value;
|
|
7165
7162
|
}
|
|
7166
7163
|
set patternTexture(e) {
|
|
7167
|
-
e !== null ? (e.wrapS = e.wrapT = se, this.defines.set("USE_PATTERN", "1"), this.setVertexShader(
|
|
7164
|
+
e !== null ? (e.wrapS = e.wrapT = se, this.defines.set("USE_PATTERN", "1"), this.setVertexShader(qa)) : (this.defines.delete("USE_PATTERN"), this.setVertexShader(null)), this.uniforms.get("patternTexture").value = e, this.setChanged();
|
|
7168
7165
|
}
|
|
7169
7166
|
/**
|
|
7170
7167
|
* Sets the pattern texture.
|
|
@@ -7266,14 +7263,14 @@ outputColor=vec4(color,max(alpha,inputColor.a));
|
|
|
7266
7263
|
initialize(e, t, i) {
|
|
7267
7264
|
this.blurPass.initialize(e, t, Y), i !== void 0 && (this.depthPass.initialize(e, t, i), this.maskPass.initialize(e, t, i), this.outlinePass.initialize(e, t, i));
|
|
7268
7265
|
}
|
|
7269
|
-
},
|
|
7266
|
+
}, $a = "uniform bool active;uniform vec4 d;void mainUv(inout vec2 uv){if(active){uv=d.xy*(floor(uv*d.zw)+0.5);}}", es = class extends I {
|
|
7270
7267
|
/**
|
|
7271
7268
|
* Constructs a new pixelation effect.
|
|
7272
7269
|
*
|
|
7273
7270
|
* @param {Object} [granularity=30.0] - The pixel granularity.
|
|
7274
7271
|
*/
|
|
7275
7272
|
constructor(e = 30) {
|
|
7276
|
-
super("PixelationEffect",
|
|
7273
|
+
super("PixelationEffect", $a, {
|
|
7277
7274
|
uniforms: /* @__PURE__ */ new Map([
|
|
7278
7275
|
["active", new c(!1)],
|
|
7279
7276
|
["d", new c(new Be())]
|
|
@@ -7324,7 +7321,7 @@ outputColor=vec4(color,max(alpha,inputColor.a));
|
|
|
7324
7321
|
const r = this.granularity, a = r / i.x, n = r / i.y;
|
|
7325
7322
|
this.uniforms.get("d").value.set(a, n, 1 / a, 1 / n);
|
|
7326
7323
|
}
|
|
7327
|
-
},
|
|
7324
|
+
}, ts = `uniform float focus;uniform float focalLength;uniform float fStop;uniform float maxBlur;uniform float luminanceThreshold;uniform float luminanceGain;uniform float bias;uniform float fringe;
|
|
7328
7325
|
#ifdef MANUAL_DOF
|
|
7329
7326
|
uniform vec4 dof;
|
|
7330
7327
|
#endif
|
|
@@ -7352,7 +7349,7 @@ const int MAX_RING_SAMPLES=RINGS_INT*SAMPLES_INT;blur=clamp(blur,0.0,1.0);vec3 c
|
|
|
7352
7349
|
#ifdef SHOW_FOCUS
|
|
7353
7350
|
float edge=0.002*linearDepth;float m=clamp(smoothstep(0.0,edge,blur),0.0,1.0);float e=clamp(smoothstep(1.0-edge,1.0,blur),0.0,1.0);color=mix(color,vec3(1.0,0.5,0.0),(1.0-m)*0.6);color=mix(color,vec3(0.0,0.5,1.0),((1.0-e)-(1.0-m))*0.2);
|
|
7354
7351
|
#endif
|
|
7355
|
-
outputColor=vec4(color,inputColor.a);}`,
|
|
7352
|
+
outputColor=vec4(color,inputColor.a);}`, is = class extends I {
|
|
7356
7353
|
/**
|
|
7357
7354
|
* Constructs a new bokeh effect.
|
|
7358
7355
|
*
|
|
@@ -7388,7 +7385,7 @@ outputColor=vec4(color,inputColor.a);}`, ss = class extends I {
|
|
|
7388
7385
|
manualDoF: d = !1,
|
|
7389
7386
|
pentagon: v = !1
|
|
7390
7387
|
} = {}) {
|
|
7391
|
-
super("RealisticBokehEffect",
|
|
7388
|
+
super("RealisticBokehEffect", ts, {
|
|
7392
7389
|
blendFunction: e,
|
|
7393
7390
|
attributes: V.CONVOLUTION | V.DEPTH,
|
|
7394
7391
|
uniforms: /* @__PURE__ */ new Map([
|
|
@@ -7463,7 +7460,7 @@ outputColor=vec4(color,inputColor.a);}`, ss = class extends I {
|
|
|
7463
7460
|
set pentagon(e) {
|
|
7464
7461
|
this.pentagon !== e && (e ? this.defines.set("PENTAGON", "1") : this.defines.delete("PENTAGON"), this.setChanged());
|
|
7465
7462
|
}
|
|
7466
|
-
},
|
|
7463
|
+
}, rs = `uniform float count;
|
|
7467
7464
|
#ifdef SCROLL
|
|
7468
7465
|
uniform float scrollSpeed;
|
|
7469
7466
|
#endif
|
|
@@ -7471,7 +7468,7 @@ void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){f
|
|
|
7471
7468
|
#ifdef SCROLL
|
|
7472
7469
|
y+=time*scrollSpeed;
|
|
7473
7470
|
#endif
|
|
7474
|
-
vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`,
|
|
7471
|
+
vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`, as = class extends I {
|
|
7475
7472
|
/**
|
|
7476
7473
|
* Constructs a new scanline effect.
|
|
7477
7474
|
*
|
|
@@ -7481,7 +7478,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7481
7478
|
* @param {Number} [options.scrollSpeed=0.0] - The scanline scroll speed.
|
|
7482
7479
|
*/
|
|
7483
7480
|
constructor({ blendFunction: e = g.OVERLAY, density: t = 1.25, scrollSpeed: i = 0 } = {}) {
|
|
7484
|
-
super("ScanlineEffect",
|
|
7481
|
+
super("ScanlineEffect", rs, {
|
|
7485
7482
|
blendFunction: e,
|
|
7486
7483
|
uniforms: /* @__PURE__ */ new Map([
|
|
7487
7484
|
["count", new c(0)],
|
|
@@ -7538,7 +7535,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7538
7535
|
setSize(e, t) {
|
|
7539
7536
|
this.resolution.set(e, t), this.uniforms.get("count").value = Math.round(t * this.density);
|
|
7540
7537
|
}
|
|
7541
|
-
},
|
|
7538
|
+
}, ss = "uniform bool active;uniform vec2 center;uniform float waveSize;uniform float radius;uniform float maxRadius;uniform float amplitude;varying float vSize;void mainUv(inout vec2 uv){if(active){vec2 aspectCorrection=vec2(aspect,1.0);vec2 difference=uv*aspectCorrection-center*aspectCorrection;float distance=sqrt(dot(difference,difference))*vSize;if(distance>radius){if(distance<radius+waveSize){float angle=(distance-radius)*PI2/waveSize;float cosSin=(1.0-cos(angle))*0.5;float extent=maxRadius+waveSize;float decay=max(extent-distance*distance,0.0)/extent;uv-=((cosSin*amplitude*difference)/distance)*decay;}}}}", ns = "uniform float size;uniform float cameraDistance;varying float vSize;void mainSupport(){vSize=(0.1*cameraDistance)/size;}", os = Math.PI * 0.5, be = /* @__PURE__ */ new L(), Ht = /* @__PURE__ */ new L(), ls = class extends I {
|
|
7542
7539
|
/**
|
|
7543
7540
|
* Constructs a new shock wave effect.
|
|
7544
7541
|
*
|
|
@@ -7556,8 +7553,8 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7556
7553
|
waveSize: a = 0.2,
|
|
7557
7554
|
amplitude: n = 0.05
|
|
7558
7555
|
} = {}) {
|
|
7559
|
-
super("ShockWaveEffect",
|
|
7560
|
-
vertexShader:
|
|
7556
|
+
super("ShockWaveEffect", ss, {
|
|
7557
|
+
vertexShader: ns,
|
|
7561
7558
|
uniforms: /* @__PURE__ */ new Map([
|
|
7562
7559
|
["active", new c(!1)],
|
|
7563
7560
|
["center", new c(new p(0.5, 0.5))],
|
|
@@ -7671,12 +7668,12 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7671
7668
|
const r = this.position, a = this.camera, n = this.uniforms, s = n.get("active");
|
|
7672
7669
|
if (this.active) {
|
|
7673
7670
|
const o = n.get("waveSize").value;
|
|
7674
|
-
a.getWorldDirection(be),
|
|
7671
|
+
a.getWorldDirection(be), Ht.copy(a.position).sub(r), s.value = be.angleTo(Ht) > os, s.value && (n.get("cameraDistance").value = a.position.distanceTo(r), be.copy(r).project(a), this.screenPosition.set((be.x + 1) * 0.5, (be.y + 1) * 0.5)), this.time += i * this.speed;
|
|
7675
7672
|
const l = this.time - o;
|
|
7676
7673
|
n.get("radius").value = l, l >= (n.get("maxRadius").value + o) * 2 && (this.active = !1, s.value = !1);
|
|
7677
7674
|
}
|
|
7678
7675
|
}
|
|
7679
|
-
},
|
|
7676
|
+
}, us = class extends fi {
|
|
7680
7677
|
/**
|
|
7681
7678
|
* Constructs a new selective bloom effect.
|
|
7682
7679
|
*
|
|
@@ -7722,7 +7719,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7722
7719
|
return this._inverted;
|
|
7723
7720
|
}
|
|
7724
7721
|
set inverted(e) {
|
|
7725
|
-
this._inverted = e, this.depthMaskMaterial.depthMode = e ?
|
|
7722
|
+
this._inverted = e, this.depthMaskMaterial.depthMode = e ? qt : vt;
|
|
7726
7723
|
}
|
|
7727
7724
|
/**
|
|
7728
7725
|
* Indicates whether the mask is inverted.
|
|
@@ -7815,7 +7812,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7815
7812
|
initialize(e, t, i) {
|
|
7816
7813
|
super.initialize(e, t, i), this.clearPass.initialize(e, t, i), this.depthPass.initialize(e, t, i), this.depthMaskPass.initialize(e, t, i), e !== null && e.capabilities.logarithmicDepthBuffer && (this.depthMaskPass.fullscreenMaterial.defines.LOG_DEPTH = "1"), i !== void 0 && (this.renderTargetMasked.texture.type = i, e !== null && e.outputColorSpace === y && (this.renderTargetMasked.texture.colorSpace = y));
|
|
7817
7814
|
}
|
|
7818
|
-
},
|
|
7815
|
+
}, cs = "uniform vec3 weightsR;uniform vec3 weightsG;uniform vec3 weightsB;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec3 color=vec3(dot(inputColor.rgb,weightsR),dot(inputColor.rgb,weightsG),dot(inputColor.rgb,weightsB));outputColor=vec4(color,inputColor.a);}", fs = class extends I {
|
|
7819
7816
|
/**
|
|
7820
7817
|
* Constructs a new sepia effect.
|
|
7821
7818
|
*
|
|
@@ -7824,7 +7821,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7824
7821
|
* @param {Number} [options.intensity=1.0] - The intensity of the effect.
|
|
7825
7822
|
*/
|
|
7826
7823
|
constructor({ blendFunction: e, intensity: t = 1 } = {}) {
|
|
7827
|
-
super("SepiaEffect",
|
|
7824
|
+
super("SepiaEffect", cs, {
|
|
7828
7825
|
blendFunction: e,
|
|
7829
7826
|
uniforms: /* @__PURE__ */ new Map([
|
|
7830
7827
|
["weightsR", new c(new L(0.393, 0.769, 0.189))],
|
|
@@ -7887,7 +7884,7 @@ vec2 sl=vec2(sin(y*count),cos(y*count));outputColor=vec4(sl.xyx,inputColor.a);}`
|
|
|
7887
7884
|
get weightsB() {
|
|
7888
7885
|
return this.uniforms.get("weightsB").value;
|
|
7889
7886
|
}
|
|
7890
|
-
},
|
|
7887
|
+
}, hs = `varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
|
|
7891
7888
|
#if EDGE_DETECTION_MODE != 0
|
|
7892
7889
|
varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;
|
|
7893
7890
|
#endif
|
|
@@ -7931,7 +7928,7 @@ float l=luminance(texture2D(inputBuffer,vUv).rgb);float lLeft=luminance(texture2
|
|
|
7931
7928
|
#elif EDGE_DETECTION_MODE == 2
|
|
7932
7929
|
vec4 delta;vec3 c=texture2D(inputBuffer,vUv).rgb;vec3 cLeft=texture2D(inputBuffer,vUv0).rgb;vec3 t=abs(c-cLeft);delta.x=max(max(t.r,t.g),t.b);vec3 cTop=texture2D(inputBuffer,vUv1).rgb;t=abs(c-cTop);delta.y=max(max(t.r,t.g),t.b);vec2 edges=step(threshold,delta.xy);if(dot(edges,vec2(1.0))==0.0){discard;}vec3 cRight=texture2D(inputBuffer,vUv2).rgb;t=abs(c-cRight);delta.z=max(max(t.r,t.g),t.b);vec3 cBottom=texture2D(inputBuffer,vUv3).rgb;t=abs(c-cBottom);delta.w=max(max(t.r,t.g),t.b);vec2 maxDelta=max(delta.xy,delta.zw);vec3 cLeftLeft=texture2D(inputBuffer,vUv4).rgb;t=abs(c-cLeftLeft);delta.z=max(max(t.r,t.g),t.b);vec3 cTopTop=texture2D(inputBuffer,vUv5).rgb;t=abs(c-cTopTop);delta.w=max(max(t.r,t.g),t.b);maxDelta=max(maxDelta.xy,delta.zw);float finalDelta=max(maxDelta.x,maxDelta.y);edges*=step(finalDelta,LOCAL_CONTRAST_ADAPTATION_FACTOR*delta.xy);gl_FragColor=vec4(edges,0.0,1.0);
|
|
7933
7930
|
#endif
|
|
7934
|
-
}`,
|
|
7931
|
+
}`, ds = `uniform vec2 texelSize;varying vec2 vUv;varying vec2 vUv0;varying vec2 vUv1;
|
|
7935
7932
|
#if EDGE_DETECTION_MODE != 0
|
|
7936
7933
|
varying vec2 vUv2;varying vec2 vUv3;varying vec2 vUv4;varying vec2 vUv5;
|
|
7937
7934
|
#endif
|
|
@@ -7971,8 +7968,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends w {
|
|
|
7971
7968
|
toneMapped: !1,
|
|
7972
7969
|
depthWrite: !1,
|
|
7973
7970
|
depthTest: !1,
|
|
7974
|
-
fragmentShader:
|
|
7975
|
-
vertexShader:
|
|
7971
|
+
fragmentShader: hs,
|
|
7972
|
+
vertexShader: ds
|
|
7976
7973
|
}), this.edgeDetectionMode = t;
|
|
7977
7974
|
}
|
|
7978
7975
|
/**
|
|
@@ -8249,7 +8246,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, At = class extends w {
|
|
|
8249
8246
|
setSize(e, t) {
|
|
8250
8247
|
this.uniforms.texelSize.value.set(1 / e, 1 / t);
|
|
8251
8248
|
}
|
|
8252
|
-
},
|
|
8249
|
+
}, vs = `#define sampleLevelZeroOffset(t, coord, offset) texture2D(t, coord + offset * texelSize)
|
|
8253
8250
|
#if __VERSION__ < 300
|
|
8254
8251
|
#define round(v) floor(v + 0.5)
|
|
8255
8252
|
#endif
|
|
@@ -8274,7 +8271,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
|
|
|
8274
8271
|
#if !defined(DISABLE_DIAG_DETECTION)
|
|
8275
8272
|
}else{e.r=0.0;}
|
|
8276
8273
|
#endif
|
|
8277
|
-
}if(e.r>0.0){vec2 d;vec3 coords;coords.y=searchYUp(vOffset[1].xy,vOffset[2].z);coords.x=vOffset[0].x;d.x=coords.y;float e1=texture2D(inputBuffer,coords.xy).g;coords.z=searchYDown(vOffset[1].zw,vOffset[2].w);d.y=coords.z;d=round(resolution.yy*d-vPixCoord.yy);vec2 sqrtD=sqrt(abs(d));float e2=sampleLevelZeroOffset(inputBuffer,coords.xz,vec2(0,1)).g;weights.ba=area(sqrtD,e1,e2,subsampleIndices.x);coords.x=vUv.x;detectVerticalCornerPattern(weights.ba,coords.xyxz,d);}gl_FragColor=weights;}`,
|
|
8274
|
+
}if(e.r>0.0){vec2 d;vec3 coords;coords.y=searchYUp(vOffset[1].xy,vOffset[2].z);coords.x=vOffset[0].x;d.x=coords.y;float e1=texture2D(inputBuffer,coords.xy).g;coords.z=searchYDown(vOffset[1].zw,vOffset[2].w);d.y=coords.z;d=round(resolution.yy*d-vPixCoord.yy);vec2 sqrtD=sqrt(abs(d));float e2=sampleLevelZeroOffset(inputBuffer,coords.xz,vec2(0,1)).g;weights.ba=area(sqrtD,e1,e2,subsampleIndices.x);coords.x=vUv.x;detectVerticalCornerPattern(weights.ba,coords.xyxz,d);}gl_FragColor=weights;}`, ps = "uniform vec2 texelSize;uniform vec2 resolution;varying vec2 vUv;varying vec4 vOffset[3];varying vec2 vPixCoord;void main(){vUv=position.xy*0.5+0.5;vPixCoord=vUv*resolution;vOffset[0]=vUv.xyxy+texelSize.xyxy*vec4(-0.25,-0.125,1.25,-0.125);vOffset[1]=vUv.xyxy+texelSize.xyxy*vec4(-0.125,-0.25,-0.125,1.25);vOffset[2]=vec4(vOffset[0].xz,vOffset[1].yw)+vec4(-2.0,2.0,-2.0,2.0)*texelSize.xxyy*MAX_SEARCH_STEPS_FLOAT;gl_Position=vec4(position.xy,1.0,1.0);}", xi = class extends w {
|
|
8278
8275
|
/**
|
|
8279
8276
|
* Constructs a new SMAA weights material.
|
|
8280
8277
|
*
|
|
@@ -8311,8 +8308,8 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
|
|
|
8311
8308
|
toneMapped: !1,
|
|
8312
8309
|
depthWrite: !1,
|
|
8313
8310
|
depthTest: !1,
|
|
8314
|
-
fragmentShader:
|
|
8315
|
-
vertexShader:
|
|
8311
|
+
fragmentShader: vs,
|
|
8312
|
+
vertexShader: ps
|
|
8316
8313
|
});
|
|
8317
8314
|
}
|
|
8318
8315
|
/**
|
|
@@ -8503,7 +8500,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
|
|
|
8503
8500
|
const i = this.uniforms;
|
|
8504
8501
|
i.texelSize.value.set(1 / e, 1 / t), i.resolution.value.set(e, t);
|
|
8505
8502
|
}
|
|
8506
|
-
}, xt = "", Dt = "", xs = "uniform sampler2D weightMap;varying vec2 vOffset0;varying vec2 vOffset1;void movec(const in bvec2 c,inout vec2 variable,const in vec2 value){if(c.x){variable.x=value.x;}if(c.y){variable.y=value.y;}}void movec(const in bvec4 c,inout vec4 variable,const in vec4 value){movec(c.xy,variable.xy,value.xy);movec(c.zw,variable.zw,value.zw);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 a;a.x=texture2D(weightMap,vOffset0).a;a.y=texture2D(weightMap,vOffset1).g;a.wz=texture2D(weightMap,uv).rb;vec4 color=inputColor;if(dot(a,vec4(1.0))>=1e-5){bool h=max(a.x,a.z)>max(a.y,a.w);vec4 blendingOffset=vec4(0.0,a.y,0.0,a.w);vec2 blendingWeight=a.yw;movec(bvec4(h),blendingOffset,vec4(a.x,0.0,a.z,0.0));movec(bvec2(h),blendingWeight,a.xz);blendingWeight/=dot(blendingWeight,vec2(1.0));vec4 blendingCoord=blendingOffset*vec4(texelSize,-texelSize)+uv.xyxy;color=blendingWeight.x*texture2D(inputBuffer,blendingCoord.xy);color+=blendingWeight.y*texture2D(inputBuffer,blendingCoord.zw);}outputColor=color;}", Ds = "varying vec2 vOffset0;varying vec2 vOffset1;void mainSupport(const in vec2 uv){vOffset0=uv+texelSize*vec2(1.0,0.0);vOffset1=uv+texelSize*vec2(0.0,1.0);}", ws = class extends I {
|
|
8503
|
+
}, xt = "", Dt = "", gs = "uniform sampler2D weightMap;varying vec2 vOffset0;varying vec2 vOffset1;void movec(const in bvec2 c,inout vec2 variable,const in vec2 value){if(c.x){variable.x=value.x;}if(c.y){variable.y=value.y;}}void movec(const in bvec4 c,inout vec4 variable,const in vec4 value){movec(c.xy,variable.xy,value.xy);movec(c.zw,variable.zw,value.zw);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){vec4 a;a.x=texture2D(weightMap,vOffset0).a;a.y=texture2D(weightMap,vOffset1).g;a.wz=texture2D(weightMap,uv).rb;vec4 color=inputColor;if(dot(a,vec4(1.0))>=1e-5){bool h=max(a.x,a.z)>max(a.y,a.w);vec4 blendingOffset=vec4(0.0,a.y,0.0,a.w);vec2 blendingWeight=a.yw;movec(bvec4(h),blendingOffset,vec4(a.x,0.0,a.z,0.0));movec(bvec2(h),blendingWeight,a.xz);blendingWeight/=dot(blendingWeight,vec2(1.0));vec4 blendingCoord=blendingOffset*vec4(texelSize,-texelSize)+uv.xyxy;color=blendingWeight.x*texture2D(inputBuffer,blendingCoord.xy);color+=blendingWeight.y*texture2D(inputBuffer,blendingCoord.zw);}outputColor=color;}", ms = "varying vec2 vOffset0;varying vec2 vOffset1;void mainSupport(const in vec2 uv){vOffset0=uv+texelSize*vec2(1.0,0.0);vOffset1=uv+texelSize*vec2(0.0,1.0);}", As = class extends I {
|
|
8507
8504
|
/**
|
|
8508
8505
|
* Constructs a new SMAA effect.
|
|
8509
8506
|
*
|
|
@@ -8517,10 +8514,10 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
|
|
|
8517
8514
|
blendFunction: e = g.SRC,
|
|
8518
8515
|
preset: t = Se.MEDIUM,
|
|
8519
8516
|
edgeDetectionMode: i = Bt.COLOR,
|
|
8520
|
-
predicationMode: r =
|
|
8517
|
+
predicationMode: r = mi.DISABLED
|
|
8521
8518
|
} = {}) {
|
|
8522
|
-
super("SMAAEffect",
|
|
8523
|
-
vertexShader:
|
|
8519
|
+
super("SMAAEffect", gs, {
|
|
8520
|
+
vertexShader: ms,
|
|
8524
8521
|
blendFunction: e,
|
|
8525
8522
|
attributes: V.CONVOLUTION | V.DEPTH,
|
|
8526
8523
|
uniforms: /* @__PURE__ */ new Map([
|
|
@@ -8528,7 +8525,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
|
|
|
8528
8525
|
])
|
|
8529
8526
|
});
|
|
8530
8527
|
let a, n;
|
|
8531
|
-
arguments.length > 1 && (a = arguments[0], n = arguments[1], arguments.length > 2 && (t = arguments[2]), arguments.length > 3 && (i = arguments[3])), this.renderTargetEdges = new T(1, 1, { depthBuffer: !1 }), this.renderTargetEdges.texture.name = "SMAA.Edges", this.renderTargetWeights = this.renderTargetEdges.clone(), this.renderTargetWeights.texture.name = "SMAA.Weights", this.uniforms.get("weightMap").value = this.renderTargetWeights.texture, this.clearPass = new ge(!0, !1, !1), this.clearPass.overrideClearColor = new N(0), this.clearPass.overrideClearAlpha = 1, this.edgeDetectionPass = new q(new At()), this.edgeDetectionMaterial.edgeDetectionMode = i, this.edgeDetectionMaterial.predicationMode = r, this.weightsPass = new q(new
|
|
8528
|
+
arguments.length > 1 && (a = arguments[0], n = arguments[1], arguments.length > 2 && (t = arguments[2]), arguments.length > 3 && (i = arguments[3])), this.renderTargetEdges = new T(1, 1, { depthBuffer: !1 }), this.renderTargetEdges.texture.name = "SMAA.Edges", this.renderTargetWeights = this.renderTargetEdges.clone(), this.renderTargetWeights.texture.name = "SMAA.Weights", this.uniforms.get("weightMap").value = this.renderTargetWeights.texture, this.clearPass = new ge(!0, !1, !1), this.clearPass.overrideClearColor = new N(0), this.clearPass.overrideClearAlpha = 1, this.edgeDetectionPass = new q(new At()), this.edgeDetectionMaterial.edgeDetectionMode = i, this.edgeDetectionMaterial.predicationMode = r, this.weightsPass = new q(new xi());
|
|
8532
8529
|
const s = new Ne();
|
|
8533
8530
|
s.onLoad = () => {
|
|
8534
8531
|
const o = new Je(a);
|
|
@@ -8711,7 +8708,7 @@ vec2 d;vec3 coords;coords.x=searchXLeft(vOffset[0].xy,vOffset[2].x);coords.y=vOf
|
|
|
8711
8708
|
static get areaImageDataURL() {
|
|
8712
8709
|
return Dt;
|
|
8713
8710
|
}
|
|
8714
|
-
},
|
|
8711
|
+
}, xs = `#include <common>
|
|
8715
8712
|
#include <packing>
|
|
8716
8713
|
#ifdef NORMAL_DEPTH
|
|
8717
8714
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
@@ -8765,7 +8762,7 @@ if(linearDepth<distanceCutoff.y){vec3 viewPosition=getViewPosition(vUv,depth,vie
|
|
|
8765
8762
|
#ifdef LEGACY_INTENSITY
|
|
8766
8763
|
ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
|
|
8767
8764
|
#endif
|
|
8768
|
-
}gl_FragColor.r=ao;}`,
|
|
8765
|
+
}gl_FragColor.r=ao;}`, Ds = "uniform vec2 noiseScale;varying vec2 vUv;varying vec2 vUv2;void main(){vUv=position.xy*0.5+0.5;vUv2=vUv*noiseScale;gl_Position=vec4(position.xy,1.0,1.0);}", Di = class extends w {
|
|
8769
8766
|
/**
|
|
8770
8767
|
* Constructs a new SSAO material.
|
|
8771
8768
|
*
|
|
@@ -8804,8 +8801,8 @@ ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
|
|
|
8804
8801
|
toneMapped: !1,
|
|
8805
8802
|
depthWrite: !1,
|
|
8806
8803
|
depthTest: !1,
|
|
8807
|
-
fragmentShader:
|
|
8808
|
-
vertexShader:
|
|
8804
|
+
fragmentShader: xs,
|
|
8805
|
+
vertexShader: Ds
|
|
8809
8806
|
}), this.copyCameraSettings(e), this.resolution = new p(), this.r = 1;
|
|
8810
8807
|
}
|
|
8811
8808
|
/**
|
|
@@ -9305,7 +9302,7 @@ ao=clamp(1.0-pow(1.0-ao,abs(intensity)),0.0,1.0);
|
|
|
9305
9302
|
t / r.image.height
|
|
9306
9303
|
), i.texelSize.value.set(1 / e, 1 / t), this.resolution.set(e, t), this.updateRadius();
|
|
9307
9304
|
}
|
|
9308
|
-
},
|
|
9305
|
+
}, ws = `#include <packing>
|
|
9309
9306
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
9310
9307
|
uniform highp sampler2D depthBuffer;
|
|
9311
9308
|
#else
|
|
@@ -9326,7 +9323,7 @@ vec3 n[4];n[0]=texture2D(normalBuffer,vUv0).rgb;n[1]=texture2D(normalBuffer,vUv1
|
|
|
9326
9323
|
#else
|
|
9327
9324
|
vec3 n[4];n[0]=vec3(0.0);n[1]=vec3(0.0);n[2]=vec3(0.0);n[3]=vec3(0.0);
|
|
9328
9325
|
#endif
|
|
9329
|
-
gl_FragColor=vec4(n[index],d[index]);}`,
|
|
9326
|
+
gl_FragColor=vec4(n[index],d[index]);}`, Ts = "uniform vec2 texelSize;varying vec2 vUv0;varying vec2 vUv1;varying vec2 vUv2;varying vec2 vUv3;void main(){vec2 uv=position.xy*0.5+0.5;vUv0=uv;vUv1=vec2(uv.x,uv.y+texelSize.y);vUv2=vec2(uv.x+texelSize.x,uv.y);vUv3=uv+texelSize;gl_Position=vec4(position.xy,1.0,1.0);}", wi = class extends w {
|
|
9330
9327
|
/**
|
|
9331
9328
|
* Constructs a new depth downsampling material.
|
|
9332
9329
|
*/
|
|
@@ -9345,8 +9342,8 @@ gl_FragColor=vec4(n[index],d[index]);}`, Cs = "uniform vec2 texelSize;varying ve
|
|
|
9345
9342
|
toneMapped: !1,
|
|
9346
9343
|
depthWrite: !1,
|
|
9347
9344
|
depthTest: !1,
|
|
9348
|
-
fragmentShader:
|
|
9349
|
-
vertexShader:
|
|
9345
|
+
fragmentShader: ws,
|
|
9346
|
+
vertexShader: Ts
|
|
9350
9347
|
});
|
|
9351
9348
|
}
|
|
9352
9349
|
/**
|
|
@@ -9411,7 +9408,7 @@ gl_FragColor=vec4(n[index],d[index]);}`, Cs = "uniform vec2 texelSize;varying ve
|
|
|
9411
9408
|
setSize(e, t) {
|
|
9412
9409
|
this.uniforms.texelSize.value.set(1 / e, 1 / t);
|
|
9413
9410
|
}
|
|
9414
|
-
},
|
|
9411
|
+
}, Ti = class extends H {
|
|
9415
9412
|
/**
|
|
9416
9413
|
* Constructs a new depth downsampling pass.
|
|
9417
9414
|
*
|
|
@@ -9432,7 +9429,7 @@ gl_FragColor=vec4(n[index],d[index]);}`, Cs = "uniform vec2 texelSize;varying ve
|
|
|
9432
9429
|
resolutionY: n = r
|
|
9433
9430
|
} = {}) {
|
|
9434
9431
|
super("DepthDownsamplingPass");
|
|
9435
|
-
const s = new
|
|
9432
|
+
const s = new wi();
|
|
9436
9433
|
s.normalBuffer = e, this.fullscreenMaterial = s, this.needsDepthTexture = !0, this.needsSwap = !1, this.renderTarget = new T(1, 1, {
|
|
9437
9434
|
minFilter: P,
|
|
9438
9435
|
magFilter: P,
|
|
@@ -9511,7 +9508,7 @@ gl_FragColor=vec4(n[index],d[index]);}`, Cs = "uniform vec2 texelSize;varying ve
|
|
|
9511
9508
|
if (!(r.getExtension("EXT_color_buffer_float") || r.getExtension("EXT_color_buffer_half_float")))
|
|
9512
9509
|
throw new Error("Rendering to float texture is not supported.");
|
|
9513
9510
|
}
|
|
9514
|
-
},
|
|
9511
|
+
}, Ss = `uniform lowp sampler2D aoBuffer;uniform float luminanceInfluence;uniform float intensity;
|
|
9515
9512
|
#if defined(DEPTH_AWARE_UPSAMPLING) && defined(NORMAL_DEPTH)
|
|
9516
9513
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
9517
9514
|
uniform highp sampler2D normalDepthBuffer;
|
|
@@ -9534,7 +9531,7 @@ outputColor=vec4(1.0-ao*(1.0-color),inputColor.a);
|
|
|
9534
9531
|
#else
|
|
9535
9532
|
outputColor=vec4(vec3(1.0-ao),inputColor.a);
|
|
9536
9533
|
#endif
|
|
9537
|
-
}`,
|
|
9534
|
+
}`, zt = 64, Es = class extends I {
|
|
9538
9535
|
/**
|
|
9539
9536
|
* Constructs a new SSAO effect.
|
|
9540
9537
|
*
|
|
@@ -9596,7 +9593,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
|
|
|
9596
9593
|
resolutionX: me = re,
|
|
9597
9594
|
resolutionY: Ae = F
|
|
9598
9595
|
} = {}) {
|
|
9599
|
-
super("SSAOEffect",
|
|
9596
|
+
super("SSAOEffect", Ss, {
|
|
9600
9597
|
blendFunction: i,
|
|
9601
9598
|
attributes: V.DEPTH,
|
|
9602
9599
|
defines: /* @__PURE__ */ new Map([
|
|
@@ -9613,8 +9610,8 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
|
|
|
9613
9610
|
])
|
|
9614
9611
|
}), this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "AO.Target", this.uniforms.get("aoBuffer").value = this.renderTarget.texture;
|
|
9615
9612
|
const ne = this.resolution = new x(this, me, Ae, ie);
|
|
9616
|
-
ne.addEventListener("change", (Ge) => this.setSize(ne.baseWidth, ne.baseHeight)), this.camera = e, this.depthDownsamplingPass = new
|
|
9617
|
-
const fe = new et(
|
|
9613
|
+
ne.addEventListener("change", (Ge) => this.setSize(ne.baseWidth, ne.baseHeight)), this.camera = e, this.depthDownsamplingPass = new Ti({ normalBuffer: t, resolutionScale: ie }), this.depthDownsamplingPass.enabled = n === null, this.ssaoPass = new q(new Di(e));
|
|
9614
|
+
const fe = new et(zt, zt, z);
|
|
9618
9615
|
fe.wrapS = fe.wrapT = se;
|
|
9619
9616
|
const k = this.ssaoMaterial;
|
|
9620
9617
|
k.normalBuffer = t, k.noiseTexture = fe, k.minRadiusScale = m, k.samples = r, k.radius = C, k.rings = a, k.fade = K, k.bias = D, k.distanceThreshold = h, k.distanceFalloff = d, k.proximityThreshold = v, k.proximityFalloff = A, o !== void 0 && (k.worldDistanceThreshold = o), l !== void 0 && (k.worldDistanceFalloff = l), u !== void 0 && (k.worldProximityThreshold = u), f !== void 0 && (k.worldProximityFalloff = f), n !== null && (this.ssaoMaterial.normalDepthBuffer = n, this.defines.set("NORMAL_DEPTH", "1")), this.depthAwareUpsampling = s, this.color = ee;
|
|
@@ -9854,7 +9851,7 @@ outputColor=vec4(vec3(1.0-ao),inputColor.a);
|
|
|
9854
9851
|
this.depthDownsamplingPass.enabled = !1;
|
|
9855
9852
|
}
|
|
9856
9853
|
}
|
|
9857
|
-
},
|
|
9854
|
+
}, Cs = `#ifdef TEXTURE_PRECISION_HIGH
|
|
9858
9855
|
uniform mediump sampler2D map;
|
|
9859
9856
|
#else
|
|
9860
9857
|
uniform lowp sampler2D map;
|
|
@@ -9865,7 +9862,7 @@ vec4 texel=texture2D(map,vUv2);
|
|
|
9865
9862
|
#else
|
|
9866
9863
|
vec4 texel=texture2D(map,uv);
|
|
9867
9864
|
#endif
|
|
9868
|
-
outputColor=TEXEL;outputColor.a=max(inputColor.a,outputColor.a);}`,
|
|
9865
|
+
outputColor=TEXEL;outputColor.a=max(inputColor.a,outputColor.a);}`, ys = `#ifdef ASPECT_CORRECTION
|
|
9869
9866
|
uniform float scale;
|
|
9870
9867
|
#else
|
|
9871
9868
|
uniform mat3 uvTransform;
|
|
@@ -9876,7 +9873,7 @@ vUv2=uv*vec2(aspect,1.0)*scale;
|
|
|
9876
9873
|
#else
|
|
9877
9874
|
vUv2=(uvTransform*vec3(uv,1.0)).xy;
|
|
9878
9875
|
#endif
|
|
9879
|
-
}`,
|
|
9876
|
+
}`, Ms = class extends I {
|
|
9880
9877
|
/**
|
|
9881
9878
|
* Constructs a new texture effect.
|
|
9882
9879
|
*
|
|
@@ -9886,7 +9883,7 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
|
|
|
9886
9883
|
* @param {Boolean} [options.aspectCorrection=false] - Deprecated. Adjust the texture's offset, repeat and center instead.
|
|
9887
9884
|
*/
|
|
9888
9885
|
constructor({ blendFunction: e, texture: t = null, aspectCorrection: i = !1 } = {}) {
|
|
9889
|
-
super("TextureEffect",
|
|
9886
|
+
super("TextureEffect", Cs, {
|
|
9890
9887
|
blendFunction: e,
|
|
9891
9888
|
defines: /* @__PURE__ */ new Map([
|
|
9892
9889
|
["TEXEL", "texel"]
|
|
@@ -9908,7 +9905,7 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
|
|
|
9908
9905
|
}
|
|
9909
9906
|
set texture(e) {
|
|
9910
9907
|
const t = this.texture, i = this.uniforms, r = this.defines;
|
|
9911
|
-
t !== e && (i.get("map").value = e, i.get("uvTransform").value = e.matrix, r.delete("TEXTURE_PRECISION_HIGH"), e !== null && (e.matrixAutoUpdate ? (r.set("UV_TRANSFORM", "1"), this.setVertexShader(
|
|
9908
|
+
t !== e && (i.get("map").value = e, i.get("uvTransform").value = e.matrix, r.delete("TEXTURE_PRECISION_HIGH"), e !== null && (e.matrixAutoUpdate ? (r.set("UV_TRANSFORM", "1"), this.setVertexShader(ys)) : (r.delete("UV_TRANSFORM"), this.setVertexShader(null)), e.type !== Y && r.set("TEXTURE_PRECISION_HIGH", "1"), (t === null || t.type !== e.type || t.encoding !== e.encoding) && this.setChanged()));
|
|
9912
9909
|
}
|
|
9913
9910
|
/**
|
|
9914
9911
|
* Returns the texture.
|
|
@@ -9977,14 +9974,14 @@ vUv2=(uvTransform*vec3(uv,1.0)).xy;
|
|
|
9977
9974
|
update(e, t, i) {
|
|
9978
9975
|
this.texture.matrixAutoUpdate && this.texture.updateMatrix();
|
|
9979
9976
|
}
|
|
9980
|
-
},
|
|
9977
|
+
}, Bs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
9981
9978
|
uniform mediump sampler2D inputBuffer;
|
|
9982
9979
|
#else
|
|
9983
9980
|
uniform lowp sampler2D inputBuffer;
|
|
9984
9981
|
#endif
|
|
9985
9982
|
uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;float linearGradientMask(const in float x){return smoothstep(maskParams.x,maskParams.y,x)-smoothstep(maskParams.w,maskParams.z,x);}void main(){vec2 dUv=vOffset*(1.0-linearGradientMask(vUv2.y));vec4 sum=texture2D(inputBuffer,vec2(vUv.x-dUv.x,vUv.y+dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x+dUv.x,vUv.y+dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x+dUv.x,vUv.y-dUv.y));sum+=texture2D(inputBuffer,vec2(vUv.x-dUv.x,vUv.y-dUv.y));gl_FragColor=sum*0.25;
|
|
9986
9983
|
#include <colorspace_fragment>
|
|
9987
|
-
}`,
|
|
9984
|
+
}`, Ps = "uniform vec4 texelSize;uniform float kernel;uniform float scale;uniform float aspect;uniform vec2 rotation;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;void main(){vec2 uv=position.xy*0.5+0.5;vUv=uv;vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));vOffset=(texelSize.xy*vec2(kernel)+texelSize.zw)*scale;gl_Position=vec4(position.xy,1.0,1.0);}", Si = class extends $e {
|
|
9988
9985
|
/**
|
|
9989
9986
|
* Constructs a new tilt shift blur material.
|
|
9990
9987
|
*
|
|
@@ -10001,7 +9998,7 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
|
|
|
10001
9998
|
focusArea: r = 0.4,
|
|
10002
9999
|
feather: a = 0.3
|
|
10003
10000
|
} = {}) {
|
|
10004
|
-
super(), this.fragmentShader =
|
|
10001
|
+
super(), this.fragmentShader = Bs, this.vertexShader = Ps, this.kernelSize = e, this.uniforms.aspect = new c(1), this.uniforms.rotation = new c(new p()), this.uniforms.maskParams = new c(new Be()), this._offset = t, this._focusArea = r, this._feather = a, this.rotation = i, this.updateParams();
|
|
10005
10002
|
}
|
|
10006
10003
|
/**
|
|
10007
10004
|
* The relative offset of the focus area.
|
|
@@ -10070,7 +10067,7 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
|
|
|
10070
10067
|
setSize(e, t) {
|
|
10071
10068
|
super.setSize(e, t), this.uniforms.aspect.value = e / t;
|
|
10072
10069
|
}
|
|
10073
|
-
},
|
|
10070
|
+
}, Ei = class extends pe {
|
|
10074
10071
|
/**
|
|
10075
10072
|
* Constructs a new Kawase blur pass.
|
|
10076
10073
|
*
|
|
@@ -10094,14 +10091,14 @@ uniform vec4 maskParams;varying vec2 vUv;varying vec2 vUv2;varying vec2 vOffset;
|
|
|
10094
10091
|
resolutionX: s = x.AUTO_SIZE,
|
|
10095
10092
|
resolutionY: o = x.AUTO_SIZE
|
|
10096
10093
|
} = {}) {
|
|
10097
|
-
super({ kernelSize: a, resolutionScale: n, resolutionX: s, resolutionY: o }), this.blurMaterial = new
|
|
10094
|
+
super({ kernelSize: a, resolutionScale: n, resolutionX: s, resolutionY: o }), this.blurMaterial = new Si({ kernelSize: a, offset: e, rotation: t, focusArea: i, feather: r });
|
|
10098
10095
|
}
|
|
10099
|
-
},
|
|
10096
|
+
}, Is = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
10100
10097
|
uniform mediump sampler2D map;
|
|
10101
10098
|
#else
|
|
10102
10099
|
uniform lowp sampler2D map;
|
|
10103
10100
|
#endif
|
|
10104
|
-
uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in float x){return step(maskParams.x,x)-step(maskParams.y,x);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float mask=linearGradientMask(vUv2.y);vec4 texel=texture2D(map,uv);outputColor=mix(texel,inputColor,mask);}`,
|
|
10101
|
+
uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in float x){return step(maskParams.x,x)-step(maskParams.y,x);}void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){float mask=linearGradientMask(vUv2.y);vec4 texel=texture2D(map,uv);outputColor=mix(texel,inputColor,mask);}`, Rs = "uniform vec2 rotation;varying vec2 vUv2;void mainSupport(const in vec2 uv){vUv2=(uv-0.5)*2.0*vec2(aspect,1.0);vUv2=vec2(dot(rotation,vUv2),dot(rotation,vec2(vUv2.y,-vUv2.x)));}", bs = class extends I {
|
|
10105
10102
|
/**
|
|
10106
10103
|
* Constructs a new tilt shift Effect
|
|
10107
10104
|
*
|
|
@@ -10128,15 +10125,15 @@ uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in floa
|
|
|
10128
10125
|
resolutionX: o = x.AUTO_SIZE,
|
|
10129
10126
|
resolutionY: l = x.AUTO_SIZE
|
|
10130
10127
|
} = {}) {
|
|
10131
|
-
super("TiltShiftEffect",
|
|
10132
|
-
vertexShader:
|
|
10128
|
+
super("TiltShiftEffect", Is, {
|
|
10129
|
+
vertexShader: Rs,
|
|
10133
10130
|
blendFunction: e,
|
|
10134
10131
|
uniforms: /* @__PURE__ */ new Map([
|
|
10135
10132
|
["rotation", new c(new p())],
|
|
10136
10133
|
["maskParams", new c(new p())],
|
|
10137
10134
|
["map", new c(null)]
|
|
10138
10135
|
])
|
|
10139
|
-
}), this._offset = t, this._focusArea = r, this._feather = a, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "TiltShift.Target", this.uniforms.get("map").value = this.renderTarget.texture, this.blurPass = new
|
|
10136
|
+
}), this._offset = t, this._focusArea = r, this._feather = a, this.renderTarget = new T(1, 1, { depthBuffer: !1 }), this.renderTarget.texture.name = "TiltShift.Target", this.uniforms.get("map").value = this.renderTarget.texture, this.blurPass = new Ei({
|
|
10140
10137
|
kernelSize: n,
|
|
10141
10138
|
resolutionScale: s,
|
|
10142
10139
|
resolutionX: o,
|
|
@@ -10243,7 +10240,7 @@ uniform vec2 maskParams;varying vec2 vUv2;float linearGradientMask(const in floa
|
|
|
10243
10240
|
initialize(e, t, i) {
|
|
10244
10241
|
this.blurPass.initialize(e, t, i), i !== void 0 && (this.renderTarget.texture.type = i, e !== null && e.outputColorSpace === y && (this.renderTarget.texture.colorSpace = y));
|
|
10245
10242
|
}
|
|
10246
|
-
},
|
|
10243
|
+
}, Us = `#include <packing>
|
|
10247
10244
|
#define packFloatToRGBA(v) packDepthToRGBA(v)
|
|
10248
10245
|
#define unpackRGBAToFloat(v) unpackRGBAToDepth(v)
|
|
10249
10246
|
uniform lowp sampler2D luminanceBuffer0;uniform lowp sampler2D luminanceBuffer1;uniform float minLuminance;uniform float deltaTime;uniform float tau;varying vec2 vUv;void main(){float l0=unpackRGBAToFloat(texture2D(luminanceBuffer0,vUv));
|
|
@@ -10252,7 +10249,7 @@ float l1=texture2DLodEXT(luminanceBuffer1,vUv,MIP_LEVEL_1X1).r;
|
|
|
10252
10249
|
#else
|
|
10253
10250
|
float l1=textureLod(luminanceBuffer1,vUv,MIP_LEVEL_1X1).r;
|
|
10254
10251
|
#endif
|
|
10255
|
-
l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0-exp(-deltaTime*tau));gl_FragColor=(adaptedLum==1.0)?vec4(1.0):packFloatToRGBA(adaptedLum);}`,
|
|
10252
|
+
l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0-exp(-deltaTime*tau));gl_FragColor=(adaptedLum==1.0)?vec4(1.0):packFloatToRGBA(adaptedLum);}`, Ci = class extends w {
|
|
10256
10253
|
/**
|
|
10257
10254
|
* Constructs a new adaptive luminance material.
|
|
10258
10255
|
*/
|
|
@@ -10276,7 +10273,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
|
|
|
10276
10273
|
toneMapped: !1,
|
|
10277
10274
|
depthWrite: !1,
|
|
10278
10275
|
depthTest: !1,
|
|
10279
|
-
fragmentShader:
|
|
10276
|
+
fragmentShader: Us,
|
|
10280
10277
|
vertexShader: ce
|
|
10281
10278
|
});
|
|
10282
10279
|
}
|
|
@@ -10408,7 +10405,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
|
|
|
10408
10405
|
setAdaptationRate(e) {
|
|
10409
10406
|
this.uniforms.tau.value = e;
|
|
10410
10407
|
}
|
|
10411
|
-
},
|
|
10408
|
+
}, yi = class extends H {
|
|
10412
10409
|
/**
|
|
10413
10410
|
* Constructs a new adaptive luminance pass.
|
|
10414
10411
|
*
|
|
@@ -10418,7 +10415,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
|
|
|
10418
10415
|
* @param {Number} [options.adaptationRate=1.0] - The luminance adaptation rate.
|
|
10419
10416
|
*/
|
|
10420
10417
|
constructor(e, { minLuminance: t = 0.01, adaptationRate: i = 1 } = {}) {
|
|
10421
|
-
super("AdaptiveLuminancePass"), this.fullscreenMaterial = new
|
|
10418
|
+
super("AdaptiveLuminancePass"), this.fullscreenMaterial = new Ci(), this.needsSwap = !1, this.renderTargetPrevious = new T(1, 1, {
|
|
10422
10419
|
minFilter: P,
|
|
10423
10420
|
magFilter: P,
|
|
10424
10421
|
depthBuffer: !1
|
|
@@ -10483,7 +10480,7 @@ l0=max(minLuminance,l0);l1=max(minLuminance,l1);float adaptedLum=l0+(l1-l0)*(1.0
|
|
|
10483
10480
|
render(e, t, i, r, a) {
|
|
10484
10481
|
this.fullscreenMaterial.deltaTime = r, e.setRenderTarget(this.renderToScreen ? null : this.renderTargetAdapted), e.render(this.scene, this.camera), this.copyPass.render(e, this.renderTargetAdapted);
|
|
10485
10482
|
}
|
|
10486
|
-
},
|
|
10483
|
+
}, Fs = `#include <tonemapping_pars_fragment>
|
|
10487
10484
|
uniform float whitePoint;
|
|
10488
10485
|
#if TONE_MAPPING_MODE == 2 || TONE_MAPPING_MODE == 3
|
|
10489
10486
|
uniform float middleGrey;
|
|
@@ -10516,7 +10513,7 @@ outputColor=vec4(Uncharted2ToneMapping(inputColor.rgb),inputColor.a);
|
|
|
10516
10513
|
#else
|
|
10517
10514
|
outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
|
|
10518
10515
|
#endif
|
|
10519
|
-
}`,
|
|
10516
|
+
}`, Ls = class extends I {
|
|
10520
10517
|
/**
|
|
10521
10518
|
* Constructs a new tone mapping effect.
|
|
10522
10519
|
*
|
|
@@ -10546,7 +10543,7 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
|
|
|
10546
10543
|
averageLuminance: l = 1,
|
|
10547
10544
|
adaptationRate: u = 1
|
|
10548
10545
|
} = {}) {
|
|
10549
|
-
super("ToneMappingEffect",
|
|
10546
|
+
super("ToneMappingEffect", Fs, {
|
|
10550
10547
|
blendFunction: e,
|
|
10551
10548
|
uniforms: /* @__PURE__ */ new Map([
|
|
10552
10549
|
["luminanceBuffer", new c(null)],
|
|
@@ -10557,11 +10554,11 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
|
|
|
10557
10554
|
["averageLuminance", new c(l)]
|
|
10558
10555
|
])
|
|
10559
10556
|
}), this.renderTargetLuminance = new T(1, 1, {
|
|
10560
|
-
minFilter:
|
|
10557
|
+
minFilter: Yi,
|
|
10561
10558
|
depthBuffer: !1
|
|
10562
10559
|
}), this.renderTargetLuminance.texture.generateMipmaps = !0, this.renderTargetLuminance.texture.name = "Luminance", this.luminancePass = new Ct({
|
|
10563
10560
|
renderTarget: this.renderTargetLuminance
|
|
10564
|
-
}), this.adaptiveLuminancePass = new
|
|
10561
|
+
}), this.adaptiveLuminancePass = new yi(this.luminancePass.texture, {
|
|
10565
10562
|
minLuminance: o,
|
|
10566
10563
|
adaptationRate: u
|
|
10567
10564
|
}), this.uniforms.get("luminanceBuffer").value = this.adaptiveLuminancePass.texture, this.resolution = r, this.mode = i;
|
|
@@ -10762,13 +10759,13 @@ outputColor=vec4(toneMapping(inputColor.rgb),inputColor.a);
|
|
|
10762
10759
|
initialize(e, t, i) {
|
|
10763
10760
|
this.adaptiveLuminancePass.initialize(e, t, i);
|
|
10764
10761
|
}
|
|
10765
|
-
},
|
|
10762
|
+
}, Os = `uniform float offset;uniform float darkness;void mainImage(const in vec4 inputColor,const in vec2 uv,out vec4 outputColor){const vec2 center=vec2(0.5);vec3 color=inputColor.rgb;
|
|
10766
10763
|
#if VIGNETTE_TECHNIQUE == 0
|
|
10767
10764
|
float d=distance(uv,center);color*=smoothstep(0.8,offset*0.799,d*(darkness+offset));
|
|
10768
10765
|
#else
|
|
10769
10766
|
vec2 coord=(uv-center)*vec2(offset);color=mix(color,vec3(1.0-darkness),dot(coord,coord));
|
|
10770
10767
|
#endif
|
|
10771
|
-
outputColor=vec4(color,inputColor.a);}`,
|
|
10768
|
+
outputColor=vec4(color,inputColor.a);}`, Ns = class extends I {
|
|
10772
10769
|
/**
|
|
10773
10770
|
* Constructs a new Vignette effect.
|
|
10774
10771
|
*
|
|
@@ -10786,7 +10783,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
|
|
|
10786
10783
|
offset: r = 0.5,
|
|
10787
10784
|
darkness: a = 0.5
|
|
10788
10785
|
} = {}) {
|
|
10789
|
-
super("VignetteEffect",
|
|
10786
|
+
super("VignetteEffect", Os, {
|
|
10790
10787
|
blendFunction: e,
|
|
10791
10788
|
defines: /* @__PURE__ */ new Map([
|
|
10792
10789
|
["VIGNETTE_TECHNIQUE", i.toFixed(0)]
|
|
@@ -10902,7 +10899,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
|
|
|
10902
10899
|
setDarkness(e) {
|
|
10903
10900
|
this.darkness = e;
|
|
10904
10901
|
}
|
|
10905
|
-
},
|
|
10902
|
+
}, Hs = class extends St {
|
|
10906
10903
|
/**
|
|
10907
10904
|
* Loads a LUT.
|
|
10908
10905
|
*
|
|
@@ -10915,7 +10912,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
|
|
|
10915
10912
|
load(e, t = () => {
|
|
10916
10913
|
}, i = () => {
|
|
10917
10914
|
}, r = null) {
|
|
10918
|
-
const a = this.manager, n = new Ne(), s = new
|
|
10915
|
+
const a = this.manager, n = new Ne(), s = new jt(n);
|
|
10919
10916
|
return s.setPath(this.path), s.setResponseType("text"), new Promise((o, l) => {
|
|
10920
10917
|
n.onError = (u) => {
|
|
10921
10918
|
a.itemError(u), r !== null ? (r(`Failed to load ${u}`), o()) : l(`Failed to load ${u}`);
|
|
@@ -10958,7 +10955,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
|
|
|
10958
10955
|
l[v + 0] /= d, l[v + 1] /= d, l[v + 2] /= d;
|
|
10959
10956
|
return new Oe(l, s);
|
|
10960
10957
|
}
|
|
10961
|
-
},
|
|
10958
|
+
}, zs = class extends St {
|
|
10962
10959
|
/**
|
|
10963
10960
|
* Loads a LUT.
|
|
10964
10961
|
*
|
|
@@ -10971,7 +10968,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
|
|
|
10971
10968
|
load(e, t = () => {
|
|
10972
10969
|
}, i = () => {
|
|
10973
10970
|
}, r = null) {
|
|
10974
|
-
const a = this.manager, n = new Ne(), s = new
|
|
10971
|
+
const a = this.manager, n = new Ne(), s = new jt(n);
|
|
10975
10972
|
return s.setPath(this.path), s.setResponseType("text"), new Promise((o, l) => {
|
|
10976
10973
|
n.onError = (u) => {
|
|
10977
10974
|
a.itemError(u), r !== null ? (r(`Failed to load ${u}`), o()) : l(`Failed to load ${u}`);
|
|
@@ -11007,7 +11004,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
|
|
|
11007
11004
|
const v = new Oe(u, l);
|
|
11008
11005
|
return v.domainMin.copy(f), v.domainMax.copy(h), o !== null && (v.name = o), v;
|
|
11009
11006
|
}
|
|
11010
|
-
},
|
|
11007
|
+
}, Gs = class extends St {
|
|
11011
11008
|
/**
|
|
11012
11009
|
* Loads the SMAA data images.
|
|
11013
11010
|
*
|
|
@@ -11037,7 +11034,7 @@ outputColor=vec4(color,inputColor.a);}`, Gs = class extends I {
|
|
|
11037
11034
|
}), i.itemStart("smaa-search"), i.itemStart("smaa-area"), r.itemStart("smaa-search"), r.itemStart("smaa-area"), s.src = xt, o.src = Dt;
|
|
11038
11035
|
});
|
|
11039
11036
|
}
|
|
11040
|
-
},
|
|
11037
|
+
}, ks = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
11041
11038
|
uniform mediump sampler2D inputBuffer;
|
|
11042
11039
|
#else
|
|
11043
11040
|
uniform lowp sampler2D inputBuffer;
|
|
@@ -11118,7 +11115,7 @@ vec2 s=texelSize*scale;for(int x=-KERNEL_SIZE_HALF;x<=KERNEL_SIZE_HALF;++x){for(
|
|
|
11118
11115
|
#endif
|
|
11119
11116
|
gl_FragColor=result*INV_KERNEL_SIZE_SQ;
|
|
11120
11117
|
#endif
|
|
11121
|
-
}`,
|
|
11118
|
+
}`, Qs = `uniform vec2 texelSize;uniform float scale;
|
|
11122
11119
|
#if KERNEL_SIZE == 3
|
|
11123
11120
|
varying vec2 vUv00,vUv01,vUv02;varying vec2 vUv03,vUv04,vUv05;varying vec2 vUv06,vUv07,vUv08;
|
|
11124
11121
|
#elif KERNEL_SIZE == 5 && MAX_VARYING_VECTORS >= 13
|
|
@@ -11134,7 +11131,7 @@ vec2 s=texelSize*scale;vUv00=uv+s*vec2(-2.0,-2.0);vUv01=uv+s*vec2(-1.0,-2.0);vUv
|
|
|
11134
11131
|
#else
|
|
11135
11132
|
vUv=uv;
|
|
11136
11133
|
#endif
|
|
11137
|
-
gl_Position=vec4(position.xy,1.0,1.0);}`,
|
|
11134
|
+
gl_Position=vec4(position.xy,1.0,1.0);}`, Mi = class extends w {
|
|
11138
11135
|
/**
|
|
11139
11136
|
* Constructs a new box blur material.
|
|
11140
11137
|
*
|
|
@@ -11161,8 +11158,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Bi = class extends w {
|
|
|
11161
11158
|
toneMapped: !1,
|
|
11162
11159
|
depthWrite: !1,
|
|
11163
11160
|
depthTest: !1,
|
|
11164
|
-
fragmentShader:
|
|
11165
|
-
vertexShader:
|
|
11161
|
+
fragmentShader: ks,
|
|
11162
|
+
vertexShader: Qs
|
|
11166
11163
|
}), this.bilateral = e, this.kernelSize = t, this.maxVaryingVectors = 8;
|
|
11167
11164
|
}
|
|
11168
11165
|
/**
|
|
@@ -11293,7 +11290,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Bi = class extends w {
|
|
|
11293
11290
|
setSize(e, t) {
|
|
11294
11291
|
this.uniforms.texelSize.value.set(1 / e, 1 / t);
|
|
11295
11292
|
}
|
|
11296
|
-
},
|
|
11293
|
+
}, Vs = `#include <packing>
|
|
11297
11294
|
varying vec2 vUv;
|
|
11298
11295
|
#ifdef NORMAL_DEPTH
|
|
11299
11296
|
#ifdef GL_FRAGMENT_PRECISION_HIGH
|
|
@@ -11329,7 +11326,7 @@ gl_FragColor=(depth==1.0)?vec4(1.0):packDepthToRGBA(depth);
|
|
|
11329
11326
|
gl_FragColor=vec4(vec3(depth),1.0);
|
|
11330
11327
|
#endif
|
|
11331
11328
|
#endif
|
|
11332
|
-
}`,
|
|
11329
|
+
}`, Ws = `varying vec2 vUv;
|
|
11333
11330
|
#if DEPTH_COPY_MODE == 1
|
|
11334
11331
|
uniform vec2 texelPosition;
|
|
11335
11332
|
#endif
|
|
@@ -11339,7 +11336,7 @@ vUv=texelPosition;
|
|
|
11339
11336
|
#else
|
|
11340
11337
|
vUv=position.xy*0.5+0.5;
|
|
11341
11338
|
#endif
|
|
11342
|
-
gl_Position=vec4(position.xy,1.0,1.0);}`,
|
|
11339
|
+
gl_Position=vec4(position.xy,1.0,1.0);}`, Bi = class extends w {
|
|
11343
11340
|
/**
|
|
11344
11341
|
* Constructs a new depth copy material.
|
|
11345
11342
|
*/
|
|
@@ -11359,8 +11356,8 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Pi = class extends w {
|
|
|
11359
11356
|
toneMapped: !1,
|
|
11360
11357
|
depthWrite: !1,
|
|
11361
11358
|
depthTest: !1,
|
|
11362
|
-
fragmentShader:
|
|
11363
|
-
vertexShader:
|
|
11359
|
+
fragmentShader: Vs,
|
|
11360
|
+
vertexShader: Ws
|
|
11364
11361
|
}), this.depthCopyMode = Ce.FULL;
|
|
11365
11362
|
}
|
|
11366
11363
|
/**
|
|
@@ -11494,7 +11491,7 @@ gl_Position=vec4(position.xy,1.0,1.0);}`, Pi = class extends w {
|
|
|
11494
11491
|
setMode(e) {
|
|
11495
11492
|
this.mode = e;
|
|
11496
11493
|
}
|
|
11497
|
-
},
|
|
11494
|
+
}, Ys = `#include <common>
|
|
11498
11495
|
#include <packing>
|
|
11499
11496
|
#include <dithering_pars_fragment>
|
|
11500
11497
|
#define packFloatToRGBA(v) packDepthToRGBA(v)
|
|
@@ -11528,7 +11525,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
|
|
|
11528
11525
|
#include <colorspace_fragment>
|
|
11529
11526
|
#endif
|
|
11530
11527
|
#include <dithering_fragment>
|
|
11531
|
-
}`,
|
|
11528
|
+
}`, Ks = "uniform vec2 resolution;uniform vec2 texelSize;uniform float cameraNear;uniform float cameraFar;uniform float aspect;uniform float time;varying vec2 vUv;VERTEX_HEAD void main(){vUv=position.xy*0.5+0.5;VERTEX_MAIN_SUPPORT gl_Position=vec4(position.xy,1.0,1.0);}", Pi = class extends w {
|
|
11532
11529
|
/**
|
|
11533
11530
|
* Constructs a new effect material.
|
|
11534
11531
|
*
|
|
@@ -11629,7 +11626,7 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
|
|
|
11629
11626
|
* @return {EffectMaterial} This material.
|
|
11630
11627
|
*/
|
|
11631
11628
|
setShaderParts(e) {
|
|
11632
|
-
return this.fragmentShader =
|
|
11629
|
+
return this.fragmentShader = Ys.replace(B.FRAGMENT_HEAD, e.get(B.FRAGMENT_HEAD) || "").replace(B.FRAGMENT_MAIN_UV, e.get(B.FRAGMENT_MAIN_UV) || "").replace(B.FRAGMENT_MAIN_IMAGE, e.get(B.FRAGMENT_MAIN_IMAGE) || ""), this.vertexShader = Ks.replace(B.VERTEX_HEAD, e.get(B.VERTEX_HEAD) || "").replace(B.VERTEX_MAIN_SUPPORT, e.get(B.VERTEX_MAIN_SUPPORT) || ""), this.needsUpdate = !0, this;
|
|
11633
11630
|
}
|
|
11634
11631
|
/**
|
|
11635
11632
|
* Sets the shader macros.
|
|
@@ -11753,14 +11750,14 @@ return orthographicDepthToViewZ(depth,cameraNear,cameraFar);
|
|
|
11753
11750
|
static get Section() {
|
|
11754
11751
|
return B;
|
|
11755
11752
|
}
|
|
11756
|
-
},
|
|
11753
|
+
}, Xs = `#ifdef FRAMEBUFFER_PRECISION_HIGH
|
|
11757
11754
|
uniform mediump sampler2D inputBuffer;
|
|
11758
11755
|
#else
|
|
11759
11756
|
uniform lowp sampler2D inputBuffer;
|
|
11760
11757
|
#endif
|
|
11761
11758
|
uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec4 result=texture2D(inputBuffer,vUv)*kernel[0].y;for(int i=1;i<STEPS;++i){vec2 offset=kernel[i].x*vOffset;vec4 c0=texture2D(inputBuffer,vUv+offset);vec4 c1=texture2D(inputBuffer,vUv-offset);result+=(c0+c1)*kernel[i].y;}gl_FragColor=result;
|
|
11762
11759
|
#include <colorspace_fragment>
|
|
11763
|
-
}`,
|
|
11760
|
+
}`, Zs = "uniform vec2 texelSize;uniform vec2 direction;uniform float scale;varying vec2 vOffset;varying vec2 vUv;void main(){vOffset=direction*texelSize*scale;vUv=position.xy*0.5+0.5;gl_Position=vec4(position.xy,1.0,1.0);}", Ii = class extends w {
|
|
11764
11761
|
/**
|
|
11765
11762
|
* Constructs a new convolution material.
|
|
11766
11763
|
*
|
|
@@ -11781,8 +11778,8 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
|
|
|
11781
11778
|
toneMapped: !1,
|
|
11782
11779
|
depthWrite: !1,
|
|
11783
11780
|
depthTest: !1,
|
|
11784
|
-
fragmentShader:
|
|
11785
|
-
vertexShader:
|
|
11781
|
+
fragmentShader: Xs,
|
|
11782
|
+
vertexShader: Zs
|
|
11786
11783
|
}), this._kernelSize = 0, this.kernelSize = e;
|
|
11787
11784
|
}
|
|
11788
11785
|
/**
|
|
@@ -11830,7 +11827,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
|
|
|
11830
11827
|
* @private
|
|
11831
11828
|
*/
|
|
11832
11829
|
generateKernel(e) {
|
|
11833
|
-
const t = new
|
|
11830
|
+
const t = new ai(e), i = t.linearSteps, r = new Float64Array(i * 2);
|
|
11834
11831
|
for (let a = 0, n = 0; a < i; ++a)
|
|
11835
11832
|
r[n++] = t.linearOffsets[a], r[n++] = t.linearWeights[a];
|
|
11836
11833
|
this.uniforms.kernel.value = r, this.defines.STEPS = i.toFixed(0), this.needsUpdate = !0;
|
|
@@ -11844,7 +11841,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
|
|
|
11844
11841
|
setSize(e, t) {
|
|
11845
11842
|
this.uniforms.texelSize.value.set(1 / e, 1 / t);
|
|
11846
11843
|
}
|
|
11847
|
-
},
|
|
11844
|
+
}, js = class extends H {
|
|
11848
11845
|
/**
|
|
11849
11846
|
* Constructs a new box blur pass.
|
|
11850
11847
|
*
|
|
@@ -11864,7 +11861,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
|
|
|
11864
11861
|
resolutionX: a = x.AUTO_SIZE,
|
|
11865
11862
|
resolutionY: n = x.AUTO_SIZE
|
|
11866
11863
|
} = {}) {
|
|
11867
|
-
super("BoxBlurPass"), this.needsDepthTexture = i, this.renderTargetA = new T(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = new T(1, 1, { depthBuffer: !1 }), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new
|
|
11864
|
+
super("BoxBlurPass"), this.needsDepthTexture = i, this.renderTargetA = new T(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = new T(1, 1, { depthBuffer: !1 }), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new Mi({ bilateral: i, kernelSize: e }), this.copyMaterial = new He();
|
|
11868
11865
|
const s = this.resolution = new x(this, a, n, r);
|
|
11869
11866
|
s.addEventListener("change", (o) => this.setSize(s.baseWidth, s.baseHeight)), this.iterations = t;
|
|
11870
11867
|
}
|
|
@@ -11930,7 +11927,7 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
|
|
|
11930
11927
|
*/
|
|
11931
11928
|
constructor({ depthPacking: e = ae } = {}) {
|
|
11932
11929
|
super("DepthCopyPass");
|
|
11933
|
-
const t = new
|
|
11930
|
+
const t = new Bi();
|
|
11934
11931
|
t.outputDepthPacking = e, this.fullscreenMaterial = t, this.needsDepthTexture = !0, this.needsSwap = !1, this.renderTarget = new T(1, 1, {
|
|
11935
11932
|
type: e === ae ? Y : J,
|
|
11936
11933
|
minFilter: P,
|
|
@@ -12002,22 +11999,22 @@ uniform vec2 kernel[STEPS];varying vec2 vOffset;varying vec2 vUv;void main(){vec
|
|
|
12002
11999
|
setSize(e, t) {
|
|
12003
12000
|
this.renderTarget.setSize(e, t);
|
|
12004
12001
|
}
|
|
12005
|
-
},
|
|
12002
|
+
}, Js = Number(Re.replace(/\D+/g, "")), ve = 255 / 256, qs = new Float32Array([
|
|
12006
12003
|
ve / 256 ** 3,
|
|
12007
12004
|
ve / 256 ** 2,
|
|
12008
12005
|
ve / 256,
|
|
12009
12006
|
ve
|
|
12010
|
-
]),
|
|
12007
|
+
]), _s = new Float32Array([
|
|
12011
12008
|
ve,
|
|
12012
12009
|
ve / 256,
|
|
12013
12010
|
ve / 256 ** 2,
|
|
12014
12011
|
1 / 256 ** 3
|
|
12015
12012
|
]);
|
|
12016
|
-
function
|
|
12017
|
-
const t =
|
|
12013
|
+
function $s(e) {
|
|
12014
|
+
const t = Js >= 167 ? _s : qs;
|
|
12018
12015
|
return (e[0] * t[0] + e[1] * t[1] + e[2] * t[2] + e[3] * t[3]) / 255;
|
|
12019
12016
|
}
|
|
12020
|
-
var
|
|
12017
|
+
var en = class extends wt {
|
|
12021
12018
|
/**
|
|
12022
12019
|
* Constructs a new depth picking pass.
|
|
12023
12020
|
*
|
|
@@ -12076,7 +12073,7 @@ var an = class extends wt {
|
|
|
12076
12073
|
const d = n.texelPosition;
|
|
12077
12074
|
f = Math.round(d.x * o.width), h = Math.round(d.y * o.height);
|
|
12078
12075
|
}
|
|
12079
|
-
e.readRenderTargetPixels(o, f, h, 1, 1, l), this.callback(u ?
|
|
12076
|
+
e.readRenderTargetPixels(o, f, h, 1, 1, l), this.callback(u ? $s(l) : l[0]), this.callback = null;
|
|
12080
12077
|
}
|
|
12081
12078
|
}
|
|
12082
12079
|
/**
|
|
@@ -12089,14 +12086,14 @@ var an = class extends wt {
|
|
|
12089
12086
|
this.fullscreenMaterial.mode === Ce.FULL && super.setSize(e, t);
|
|
12090
12087
|
}
|
|
12091
12088
|
};
|
|
12092
|
-
function
|
|
12089
|
+
function Gt(e, t, i) {
|
|
12093
12090
|
for (const r of t) {
|
|
12094
12091
|
const a = "$1" + e + r.charAt(0).toUpperCase() + r.slice(1), n = new RegExp("([^\\.])(\\b" + r + "\\b)", "g");
|
|
12095
12092
|
for (const s of i.entries())
|
|
12096
12093
|
s[1] !== null && i.set(s[0], s[1].replace(n, a));
|
|
12097
12094
|
}
|
|
12098
12095
|
}
|
|
12099
|
-
function
|
|
12096
|
+
function tn(e, t, i) {
|
|
12100
12097
|
let r = t.getFragmentShader(), a = t.getVertexShader();
|
|
12101
12098
|
const n = r !== void 0 && /mainImage/.test(r), s = r !== void 0 && /mainUv/.test(r);
|
|
12102
12099
|
if (i.attributes |= t.getAttributes(), r === void 0)
|
|
@@ -12129,7 +12126,7 @@ function sn(e, t, i) {
|
|
|
12129
12126
|
m.add(S);
|
|
12130
12127
|
m.delete("while"), m.delete("for"), m.delete("if"), t.uniforms.forEach((S, D) => i.uniforms.set(e + D.charAt(0).toUpperCase() + D.slice(1), S)), t.defines.forEach((S, D) => i.defines.set(e + D.charAt(0).toUpperCase() + D.slice(1), S));
|
|
12131
12128
|
const E = /* @__PURE__ */ new Map([["fragment", r], ["vertex", a]]);
|
|
12132
|
-
|
|
12129
|
+
Gt(e, m, i.defines), Gt(e, m, E), r = E.get("fragment"), a = E.get("vertex");
|
|
12133
12130
|
const C = t.blendMode;
|
|
12134
12131
|
if (i.blendModes.set(C.blendFunction, C), n) {
|
|
12135
12132
|
t.inputColorSpace !== null && t.inputColorSpace !== i.colorSpace && (h += t.inputColorSpace === y ? `color0 = sRGBTransferOETF(color0);
|
|
@@ -12152,7 +12149,7 @@ function sn(e, t, i) {
|
|
|
12152
12149
|
i.extensions.add(S);
|
|
12153
12150
|
}
|
|
12154
12151
|
}
|
|
12155
|
-
var
|
|
12152
|
+
var rn = class extends H {
|
|
12156
12153
|
/**
|
|
12157
12154
|
* Constructs a new effect pass.
|
|
12158
12155
|
*
|
|
@@ -12160,7 +12157,7 @@ var nn = class extends H {
|
|
|
12160
12157
|
* @param {...Effect} effects - The effects that will be rendered by this pass.
|
|
12161
12158
|
*/
|
|
12162
12159
|
constructor(e, ...t) {
|
|
12163
|
-
super("EffectPass"), this.fullscreenMaterial = new
|
|
12160
|
+
super("EffectPass"), this.fullscreenMaterial = new Pi(null, null, null, e), this.listener = (i) => this.handleEvent(i), this.effects = [], this.setEffects(t), this.skipRendering = !1, this.minTime = 1, this.maxTime = Number.POSITIVE_INFINITY, this.timeScale = 1;
|
|
12164
12161
|
}
|
|
12165
12162
|
set mainScene(e) {
|
|
12166
12163
|
for (const t of this.effects)
|
|
@@ -12214,7 +12211,7 @@ var nn = class extends H {
|
|
|
12214
12211
|
* @protected
|
|
12215
12212
|
*/
|
|
12216
12213
|
updateMaterial() {
|
|
12217
|
-
const e = new
|
|
12214
|
+
const e = new ri();
|
|
12218
12215
|
let t = 0;
|
|
12219
12216
|
for (const s of this.effects)
|
|
12220
12217
|
if (s.blendMode.blendFunction === g.DST)
|
|
@@ -12222,7 +12219,7 @@ var nn = class extends H {
|
|
|
12222
12219
|
else {
|
|
12223
12220
|
if ((e.attributes & s.getAttributes() & V.CONVOLUTION) !== 0)
|
|
12224
12221
|
throw new Error(`Convolution effects cannot be merged (${s.name})`);
|
|
12225
|
-
|
|
12222
|
+
tn("e" + t++, s, e);
|
|
12226
12223
|
}
|
|
12227
12224
|
let i = e.shaderParts.get(B.FRAGMENT_HEAD), r = e.shaderParts.get(B.FRAGMENT_MAIN_IMAGE), a = e.shaderParts.get(B.FRAGMENT_MAIN_UV);
|
|
12228
12225
|
const n = /\bblend\b/g;
|
|
@@ -12325,7 +12322,7 @@ var nn = class extends H {
|
|
|
12325
12322
|
break;
|
|
12326
12323
|
}
|
|
12327
12324
|
}
|
|
12328
|
-
},
|
|
12325
|
+
}, an = class extends H {
|
|
12329
12326
|
/**
|
|
12330
12327
|
* Constructs a new Gaussian blur pass.
|
|
12331
12328
|
*
|
|
@@ -12343,7 +12340,7 @@ var nn = class extends H {
|
|
|
12343
12340
|
resolutionX: r = x.AUTO_SIZE,
|
|
12344
12341
|
resolutionY: a = x.AUTO_SIZE
|
|
12345
12342
|
} = {}) {
|
|
12346
|
-
super("GaussianBlurPass"), this.renderTargetA = new T(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new
|
|
12343
|
+
super("GaussianBlurPass"), this.renderTargetA = new T(1, 1, { depthBuffer: !1 }), this.renderTargetA.texture.name = "Blur.Target.A", this.renderTargetB = this.renderTargetA.clone(), this.renderTargetB.texture.name = "Blur.Target.B", this.blurMaterial = new Ii({ kernelSize: e }), this.copyMaterial = new He(), this.copyMaterial.inputBuffer = this.renderTargetB.texture;
|
|
12347
12344
|
const n = this.resolution = new x(this, r, a, i);
|
|
12348
12345
|
n.addEventListener("change", (s) => this.setSize(n.baseWidth, n.baseHeight)), this.iterations = t;
|
|
12349
12346
|
}
|
|
@@ -12386,7 +12383,7 @@ var nn = class extends H {
|
|
|
12386
12383
|
initialize(e, t, i) {
|
|
12387
12384
|
i !== void 0 && (this.renderTargetA.texture.type = i, this.renderTargetB.texture.type = i, i !== Y ? (this.blurMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1", this.copyMaterial.defines.FRAMEBUFFER_PRECISION_HIGH = "1") : e !== null && e.outputColorSpace === y && (this.renderTargetA.texture.colorSpace = y, this.renderTargetB.texture.colorSpace = y));
|
|
12388
12385
|
}
|
|
12389
|
-
},
|
|
12386
|
+
}, sn = class extends H {
|
|
12390
12387
|
/**
|
|
12391
12388
|
* Constructs a new lambda pass.
|
|
12392
12389
|
*
|
|
@@ -12407,7 +12404,7 @@ var nn = class extends H {
|
|
|
12407
12404
|
render(e, t, i, r, a) {
|
|
12408
12405
|
this.f();
|
|
12409
12406
|
}
|
|
12410
|
-
},
|
|
12407
|
+
}, nn = class extends H {
|
|
12411
12408
|
/**
|
|
12412
12409
|
* Constructs a new normal pass.
|
|
12413
12410
|
*
|
|
@@ -12429,7 +12426,7 @@ var nn = class extends H {
|
|
|
12429
12426
|
resolutionX: s = a,
|
|
12430
12427
|
resolutionY: o = n
|
|
12431
12428
|
} = {}) {
|
|
12432
|
-
super("NormalPass"), this.needsSwap = !1, this.renderPass = new ze(e, t, new
|
|
12429
|
+
super("NormalPass"), this.needsSwap = !1, this.renderPass = new ze(e, t, new Qi());
|
|
12433
12430
|
const l = this.renderPass;
|
|
12434
12431
|
l.ignoreBackground = !0, l.skipShadowMapUpdate = !0;
|
|
12435
12432
|
const u = l.getClearPass();
|
|
@@ -12513,7 +12510,7 @@ var nn = class extends H {
|
|
|
12513
12510
|
const i = this.resolution;
|
|
12514
12511
|
i.setBaseSize(e, t), this.renderTarget.setSize(i.width, i.height);
|
|
12515
12512
|
}
|
|
12516
|
-
},
|
|
12513
|
+
}, kt = [
|
|
12517
12514
|
new Float32Array(3),
|
|
12518
12515
|
new Float32Array(3)
|
|
12519
12516
|
], U = [
|
|
@@ -12567,22 +12564,22 @@ function Ue(e, t, i, r, a, n) {
|
|
|
12567
12564
|
const s = (i + r * t + a * t * t) * 4;
|
|
12568
12565
|
n[0] = e[s + 0], n[1] = e[s + 1], n[2] = e[s + 2];
|
|
12569
12566
|
}
|
|
12570
|
-
function
|
|
12567
|
+
function on(e, t, i, r, a, n) {
|
|
12571
12568
|
const s = i * (t - 1), o = r * (t - 1), l = a * (t - 1), u = Math.floor(s), f = Math.floor(o), h = Math.floor(l), d = Math.ceil(s), v = Math.ceil(o), A = Math.ceil(l), m = s - u, E = o - f, C = l - h;
|
|
12572
12569
|
if (u === s && f === o && h === l)
|
|
12573
12570
|
Ue(e, t, s, o, l, n);
|
|
12574
12571
|
else {
|
|
12575
12572
|
let S;
|
|
12576
12573
|
m >= E && E >= C ? S = xe[0] : m >= C && C >= E ? S = xe[1] : C >= m && m >= E ? S = xe[2] : E >= m && m >= C ? S = xe[3] : E >= C && C >= m ? S = xe[4] : C >= E && E >= m && (S = xe[5]);
|
|
12577
|
-
const [D, K, ee, ie] = S, re =
|
|
12574
|
+
const [D, K, ee, ie] = S, re = kt[0];
|
|
12578
12575
|
re[0] = m, re[1] = E, re[2] = C;
|
|
12579
|
-
const F =
|
|
12576
|
+
const F = kt[1], me = d - u, Ae = v - f, ne = A - h;
|
|
12580
12577
|
F[0] = me * D[0] + u, F[1] = Ae * D[1] + f, F[2] = ne * D[2] + h, Ue(e, t, F[0], F[1], F[2], U[0]), F[0] = me * K[0] + u, F[1] = Ae * K[1] + f, F[2] = ne * K[2] + h, Ue(e, t, F[0], F[1], F[2], U[1]), F[0] = me * ee[0] + u, F[1] = Ae * ee[1] + f, F[2] = ne * ee[2] + h, Ue(e, t, F[0], F[1], F[2], U[2]), F[0] = me * ie[0] + u, F[1] = Ae * ie[1] + f, F[2] = ne * ie[2] + h, Ue(e, t, F[0], F[1], F[2], U[3]);
|
|
12581
12578
|
const fe = We(K, ee, ie, re) * 6, k = We(D, ee, ie, re) * 6, Ge = We(D, K, ie, re) * 6, at = We(D, K, ee, re) * 6;
|
|
12582
12579
|
U[0][0] *= fe, U[0][1] *= fe, U[0][2] *= fe, U[1][0] *= k, U[1][1] *= k, U[1][2] *= k, U[2][0] *= Ge, U[2][1] *= Ge, U[2][2] *= Ge, U[3][0] *= at, U[3][1] *= at, U[3][2] *= at, n[0] = U[0][0] + U[1][0] + U[2][0] + U[3][0], n[1] = U[0][1] + U[1][1] + U[2][1] + U[3][1], n[2] = U[0][2] + U[1][2] + U[2][2] + U[3][2];
|
|
12583
12580
|
}
|
|
12584
12581
|
}
|
|
12585
|
-
var
|
|
12582
|
+
var ln = class {
|
|
12586
12583
|
/**
|
|
12587
12584
|
* Expands the given data to the target size.
|
|
12588
12585
|
*
|
|
@@ -12596,14 +12593,14 @@ var fn = class {
|
|
|
12596
12593
|
for (let u = 0; u < t; ++u)
|
|
12597
12594
|
for (let f = 0; f < t; ++f) {
|
|
12598
12595
|
const h = f * o, d = u * o, v = l * o, A = Math.round(f + u * t + l * s) * 4;
|
|
12599
|
-
|
|
12596
|
+
on(e, i, h, d, v, r), a[A + 0] = r[0], a[A + 1] = r[1], a[A + 2] = r[2], a[A + 3] = n;
|
|
12600
12597
|
}
|
|
12601
12598
|
return a;
|
|
12602
12599
|
}
|
|
12603
12600
|
}, Pe = [
|
|
12604
12601
|
new Float32Array(2),
|
|
12605
12602
|
new Float32Array(2)
|
|
12606
|
-
], De = 16, ct = 20, we = 30,
|
|
12603
|
+
], De = 16, ct = 20, we = 30, un = 32, ft = new Float32Array([
|
|
12607
12604
|
0,
|
|
12608
12605
|
-0.25,
|
|
12609
12606
|
0.25,
|
|
@@ -12611,13 +12608,13 @@ var fn = class {
|
|
|
12611
12608
|
0.125,
|
|
12612
12609
|
-0.375,
|
|
12613
12610
|
0.375
|
|
12614
|
-
]),
|
|
12611
|
+
]), Qt = [
|
|
12615
12612
|
new Float32Array([0, 0]),
|
|
12616
12613
|
new Float32Array([0.25, -0.25]),
|
|
12617
12614
|
new Float32Array([-0.25, 0.25]),
|
|
12618
12615
|
new Float32Array([0.125, -0.125]),
|
|
12619
12616
|
new Float32Array([-0.125, 0.125])
|
|
12620
|
-
],
|
|
12617
|
+
], cn = [
|
|
12621
12618
|
new Uint8Array([0, 0]),
|
|
12622
12619
|
new Uint8Array([3, 0]),
|
|
12623
12620
|
new Uint8Array([0, 3]),
|
|
@@ -12634,7 +12631,7 @@ var fn = class {
|
|
|
12634
12631
|
new Uint8Array([4, 1]),
|
|
12635
12632
|
new Uint8Array([1, 4]),
|
|
12636
12633
|
new Uint8Array([4, 4])
|
|
12637
|
-
],
|
|
12634
|
+
], Ri = [
|
|
12638
12635
|
new Uint8Array([0, 0]),
|
|
12639
12636
|
new Uint8Array([1, 0]),
|
|
12640
12637
|
new Uint8Array([0, 2]),
|
|
@@ -12655,11 +12652,11 @@ var fn = class {
|
|
|
12655
12652
|
function Ye(e, t, i) {
|
|
12656
12653
|
return e + (t - e) * i;
|
|
12657
12654
|
}
|
|
12658
|
-
function
|
|
12655
|
+
function fn(e) {
|
|
12659
12656
|
return Math.min(Math.max(e, 0), 1);
|
|
12660
12657
|
}
|
|
12661
|
-
function
|
|
12662
|
-
const t = Pe[0], i = Pe[1], r = Math.sqrt(t[0] * 2) * 0.5, a = Math.sqrt(t[1] * 2) * 0.5, n = Math.sqrt(i[0] * 2) * 0.5, s = Math.sqrt(i[1] * 2) * 0.5, o =
|
|
12658
|
+
function Vt(e) {
|
|
12659
|
+
const t = Pe[0], i = Pe[1], r = Math.sqrt(t[0] * 2) * 0.5, a = Math.sqrt(t[1] * 2) * 0.5, n = Math.sqrt(i[0] * 2) * 0.5, s = Math.sqrt(i[1] * 2) * 0.5, o = fn(e / un);
|
|
12663
12660
|
t[0] = Ye(r, t[0], o), t[1] = Ye(a, t[1], o), i[0] = Ye(n, i[0], o), i[1] = Ye(s, i[1], o);
|
|
12664
12661
|
}
|
|
12665
12662
|
function Q(e, t, i, r, a, n) {
|
|
@@ -12676,7 +12673,7 @@ function Q(e, t, i, r, a, n) {
|
|
|
12676
12673
|
n[0] = 0, n[1] = 0;
|
|
12677
12674
|
return n;
|
|
12678
12675
|
}
|
|
12679
|
-
function
|
|
12676
|
+
function hn(e, t, i, r, a) {
|
|
12680
12677
|
const n = Pe[0], s = Pe[1], o = 0.5 + r, l = 0.5 + r - 1, u = t + i + 1;
|
|
12681
12678
|
switch (e) {
|
|
12682
12679
|
case 0: {
|
|
@@ -12692,7 +12689,7 @@ function pn(e, t, i, r, a) {
|
|
|
12692
12689
|
break;
|
|
12693
12690
|
}
|
|
12694
12691
|
case 3: {
|
|
12695
|
-
Q(0, l, u / 2, 0, t, n), Q(u / 2, 0, u, l, t, s),
|
|
12692
|
+
Q(0, l, u / 2, 0, t, n), Q(u / 2, 0, u, l, t, s), Vt(u), a[0] = n[0] + s[0], a[1] = n[1] + s[1];
|
|
12696
12693
|
break;
|
|
12697
12694
|
}
|
|
12698
12695
|
case 4: {
|
|
@@ -12728,7 +12725,7 @@ function pn(e, t, i, r, a) {
|
|
|
12728
12725
|
break;
|
|
12729
12726
|
}
|
|
12730
12727
|
case 12: {
|
|
12731
|
-
Q(0, o, u / 2, 0, t, n), Q(u / 2, 0, u, o, t, s),
|
|
12728
|
+
Q(0, o, u / 2, 0, t, n), Q(u / 2, 0, u, o, t, s), Vt(u), a[0] = n[0] + s[0], a[1] = n[1] + s[1];
|
|
12732
12729
|
break;
|
|
12733
12730
|
}
|
|
12734
12731
|
case 13: {
|
|
@@ -12746,7 +12743,7 @@ function pn(e, t, i, r, a) {
|
|
|
12746
12743
|
}
|
|
12747
12744
|
return a;
|
|
12748
12745
|
}
|
|
12749
|
-
function
|
|
12746
|
+
function dn(e, t, i, r, a, n) {
|
|
12750
12747
|
let s = e === i && t === r;
|
|
12751
12748
|
if (!s) {
|
|
12752
12749
|
const o = (e + i) / 2, l = (t + r) / 2, u = r - t, f = e - i;
|
|
@@ -12754,20 +12751,20 @@ function gn(e, t, i, r, a, n) {
|
|
|
12754
12751
|
}
|
|
12755
12752
|
return s;
|
|
12756
12753
|
}
|
|
12757
|
-
function
|
|
12754
|
+
function Wt(e, t, i, r, a, n) {
|
|
12758
12755
|
let s = 0;
|
|
12759
12756
|
for (let o = 0; o < we; ++o)
|
|
12760
12757
|
for (let l = 0; l < we; ++l) {
|
|
12761
12758
|
const u = l / (we - 1), f = o / (we - 1);
|
|
12762
|
-
|
|
12759
|
+
dn(e, t, i, r, a + u, n + f) && ++s;
|
|
12763
12760
|
}
|
|
12764
12761
|
return s / (we * we);
|
|
12765
12762
|
}
|
|
12766
12763
|
function b(e, t, i, r, a, n, s, o) {
|
|
12767
|
-
const l =
|
|
12768
|
-
return u > 0 && (t += s[0], i += s[1]), f > 0 && (r += s[0], a += s[1]), o[0] = 1 -
|
|
12764
|
+
const l = Ri[e], u = l[0], f = l[1];
|
|
12765
|
+
return u > 0 && (t += s[0], i += s[1]), f > 0 && (r += s[0], a += s[1]), o[0] = 1 - Wt(t, i, r, a, 1 + n, 0 + n), o[1] = Wt(t, i, r, a, 1 + n, 1 + n), o;
|
|
12769
12766
|
}
|
|
12770
|
-
function
|
|
12767
|
+
function vn(e, t, i, r, a) {
|
|
12771
12768
|
const n = Pe[0], s = Pe[1], o = t + i + 1;
|
|
12772
12769
|
switch (e) {
|
|
12773
12770
|
case 0: {
|
|
@@ -12837,19 +12834,19 @@ function mn(e, t, i, r, a) {
|
|
|
12837
12834
|
}
|
|
12838
12835
|
return a;
|
|
12839
12836
|
}
|
|
12840
|
-
function
|
|
12837
|
+
function Yt(e, t, i) {
|
|
12841
12838
|
const r = new Float32Array(2);
|
|
12842
12839
|
for (let a = 0, n = e.length; a < n; ++a) {
|
|
12843
12840
|
const s = e[a], o = s.data, l = s.width;
|
|
12844
12841
|
for (let u = 0; u < l; ++u)
|
|
12845
12842
|
for (let f = 0; f < l; ++f) {
|
|
12846
|
-
i ?
|
|
12843
|
+
i ? hn(a, f, u, t, r) : vn(a, f, u, t, r);
|
|
12847
12844
|
const h = (u * l + f) * 2;
|
|
12848
12845
|
o[h] = r[0] * 255, o[h + 1] = r[1] * 255;
|
|
12849
12846
|
}
|
|
12850
12847
|
}
|
|
12851
12848
|
}
|
|
12852
|
-
function
|
|
12849
|
+
function Kt(e, t, i, r, a, n, s) {
|
|
12853
12850
|
const o = s.data, l = s.width;
|
|
12854
12851
|
for (let u = 0, f = i.length; u < f; ++u) {
|
|
12855
12852
|
const h = r[u], d = i[u], v = d.data, A = d.width;
|
|
@@ -12860,7 +12857,7 @@ function Xt(e, t, i, r, a, n, s) {
|
|
|
12860
12857
|
}
|
|
12861
12858
|
}
|
|
12862
12859
|
}
|
|
12863
|
-
var
|
|
12860
|
+
var pn = class {
|
|
12864
12861
|
/**
|
|
12865
12862
|
* Creates a new area image.
|
|
12866
12863
|
*
|
|
@@ -12883,31 +12880,31 @@ var An = class {
|
|
|
12883
12880
|
2
|
|
12884
12881
|
));
|
|
12885
12882
|
for (let l = 0, u = ft.length; l < u; ++l)
|
|
12886
|
-
|
|
12883
|
+
Yt(s, ft[l], !0), Kt(
|
|
12887
12884
|
0,
|
|
12888
12885
|
5 * De * l,
|
|
12889
12886
|
s,
|
|
12890
|
-
|
|
12887
|
+
cn,
|
|
12891
12888
|
De,
|
|
12892
12889
|
!0,
|
|
12893
12890
|
r
|
|
12894
12891
|
);
|
|
12895
|
-
for (let l = 0, u =
|
|
12896
|
-
|
|
12892
|
+
for (let l = 0, u = Qt.length; l < u; ++l)
|
|
12893
|
+
Yt(o, Qt[l], !1), Kt(
|
|
12897
12894
|
5 * De,
|
|
12898
12895
|
4 * ct * l,
|
|
12899
12896
|
o,
|
|
12900
|
-
|
|
12897
|
+
Ri,
|
|
12901
12898
|
ct,
|
|
12902
12899
|
!1,
|
|
12903
12900
|
r
|
|
12904
12901
|
);
|
|
12905
12902
|
return r;
|
|
12906
12903
|
}
|
|
12907
|
-
},
|
|
12904
|
+
}, gn = `"use strict";(()=>{function q(t,a,s){let e=document.createElement("canvas"),n=e.getContext("2d");if(e.width=t,e.height=a,s instanceof Image)n.drawImage(s,0,0);else{let r=n.createImageData(t,a);r.data.set(s),n.putImageData(r,0,0)}return e}var F=class t{constructor(a=0,s=0,e=null){this.width=a,this.height=s,this.data=e}toCanvas(){return typeof document=="undefined"?null:q(this.width,this.height,this.data)}static from(a){let{width:s,height:e}=a,n;if(a instanceof Image){let r=q(s,e,a);r!==null&&(n=r.getContext("2d").getImageData(0,0,s,e).data)}else n=a.data;return new t(s,e,n)}};var M=[new Float32Array(2),new Float32Array(2)],D=16,W=20,I=30,j=32,v=new Float32Array([0,-.25,.25,-.125,.125,-.375,.375]),N=[new Float32Array([0,0]),new Float32Array([.25,-.25]),new Float32Array([-.25,.25]),new Float32Array([.125,-.125]),new Float32Array([-.125,.125])],z=[new Uint8Array([0,0]),new Uint8Array([3,0]),new Uint8Array([0,3]),new Uint8Array([3,3]),new Uint8Array([1,0]),new Uint8Array([4,0]),new Uint8Array([1,3]),new Uint8Array([4,3]),new Uint8Array([0,1]),new Uint8Array([3,1]),new Uint8Array([0,4]),new Uint8Array([3,4]),new Uint8Array([1,1]),new Uint8Array([4,1]),new Uint8Array([1,4]),new Uint8Array([4,4])],p=[new Uint8Array([0,0]),new Uint8Array([1,0]),new Uint8Array([0,2]),new Uint8Array([1,2]),new Uint8Array([2,0]),new Uint8Array([3,0]),new Uint8Array([2,2]),new Uint8Array([3,2]),new Uint8Array([0,1]),new Uint8Array([1,1]),new Uint8Array([0,3]),new Uint8Array([1,3]),new Uint8Array([2,1]),new Uint8Array([3,1]),new Uint8Array([2,3]),new Uint8Array([3,3])];function C(t,a,s){return t+(a-t)*s}function B(t){return Math.min(Math.max(t,0),1)}function _(t){let a=M[0],s=M[1],e=Math.sqrt(a[0]*2)*.5,n=Math.sqrt(a[1]*2)*.5,r=Math.sqrt(s[0]*2)*.5,o=Math.sqrt(s[1]*2)*.5,c=B(t/j);a[0]=C(e,a[0],c),a[1]=C(n,a[1],c),s[0]=C(r,s[0],c),s[1]=C(o,s[1],c)}function d(t,a,s,e,n,r){let o=s-t,c=e-a,h=n,i=n+1,w=a+c*(h-t)/o,b=a+c*(i-t)/o;if(h>=t&&h<s||i>t&&i<=s)if(Math.sign(w)===Math.sign(b)||Math.abs(w)<1e-4||Math.abs(b)<1e-4){let g=(w+b)/2;g<0?(r[0]=Math.abs(g),r[1]=0):(r[0]=0,r[1]=Math.abs(g))}else{let g=-a*o/c+t,k=Math.trunc(g),m=g>t?w*(g-k)/2:0,U=g<s?b*(1-(g-k))/2:0;(Math.abs(m)>Math.abs(U)?m:-U)<0?(r[0]=Math.abs(m),r[1]=Math.abs(U)):(r[0]=Math.abs(U),r[1]=Math.abs(m))}else r[0]=0,r[1]=0;return r}function J(t,a,s,e,n){let r=M[0],o=M[1],c=.5+e,h=.5+e-1,i=a+s+1;switch(t){case 0:{n[0]=0,n[1]=0;break}case 1:{a<=s?d(0,h,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 2:{a>=s?d(i/2,0,i,h,a,n):(n[0]=0,n[1]=0);break}case 3:{d(0,h,i/2,0,a,r),d(i/2,0,i,h,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 4:{a<=s?d(0,c,i/2,0,a,n):(n[0]=0,n[1]=0);break}case 5:{n[0]=0,n[1]=0;break}case 6:{Math.abs(e)>0?(d(0,c,i,h,a,r),d(0,c,i/2,0,a,o),d(i/2,0,i,h,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,c,i,h,a,n);break}case 7:{d(0,c,i,h,a,n);break}case 8:{a>=s?d(i/2,0,i,c,a,n):(n[0]=0,n[1]=0);break}case 9:{Math.abs(e)>0?(d(0,h,i,c,a,r),d(0,h,i/2,0,a,o),d(i/2,0,i,c,a,n),o[0]=o[0]+n[0],o[1]=o[1]+n[1],n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2):d(0,h,i,c,a,n);break}case 10:{n[0]=0,n[1]=0;break}case 11:{d(0,h,i,c,a,n);break}case 12:{d(0,c,i/2,0,a,r),d(i/2,0,i,c,a,o),_(i,M),n[0]=r[0]+o[0],n[1]=r[1]+o[1];break}case 13:{d(0,h,i,c,a,n);break}case 14:{d(0,c,i,h,a,n);break}case 15:{n[0]=0,n[1]=0;break}}return n}function K(t,a,s,e,n,r){let o=t===s&&a===e;if(!o){let c=(t+s)/2,h=(a+e)/2,i=e-a,w=t-s;o=i*(n-c)+w*(r-h)>0}return o}function G(t,a,s,e,n,r){let o=0;for(let c=0;c<I;++c)for(let h=0;h<I;++h){let i=h/(I-1),w=c/(I-1);K(t,a,s,e,n+i,r+w)&&++o}return o/(I*I)}function A(t,a,s,e,n,r,o,c){let h=p[t],i=h[0],w=h[1];return i>0&&(a+=o[0],s+=o[1]),w>0&&(e+=o[0],n+=o[1]),c[0]=1-G(a,s,e,n,1+r,0+r),c[1]=G(a,s,e,n,1+r,1+r),c}function Q(t,a,s,e,n){let r=M[0],o=M[1],c=a+s+1;switch(t){case 0:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 1:{A(t,1,0,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 2:{A(t,0,0,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 3:{A(t,1,0,1+c,0+c,a,e,n);break}case 4:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 5:{A(t,1,1,0+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 6:{A(t,1,1,1+c,0+c,a,e,n);break}case 7:{A(t,1,1,1+c,0+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 8:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 9:{A(t,1,0,1+c,1+c,a,e,n),A(t,1,0,1+c,1+c,a,e,n);break}case 10:{A(t,0,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 11:{A(t,1,0,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 12:{A(t,1,1,1+c,1+c,a,e,n);break}case 13:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,1+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 14:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,1,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}case 15:{A(t,1,1,1+c,1+c,a,e,r),A(t,1,0,1+c,0+c,a,e,o),n[0]=(r[0]+o[0])/2,n[1]=(r[1]+o[1])/2;break}}return n}function R(t,a,s){let e=new Float32Array(2);for(let n=0,r=t.length;n<r;++n){let o=t[n],c=o.data,h=o.width;for(let i=0;i<h;++i)for(let w=0;w<h;++w){s?J(n,w,i,a,e):Q(n,w,i,a,e);let b=(i*h+w)*2;c[b]=e[0]*255,c[b+1]=e[1]*255}}}function T(t,a,s,e,n,r,o){let c=o.data,h=o.width;for(let i=0,w=s.length;i<w;++i){let b=e[i],g=s[i],k=g.data,m=g.width;for(let U=0;U<n;++U)for(let x=0;x<n;++x){let Z=b[0]*n+t+x,O=((b[1]*n+a+U)*h+Z)*4,L=r?(U*U*m+x*x)*2:(U*m+x)*2;c[O]=k[L],c[O+1]=k[L+1],c[O+2]=0,c[O+3]=255}}}var S=class{static generate(){let a=10*D,s=v.length*5*D,e=new Uint8ClampedArray(a*s*4),n=new F(a,s,e),r=Math.pow(D-1,2)+1,o=W,c=[],h=[];for(let i=3,w=e.length;i<w;i+=4)e[i]=255;for(let i=0;i<16;++i)c.push(new F(r,r,new Uint8ClampedArray(r*r*2),2)),h.push(new F(o,o,new Uint8ClampedArray(o*o*2),2));for(let i=0,w=v.length;i<w;++i)R(c,v[i],!0),T(0,5*D*i,c,z,D,!0,n);for(let i=0,w=N.length;i<w;++i)R(h,N[i],!1),T(5*D,4*W*i,h,p,W,!1,n);return n}};var P=new Map([[y(0,0,0,0),new Float32Array([0,0,0,0])],[y(0,0,0,1),new Float32Array([0,0,0,1])],[y(0,0,1,0),new Float32Array([0,0,1,0])],[y(0,0,1,1),new Float32Array([0,0,1,1])],[y(0,1,0,0),new Float32Array([0,1,0,0])],[y(0,1,0,1),new Float32Array([0,1,0,1])],[y(0,1,1,0),new Float32Array([0,1,1,0])],[y(0,1,1,1),new Float32Array([0,1,1,1])],[y(1,0,0,0),new Float32Array([1,0,0,0])],[y(1,0,0,1),new Float32Array([1,0,0,1])],[y(1,0,1,0),new Float32Array([1,0,1,0])],[y(1,0,1,1),new Float32Array([1,0,1,1])],[y(1,1,0,0),new Float32Array([1,1,0,0])],[y(1,1,0,1),new Float32Array([1,1,0,1])],[y(1,1,1,0),new Float32Array([1,1,1,0])],[y(1,1,1,1),new Float32Array([1,1,1,1])]]);function H(t,a,s){return t+(a-t)*s}function y(t,a,s,e){let n=H(t,a,.75),r=H(s,e,1-.25);return H(n,r,1-.125)}function V(t,a){let s=0;return a[3]===1&&(s+=1),s===1&&a[2]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s}function $(t,a){let s=0;return a[3]===1&&t[1]!==1&&t[3]!==1&&(s+=1),s===1&&a[2]===1&&t[0]!==1&&t[2]!==1&&(s+=1),s}var E=class{static generate(){let o=new Uint8ClampedArray(2178),c=new Uint8ClampedArray(1024*4);for(let h=0;h<33;++h)for(let i=0;i<66;++i){let w=.03125*i,b=.03125*h;if(P.has(w)&&P.has(b)){let g=P.get(w),k=P.get(b),m=h*66+i;o[m]=127*V(g,k),o[m+33]=127*$(g,k)}}for(let h=0,i=17;i<33;++i)for(let w=0;w<64;++w,h+=4)c[h]=o[i*66+w],c[h+3]=255;return new F(64,16,c)}};self.addEventListener("message",t=>{let a=S.generate(),s=E.generate();postMessage({areaImageData:a,searchImageData:s},[a.data.buffer,s.data.buffer]),close()});})();
|
|
12908
12905
|
`;
|
|
12909
|
-
function
|
|
12910
|
-
const t = URL.createObjectURL(new Blob([
|
|
12906
|
+
function mn(e = !0) {
|
|
12907
|
+
const t = URL.createObjectURL(new Blob([gn], {
|
|
12911
12908
|
type: "text/javascript"
|
|
12912
12909
|
})), i = new Worker(t);
|
|
12913
12910
|
return URL.revokeObjectURL(t), new Promise((r, a) => {
|
|
@@ -12920,7 +12917,7 @@ function Dn(e = !0) {
|
|
|
12920
12917
|
}), i.postMessage(null);
|
|
12921
12918
|
});
|
|
12922
12919
|
}
|
|
12923
|
-
var
|
|
12920
|
+
var An = class {
|
|
12924
12921
|
/**
|
|
12925
12922
|
* Constructs a new SMAA image generator.
|
|
12926
12923
|
*/
|
|
@@ -12949,7 +12946,7 @@ var wn = class {
|
|
|
12949
12946
|
localStorage.getItem("smaa-search"),
|
|
12950
12947
|
localStorage.getItem("smaa-area")
|
|
12951
12948
|
] : [null, null];
|
|
12952
|
-
return (t[0] !== null && t[1] !== null ? Promise.resolve(t) :
|
|
12949
|
+
return (t[0] !== null && t[1] !== null ? Promise.resolve(t) : mn(e)).then((r) => new Promise((a, n) => {
|
|
12953
12950
|
const s = new Image(), o = new Image(), l = new Ne();
|
|
12954
12951
|
l.onLoad = () => a([s, o]), l.onError = n, s.addEventListener("error", (u) => l.itemError("smaa-search")), o.addEventListener("error", (u) => l.itemError("smaa-area")), s.addEventListener("load", () => l.itemEnd("smaa-search")), o.addEventListener("load", () => l.itemEnd("smaa-area")), l.itemStart("smaa-search"), l.itemStart("smaa-area"), s.src = r[0], o.src = r[1];
|
|
12955
12952
|
}));
|
|
@@ -12979,15 +12976,15 @@ function X(e, t, i, r) {
|
|
|
12979
12976
|
const a = ht(e, t, 0.75), n = ht(i, r, 1 - 0.25);
|
|
12980
12977
|
return ht(a, n, 1 - 0.125);
|
|
12981
12978
|
}
|
|
12982
|
-
function
|
|
12979
|
+
function xn(e, t) {
|
|
12983
12980
|
let i = 0;
|
|
12984
12981
|
return t[3] === 1 && (i += 1), i === 1 && t[2] === 1 && e[1] !== 1 && e[3] !== 1 && (i += 1), i;
|
|
12985
12982
|
}
|
|
12986
|
-
function
|
|
12983
|
+
function Dn(e, t) {
|
|
12987
12984
|
let i = 0;
|
|
12988
12985
|
return t[3] === 1 && e[1] !== 1 && e[3] !== 1 && (i += 1), i === 1 && t[2] === 1 && e[0] !== 1 && e[2] !== 1 && (i += 1), i;
|
|
12989
12986
|
}
|
|
12990
|
-
var
|
|
12987
|
+
var wn = class {
|
|
12991
12988
|
/**
|
|
12992
12989
|
* Creates a new search image.
|
|
12993
12990
|
*
|
|
@@ -13000,7 +12997,7 @@ var En = class {
|
|
|
13000
12997
|
const u = 0.03125 * l, f = 0.03125 * o;
|
|
13001
12998
|
if (Ke.has(u) && Ke.has(f)) {
|
|
13002
12999
|
const h = Ke.get(u), d = Ke.get(f), v = o * 66 + l;
|
|
13003
|
-
n[v] = 127 *
|
|
13000
|
+
n[v] = 127 * xn(h, d), n[v + 33] = 127 * Dn(h, d);
|
|
13004
13001
|
}
|
|
13005
13002
|
}
|
|
13006
13003
|
for (let o = 0, l = 17; l < 33; ++l)
|
|
@@ -13009,141 +13006,140 @@ var En = class {
|
|
|
13009
13006
|
return new ue(64, 16, s);
|
|
13010
13007
|
}
|
|
13011
13008
|
};
|
|
13012
|
-
const
|
|
13009
|
+
const bn = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
|
|
13013
13010
|
__proto__: null,
|
|
13014
|
-
ASCIIEffect:
|
|
13015
|
-
ASCIITexture:
|
|
13016
|
-
AdaptiveLuminanceMaterial:
|
|
13017
|
-
AdaptiveLuminancePass:
|
|
13011
|
+
ASCIIEffect: Yr,
|
|
13012
|
+
ASCIITexture: ni,
|
|
13013
|
+
AdaptiveLuminanceMaterial: Ci,
|
|
13014
|
+
AdaptiveLuminancePass: yi,
|
|
13018
13015
|
BlendFunction: g,
|
|
13019
|
-
BlendMode:
|
|
13020
|
-
BloomEffect:
|
|
13016
|
+
BlendMode: si,
|
|
13017
|
+
BloomEffect: fi,
|
|
13021
13018
|
BlurPass: pe,
|
|
13022
|
-
BokehEffect:
|
|
13019
|
+
BokehEffect: ia,
|
|
13023
13020
|
BokehMaterial: Fe,
|
|
13024
|
-
BoxBlurMaterial:
|
|
13025
|
-
BoxBlurPass:
|
|
13026
|
-
BrightnessContrastEffect:
|
|
13027
|
-
ChromaticAberrationEffect:
|
|
13028
|
-
CircleOfConfusionMaterial:
|
|
13029
|
-
ClearMaskPass:
|
|
13021
|
+
BoxBlurMaterial: Mi,
|
|
13022
|
+
BoxBlurPass: js,
|
|
13023
|
+
BrightnessContrastEffect: aa,
|
|
13024
|
+
ChromaticAberrationEffect: fa,
|
|
13025
|
+
CircleOfConfusionMaterial: hi,
|
|
13026
|
+
ClearMaskPass: ti,
|
|
13030
13027
|
ClearPass: ge,
|
|
13031
|
-
ColorAverageEffect:
|
|
13028
|
+
ColorAverageEffect: na,
|
|
13032
13029
|
ColorChannel: he,
|
|
13033
|
-
ColorDepthEffect:
|
|
13030
|
+
ColorDepthEffect: la,
|
|
13034
13031
|
ColorEdgesMaterial: At,
|
|
13035
13032
|
ConvolutionMaterial: $e,
|
|
13036
13033
|
CopyMaterial: He,
|
|
13037
13034
|
CopyPass: _e,
|
|
13038
|
-
DepthComparisonMaterial:
|
|
13039
|
-
DepthCopyMaterial:
|
|
13035
|
+
DepthComparisonMaterial: Ai,
|
|
13036
|
+
DepthCopyMaterial: Bi,
|
|
13040
13037
|
DepthCopyMode: Ce,
|
|
13041
13038
|
DepthCopyPass: wt,
|
|
13042
|
-
DepthDownsamplingMaterial:
|
|
13043
|
-
DepthDownsamplingPass:
|
|
13044
|
-
DepthEffect:
|
|
13039
|
+
DepthDownsamplingMaterial: wi,
|
|
13040
|
+
DepthDownsamplingPass: Ti,
|
|
13041
|
+
DepthEffect: da,
|
|
13045
13042
|
DepthMaskMaterial: Mt,
|
|
13046
|
-
DepthOfFieldEffect:
|
|
13043
|
+
DepthOfFieldEffect: Aa,
|
|
13047
13044
|
DepthPass: Pt,
|
|
13048
|
-
DepthPickingPass:
|
|
13045
|
+
DepthPickingPass: en,
|
|
13049
13046
|
DepthSavePass: wt,
|
|
13050
13047
|
DepthTestStrategy: Me,
|
|
13051
|
-
Disposable:
|
|
13052
|
-
DotScreenEffect:
|
|
13053
|
-
DownsamplingMaterial:
|
|
13048
|
+
Disposable: ir,
|
|
13049
|
+
DotScreenEffect: Da,
|
|
13050
|
+
DownsamplingMaterial: li,
|
|
13054
13051
|
EdgeDetectionMaterial: At,
|
|
13055
13052
|
EdgeDetectionMode: Bt,
|
|
13056
13053
|
Effect: I,
|
|
13057
13054
|
EffectAttribute: V,
|
|
13058
|
-
EffectComposer:
|
|
13059
|
-
EffectMaterial:
|
|
13060
|
-
EffectPass:
|
|
13061
|
-
EffectShaderData:
|
|
13055
|
+
EffectComposer: nr,
|
|
13056
|
+
EffectMaterial: Pi,
|
|
13057
|
+
EffectPass: rn,
|
|
13058
|
+
EffectShaderData: ri,
|
|
13062
13059
|
EffectShaderSection: B,
|
|
13063
|
-
FXAAEffect:
|
|
13064
|
-
GammaCorrectionEffect:
|
|
13065
|
-
GaussKernel:
|
|
13066
|
-
GaussianBlurMaterial:
|
|
13067
|
-
GaussianBlurPass:
|
|
13068
|
-
GlitchEffect:
|
|
13060
|
+
FXAAEffect: Sa,
|
|
13061
|
+
GammaCorrectionEffect: Ca,
|
|
13062
|
+
GaussKernel: ai,
|
|
13063
|
+
GaussianBlurMaterial: Ii,
|
|
13064
|
+
GaussianBlurPass: an,
|
|
13065
|
+
GlitchEffect: Ba,
|
|
13069
13066
|
GlitchMode: Te,
|
|
13070
|
-
GodRaysEffect:
|
|
13071
|
-
GodRaysMaterial:
|
|
13072
|
-
GridEffect:
|
|
13073
|
-
HueSaturationEffect:
|
|
13074
|
-
ImmutableTimer:
|
|
13075
|
-
Initializable:
|
|
13067
|
+
GodRaysEffect: ba,
|
|
13068
|
+
GodRaysMaterial: vi,
|
|
13069
|
+
GridEffect: Fa,
|
|
13070
|
+
HueSaturationEffect: Oa,
|
|
13071
|
+
ImmutableTimer: or,
|
|
13072
|
+
Initializable: lr,
|
|
13076
13073
|
KawaseBlurMaterial: $e,
|
|
13077
13074
|
KawaseBlurPass: pe,
|
|
13078
13075
|
KernelSize: te,
|
|
13079
|
-
LUT1DEffect:
|
|
13080
|
-
LUT3DEffect:
|
|
13081
|
-
LUT3dlLoader:
|
|
13082
|
-
LUTCubeLoader:
|
|
13083
|
-
LUTEffect:
|
|
13084
|
-
LUTOperation:
|
|
13085
|
-
LambdaPass:
|
|
13086
|
-
LensDistortionEffect:
|
|
13076
|
+
LUT1DEffect: Ga,
|
|
13077
|
+
LUT3DEffect: Nt,
|
|
13078
|
+
LUT3dlLoader: Hs,
|
|
13079
|
+
LUTCubeLoader: zs,
|
|
13080
|
+
LUTEffect: Nt,
|
|
13081
|
+
LUTOperation: pi,
|
|
13082
|
+
LambdaPass: sn,
|
|
13083
|
+
LensDistortionEffect: Ha,
|
|
13087
13084
|
LookupTexture: Oe,
|
|
13088
13085
|
LookupTexture3D: Oe,
|
|
13089
|
-
LuminanceMaterial:
|
|
13086
|
+
LuminanceMaterial: oi,
|
|
13090
13087
|
LuminancePass: Ct,
|
|
13091
13088
|
MaskFunction: yt,
|
|
13092
|
-
MaskMaterial:
|
|
13093
|
-
MaskPass:
|
|
13094
|
-
MipmapBlurPass:
|
|
13095
|
-
NoiseEffect:
|
|
13089
|
+
MaskMaterial: di,
|
|
13090
|
+
MaskPass: ii,
|
|
13091
|
+
MipmapBlurPass: ci,
|
|
13092
|
+
NoiseEffect: Ya,
|
|
13096
13093
|
NoiseTexture: et,
|
|
13097
|
-
NormalPass:
|
|
13094
|
+
NormalPass: nn,
|
|
13098
13095
|
OutlineEdgesMaterial: mt,
|
|
13099
|
-
OutlineEffect:
|
|
13096
|
+
OutlineEffect: _a,
|
|
13100
13097
|
OutlineMaterial: mt,
|
|
13101
13098
|
OverrideMaterialManager: gt,
|
|
13102
13099
|
Pass: H,
|
|
13103
|
-
PixelationEffect:
|
|
13104
|
-
PredicationMode:
|
|
13100
|
+
PixelationEffect: es,
|
|
13101
|
+
PredicationMode: mi,
|
|
13105
13102
|
RawImageData: ue,
|
|
13106
|
-
RealisticBokehEffect:
|
|
13103
|
+
RealisticBokehEffect: is,
|
|
13107
13104
|
RenderPass: ze,
|
|
13108
|
-
Resizable:
|
|
13105
|
+
Resizable: ur,
|
|
13109
13106
|
Resizer: x,
|
|
13110
13107
|
Resolution: x,
|
|
13111
|
-
SMAAAreaImageData:
|
|
13112
|
-
SMAAEffect:
|
|
13113
|
-
SMAAImageGenerator:
|
|
13114
|
-
SMAAImageLoader:
|
|
13108
|
+
SMAAAreaImageData: pn,
|
|
13109
|
+
SMAAEffect: As,
|
|
13110
|
+
SMAAImageGenerator: An,
|
|
13111
|
+
SMAAImageLoader: Gs,
|
|
13115
13112
|
SMAAPreset: Se,
|
|
13116
|
-
SMAASearchImageData:
|
|
13117
|
-
SMAAWeightsMaterial:
|
|
13118
|
-
SSAOEffect:
|
|
13119
|
-
SSAOMaterial:
|
|
13113
|
+
SMAASearchImageData: wn,
|
|
13114
|
+
SMAAWeightsMaterial: xi,
|
|
13115
|
+
SSAOEffect: Es,
|
|
13116
|
+
SSAOMaterial: Di,
|
|
13120
13117
|
SavePass: _e,
|
|
13121
|
-
ScanlineEffect:
|
|
13118
|
+
ScanlineEffect: as,
|
|
13122
13119
|
Section: B,
|
|
13123
13120
|
Selection: Et,
|
|
13124
|
-
SelectiveBloomEffect:
|
|
13125
|
-
SepiaEffect:
|
|
13121
|
+
SelectiveBloomEffect: us,
|
|
13122
|
+
SepiaEffect: fs,
|
|
13126
13123
|
ShaderPass: q,
|
|
13127
|
-
ShockWaveEffect:
|
|
13128
|
-
TetrahedralUpscaler:
|
|
13129
|
-
TextureEffect:
|
|
13130
|
-
TiltShiftBlurMaterial:
|
|
13131
|
-
TiltShiftBlurPass:
|
|
13132
|
-
TiltShiftEffect:
|
|
13133
|
-
Timer:
|
|
13134
|
-
ToneMappingEffect:
|
|
13124
|
+
ShockWaveEffect: ls,
|
|
13125
|
+
TetrahedralUpscaler: ln,
|
|
13126
|
+
TextureEffect: Ms,
|
|
13127
|
+
TiltShiftBlurMaterial: Si,
|
|
13128
|
+
TiltShiftBlurPass: Ei,
|
|
13129
|
+
TiltShiftEffect: bs,
|
|
13130
|
+
Timer: ei,
|
|
13131
|
+
ToneMappingEffect: Ls,
|
|
13135
13132
|
ToneMappingMode: j,
|
|
13136
|
-
UpsamplingMaterial:
|
|
13137
|
-
VignetteEffect:
|
|
13133
|
+
UpsamplingMaterial: ui,
|
|
13134
|
+
VignetteEffect: Ns,
|
|
13138
13135
|
VignetteTechnique: Ee,
|
|
13139
|
-
WebGLExtension:
|
|
13140
|
-
version:
|
|
13136
|
+
WebGLExtension: Va,
|
|
13137
|
+
version: tr
|
|
13141
13138
|
}, Symbol.toStringTag, { value: "Module" }));
|
|
13142
|
-
class
|
|
13139
|
+
class Tn extends $t {
|
|
13140
|
+
boundingSphere = new $i();
|
|
13143
13141
|
constructor() {
|
|
13144
|
-
super()
|
|
13145
|
-
It(this, "boundingSphere", new ir());
|
|
13146
|
-
this.setAttribute("position", new qe(new Float32Array([
|
|
13142
|
+
super(), this.setAttribute("position", new qe(new Float32Array([
|
|
13147
13143
|
-1,
|
|
13148
13144
|
-1,
|
|
13149
13145
|
3,
|
|
@@ -13162,13 +13158,13 @@ class Cn extends ei {
|
|
|
13162
13158
|
computeBoundingSphere() {
|
|
13163
13159
|
}
|
|
13164
13160
|
}
|
|
13165
|
-
const
|
|
13161
|
+
const Sn = /* @__PURE__ */ new Tn(), En = /* @__PURE__ */ new _i();
|
|
13166
13162
|
class _ {
|
|
13167
13163
|
constructor(t) {
|
|
13168
|
-
this._mesh = new
|
|
13164
|
+
this._mesh = new Jt(Sn, t), this._mesh.frustumCulled = !1;
|
|
13169
13165
|
}
|
|
13170
13166
|
render(t) {
|
|
13171
|
-
t.render(this._mesh,
|
|
13167
|
+
t.render(this._mesh, En);
|
|
13172
13168
|
}
|
|
13173
13169
|
get material() {
|
|
13174
13170
|
return this._mesh.material;
|
|
@@ -13180,7 +13176,7 @@ class _ {
|
|
|
13180
13176
|
this._mesh.material.dispose(), this._mesh.geometry.dispose();
|
|
13181
13177
|
}
|
|
13182
13178
|
}
|
|
13183
|
-
const
|
|
13179
|
+
const bi = {
|
|
13184
13180
|
uniforms: {
|
|
13185
13181
|
sceneDiffuse: {
|
|
13186
13182
|
value: null
|
|
@@ -13493,7 +13489,7 @@ void main() {
|
|
|
13493
13489
|
gl_FragColor = vec4(occ, 0.5 + 0.5 * normal);
|
|
13494
13490
|
}`
|
|
13495
13491
|
)
|
|
13496
|
-
},
|
|
13492
|
+
}, Ui = {
|
|
13497
13493
|
uniforms: {
|
|
13498
13494
|
sceneDiffuse: {
|
|
13499
13495
|
value: null
|
|
@@ -13854,7 +13850,7 @@ void main() {
|
|
|
13854
13850
|
}
|
|
13855
13851
|
`
|
|
13856
13852
|
)
|
|
13857
|
-
},
|
|
13853
|
+
}, Fi = {
|
|
13858
13854
|
uniforms: {
|
|
13859
13855
|
sceneDiffuse: {
|
|
13860
13856
|
value: null
|
|
@@ -14055,7 +14051,7 @@ void main() {
|
|
|
14055
14051
|
}
|
|
14056
14052
|
`
|
|
14057
14053
|
)
|
|
14058
|
-
},
|
|
14054
|
+
}, Li = {
|
|
14059
14055
|
uniforms: {
|
|
14060
14056
|
sceneDepth: {
|
|
14061
14057
|
value: null
|
|
@@ -14214,9 +14210,9 @@ void main() {
|
|
|
14214
14210
|
), 0.0);
|
|
14215
14211
|
}`
|
|
14216
14212
|
)
|
|
14217
|
-
}, Bn = "5L7pP4UXrOIr/VZ1G3f6p89FIWU7lqc7J3DPxKjJUXODJoHQzf/aNVM+ABlvhXeBGN7iC0WkmTjEaAqOItBfBdaK5KSGV1ET5SOKl3x9JOX5w2sAl6+6KjDhVUHgbqq7DZ5EeYzbdSNxtrQLW/KkPJoOTG4u5CBUZkCKHniY9l7DUgjuz708zG1HIC8qfohi1vPjPH9Lq47ksjRrjwXD4MlVCjdAqYFGodQ8tRmHkOfq4wVRIAHvoavPHvN1lpk3X4Y1yzAPGe8S9KBs3crc4GwlU1dEOXiWol/mgQqxkNqB1xd04+0Bmpwj0GcCc4NUi+c731FUxjvaexCkCJ0qhrJJ++htWqetNC4NewClu8aFRSwrqiJEGe+qtTg4CYCHaF1wJI0sy/ZBQAI0qAMyBvVjWZlv2pdkCaro9eWDLK5I4mbb8E4d7hZr9dDJiTJm6Bmb5S+2F7yal/JPdeLUfwq7jmVLaQfhv4tWMJAt7V4sG9LuAv2oPJgSj1nnlBvPibfHM2TrlWHwGCLGxW/5Jm2TotaDL+pHDM5pn1r0UuTZ24N8S5k68bLHW9tfD+2k4zGev23ExJb4YTRKWrj82N5LjJ26lj1BkGZ0CsXLGGELoPaYQomjTqPxYqhfwOwDliNGVqux9ffuybqOKgsbB51B1GbZfG8vHDBE2JQGib1mnCmWOWAMJcHN0cKeDHYTflbDTVXajtr68mwfRje6WueQ/6yWqmZMLWNH7P27zGFhMFqaqfg11Q88g/9UA/FROe9yfq0yOO0pnNAxvepFy2BpEbcgG+mCyjCC01JWlOZlIPdf1TtlyOt7L94ToYGCukoFt4OqwOrofamjECpSgKLLmrRM+sNRAw12eaqk8KtdFk7pn2IcDQiPXCh16t1a+psi+w9towHTKPyQM0StKr61b2BnN1HU+aezFNBLfHTiXwhGTbdxLLmrsAGIVSiNAeCGE8GlB0iOv2v78kP0CTmAPUEqnHYRSDlP+L6m/rYjEK6Q85GRDJi2W20/7NLPpSOaMR++IFvpkcwRuc59j8hh9tYlc1xjdt2jmp9KJczB7U9P43inuxLOv11P5/HYH5d6gLB0CsbGC8APjh+EcCP0zFWqlaACZweLhVfv3yiyd8R3bdVg8sRKsxPvhDaPpiFp9+MN+0Ua0bsPr+lhxfZhMhlevkLbR4ZvcSRP6ApQLy3+eMh9ehCB3z5DVAaN3P6J8pi5Qa88ZQsOuCTWyH6q8yMfBw8y8nm6jaOxJhPH6Hf0I4jmALUBsWKH4gWBnyijHh7z3/1HhQzFLRDRrIQwUtu11yk7U0gDw/FatOIZOJaBx3UqbUxSZ6dboFPm5pAyyXC2wYdSWlpZx/D2C6hDO2sJM4HT9IKWWmDkZIO2si/6BKHruXIEDpfAtz3xDlIdKnnlqnkfCyy6vNOPyuoWsSWBeiN0mcfIrnOtp2j7bxjOkr25skfS/lwOC692cEp7TKSlymbsyzoWg/0AN66SvQYo6BqpNwPpTaUu25zMWlwVUdfu1EEdc0O06TI0JmHk4f6GZQbfOs//OdgtGPO6uLoadJycR8Z80rkd88QoNmimZd8vcpQKScCFkxH1RMTkPlN3K7CL/NSMOiXEvxrn9VyUPFee63uRflgaPMSsafvqMgzTt3T1RaHNLLFatQbD0Vha4YXZ/6Ake7onM65nC9cyLkteYkDfHoJtef7wCrWXTK0+vH38VUBcFJP0+uUXpkiK0gDXNA39HL/qdVcaOA16kd2gzq8aHpNSaKtgMLJC6fdLLS/I/4lUWV2+djY9Rc3QuJOUrlHFQERtXN4xJaAHZERCUQZ9ND2pEtZg8dsnilcnqmqYn3c1sRyK0ziKpHNytEyi2gmzxEFchvT1uBWxZUikkAlWuyqvvhteSG9kFhTLNM97s3X1iS2UbE6cvApgbmeJ/KqtP0NNT3bZiG9TURInCZtVsNZzYus6On0wcdMlVfqo8XLhT5ojaOk4DtCyeoQkBt1mf5luFNaLFjI/1cnPefyCQwcq5ia/4pN4NB+xE/3SEPsliJypS964SI6o5fDVa0IERR8DoeQ+1iyRLU1qGYexB61ph4pkG1rf3c2YD6By1pFCmww9B0r2VjFeaubkIdgWx4RKLQRPLENdGo8ezI5mkNtdCws19aP1uHhenD+HKa8GDeLulb2fiMRhU2xJzzz9e4yOMPvEnGEfbCiQ17nUDpcFDWthr68mhZ4WiHUkRpaVWJNExuULcGkuyVLsQj59pf6OHFR7tofhy9FMrWPCEvX1d5sCVJt8yBFiB6NoOuwMy4wlso9I2G4E5/5B2c6vIZUUY9fFujT3hpkdTuVhbhBwLCtnlIjBpN4cq+waZ0wXSrmebcl+dcrb7sPh9jKxFINkScDTBgjSUfLkC3huJJs/M4M8AOFxbbSIVpBUarYFmLpGsv+V6TJnWNTwI41tubwo7QSI1VOdRKT/Pp8U3oK2ciDbeuWnAGAANvQjGfcewdAdo6H83XzqlK/4yudtFHJSv9Y+qJskwnVToH1I0+tJ3vsLBXtlvMzLIxUj/8LcqZnrNHfVRgabFNXW0qpUvDgxnP3f54KooR3NI+2Q/VHAYFigMkQE5dLH6C6fGs/TKeE6E2jOhZQcP9/rrJjJKcLYdn5cw6XLCUe9F7quk5Yhac+nYL5HOXvp6Q/5qbiQHkuebanX77YSNx34YaWYpcEHuY1u/lEVTCQ7taPaw3oNcn/qJhMzGPZUs3XAq48wj/hCIO2d5aFdfXnS0yg57/jxzDJBwkdOgeVnyyh19Iz1UqiysT4J1eeKwUuWEYln23ydtP7g3R1BnvnxqFPAnOMgOIop2dkXPfUh/9ZKV3ZQbZNactPD4ql5Qg9CxSBnIwzlj/tseQKWRstwNbf17neGwDFFWdm/8f+nDWt/WlKV3MUiAm3ci6xXMDSL5ubPXBg/gKEE7TsZVGUcrIbdXILcMngvGs7unvlPJh6oadeBDqiAviIZ/iyiUMdQZAuf/YBAY0VP1hcgInuWoKbx31AOjyTN2OOHrlthB3ny9JKHOAc8BMvqopikPldcwIQoFxTccKKIeI815GcwaKDLsMbCsxegrzXl8E0bpic/xffU9y1DCgeKZoF2PIY77RIn6kSRdBiGd8NtNwT74dyeFBMkYraPkudN26x9NPuBt4iCOAnBFaNSKVgKiZQruw22kM1fgBKG7cPYAxdHJ8M4V/jzBn2jEJg+jk/jjV4oMmMNOpKB5oVpVh7tK529Z+5vKZ0NSY2A4YdcT0x4BdkoNEDrpsTmekSTjvx9ZBiTHrm9M/n/hGmgpjz4WEjttRfAEy5DYH5vCK/9GuVPa4hoApFaNlrFD/n2PpKOw24iKujKhVIz41p1E0HwsCd/c17OA0H0RjZi1V/rjJLexUzpmXTMIMuzaOBbU4dxvQMgyvxJvR6DyF3BaHkaqT4P3FRYlm+zh8EEGgmkNqD1WRUubDW62VqLoH8UEelIpL7C8CguWWGGCAIDPma9bnh+7IJSt0Cn6ACER2mYk8dLsrN70RUVLiE0ig+08yPY9IOtuqHf/KYsT84BwhMcVq7t8q1WVjpJGNyXdtIPIjhAzabtrX03Itn29QO3TCixE9WpkHIOdAoGvqCrw1D3x9g9Px8u0yZZuulZuGy0veSY34KDSlhsO1zx2ZMrpDBzCHPB4niwApk6NevIvmBxU3+4yaewDvgEQDJ6Of5iRxjAIpp9UO8EzNY4blj4qh8SCSZTqbe/lShE6tNU9Y5IoWHeJxPcHF9KwYQD7lFcIpcscHrcfkHJfL2lL1zczKywEF7BwkjXEirgBcvNWayatqdTVT5oLbzTmED3EOYBSXFyb2VIYk3t0dOZWJdG1nP+W7Qfyeb8MSIyUGKEA57ptPxrPHKYGZPHsuBqQuVSrn0i8KJX+rlzAqo8AawchsJ26FckxTf5+joTcw+2y8c8bushpRYEbgrdr64ltEYPV2AbVgKXV3XACoD1gbs01CExbJALkuItjfYN3+6I8kbiTYmdzBLaNC+xu9z/eXcRQV1Lo8cJoSsKyWJPuTncu5vcmfMUAWmuwhjymK1rhYR8pQMXNQg9X+5ha5fEnap+LhUL1d5SURZz9rGdOWLhrMcMKSaU3LhOQ/6a6qSCwgzQxCW2gFs53fpvfWxhH+xDHdKRV6w29nQ6rNqd9by+zm1OpzYyJwvFyOkrVXQUwt4HaapnweCa7Tj2Mp/tT4YcY3Q/tk1czgkzlV5mpDrdp1spOYB8ionAwxujjdhj5y9qEHu0uc36PAKAYsKLaEoiwPnob0pdluPWdv4sNSlG8GWViI+x/Z4DkW/kSs2iE3ADFjg4TCvgCbX3v0Hz0KZkerrpzEIukAusidDs2g/w0zgmLnZXvVr5kkpwQTLZ0L6uaTHl0LVikIuNIVPmL3fOQJqIdfzymUN0zucIrDintBn6ICl/inj5zteISv5hEMGMqtHc2ghcFJvmH3ZhIZi34vqqTFCb9pltTYz582Y3dwYaHb9khdfve1YryzEwEKbI8qm62qv+NyllC+WxLLAJjz0ZaEF2aTn35qeFmkbP6LDYcbwqWxA0WKsteB7vy8bRHE4r8LhubWDc0pbe90XckSDDAkRej0TQlmWsWwaz18Tx2phykVvwuIRzf4kt9srT8N7gsMjMs0NLAAldabFf2tiMoaaxHcZSX51WPc1BrwApMxih227qTZkcgtkdK1h314XvZKUKh/XysWYnk1ST4kiBI1B9OlfTjB3WHzTAReFLofsGtikwpIXzQBc/gOjz2Thlj36WN0sxyf4RmAFtrYt64fwm+ThjbhlmUTZzebLl4yAkAqzJSfjPBZS2H/IvkkTUdVh0qdB6EuiHEjEil5lk9BTPzxmoW4Jx543hiyy4ASdYA2DNoprsR9iwGFwFG3F2vIROy4L5CZrl230+k733JwboSNBKngsaFPtqo+q3mFFSjC1k0kIAFmKihaYSwaSF7konmYHZWmchuaq15TpneA2ADSRvA07I7US0lTOOfKrgxhzRl0uJihcEZhhYWxObjvNTJ/5sR4Aa5wOQhGClGLb746cJhQ2E6Jie1hbGgWxUH7YSKETptrTeR/xfcMNk2WM12S0XElC9klR8O7jLYekEOZdscP0ypSdoCVZAoK+2ju2PHE869Q9rxCs9DVQco4BriiPbCjN/8tBjsah4IuboR5QbmbyDpcdXVxGMxvWKIjocBuKbjb+B4HvkunbG0wX0IFCjQKoNMFIKcJSJXtkP3EO+J16uh4img0LQlBAOYwBLupu5r1NALMo0g3xkd9b4f7KoCBWHeyk24FmYUCy/PGLv0xErOTyORp8TJ5nnc2k1dOVBTJok7iHye9dwxwRVP3c7eAS8pMmJYHGpzIHz6ii2WJm8HMTPAZdA4q+ugj3PNCL/N45kyglqvQV4f/+ryDDG5RPy5HVoV9FVuJcq2dxF9Y0heVoipV6q1LyfAeuMzbsUV+rsSBmCSV+1CdKlxy0T0Y6Om0X6701URm2Ml6DIQgJ/3KO6kwcMYRrmKsY7TfxWhSXZll+1PfyRXe9HS0t1IKTQMZL7ZqQ8D/o+en57Y9XAQ9C+kZYykNr0xOMxEwu2+Cppm69mQyTm3H7QX6kHvXF201r+KVAf354qypJC5OHSeBU47bM1bTaVmdVEWQ+9CcvvHdu8Ue5UndHM+EeukmR82voQpetZ7WJjyXs+tPS60nk09gymuORoHNtbm0VuvyigiEvOsyHiRBW7V6FyTCppLPEHvesan91SlEh1/QEunq+qgREFXByDwNKcAH5s8/RFg8hP4wcPmFqX0xXGSKY087bqRLsBZe52jThx0XLkhKQUWPvI18WQQS3g2Ra1pzQ1oNFKdfJJjyaH5tJH6w0/upJobwB8KZ5cIs9LnVGxfBaHXBfvLkNpab7dpU6TdcbBIc+A4bqXE/Xt8/xsGQOdoXra4Us5nDAM6v2BNBQaGMmgMfQQV+ikTteSHvyl8wUxULiYRIEKaiDxpBJnyf9OoqQdZVJ8ahqOvuwqq5mnDUAUzUr/Lvs1wLu2F+r4eZMfJPL4gV5mKLkITmozRnTvA7VABaxZmFRtkhvU5iH9RQ1z26ku7aABokvptx7RKZBVL6dveLKOzg0NC7HAxcg5kE1wuyJiEQLOpO0ma3AtWD2Q2Wmn2oPZeDYAwVyEpxuwDy7ivmdUDSL95ol3h2JByTMovOCgxZ1q4E5nwwa7+4WtDAse6bDdr27XgAi5Px3IWbyZ/vRiECKwOMeJSuIl8A4Ds0emI3SgKVVWVO5uyiEUET+ucEq0casA+DQyhzRc8j+Plo0pxKynB/t0uXod1FVV4fX1sC4kDfwFaUDGQ4p9HYgaMqIWX3OF/S8+vcR0JS0bDapWKJwAIIQiRUzvh5YwtzkjccbbrT9Ky/qt5X7MAGA0lzh43mDF9EB6lCGuO/aFCMhdOqNryvd73KdJNy3mxtT8AqgmG4xq7eE1jKu6rV0g8UGyMatzyIMjiOCf4lIJFzAfwDbIfC72TJ/TK+cGsLR8blpjlEILjD8Mxr7IffhbFhgo12CzXRQ2O8JqBJ70+t12385tSmFC8Or+U8svOaoGoojT1/EmjRMT7x2iTUZ7Ny02VGeMZTtGy029tGN1/9k7x3mFu63lYnaWjfJT1m1zpWO3HSXpGkFqVd/m3kDMv4X9rmLOpwEeu8r6TI6C2zUG+MT6v90OU3y5hKqLhpyFLGtkZhDmUg/W1JGSmA8N1TapR4Kny+P6+DuMadZ9+xBbv06nfOjMwkoTsjG0zFmNbvlxEjw+Pl5QYK+V8Qyb+nknZ0Nb/Ofi9+V0eoNtTrtD1/0wzUGGG5u2D/J1ouO/PjXFJVx6LurVnPOyFVbZx7s3ZSjSq+7YN3wzTbFbUvP8GBh7cKieJt56SIowQ2I577+UEXrxUKMFO+XaLLCALuiJWB2vUdpsT+kQ+adoeTfwOulXhd/KZ7ygjj6PhvGT1xzfT7hTwd6dzSB4xV70CesHC0dsg2VyujlMGBKjg5snbrHHX/LNj3SsoLGSX+bZNTDDCNTXh+dCVPlj4K8+hJ/kVddrbtZw26Hx5qYiv3oNNg5blHRSPtmojhZmBQAz8sLC9nAuWNSz1dIofFtlryEKklbdkhBCcx5dhj7pinXDNlCeatCeTCEjYCpZ3HRf5QzUcRR1Tdb3gwtYtpPdgMxmWfJGoZSu1EsCJbIhS16Ed97+8br4Ar1mB1GcnZVx/HPtJl4CgbHXrrDPwlE4od8deRQYLt9IlsvCqgesMmLAVxB+igH7WGTcY/e3lLHJ4rkBgh2p1QpUBRb/cSQsJCbosFDkalbJigimldVK7TIHKSq2w8mezku9hgw8fXJxGdXoL1ggma52kXzjP78l0d0zMwtTVlt0FqnRyGLPGEjmICzgSp7XPFlUr7AeMclQ4opqwBFInziM5F8oJJ8qeuckGOnAcZZOLl1+ZhGF17pfIuujipwFJL7ChIIB2vlo0IQZGTJPNa2YjNcGUw+a/gWYLkCp+bOGIYhWr08UIE709ZEHlUoEbumzgpJv1D0+hWYNEpj+laoZIK5weO2DFwLL6UBYNrXTm9YvvxeN9U9oKsB3zKBwzFFwDgid5ESMhy68xBnVa55sCZd+l5AnzT8etYjIwF/BGwEx1jjzFv32bk6EeJulESARh8RZ48o7rKw67UZpudPa15SDnL8AL8xMV2SC0D1P53p190zhCFkMmEiir2olwxcJppl/kLm6/0QSUQLNaxi1AC3Pg1CTosX2YQr73PjEIxIlg4mJ62vP7ZyoHE55B0SX9YrrrCPtNsrJEwtn6KOSt7nLT3n3DLJTPbLulcqQ1kETP6Huts29oP+JLEqRGWgnrqMD+mhCl1XCZifjgQ39AeudE8pyu2DqnYU3PyPbJhStq1HbP+VxgseWL+hQ+4w1okADlA9WqoaRuoS7IY77Cm40cJiE6FLomUMltT+xO3Upcv5dzSh9F57hodSBnMHukcH1kd9tqlpprBQ/Ij9E+wMQXrZG5PlzwYJ6jmRdnQtRj64wC/7vsDaaMFteBOUDR4ebRrNZJHhwlNEK9Bz3k7jqOV5KJpL74p2sQnd7vLE374Jz+G7H3RUbX17SobYOe9wKkL/Ja/zeiKExOBmPo0X29bURQMxJkN4ddbrHnOkn6+M1zTZHo0efsB23WSSsByfmye2ZuTEZ12J3Y8ffT6Fcv8XVfA/k+p+xJGreKHJRVUIBqfEIlRt987/QXkssXuvLkECSpVEBs+gE1meB6Xn1RWISG6sV3+KOVjiE9wGdRHS8rmTERRnk0mDNU/+kOQYN/6jdeq0IHeh9c6xlSNICo9OcX1MmAiEuvGay43xCZgxHeZqD7etZMigoJI5V2q7xDcXcPort7AEjLwWlEf4ouzy2iPa3lxpcJWdIcHjhLZf1zg/Kv3/yN1voOmCLrI1Fe0MuFbB0TFSUt+t4Wqe2Mj1o2KS0TFQPGRlFm26IvVP9OXKIQkjfueRtMPoqLfVgDhplKvWWJA673+52FgEEgm+HwEgzOjaTuBz639XtCTwaQL/DrCeRdXun0VU3HDmNmTkc6YrNR6tTVWnbqHwykSBswchFLnvouR0KRhDhZiTYYYNWdvXzY+61Jz5IBcTJavGXr9BcHdk/3tqaLbwCbfpwjxCFSUs1xfFcRzRfMAl+QYuCpsYGz9H01poc1LyzhXwmODmUSg/xFq/RosgYikz4Om/ni9QCcr28ZPISaKrY7O+CspM/s+sHtnA9o9WgFWhcBX2LDN2/AL5uB6UxL/RaBp7EI+JHGz6MeLfvSNJnBgI9THFdUwmg1AXb9pvd7ccLqRdmcHLRT1I2VuEAghBduBm7pHNrZIjb2UVrijpZPlGL68hr+SDlC31mdis0BjP4aZFEOcw+uB17y5u7WOnho60Vcy7gRr7BZ9z5zY1uIwo+tW1YKpuQpdR0Vi7AxKmaIa4jXTjUh7MRlNM0W/Ut/CSD7atFd4soMsX7QbcrUZZaWuN0KOVCL9E09UcJlX+esWK56mre/s6UO9ks0owQ+foaVopkuKG+HZYbE1L1e0VwY2J53aCpwC77HqtpyNtoIlBVzOPtFvzBpDV9TjiP3CcTTGqLKh+m7urHvtHSB/+cGuRk4SsTma9sPCVJ19UPvaAv5WB8u57lNeUewwKpXmmKm5XZV91+FqCCT6nVrrrOgXfYmGFlVjqsSn3/yufkGIdtmdD0yVBcYFR3hDx43e3E4iuiEtP3Me9gcsBqveQdKojKR//qD2nEDY0IktMgFvH+SqVWi9mAorym92NEGbY8MeDjp553MiTXCRSASPt+Ga5q7pB9vwFQCTpaoevx0yEfrq9rMs3eU6wclBMJ9Ve8m6QuLYZ58J41YG3jW/khW92h6M/vbFIUPuopZ6VVtpciesU74Ef7ic8iSymDohGeUn4ubT0vRsXmbsjaJaYhL8f+8I5EiD5l680MJbxX/4GYrOg4iPQqpKp0qddSu/HKtznHeVyxgTwhfEORMCwnaqetVSzvidaWN9P+fXtGXfEP9cTdwx2gKVfDdICq7hecgRhIs0qlCt6+5pGlCc6kWoplHa/KjP+FJdXBU/IDoKMxRjFhSYkggIkhvRKiN/b2ud8URPF+lB87AGAwyMjr/Wju2Uj5IrppXZWjI3d14BdKE2fhALyQPmHqqA+AXd2LwvRHcBq4mhOQ4oNRWH7wpzc6Pggfcbv9kqhLxrJKEaJqA6Rxi+TDNOJstd5DoRVCDjmVspCVyHJsFEWPg9+NA8l1e4X2PDvOd5MPZAGw6LRhWqeZoSQcPf9/dGJYAyzCmttlRnx0BfrKQ/G9i5DVJft9fuJwMi3OD/0Dv1bRoxcXAyZ0wMJ6rwk9RjRTF4ZK8JviCCNuVt/BqQYiphOzWCpnbwOZt6qXuiAabQWrS4mNXQ7cEErXR/yJcbdFp5nWE1bPBjD0fmG3ovMxmOq5blpcOs0DtNQpci1t+9DKERWAO53IVV/S4yhMklvIp0j0FIQgwjdUptqmoMYGVWSI5YkTKLHZdXRDv9zs+HdFZt1QVcdlGOgATro3fg6ticCrDQKUJC7bYX50wdvetilEwVenHhlr85HMLRLTD6nDXWId4ORLwwe5IXiOhpuZTVTv+xdkTxJofqeCRM/jcZqQlU0gFVTlYlfwMi6HKR2YG4fQ8TOtgR+yV+BMZb6L5OwDc/28/xdfD7GXFaVA2ZSObiIxBwT2Zev637EuvpM6rxcogdM4FJFa0ZhF7nrqtNsqWg5M7hZMORpjd4szf/wS+Ahs1shY54Ct5J1dOBO4sdEtSnRc0P9PhgyOCt6aQW98R22DpAcNTDe72AHK40vutKTPfpokghRPuGvz0dulBPKfC3O4KVDCyWrJGO7Ikdu06A0keKlVfi0tGcpO0NhzXEh75NHyMysAMV19fq7//sPC0For1k2uFEvq8lwrMAfmP7afR69U2RqaILHe7glpc8HmVf87Qb2ohsw+Di9U+ePdHLecS66MhB/0OwdcXR5WBcWTZLGq/kiAaT+bzkjR8GIpWdv6pfIgQ+Q0xdiKvo+gNB7/Nf9knNJGxnh7LeZEFtMn517tNc74PPS0M4K3I6HHZqNPA+VZcBc/g5a2ARyqKrJ4Z3krsuA+VOJJz2KJpBMgCCWFln3u7k6/q3DETAubKG/pt3ObaNT0NI0Qug90L2ip5dHnZJUjPTvK5E96aX/4mRU2u8n8kh6MKbY7ANBro3huF06U+JvfyELQP25oIaj+n0ITQ4KT9rXZD4EtBIOj95fYNldDN3io/VMIvWNj9P/b95WEMq8UAVfG2XG0N6fSYdnBEC7sUEbatbDICH9qA8TTuW9kEt9DlFOZFP7bdfYLa/khSY8W5K/AkIIAPXtMvyVKyESjKx9nfragssxC0jFMVY94d8lOAwRocdS/l/P43cBGa3IqDa0ihGPcmwS8O8Vj16Uy55rOrnN0shhRJZdW8I7F0Q0KeHc35GFo4aJOFc25gNafBu1V/VO0qS4Qkb6wjRrnlepUWjtYyaDABZceValuOMtoDdeIITWKOJiwGPpB12lQgwkmXh9M86podb0D117mNQ8ElluFvbaS8RTKQ6lyj88dUwoJU/ofOeubhoXWBF8eNumkVJu+As3ED/AvLlrV91UowIWI2m8HBG+a3k247ZKAGYsOcWe7fTWqL8eqwM5ZFuoXbeugPKuMOAtOsN+4dSwkhrSAlfGNTzFwEmCNWtzpa9CgPbYNcmoHtO8pj8qMvlGET6nrkJoQ2lp5MEUV1E2A4ZH70JUlCLXvqTIpZlzyxdr5p/GZiD1/BuFOGbyfFzhuxaC/l3lC2jjt6GNRBa06AqqPlYtdA7kiidYa5Qi0/XpXiMDyMXNOj3kmJEaXufW0GO8+DF8OoMULX1vvjCePKNis4AmxQKLCF+cjf/wyilCJvuiyLVPSdsuRTPZ0AhpdDF/1uFmDwG7iP3qYwNsKzqd3sYdnMolCOuQOIHWy1eQpWhuV+jmSeAC5zCc0/KsOIXkZPdiw8vtB33jEBpezpGDBP4JLY2wH1J7Fzp8y8RICqVd25mDT2tDb/L1mh4fv9TOfDH5dTeATqu+diOZi+/sIt18hiTovPsVQVaqXLPRx/4R/uH/86tBMcF+WBkThKLfblcVCIECc8DgNRVX97KdrsCeIK+CvJZMfwrftcDZDZyp7G8HeKl7bPYnTKX88dXAwAyz66O2chkPDHy/2K2XcT/61XnlAKgPwtI8yP9Vu45yh55KHhJu93mL4nfo8szp/IyDjmFHtSMqqoWsj8WaVhbjXgzZxcqZcyOe7pUK6aXF/Y32LnBOt0WN28UmHRiOpL525C63I2JQPX8vvOU0fz2ij74OeJ1Apgu3JRObfdo9xGDpp7cv3TdULEfNS6Gu3EJu7drBsBsogUqUc6wAUW3ux0/1hLVI/JEKJrAGm8g72C2aJSsGAsKFW4CBvBXVlNIKa5r7HvT1BeGYBfxTR1vhNlFFNN8WQYwr39yT/13XzRGiF2IsfE8HcN0+lN1zN/OnzekVBKkFY11GgrK5CLxrE/2HCEMwQb9yOuP2rTXiZzTEETp/ismFGcTWmbM9G1Sn2D/x3G74uWYZY4rgKB2Zo2bTKS6QnM5x1Yee66Y1L7K44AyiY5K2MH5wrTwxMFh+S8LzNQ25z6sunWZyiRwFIIvSnioltUXNiOr+XMZ6O9h9HcHxZJkfF0tUm6QkU7iJ2ozXARitiL86aqVsMOpmvdIBROhUoanPtCjgft8up3hAaKpw9Qs9MzYtBA2ijHXotzarkV3zKEK0dFFQUwT74NgCmGGuSCEDmFCezXPC9BhyGhmzNa6rQeQQz+r9CmGUZjIQEPsHwe86oCOQhWaHERsv5ia9rZvJ//7UXO7B329YUkLLAiqpLRsVV5XpcfdawlJqi/BVcCqO6dr9YJTFFRMVGhfUbB9YWNvYPY6RyaydAFYq1YIBQxuNAGfYWLMAHtt2XRHoOKCLz+qf5HCVBDOPOktQ3SdJBfxUkaiD585bmTzMwU3oeXUHZ55EC99Kz9kk4ZXMIENwVVpqW2JmGIcUiutIMj2KkpjE2QD+dIZUCxcX57kH7hiuUPnKCTdaw4KN95XPeFRvMcvo5L8LexWqvaJPECzwXCs/4XPAlSMpWUzBBjK3pEnkbueMkMJQrYcnXf7PjbAoJra1VLX4YuscQLpaeYWbT+h24hCFrfcHjxxx6WTSe4AGY/KHRZCQKqTuFWt0D8RmGWmvXSdg1ptIefYPshuIVZT7CV4Ny67fvjJugy0TNYHqoCO45CB88kxrvIsih19DqjD0UqiJsTFPcGW3P/ULOG3nb8CjpgVTIoa5nO9ZYEX4uEHu8hLXrJPjV1lTQ5xTdZVagg+Wj8V0EE4yPsTc345KM6lVXqLiHtm+G6edC4GVEiPgd98g+twSYm18gCsPnjqlLcFm9e72CLJbYD+ocIZOxuVjrX6IKh9fh7WqdIZ66x9PWkDGOVVGkx7jM76Ywe16DX9ng205kg5eq+R2q2MguTJxYv/wWHliD9mOYpzZKNXYC3Wr4iBGkm54hBwkPzFhiX/VBHdVH/KJ1ZIMOHxIN6arKdxrm6EBsgwDt0mPe0MX1HRUMq8ctcmysU6xX0bzM1J07kAvq33jw1q0Pq2cyMWme8F7aVkfhzZEFdyi8fVBQav0YZqvAjZ83WKH726rBx5Bn7GHFthR6H4lFsltu+jWmsAibJ3kpWMG/QbncU7n9skIBL0MuXXtj9sJg+4Dl0XhKJ1LcrMydaIgyrgZgScP4k8YQvcsBmD26X1iYXKLzMYfZn2IfRjznsrJ1e5cnl/3a5xiNoI6n1x1U36FWckJbyx+hiSZg0QqAqeeSvzFYMlZ2REnO/a6yoQhu7PdHMYEPFIvfyGeyCU8e7rpju4DrlOhszj9rOIpNsvCkuD+TLyf5J7D/wsPkBpscFVI1q7oUSU9bN30vH5AqnO7bsf+9rGhtVjOJQ32H9hHSAzR2ape4L0Cz4WxaySm4jvuGXwkFp5NMMLrgZ8LdA+5uLuyxO5SMOmJNDBcbbLefv7z6LyxBwltnfQLd7qqpG1MmNcoLUcx73BkNF/xpdS0cKd6G646ntChXSeTZJJTFYGw39T7fqXDPKoG2cF7/ZcTvME42gXLVjTqzAER1Rt5m7GYsh0X0+XgOeW9MJqE5j/rpGzY6vUu6ACcCTzDMdZHiWELpDnvgE1hmztLcSYz0MtNyUBLqvylUJJnJu79Sku9NMHCTkgqozTnhMFfduV2NLCSYvAI5HUvQp1h/M02vKFD6eosIkGTg6mujUo1W8hy5Knf/erkBQC9LzNqPAYCgR+hczgevta88NNqSlBZryq9QNeUK7RpbvHjoNhUKAAeNYH55LeTW36KyFaXdAkBvyNP9xmRuBokPi2OhqDby6IZ61mwfzG+GmACkS+G80A4WGON5izgJWeeDK91jzusfOi0RmEsVJXwbVUr8u/J2LCQaMnHhi+wJTEPN9tS2b6W4GRGCNmtjAMgPsP357nOeD3H2tcDAPu5xQBKMHf/j4ZhXlkvvy3YmBJsjsd4pSOlfPZCnw5JvzxEXM5JIc+E2mU4CgB0mdJnH4NEsCHYNeVRDXFNuyZUE4nuvaJf1h+11AWLdAZ72D9XNRcxfb2+XHZN/SN48U7yl+sNZhg5gn/PD8wkBtnRj1zBUPIWnoMP6yGUEEzuT+VaX3x2jEIZAZsr3rs9wCfY1Ss0EdIFFzBbyruUup4EPanbSYew5tf16/ZWVup5iykttuqL4xoC/jdZWsAZeSfDSd3fP9kbyAFYXkf0Q2lmxaTkKRZrCo9XCoiUG4yP1URJ5G7+HSOhhJp0Anz0N07QZtyFUye6rcgiOFbtyoO1lkuV0iQ602MTyFK9xLqNHtNy4cJaTO6hjtiwNynVc34ZA6H7k8ai6S6eF6jIG0xJx+JfP97lzuCZr8vU5SIzImaNpiQhyvDbz23//PJcOk7hD4iIvJzfIgOGIR6ZPEJpWHZQoacbF+omeHw8aWHaNOfaIyGeG4lEryMfhtNmWh4RAIpn8dLs7ZE2eTVDwK++xDoSUgh47WDmKlZ/k6OosEUoQjk7Q+Kp7OxwgMFShAv6z4pTW8loVj2+qXLQ0T3hmIue8qHy1o/HXjm089m71t6mrrUyDftqMYtmfvQXKDlZ+K1HR/FkqPSqcjGlcPPIwbMw3wIFKBdVMJ4pFLt+oOIkWZMw8pkoYZ3byw4LmAF+7BdicGXFcb5PWtDw5XNNVc6eB9dv0rAEpgr5J+bLr010bpfGw+IkRoxDbkDFmQdEQUSElP5bViLo1ur/23KN0jEwl+rGC6AUMKxHcv+T9F1Ktpn8jSSrKxJnVkK8UD/tH5DN6nXB8mjUdFU539e9ywLtLYCwmHYVEVqnFmdubduaSd1ivIo4pTsX+mJcOAkrR1D60RIoocCBIdwJhCBM1rOE2XSlPo0U+khALvw+zfxYzwzd4roWlLJkZheFRR8QB8v4USwmAcDswUZ2P/7v7Xa51Fs7orYebYyww4YW5869Y/c6Kq2eTR9HLSjYuChTkXaDygoo8nz/yJ0KzfX8oowaNAwz8HvQdlLU9V9hjqYMURyYvPzZ60G0itmUdZwB+sY6rUkMAZZtWStbDFmnk/dQorhwr3121XQWffrK3as0g29ASwxbsZ3dZAq/96b7/XWckbjmo8+jwdE680DzoEUUivnBgowMuBQxHXoGyp+w/cSGY88rWtmwoyNNIvChs/QsZRnbdV7y8x7t2RkliJV/j8e6qfctrTsMV22zoqgQuTSNFh7U7p/Q49L0kygXNnEYXCBDgi5BeNWxu7VjULcUHI+lGj+OTCEATzWrDmaynq3wT9IAejtvh3esCu6sEu9JOsXxMDpqxm4Tzl+pt2Wa5Bq3TM5TKH4N7KLir8FGIPA569+uJ1VEL3fW8Jyigz/nEUjAVYrdCWq2MnS4hQVgcvXq9aF7Xke/k++rAtIQqckPNwjKrV2t7HCOrA1ps88Y5Rw1Zp+9itnB71j8tNiQc7mV1kUCQXkoi5fOsq1uC6hUPUL7Z69NAM6lg0c/aeiifHoi35v+pVBh7CDM1XfvYpiK5JIbIQFHafmnhHfRTnMagKcjdE7zzgtxkTPKVrObTySTT51g9bB5ro/dzn/sB24fNM2LGJuRQsmC49PLi1jTRfZaLpo8Txxxczij5Pl2vur+S1wQW3W5qyVcIUySZHtFDQHv+EYDoZG1T1J7D91vEIV8dHzUBzW1UyuxRbP+M/CM/vsas6RzmS5traXnQ0Jzv9hYXxKHcs15TQCP744XsLjzFjILYURXFnhM+nnV0iO6nwls9TR4tlz1J9/NvE8FGg5mgpZA4htS05AK0NnU2gxuqf2vjCyWlm3ypKvaX4vxh8Um1MHGB2NTeAFhbDyGm+5w2zqJAWxVlj6dVePb5yR+aMhuz05YubCQJ0BOtoYQ6PoDoW5fCwCtXj5SHvCgL/3B5z2mcXWaRTf8/GsFAfX/ntdWZWFc2xg8MJeenwZ4dZUToce43If4zVb1ex3BMAWGhgkPwR5EgktZhW3Yi+nsnZTUr9FYI160YhAraB0zMV+ouHz6hYm25/ETDM0MTmcypoGgZISSkfwYAQaHGY45yZ91K4A4Mm4fnbMk8GTc4orypT3NLBqAxYdcY/qCH82PpIkmVOEHi1NoYaUymuImLLcib5pmd2MHTB3JR+4rLdRc3gtQ9zeFdciciRiWviu3HkqaLSxJeI2rgc7OKQslItumACQow89elXmi4P3gTZeCauvMH5nF4VrBcLjjwGD+KlKqe/RWIEgT2wGqAgSuL6b+RTTPnQZzxZ5y5HQJkEEKJp5NfoB8hJBM8qn6xbOFtyzBjVBrwSS1zCJR3lEc9ODQ5Wu/xct9/2Q6qLHnmNx6XwZus/i8rEd6UsVxGtoDrm+Br0L5oUojlwdcqyVV4PIMsR60JhZwJtgX7izQWj+GOeF9DA8Wexdmv6DWjgR8LEBp9YuPAM8tJDu3uCumNqHnF2ATYX/tuVO55OgQuiUhmDmJbF9jJyifBRtxOVI9DCNLUY71IXZYTuiYcnILQ/XHuVJ8aHDStL0N+3eYNvXwHi2vEiTPnBqzsC4TsPnFVnYY042j5i7C11AVdBZ1pGSa52jM9dIL119rry0mgGxFzI8xPs+7bmMfYKh37A4HtA081olG1m9S4Zch2hoNCGVvVhd6UL7C2d5hKIBHoB+Uxarq/4aQXhh7IWjSj+ca7Vhqb4+ZwY3nHXh2S9JH4XZxQojbe/eINxYlozTYtT2rpU/xbj+W2hXjFQ+z+dQ8wh9751MP0UpjutQdxz3/FJYAEG5BF400JXWCBs7KrCRf/l+F+d9EuwVk6thOPDB+HNS9iWlLmDgXvY6K0vgiyoeA3An+jWufdAG1suUMBuJT+/w0FNJZbObUT8c5q5WtQxASQF6E+/u8UwVBs1eo8jTamCrcdhZJlADJbqn3crcDHQlBQNGq7btcGKiJXW6q0cn3F0xzf+k1JJS2testB3rx15ZPTDXm8QV5XE2qxBOdM2n6t5YbxyNOmEdsHx+hMp+y9pWkcgw1NikeXuafJvzcjaNwE1Ad6gG79S68aO7jWpKgBETYLmV4ONHhBk7Be8tjf2WVvWMDQvQdOnk448yeMv1tQKU1xev0L171e/qxkMZbmkfKnd29XRCK2hgNNJhwt1qiYWZGKz7Di6K3fGDT7DO2YQ7WU33svE/WKGbWQEvzUV2w+VNYDocI4yxQ6i3i4zU2TjmjCwu5Pk+Ja9HSwLpEoUswq3tFJ1jimthgMXd7KjSl6Qd0K+vxWT8G4/+xITHsWDGSfQTSdFQth5uVVfa8wrkDZHTGVgpJys2ik+3I0dSf6TNo6A/sVptyY/kx1hdAWKPI6t/xj6s+fPMU3hg1vkEB0RRHq/tCy3KUUhzU/d0JKxTyjvUms5iy1GbOFco0NA4t83SK9sBmtLWm4kOLLflyxqgQYP08iyXwYXzKnlQ6VTipuaspSJ9g5H5Lu3eLMnPKbhcwuEg0VZ80ppJWjUnhS3rL35erzysp+fJhxsUs86m28/UwW+IgrS5Y0zWaxlFJ8xML5wk8sg1ragF+eNajyI0Y4mwStxt1RZH2BjaAhvu+SnNNIK88thEgZEsoHv+ii+OMmXJL7dnAiINVDz3tCnqDgpQX9OguNGgZj3axcjq1UgxDw785yNIpqNiLgv57399jVmJ0/RStNswaFIs6FtnkilFZldxj6m562jL4p5g3Y9XCiXRJX6nq2PGJFifFR7EyPG4jDMnBM4t+O8ZpEp3th7TCxEw+ZG4afHl4sNFaqxyLh6+979tt0Aq9BrqI+CS2U7HJoKiGmyVU1lFa3/0O5mNC1bzRgNMy+GXyifLwJP7FwUSUmxmVRpn+gnXWoIuswPutsiciurvN6lsMG7yqEc2Y5ZI3jrPgPq0xEKPZpF7teJa0TQn8BQL4Th+hjv2ByfwKookyXEmj0d1KMcsmfKaeKK3cZZubiYqmSCrnGpYTwgPk5itKucVtjViuswQsDR6TuyGSIHYvlz7wkLg1Rr0K9kV1o8RgABlhbLrN74cVWJW6TnfXN0q12JFMpUbEa8t1+j440FA+17o8qa8PQ9igkctVROVIfB3jU5vtGm5pYYHYSDvU2TEc15pIz19ka1q6c/7WXfF8+POkApdOw7nn7Kqz6V4tru7NXgnA/u0g6+fPRT3hp/QrDQwMsjwNCZxdWrR6pgCBDJNc7/KAlwC0UZ4yWQs0KsuwbbOgcTxQPK54wiXr7s+221hzZ8RVxfoRUKM3e4lpxHC83JllxlrV760tl06f7/65qhE1jhMfivAUXIXfRMe3uY/G2TpWYzDrw5Cm5cS062Bx9lhHq9gtJp8xZwAtSdSuW/Kd7+orEAiswA76N8ezmVGYgNaYlQ/xk930LAWAtKVBC4U6R08L45IohB1kFia7XJs0TcaT2zBZoLFuOGu4iJaoAnfjL3uS6gnRH7G7A+aT6ETlmkYUfgrBuaSLLDJfhPJe01PfN0oqBTeQURasl3N8BZiQSgdr0aDv3hPTiog4NSyfAUyy98WP7dnTDWQTY+Qwzgk1uxwRqHl5MpC/84Cuw1TXfRlgJrwPop10kCHjmffnFdxCe2J3R3J5j+3H/sZn3IUu3Suy+I+dAOMWvzwExNR3RRPVelZAhtarKlXPWNjPRIVP4JsAFSRXs3o/fSYAPaV/zP8q6DltH47/rYhCLdy/LrpOsbaLf09eACcClJosNefetNElkSFSuCgeY7oTAAl+8Y2zOXJb/bgEDpoDXfQqc6lnlBr/WsmVznkBS1M7ufiqpxvKXjwvR4WxLbh5NbMNy8LsnX4UiuAi8XonbSUcVZKQOWBYUecSOMj6jMG8gHu7WNreBHY90lV7FocDprSrSbexkAtMW9KlXcnrOyLnZdodGYdxz8aw71HztIqLhRdCOB6NyzHPoS2hDy6wLk0I5Jr2t+U0A+A7EsgSn/Ih03A5CspHnVF4MOic+Lck3m61Um+GHDEe4DrHBhmgtDlRQl1XJ/V/VumCHtUDDcZCkgjVMBOmVOGYW0Rcdi1ahdjhBcFlfjA+5cRjBop1aNDvdrf7CxkLVgxiCxhRctW8wczM8+kVmIrGtkaHGlr8y2D098HXE23r7fnJFUU68zyeyM265igNOGPzFG0dIgUDWN6S3ZcfMERJdWVvpGhVEHXNLeWqHiTcF3wOt0FbJY4XHEpmkoG9MQPJJ4ueQ01+MB+SR0rCSGzlE8zod19q75LlLWgzogpnJoD4gPxUYcX+Gpc5Ly4nk+Zm8LDXcNR7SNVxLh6NAcx8ekjb/AC7ADlRnfuHaHJaBodZr7RBX9FLTvocY6kY8bavdAkQicE9bbwGLkZu6whTCJ56lOvM39ijehpTOFqR3V53nQx4hfOvwRPU2y2w7UU8yiRbcyaX6jGJ9CRvl9ybV1tebTp5MMuMnwLcx/lven0w9T0atJuiUE2WtYGiVMaP3EchABl5AsyaCpu/BKAWDFvU2vaCL2/fJBKCKLjxG6xzT4Mh4wHhH3/EqsGSoQAHu2wbHmXHj2LvoW19GXDa2oyeKRwGG1PU+S7mE/S+UmjHiDF1oqJ0R5QsdjAZYN1MzpNX5YDqWYfhfdjAXyFQaVyGKkp1oEGTR8MK6jaGfRDFd41u2Ex8ac8jKPYu3pXsk8gu+m9tr1RVzTTuDsACW4S1h32yFHX7qpXSmA0QVEcR8W9j2Juu0pcYqTmdis88VgT3gq7iYue5Hx/3K6hFQa9rZrNSDcjaSQlNn4LSqs20bypnKqpzvnnxjMdz5StbzvoAJKgVZa4DLCVoJW765/KyTF4s4YztmAT1c0pTmKJHTpa106FegDo8p2zD6uOnwpYi0vJlRMDe9wPT6964UfAf6lq3qWypUOx9q6BbKEYt7K3gWMXDNN6wAm1fNnSOnZ4JkbPq7jLQrl0wL1V7QwO/sXneKGfTgUL28I5iPVG9dA2gS7Ki005JUR7Vmw4gX4TJvy1WS74cIXD08LCF5obqcZwamuoZ+FPMJEck0TLHjyH1baPr55/Cy0ptDfRJ7d89pbP48tLMHG5dO11Z8xSSpPGQSgXDWmpsNsmm+MvxJjMCi7OFDHxxpmTtjgnOCq+c7Fi1DybfhAntviKccz+sj+OPKPYOKeYYPLvq6MpUx/chSvBccg9dfbeqetQNCs3eiCFZTU1mrDido/mib64STMgsa+IKLk9PyxGGbVSQB9GsHto6f5prAFIbRDSItDedz3t5+Nn69FFS0nEfmkF7hKBmNVce5xv65USKGBoHYxJyutSGnRIq7vMDsAMvirOEJOzNi5Kt7fypuSU2c2Npo6UH5jMOkePH0TwgpammO3Fb2FX6f11309z/mqRmQ949HHRj/wMzKNx95M9pwKf+UQkMEwisL3YVotvHhCv4y00Ui0Ql8dR7tGqFcSdYtmoAOuAodkBNs4PZSjAAF7S/szwLddFMdCyB/dWPgFUiUE+WmUUCjYrKfJLQfNNpQ4NKaF57w7Kp/isZVwQPUJyjJavN3fQNKU+F74jVBJYQEcEdw0Niinyea0l9PJ1/AcTm/LI91RZjDvLI81pnat7RKU2P4/TnIAa3hIEfeg4iGQ+wTDlURK6YjNpN5s5VkQW9w7sDYKU4XmjyZsCQLxztqd4SDQvLyuPDhURAJXKfR1c7tq3mRu4usFHPqz7HgS0X7kNxiWWR3fb3uVwbgKpmgLYkwKrXKt09COw4MjhxeZlDXKy7nNLHXAIKPtferWQnZLboonQXK81x+BB3oUidBehK1swSXxVbscj/LsfONu/xYEXYPM3aMqIYd+2hAnFvDHbdrJLhGEd3sG5PyxqhzejhQJo9wauFK3xmPYqxB99J8zYU9/yzrEZNzzbvPoR9vUlE3Ha4zspVDzHHffPZMJ1VLZkKqGCf8ZqupqMt6T+NRPfmPm2xeDgvzMrRJEL4/zzlu7Z35smvzbgeC25VP2CUrZkRxEi15A0769ojdO1d7C9OG+swj1ROMM3NgKdeBADoRMeJkRZcZ1FbQu6C0BS9NNSaoxtFzYT4lX7+PQ7BKa84yrN+ujVVef+SgnEie1G0N+eOtbZF/UU+wkeerWjloYqFiqo0vBnmxh+TwNMo9I/8lfU2XTCT0K4OoWE08ipyNHjxHvfhY6qa3x4HzdQ8+jkiO5+j91YkihS5memfpFREHP/2veN5XcRue2zCVuAub8V6vDlOvyP+PBm+owyRhMmng5wwGGIXsOkQekXrXpE/6dFjkHwwoFoj5bIFiqp+4wHpSWRbv2xGrRpd2c87FzMP6Hfj/3LWIBqFiNOAxBw+AAP1XqUBszdZhzOSQrQS4Ein4fyV7MaGsB0VsMF4bPb4lx/foTGQRJv45LpoxDd84xCawHaX7jpXUrOdkFxx2oUvY2xqpgIvcVufwd+zAnaaVTnEyDXD7S/o/xrrk4mgTjXhcjj5Rzrbr23NmuZQvpdNzny5MCR9bwvIRIqzOZZLsstZSCDYa56JTvzxgBs20dYTtTUbe21uljlWqGfSh2bYAzOpf6UguK30ZxNXgLHs6Y6urtxFA5iLYvlue5mDONW0MOtQjhqr8fRbCkYneiDkvzHkQVT4F9v9vxh2SIGPBH8bZb8ugo/BSgXojeSdNXbBAIDsB6DUNSXnwlu/bFLaCqSbvu4+YLplwO1JbtrMf9ZUfsxerAZjB7E/zl3qwgK27FswemUmSM4i37YAVhQSocuV8AcDI/CSeCDNPavESshDQ8A/lVIrAJAMdP/rHXouiNU8RL/TIvfQiuZEb6dkIKMGGOW5kT8vO8pivWnT4v7qmwuJo52AS1r/RyQ2g/7c9ZJgmMIzf0GvJJRfMNu1utRNuLWHOm9JIMcJK3qiDtVpGCDP45W1oTTMUnMC91kYhP0GHjhCW8V38xhjHgFFBfuWMsmSQ9MvNqKXiqtUhDAkIy0PW7YSKaKUv6zctAiIk+Jt17kG6LpNVOeMvJnlVBaJSkKe0HTJJUMvf8R2zna35/yh2wNlWLzIP3BJR5aRNxkV94ICOlycI1/JYRZtzvWMNoIpQrdNvyBuBydhSwhRwPo079Xk/XQZpbhzN/KK4NbdJQV0JIMP+Y5UBIM3TTYlFGYVjcvA5yVozkimco91Fx/eo+ydgAx1gMezTh+bYxCtXPYkMoPdtaElRusxlmdSV9zgF4Np+iylun3LVxCycAFxGCFsmARf6y4I6zXY0tx81aQyalr3/ih+ZjxGNWdhItgNLdEZ/BOIJpPoAveh2bKbEFxU/M0+4xqDo3Ox8MnNn8Lmv15NJigSvJV+y2W/ZogEXNiv0/nuFzZGr0pKujOShzcdkEVlMw8mNZXZCbtM9V+mfawtLxCTvo+enFWhJcFv8LVTFycDjPGBXRQKNN+z68HJtYdpH++g5WdhQpCO+DE7Qdu6TmZgtetrpU2ZlgpslOx+4hb3aXaqbdc92LCh51er8vm1GQ9uWD9+fAPRV50ixhgc5zi2Jsg1xQVxzlaELRWJ5biyF+eCwNV0oFnTbBHr3Glm9qlGVOpoOsQC8hlNG88fxeAekkCGnHFn6i5WzyO7ShDYbZ2KM4eqndyy01v+6TFhmkxgc0dndt7EzRCcEfBxSaWZwcev6MDZcuvSZQ9CNSd4Tx25TY6UAbrhikuP1vNFfPdZhCG1pe6vx4D6Ez3zIb0zDa42FPpxWvIpEeXb7YTcfZOahSpSYaWLH/vq0F3U1KO7ZxliZpoMBBYJs91IE0bOkrPNQ/USYY0qKCO3CU+AFbOYxzKWBkIglrX34377BZ18MKQCv1KWfIHEeguSpvrNH5RQOD4LeiH2gdx1MOAKphlL41F4RpxaU4dy8xERFgqoyICQq9XmQ8WJSokwqvhQM0fLtsvyCO2PAkJ3BZg5IqoR5q/GdTLgOWPFR53Nqw9Ma5vBzZcQ4+iZgetmKg5ZIn+/7Jbi+VlViXuD9CaAUtdEmnwWTS7wZWuskVvc/SDaaKV+Jz6HrZTHo3UrAu0IZDBkXWmL+mTTjdTb1A+MdhKkY/hvFNwXj1FzUngsN58u/kTdJ3Xi0hy7efR6faAOi4SKGaiOty8lxDFkiD9wq2GW1EZEsoWGw/WzxXhWDzYY8CC7WuLFHc+x19jhH+FiLXwDIARRtnkJPF2BUPZ9+grZ3tjqAWhhN3h74w5pooRQUNATy05A9HDLnILGSCtfESoSilqtqAIQ/TV2t3KhOc+teDf5t+DqZDdB8Ob9YXyklrSO73pR0QAxPvQj57c6FIR5dOciqeHZ2LRABMROo8Jk8V6JFewCL8TCd/A5MSbXLky1cW7mXobqgeEXdFDoEydKo5oCuyn+2JYI/7pIGFAzErlHZ5hOaiT17HC3zp2HpJwsIAb4/oIoZ8x8ak43Yp83Ermq55Dg8HxKGHXbXs47sh0PzQELTGFsf5eO3lYAuJjMneoYWk8W/3tW2WLntEKBZEW4hOFgo8K58Rj0vk5KLyezu1d8SO/JcuxpOJqFUM2sxBmbQ/9qqwb90R0WulpR/Ju84bQ5/fTh7po/pbBb7AQaYNdK3fatD3K4TLHAaa66MQzp/+ZGyCjzo5OXRzJ8UHyg/YpNHvvlOpwQIOjakpLHwGV4WsLDPjEIqG23ily3LL0dlkYQxj3Xx0ApCo35zYGoGOtIclYS83MnI5TwVdQ+Hg453WFQN694DaqhGaL/dm0KncXYqXLi5polgT4DOrzD4oSVhrkh8GW2PaXjOFDCLPcn4RQj8dRGIJuV81LxMPZ0UL6zpkaebhbFBxcRJe38UiTbUPDjFWk2jBqzrBvXcKmgdDcmRyJhIpuq+3DQY464AlY42z2EM0yIK0I6b+VgpanMfpdWo7OxKY8RM5tSJv340/qD8SxrYsybMuUkF8fHj7HcvxEPC5YYrH4LW1YKg6QaeFZLvPbrHZHvi4OXLKkN8cGQO8019OKqcv6QnBlj01e7qS5evoGm53rv+VmDxxCXDiOrDg+IaPeMPrn8TJ1oReXYI3yb+4HQbikxP5TQXHk4YXPUv95+KmkxGsRgTwP71YiMpqNXp0loHZeXRp9i3euKrVtxMM0e6XAoACwNtcc6sOuhZVb1htBLudzahrDFt5GkdlwHjZl5y0LbvSHwII+qYeDwRKTTzyXaInHIM+8rc5TrjUlPRVwB5LKFpQnV8e7vLv7T7V/iJTW9h9TnRtNCSGcofBWYm5P7wZcAq3AFamEW/GMbo27ldz0plt5HI53ddWkn9IuCZY+Iy0MATUh3YenRTbVgdLYtu893SuN6EL4e9V4NhlzUjI8nOS6B99ecyC1Ot8sDahQpWHbmt2YvWGyL3S9tEVLKYs+LnghBmmSl2uPWfqPobPwBHNLW21LUjfZb7jfLMTsMp3icGO1npK/rCsUgdBVKVg0Ys+/WKuTmVJoC8Oe5h3PK1TQhbpZ2ytP9nlutQPtLAEt+CVT90DfVkn7lHLOX8AfS6HLzfHeAhu1alnl19RHKV1LI0G7RPzYgVaSpX7th9f06uo2WpxjL86i/2uzK2qj/ClHbGDyQr3F9/axmq4kJ7zZFVXVVwfiFr5bhUGVZeQJHKFAcsnqPKsb8vHyB9SpFpT9U1U7D4aS9vYgqajxhC+hOkolJV2dKAxysCkWBo3SPiPUrSQYZxOWwWCoQzbV0oeaDEcgUtqI3nq9TSmpQ688/+wb26P2CHLY1H7q5lypXSrnwnnztq/jN1o9lyvLmLyGguV0VJnDCREkiUNrZqGG06MsyA+Phd9CuFoM5M1Pyk7S6TJaHdTw0ni3n5ysAup0kyxr65lFc81NcH8xSmpp+iOEtQZrH/y01k1rGMRJAGFhi+nDecpUlnrh+qBOCMZCcSCovOPJrxjZnZJDMLdpMVu+tBSVS1nKxsYjY9Dtq1/++riVfLUVhzofIcIgQQPOqHioELxU3EpCcZMoL9laa5YlOZAMEp5apx7CphrkL+fyKbBAf8ctwVd93FTo7F5Oc/alNsCgK6lHruPROtN2RybiLqx8P5LTUZXU+Aoyz08zYHasR3U8hPDKj+6arWXR9yWdJoMn45prCSURKKy3+JHgvs2Ot6v6GbEtdCumgCttv2VNoU3KOqUwqNIWHqYm4eMijTM9VWB7umEyp7UPOI8fduHJY0W9xSCZdvc2xMjo3Zdu2o/WZKDMOSh9UmLvo45IBppD2dG++HJu8kbfFdlwuIxk2KHhgHQeNKcHhFkYGRzL2VJVMOAb0Co64wvds5CaYl9ZmBm4zuGDeaO2eI1XM4+rD/HmZyRF62SabgAe8TF43VuMutigJJMfbW2UK0azGLFbOfujnHD+GGBYmSmOQbUCOY99HYvswBQA6r9hrc2jtsUUxLVjxnZ4JnIrTwIVdWCTPtpJpvlA7m01/4tbUMyz9mv1jdN1jkiHQCJXXKg8bJ+aqW6rbwbn5yDSHBTcFXIegrhHGAjJOZI1pyP83Z3vMYTAJoo8V9IwyS+U6OVg78+IhSYHDYjRs8FrF8smHQ9h4qAYxp49rRP2d5uxLAuP72GvZaYvfeLOkMrcg0PkPuq7NsXhMFmiZa6PKBH1l+oKHI5DBLdZCvCwTPdXqmnz8gLzVRb/ixLTSdit2nrzt0x+5rDeZT+ac31NKNskQs6noKlQccyD3UxzfVZFmcbpmrfPsZD0Ve34xpKWk/E9Khn4A5yVPVq+dwnv0EyYecPqXGU7R8suTW0A6NJWweLI3iSGDlQXzMYsSWkSMhFTfyA2vTDt/3wXk+mVU6bRNkZvNnyVHYiA4tmnNwdh/RVsk/EgSerfTIf5VBmuAc2IKSeL5Nbrg3acgFj80mI8SWsc3dNAGCBLLMP89gH5UnLTKq78d9SxQH/g7DVnBh/qnBdw5CDrw/uMzcdXSxWqGIFcnQZt/1aOHxUg88MN2w+FPx/V75gy2wzEVe6G51PQIR2tZsxbv62HhgjwtlzrVREw/yzlaAiuXC26cnpvQzWXp2mOgihyPCWqq38nEadX2T7f1Y5zGxEGBaT//IcL/BsquAJX5EDbX8X1p8nLWR2yyjFRvqC/jssoCJBCDJOsZvoBfXqQSEKhNARH1YfueeKBslAwLi24/wAO1BHptlf1kQFNsOPlDvlYednrEp3a4SAz/G7LIVEsZBu0EKWZu/euB/XKdkGonP6t6lgEcCOw8mceuzvEVzyoPnMyzrqoNQXJb9C8ZCXSiedKiCgNwfNkpVlHbUgE2Rb9WFScOeEad+T+jT8XlSc8rcvkIuhAv/gxRu2eb2GonLTyokjcGF1EBpCJbhy2H3lhL0rdZIw1okA5pBg2oRfQceXTPzhuNKorTEF7t1UIgDqIo7/loxyTgbtKu29o9K9KujvCqUGyPY7upcfiZLNBVKh5uXAAZjQjhlhBp0ukmO4Avxu4xAVhCtnsOIA/tAm94U3HEuSr3wq+ZLo8pyoC9EB/q3pOzQRyCTkozmJwo1Ln/2xEbtNnS2S0NUIS3yz3/mBIdxONHxqP9FW+uoGI1F415lI1nZwK0SoPA0+flaokBGEoXgZnO4GOExU7VOjdPns59ekmDxqNhEHeAF5i5N/3W2NC1XGFjTpqLrnCECiwVkOTrLtp2ehUIaejOG6+1336YQSKMSsL4zhUjw6SQKryVRz5Ldn3R5/r8AOi02RJkQXPdvPsl/FMg96E/cJmIFLmEDzr1Gkh9G3zisG4pqM/MV6XIz+CtDUh6hmJB97VzN8jaPSS90vgDjvnaNlKky2/zIhE9ObugwrftI+Oi2a4VVaB/Mwn3VmaWjsU9NOf2usbcN/GLQMjvfeU/YvyEERPKw1leXZWWk1HXzY3P9MUq6MZq1hkEgFzds51mv8mnp1i4pQprPwY0TId1szXwe5TG+R5mMD76nGPQr7/EhQWksjsgGs7Zy5QYvMcGV5tcXJR+6hlHFIAc/M6XjkKYtwm673Bi+K1tNO9i1YBePTur4I+gMsOK7f7980mcJXhgdWdhNzUN2JvFsvXq3zZRG2V30sJtJYxj0aUv1u4/ppVHi1iHnTY3gDHsrQS8YwMX5XwZ2gcFYYe2wd7ZO9swr0gb8zf/fXx8QWKPXcK1UdJk3760B/TMlpWLCbhkqVoSTsOqzgkmFmFteCCTGhNyvFhw1RrTIWzRxq8Tj5FirvKvtkp2GAVhnZ7vnr71pyI0rKwQbVxKZuqM7GAvn2mRBj5p8djlHUsh/r/eBECptpbbjP5nFyuN4mvQLZCaxeTkDUzd/kNGLIzBFv1CElQO+xmf7Dzt1f7GM1Bh+wLDCJZlhcVDXbtPuGssdEie3lZNiWcXMTjZtWAT5MCmpq6JCRuFSHZYGKcSFZ9kOYJfEqLIcWdzpTA+Hmu+ktgSUwXVSwkaa/aHdZXh7IOyrudCBalCZpgXGRNbhN2XpEY60DXXO1Ci5ayZSoxtG0WRCC50+XtgWz7qgX5MRA5S+jzXCYy7O7Nn0ljVxiBxQNCZKZMTqi6mPfy2LZx76uyRUXHjnpJJEimflHDUxyX7fFg7iJvSrsZMH6Uv2xbfQNx5eCbx3oKycUrBY22KPmgfg/w07CDVsw6tb5VxPg5/X38cQtXI47U7MAGGjO28II12T+PjaXHlstPtkUQNn0DKkCYis+kVAkA1wyAJgYKLGnKD3nlVCarYqCkNIZbiVwO2Ydjl7N6iOtvvbAfuq7VKZLo0jEdw1YdsRaHcuJQulgb51JyELzYBkP1hd03IDcZfPg5XmNvYQSOINsCSn3BuLtkCPZRalK7+S97zxvJHiJCZJM9XP785NZ8B8fqDe/Ot0BS3PH1ptErwxBtpgfOj4d/41nrSjJQf9bV1kfdBHJxYbHILxOsWkZvoP/Z4Sl0Yx3bDjTF96xf96+6uIoQ351Ce6DeTwTnkPr20YwATlnhskWIddUohklNITCq/07zkiEc3B58uiBG6d9YAc4h/7s44FN2RG1UuZWeojrOZIhElvDP4KqHcOYbqqS95o7ilQH5ONJfy+aYiB+sPpn35HfHG3duLpNvBjXc+Klf4IKrFHjeVty02xPTNnbdL4gtkqPqMLhSgR/fDXzxJbSScqewiF1wdVoJ/fGL/nGWZfVlDHOQKD+/i/mqwXqvNqxtZeRHwoe/bodk66B9soOnZp36gdzVMRRQsQiBFf+HXjRcrRf9FsGghw3+qoN0JeeMvDJrkSBPsESDai/uVOzn2Ohge+UVdi050fdWpsjP0D/QuTdYs6QyI9xnhU8WT2+KBKzoZ7Bq8fOdKPeLulUhJjT34/EOnUloqus8+pzqNh/UdUOhgTlrbkuTfsaIYDm87u/GNIl3N53uaU8bgaBjpz0jdu1f59K4KFDtwUUeEUoeYx6DEkWKHdi7dtHhQF44lbysk7PqERrsuAQu2D5tDMl7kFoGdI8r/s8rMytJzYBU40wqeFvTl0ZVLdOB6Ya9E/f8VPbGx5MdpYqYMLMyB0QxVdnoJ+tgAQVWfH+jtOHD3PsjuT8dOTSrupuvHWRHQoGI1Qj1Hc6k+Mg84FAZ/gzl3SEzuGWZKFwuo2D3EiG95D2Z1szTqAuFRmT1nEh20tkC4ysmXx6JtN0taK1iRR62s2uNW5rSAvMEJ8yotr3UhJe22brlQn8Gvcq1I0aODaHJucQKVe6SXyfcDWODMw8xf+2C7Zx5a4Qlh7pJs550DictL4OxcDXKvVmLgVWRwb3moxv4kcxzm89EERJXCl7X/BziBkGQWOHPGF+6K5NFJYOFVv4+NyFq+OPMaSWZKoydplufY+CYyL63T8MCMmwqLTmAE8h0prhi174wnx7DHZWYuRJSYZ63uz97AGOzyI3aebclnud77znbZetbWUripe+AadLQeZPtWsF+FNiaXCy/98km137lWewyc7Gamai1Hd3Ls+KMMVh0R3NKTQ08TIClDfMKwUGKy/7YZlJHU3uW60X0r74Afh02v5MJgVOYkjmors6GAaDU7yKHydfkXYd6nEjYc76xws1LDLWCNNKBtUHNyLseOyNDgmHiJ41lXvq638RzDGis8WIniOb/pbTs+HsQVGPi6mxG+CU+oflMR6/qx3pVP+GPgqa0U0lo8MVmI1cBgSnPGgrh+J+m9TVg8nivua0EQP7xai44ruC5gsAVOp9bLsDXfHQujo6IpBmpfbbU8PDavZpTuJtmflVQuOImnRQ5kKoQz2NBFjdiHH3cF9QLgDP5vz/W5trCy22Uk+TCjXjdbCCHB3rJhKYTwiyQUf8xu6yTKtIwrbw4tzFgXDODmWYEnnpDupk3b4AP3qz4AZ2En5wi6aZV287AgCF4vH8TlWLni1E5Hd93vLxSYLBWSuj3eXGFtWyWpBkIeKu+YsBh19VeakA8OePM0ILu6dYYl9DNIK3kU1ybH+A5xYhFI/EqSX3vtNs6V5eQgxYLvu0hYFjiG+n8JzqLQVROiVa8XNQDYJtDAetPFSuEtGI3B8rnbbrNo9TJn/z3lRYq0ecBIe7a03vLESwhKOm1bGTk2kPMv/Sh9wyCOmIore7JhSFT9HIjonBfi+gcdDLfFt7dpShJmW1gkcXmitWwm1cC480CraHm/or2MHphB9Q1bmt/SBXFqXJdcv5GTt3IS2fRgqThhInCjRkh7Dk1iS2vMBLSGtRPppb4FEu762JehUMQxxLQre365CKoJGvJwVde91XQ+bDp5ZsMu/QHmLgITmwGXSpQFQlQBajqquxlwIOe2cyfezaSHIoRNLcwjW+epnmAtmmWA9KU29v/cA2iuWbj9ZV7HR4anhHkjbxnzKPHnIZ7Mm5wAf2o/3xUhnfH++quS20TdhalHgNhusidPKWyKWV8ZjFLgb1fX2r7ifLyUtxuKHHIfCWXQJ/DKeU61vxmPT34MTi2Q9r7/sK1CYuHVqMBsgtfenn31bUzCoyPN89KiO5wHveqnk3uyHnJSUBVTQQ3NyRPmeRKTQvWEBZ4QWcSgMyZF0RQgvUXRcp6KflF056fwahSioP622TdcTVYi4cAwSZLWDvfjoKFLMowPQpzn6ogXHc93fFA5NZmnwslSuesOyNI1EE3RM8kzat6thkmpOiGmm69Yn8yNuxz1YuuPWekoybkee106T9WTPXo44ea9E5QH2Ig6FZn716DBa2FyXHG1B+YfnmhbEpANlOi61BoGO4+G3WMJDokJXj9GhNsFqdaLjA1pkhLP+/mGCZoYsxNI+A+sMvWyoj+PMWeR8koRz+r9pNVEWT70WhiAkNTrojdr0sBLwxIM7D4zT+cVy96ZE+ABi9CqkM9VK7iOfkJVp7AqCqQ9EZ9emn8rB8zfoQZUBrVd6YS2AqiTFt0nJ8HfPGmnBWf3Xi5CgyWoLAmHJp/AfTdHB0+Ns5DlhL6UJ+O/6xys+CWVKtL9S8fVHkpwZZMJn6jVtiUTtXjywmiVXw9a6f/G7Qd4tZtcoS3aytxXYA9aGGmEeBobjiammhUaMDicH3nlOkDvvz19NqWOvHC2SMv7OQHtDIykYerPuoLz6SQNOBtw6oX2Sj3ZLITBDcWNx9CuZYYVaE+vleXnATrwn+PnuQ34jL52tp85aIOk684SUlQ8uyO2t+eIOHndZ3oxD+BcMAba/JVxRYUAUZoEw3D80WWOz0/ul+fYbhFnffx3PgOy2LLiu82D5FMSpi+Pd4EkIFTgfv7p/0vnX1wp0VpNzyXs/5S/4z0RFS21vIF67k1ERTfFuhLM/8fdbKognohMqTNF/+oqvXXLuJB7IHeDdn1X2eParLBEpz8y9CAN2g5VdE7EimekAOhkw+tTzqeEsgyQL4iVDnWrP/RcBd6CDm16/5t+I1SAxCn9wo8knzmpg8DYP8V/vHw8Stu7cliAt+G/VR4XPNZXWF2rZBeQO75os2jFJrbtkfhN9BzHT4HGgXTjyTy8NGsiQdeOw12GjYKCyxP+34kRHZqYsn0pFvVubB0+/emKRgiGXNRWQwMSvAB1xvTprD0Zyt08BjP/4W9HGNfNBcA0Qb9qF5hdQ4dDqpKAFLoIW2gFEVKOganw3M9/4WP9ckP0/g6kaJDRurtxNgT+PjvWYEWlFa80wKYCkd/0ZChV94njjGyg0t98Pz3AL2AFAhvRRiJwdfRcQqqhWkv/o6X45d5w1YLJOye3v7rgta7Ya0jAl/an42ng5Wz4S5we7n2+1W94JnpoGyV8WW2HYjKLkKmp4hBKlNtb5y4W1MrsG/wfq2N5Xrz2kqhdPQL/YoxgCQd6Y2KNkADVu7TxugQRWVuNL0BUj3JRFyWNeCmB74Wsz54OPnbq0GFFxzSkoiJ3Rtq8yEJMKvOMMalFKH7YFHKjb2nwrKVfuUUuRtTfJDiBuaEHHoX+MUrM2bBaAsSdnY5PjqcMBn/wwojQxzt2MoOCC3OEArr09ghhsj2M0mue5ntQcmcC1R/sK3zfShGJuazS+mJUeKxk5u36CYj8+SJCq8ZEv7bNf1+BywGeDQoTDGq6Yh1xW3Suwo2O/ykazTPK/TdVOICyiwK8MuQpK+FX3mqSPzxfLwFJ/iYDjs0WgW2kqXYgm+gkNToB5+jYH83Xlt0cbtEmkkBaVGlHz61rVuWzrK1yjn5nYHKvKCrBPPRth3AKDQQB83fdrbgIeIfB3iHya5NPpEyxbzmtN5Dnk7GqrQ4uu4h3QSoHU+74zs31cWqIx4SZ2bwWLvIxUtR6gufZhNZoMcmSB5z1O9TKvHMORD+VmuiqzsyJKA1OaApB+b9x6u9FTvUkalgl0r7raV+wRqimc2D7B1z/OiSagdd5UME2igLGUcgPlMSX1VsKQp/9yDiYei87KTBA2NPCUmgaLwVdvQFFFxWp2vGCY/KCUvxt3FOu6xIgwS4Vybvbj6feUCkrQPpO/wPHJPhAobSj/aa5YrUvjHMcQkDZwfc9mvghrk/PIPvcJa5InhVBfjh3Xr9vIvA4ac+m+pywS/EqkSX55xgiyj0TB1EE0NT3W2CPFdVD88P72SpdFzHS/6XsmbGtM8JE/m8eojzd4PM1bNADliZ+XG/9hbcKg6PftVKyKKt/8Bz4lGsHyT0VKj2vDGp/qDGBajSHrqzmpEjW5LXsb5kTV6HgbMcnPW2dzQju9N1sI/gPVlgGmk0bHKOX2Ws1q4aPizhcM/XiJ5EZNUK6bZNUeFaUJVTvGxglRUY7vdnoVOe0Raho3huh1XDeTlHpk/2gBjjhUQXe8FN5A4zcRqkNtKpSVq0xyw9j3yQlQxq/Lnqklpz8lXmzHkz8sX9HJjHwyn8UAjblvN0ZFIk4liejx0lVACoKvpsT9+pQoLY4weMHRzcuVC60DUFkaqLfclS4UJti5WK4FE3dYcc0OilX50uscLJomlR6pXriD6ELNNBWOSMt50CJjPkyt3Zn/xj1dlPVP1t6XExK+b3jMoULLPOrEGvjELfAMM1qcuBb0AijkIuFca8f8xapUlkvLjmmJW7RK94r8HaPzvmHHSqX9MXdivNI4A+JHy0VCe79UZZJvzMGzpnsj+Q6k3EItDBiA12fTMlSbEOMAWCdQq9TtyUiAaAqJozMzryEg0k+yVHqCc/DyJcCE2V4WXIhEnsOc5c8f4ChWfUaONhPPWogpDs/lyVCvp3m0NSfrAJKNiVy5aNC9gZ6c9BqwYgj/cDO3kdam6gCjhR+akALFYmt4ixHkWxKhDTGs5K+CwRiKJnvxP9dbxRPCBHbiVa8gsd2GuiNHZD98MNwXMdMC0MubVodd7dnyk3UQFfCIIL1osPxY0ZJ6DvZXwtZ2I0th6aqlTMULVo+lhSIU/5qO63lTSa3MgPRJEOi0AJ8/UlZuvgqLw9dyEDQoHTKWOsq+6fzoAyvIpv14fLaY+braPd6NkSaq0RClMenK1QLH87NZriUaeuCo6SZ7/CfUt2K6VOt0AjIK2jR0vorf6R8+TVzxZb+QdLimH9pU5tQc73xW93QRPMGy/gCK+R+YzmV4fHK52GWBEBL05EEoTY6OYG1WWji66dWnVTg0uPNw839p/yjLxkCfdTaH+v6hVUCd6HlROj6W8Mil6AYGC7NI2+qkZvJh/dAw/iQspXQNwwWHr6slLIp0hBHYTDh/J7Ba7ZR6cp3iU4bSXdmzhTahYDev4yKiIHyN64EANhI5OHYv1G4KXfIOvQizYWchPhzQg5eVGNMxsqrvWVxjtIbkKuHzE+IcA2NZ83GKz0D8z5zmgRnoJGKigseP9TmMS7BgAqtqyixA/SLc1KEUWrhXOQ6kA5ZQRazp3wwSa404cppBnfsS8EsEpbr/gXyW36cZ9pt1RhzyxGxDUmnZeBz/Uf1AP+gyLIg9x04u1fThm2w/H1ZXGvVqsO1VqutV5gUhFkdkwoCjzz3F3FUr1v0njGYT2mSZYvoF/fSd1W11c5VIhkEO06US5wYRmHVPYXmZnbK5YHQ8pkIDJ0yqssqFK34CuHE8RWb+Dr4omk779QOOcYomAMYQ9ILt2KUk2uNlahW/IjGtenuGLxb/t3aFoVz4oNwMZ7iyp4td8mdzgJAfnCcYtklubGAUB9k6bGC5DSkf5VFarnGEBWz600VGR8QywZ+jIYFZbtKT2QdDOYP6k7D8qVgEZByGmRedZRWaQDTggLyNgDD6pQwEeSs82+hTxWypqwU3zuAWqfwil+mytzVnKztyvMFJyJwPFaPr4Z3mTjyxCR2Jv674JVGGMUSWb0l+GtcYtd+NBGChwr8mB2hlyccget9liJhQEb0XgXfgVRlHlbO+jlZ9CcAew0Nw+tRcWgNnz/GL9Kur7RohRhaYZBBmQA6JhvzkazHRcdZDn0zDkfBmYP1PfQjP3d6qqx6gE7vrb3lBKEfK3Y/nCe4COdpr23oZCoIpssGXmqE8CGpO2bEwkSN6uqeqR4UtWR+xsgOzNeR49PTLJpFEAkXha5YaecJ8t/KR+eG7/HKV23zPZAMvHDC1rdxQ0l+6wlIgZbUybjBe6yusL7isRuuYYwg4+8+4lia2ox8RCdvmXlt00ZshBnAIfLkSwIqUzCcsD/d1ZG6Az728L4FCIqBKpbA6bzkJ87lYQpbaHpwPpqu3S0UqNDCwgg3q9MEn02X16E4xibz/rLx7NMDtHcwMOt9r1dVU6Hws9TvJVH7THrnSFESgN5eBy53Nq2Fdb8mySTxz5CitvVE+ZjHaYS3hq9Bax+uS7TxMIT4qJE7HGdsHM1/9uPNBylhP04Lck39JMe8v2dPOSJzyQoy8m/8Fc6h+X+5/mBVA9jAsG4vmx/KdUW+NXxgRt//SS2Ib7aGILsjOz+ZZQu/NMeuAsP1pFRTN90rqIVULbJ20ZJlrjoZD1VxHEoDFFGVWCVOT3jGK+vFD06gc3yDUSnZ7ZHjGmw4ZiAglY2nm78aUpXxI4BfUHqL6YQKFDCazUIryLi53RczlaTh0ry7WN4WpWK9sPJ0J49fu6RGUMYZd3+NrRvEdOrS5n+EJOTkr4lNzo8vawcYnR/n1Dq0rCHu5o2BGBEHABJbsFLi/mlWFO1MjpvUu6UPJjXlXse6MtBROT/mQfyegWGmFRQ7Q/O+rJp471+tQF10+bvkExfBoTQrewd5UwhAUODpyeW+aK6vx2AroUo2bGBZ/ZjcsJFfMYEMsm47LdQSq7T7peI2Ex+4/9oIAJGfhidbXA9UYPNhxigFTg83CETNYfYVkoambj3vv4MZNtE/wrIfTguBNqkQk9ebLPTmY2U4UCzbYqPKO5vjaZXeVksobDAJzhVjoU7p9TdFmNMyLyCQJryBSOcm0hFk/pcwcV15KZ/+IIqeQGPkTbiY1haWSnuQYBeyW5uSPHGtYw28cQS/v3rToNAUGVBSQ6zpBt4CHvaOfEJhuDJYZCcxvPeOStdCzaoSQn9nDe8wDc1MXrJ0+9N9TAKcS6u8ANLCLY4UfHLGf884/LFIn4OLOlRcNl7FS1IJgu1/vLm4INkgHt5ISp2vC3MFJHz1zJnopnKS1AgJtCmhJRZDaW6wis8CJ0KAJW0Yy0+kWI3lJ9N8yqJht68FMNVgkgaAGi5LuKmkZWm+ztKvf9gT8hJrXZkM/QdHI6wy9BqVeWa7g7ZM1YLbUv37YSnLmGsCrl/UVi/tG+fZbzY4bGye0zH08VQpGmyd/v++fS9EtasmbkQEIYnmLZLxO+tNHp3myIGwYBZVXjlWvrCiQcsP/Fu9l0HWmLBu3gvuJ4phtJsXXllJdM8iZIQR8Z6zEMs+cqVL7+TYhxDd0c0l4sbyIEw6N+V0v3ZbUlidyekdcz/aIomGdZtmdI+1QUrrHw7eDXT+G3zbTZMXxpEgJc4zY5bH5az8eHzwoo8QUleUKpVRrsErGmSF6GPJ2OltKYL6/C4zx4rHdcfsrQTcWBmrBWMMiFiU4NGtpYeACqYafRyu8j8x7ltp3nxVbsPO0MSoaR8tv61/q+YCqHX3h4vy4HzjCYEl+4ZDtj2+mawuj4J0rBpcDw+spzuCQ2khFbks09lPGxK8HYJl0Y/lNLUxGLZ+2h6+EFSaD22bYzF7dk/EhCWh6u/v1HUVKC/r/Wl6JHtd1V68J9zdOTgbvJuQug4r4vUV3JJolQQ5tecHKqcNoYjOIs6BZTlfB+yHGfGdxTKsGxbU/4taKuH8Qpd/M7fIG5zebrpiDHV97T4jiUNt7K64/u1e/+erXV34aOjfddcKNO76EzIf1pfD+KivBsRlzlsjj17aDPq/lnKHQCLsD+3TK021HNzhZyuwpLRKS3KE0XH/0TqUOr3VqLMcsSZM6349QJDznPG+sUqeS6wwMWp28TAoDKdmjzW6f+2au71HsOzLIeWencRa5JapKkVTYpvwMIC8u2L+/hYGJmk0588rq6Nnqe041NMzU6lj1K5KmSj0ZRiVpzu2FSTl4PBYHAuhe5dtwnRQwvvNqIELVxKMFWedxxB7UO4zpYRe2x0zH4X6pI2m4g6YdCs08vR9B7omy/goQUYbUZA+wJamq7/c0FhkNm74Mp05NSCK1Dcy1+9qp82p8XVkUB4+SsVRJ/Tqtn8v2esmemr7zjCfjLicMb05JqNoL6zzz0KaYkXeStBrF9+T7EbZTo2Fa/wS5NhJvRoZc8QUfS46HX8HIZ8A6LK8zKtROnakAnEEFoonVlvYR71xYuBAXbjtxfu/bteN8WkArB3//qp+3btpi2SIMyK6rX03iCLnzOd2OrPnD6xqgVT35e6NUMpN7EJSz0DRRzyze1J+Dx3cfx0M577W84qifD51mZG8VNbBf+5PxmGGrGOmkO+Q41YnCkx51D+X3CXsNAjaz/XfcPJUXJ00vaQyfYDtmFq4kU1ZHdnep48T4IskzPsYT9or3rd/ubiYLqeBqjnGbuNWb9ZdPDxkeBmJwYTjsTU+VugQmtz5+C3QBX0piVh3d7BK+Hk4mO3q8qJVQXeIqs4hKuRvBfIwwUyKg9W1x8dv+EwESuk2Bgs1+Zc3wzx4eGasynWs3V360wH3fKXZFTckeHZdgtzTqcQPC2hCHhSXyFMyljvrneLE+c+b/YQ0XcDBam1oAPzvKmmcgER6AqnyC32Ic4HMP4FQN2rh4Y2ntrawByV+9oq/Z8hdwQEPYRYiELBCnuGGXDQbl3ZLuUo0vfKU/AuMwYfNXmNM2vkn/GRrpc5WDP+MEL80tbJDZfDNBRfpfcvVpf75u0LrkIIjnU4adaolZWzB2yjIVwNrF7zF//n4N5xHeaGc7Vh1EYRdc0h2l23qFvLBNQ5kHbmX8Yta2Vj4DU6eBN3XyJBvJf9iL4x+hw1hx/7Ej5U8EZr/Qhgoni5r9PxBfU3fdvXICGW9DzST7GV141bvyMDXblFG5PizNjJUVAWNSxIAStz6+eDAbkYeAKTj6DIR6ysFvZAloBLCgSdMFd3ol/WXDQh3BbBtLqO9hp08BfumZjLpTJGRAIHzDizXZfhbgqejNSS27BIXQLV0muwzgXGqYt9McSvtLWo1Fos3k6Nu2qGyFftqQyDz0/bmgvtZyiFce/SLYnjt2Q9BnlmUVBWOtbDPvUgOSizvJDhdiSkbLLP96MJ7dKO3eUK2nZnpb4s4b2XGF4T6gC4qo9TDv9z2SY4Rffb/RjPs76P0YiWADpPB/nQjC2tDRlxt4sdNCIjmMsLgU+cr8cpyaMSYI9maP4HHww2jTPkGKvF6H6+DFAF+jAZKT9oi23gpZ2zavE0xXPkF7a2FTNJ3bwxvsJV+o0fXZAkmouYq6B2+6ccHhnUIeL10QtZaPoZPJB7/Xry/2Nv+JJFmQ/p2NSiO5bYGA8ej1vh5QlWhaX3JMs5gMBnyyIfXIMf4im0WEUnCPAJzq9q04Tmxzy7nGKKEf31kAp6IFk95aj0AogL7iljLVJlOXNvV7BwZn4dKfuZweSEZBqy+Mvual0TVDHiwHuIuXbvaw+OkU7aeAfck0Hc6H0jgt9g6Rxb6dAuaiKEN1cUYtD88y0b9Arq1q6ML9B20/FunTnZNF+IHgsg641FfllDFpQ+dqrIPKQ8IkLx/2ppx0ivQSrehNaf5dwtBjnPHroRGzG/RWOdiW0COPzepxIqcsWjhfmBXSUD7YCvPm/qTGcSnhcriFKew6a5s0AgK03I1gEifX6y90cJBY9REbQ7yW/XB+zAXN1XZQVEs7r+0ajtx8KvVBKJksKj5YFGdhEennMbwgCJJIMdt/pJD6FIcNVegt2LiQS70DAJeiNNG86dQVNYNZmYEfo8oa002xKLh1+rHlBX40iY8Wlv7FqswQFktpyLn5oSdo1jBRz8V3aRIOmhSnrs2wxGwGBEVEXvRm8RZVvSQ0xlKMVWs9Y7nnmJ9jEVuDL08D2ES3plzvCNP3FpKQeSknFeVBXv5T1Yk0/X5vdj1J1LYa6Ffxxrv90ObLHARkCI+tz6+0i5cZTinvgIYLMVnV/OL+m4RCsTy/+9VQPsYv6X2qSSlVdQ3KM1SOntMNUBpb4C0MsDh10xHQ0cbJK0gsR6X93ru63BDYbRZmPISt1casVwVVE7+u3l55XJGJ0Ev6S+2zpNqOAH66RuzpVskXE6X8x6wHOfp5PAI/7YG3Zozh1U27IXGEEKIm13Rt/nTE3pKWA7i1NFdVQKQ0CNdqEsBkjiuM41dd5rIbR4DMnoDva07v1esxYBGU4JWJUJQyejYbI9p7pqjrpHZUNlz2exX1lTAks+WxY6CExoPlSlNNv6AIsE0VdPmHOj4m0a8bigDelTpIL1WoePLhblmhRlkPDKiZvkzz6eG8vLeJjCGJL1+VFa4QREBVyuhcpZm1ygJm9kuQ+8v4yEMw0VO+TKee6sMFRVc/kS4IirJupnw48LoR2aRk+GuDBZ25xnKFxdSYqZqvWlEcemsbzl7wvQg5z2xKxEUsquyGziyzd/X+XFl/ct9KRLzyyb6ComIL8Wam9x6LPNZXvhO0QQZmQ8T2MFjmRJ42WyRzfyLGkJKft94uO0Yy6Fflo3AoIEon3XBygpi3Je932ToU5EKoikvqkeLFACpsBN5dseemiMdHxOJKrVJDdTS0qCcTzPCyz506oyENFdelskwdghmUnWyXK2WeJX2CBXudNUBON/i8kMdtJm52REvmGqVmxe5aricuTCGLbgZtYvigT++E7xltEh/ZgUoMP+d8vaPU/HdhZaUjsgQ8OoqZeezvNR2JFm2on+IliVyYQ/58LmZ2stgKoBbs4SllwiTpNRw7ecL2WR8bbg05aTN00C8aGWtReWSsYsirJ0K0I97flI2gJRRN717wESryWahXUAFZAdyD08j9SIZQm+wq5GkoUkK5cQ3wk1x01x4fKLPgPIj6D6lZiylqvWGtl6KxCfoSQXlNZIHeDsrIRqhINxdrCinM0iMMkveNxhqrEzhnBn8F6nXVY5zUDLzOXpp338I2HycFa2pueObEof3HQgFEMnHS3/CDKwJAyYl3HyA4X5vXUE8MMa79gYELseTf0IEUJRsfSa873vl6n29lFq+GCqF1I+mB5PSyLFvgHv6hG5Hd14PAHTKhY+xzCgOwwRZxygPwNET0UiO9ynH0p3j7GAFEs+VSjl4ArhHJbySohRLfm6B7FxxYJLJxJlQr5UdD+5Vs0nM6CehSZZNYw4FzcpYoL6nS+wGGSNKLVLXgbgvzAbT4B1J4GMS16IKMlo5S/dzM/NM4NI+a1Fuk4qwaewoHqGp78vgp+SkuhLyAVhI2Or50Id4LlHwRon9o7JT3D2pibchFvFi2VTEx6cLX/qorW2YGSSmnu9+M8teW9DIRH1TfabuDIuLk16NFz3kNr5QLPGAd0JzN2IYFA140yqfi9LfBcZI3aUK/Gt2bfMMk8eqttN8c92OmUYKUaHbB9C9cpEwaOYs49MztuGtI0VMqDDHN8HiRP55BpRIJtIWbSyi0/LOC94XhzqGVyuzaVaBfg0f++sV8wy7ytxlQYA9w1ejE0XaCkpM9zbOrymf4OrEaIyQX84Z9e6wQ1czIvOihnSaq/fcFdkxJcMzE2kWcARwWT1U80dW6B+v6HdclWMyMWLYr49iKWrhm7o1yumJKxVGiv1Rx3Tw61jrh+vuNjikpFRxa0F9G7ZWs57nuhaIeT8ZRjYzuyq4WZBEXs4CyfvmZxGcS4/G2aWon2O/UkjqrfdbBUF0yavSPdNJacaaZxFQNejGDPK7SCF82XxiahbNpwFs/t07gbCJkDUvvKjqaYv1SNJBa21RKsOuGJNKO/F6HTjc1Q5t8lqLL4e83gWTT4aubYGtE+D4e9zdPPo2R3dvG7bDrCQosp62YhTaV3B/kEQGqtzvu59fbgA6lFyGe7urhYr3TWCBFYBmrEpB78fWnXUEd1z0LSzMcWL6vuh4CJYR0tg1jX4H0wkw9mkbM07MXopLJ2Rt7/aL3Hl3MjO8h/1lqNlK74QTbgkurmgd23XflEcMhjO52Y/Wsz+CqwkBCDN8SUcd0hvJ6srikURdDKw75ZZMyms8NdzvzfsXreeCzpVaPKbkgWo0BlD+qWqaXziVa7YTSezNkCD1UBphMwE3IFwG3+Oja0AILbwR+VMjirrIkRPt+DMtp+OKLpkiE15AVv3jn19brZGZkhhAsuT2sTiWSjLvxJkMICAGdQY6CcJ1bmQsycrXCCxoxrME8B5k7aYQkl31h4kmnvmUA1Uo5bGEJkzebQNuMeVIRwKr7shM3Y3iowzuO8Jm833ALhjeDbR9i+ajGdiv5nuQcBDW0PZ0CB/GHvnmE702e3iEmWKin/StmkbfvsVh9mXnjLzZCRfht3g5Fu6OpDSsq1DSVUie4hNThGTSTWkOhTKbARv54Bxp1m/BqW0CfvfUJMQYci+HzQBrAw7lHJI8klNzq1wbwtxf0zzTFIpYQcsU3ddDWDMuciKmN+BHJ47B6FkgX4uR5QSWzLqgN2wQK1aLp2hgMJGqMII4rLK56VcDk89QQhw6cy8PCM19olNpuDwdrQFvP+77wiyyKx8Z4MVJNxV5vJWOwvF+aDouZMW5HNno5d960qcPPO89qYm6Zh6UO7MyFx272aWYtu/0+UZ6eThOP3s/uMGRarrYNGVN2bkl0VbM7ZArP2AnCQLuPoIbkry4nTS/RsIdFmPg98zeYI4R0RY41FQsBym1OXnJcHtmKPjfEXuujVQGfCPrCZsaT+vFbMFWIvUy7OxquIvdi2DVp3+q3E3NGG06d/cz77wgHGWrfcy5LJIzCMZHkk6m2QnZCXYVXwMsVhJI9nJcgG/CrU5lgDb/DlVEsXG06BHIuqVfnTyLdAQZYmJlEEk43pdgF69V12XC+sB9W5Tfm3jPwiHn/VmGszkYx+Er49CLbyk3hDBSKuzDj+nzCo77ZO40EIP4ZROdSwWlf5S8wfYcAzjNdj/aZ8uknw3tur126RfCzMA+cUo5mPaZL9cVp33X0mRTUIS2vgtwDRgsSSX5xcJUWR8gZbdeqyqQEEAeDu3+BMlrgYP2SH/le2u1yfVFn5JX9VQ04X9mmABR/KOd3rAYqR+OQwLWao9MXVS1y+0OKo0FlXuirKuPaY1BQbY3Vo05Gf/+N+u4rDcFBQqiCrYhgRAEjvVW9eNCaOsukcJWEaDuo/pWCYGJLadm4ssTCPvVVEJNBfVXAcTIxH4EFtWFMJUy5of50QNXNZBl+oRuFIkdbt04DeU6j2A3vzzP+IkMahLD6zBVJv+xRBIc5fODvnJMmJRMI8kcyMFqxpeWZAHxC68tGFNyl6yyGN95SwNYXwDSIQCPlL9bzjZaWNWvs5puiP2lbEBlDw5vCHtVmb/sD8QBgOhRassChwM5o5g4lhlD4u86wmdmVmhmEXnCyLeQJ0rRtqYIWRhg72ieDnqmPvOkDTWtKR38TeJwrK/7IRYfbNspygrU6yV9YtJyw3I3uEkDgbPrpcNUpISYvzv3beFg3ZN+swedqf3IVKkcdiAezu/KpHGHPyvX9oT6qzTS342/DenW9ctM197UfFl4rk21KxSma1KnLIWlGGasMF4+G3dxTnqBscul4CqNda6Qy8ita7HCzKlYa86yljm+HQA2B5ArJoZy4LNxeT9izFuQhEoEhUTNJQj2pCc/O44h8GpQX6XgpaAvAQJLVNq0yXGFbzb3O54XQ6sm557+lT3A+VWPyCJn1MLbsssHIdFhJcMtBFQYi0bS+exQ4Rq74xNE2CIRSzi3nj5TNy2AoO0gdyBC0/2iH67UB581jmM92OHqgD4EzAzyxDauPnlIdZu0nWwB4dtxWN+meq/faIuQpK2hoRP/ULwIJ9r3xyxtXxfFwJ3YquXldSEnxoPiYD85u0OAHvKOG6+3eBraUiOgvdfp1EjiroeSLLFutuPPV9XqhAReYPaRy87OAkV5tzSqvyfufCvOMTtkpxApWsJ9n+cNM2uBWu4lj1oDjGasCfCt6cfgCzh6UbZanbL/qCgf/iHjKYaavIiRLJrU2BuzdsP97XHkXLYbbfsHVTlXSohKOXOJ+3LiR6ix9UFLo9qieejYk+P4e5wC64jGQLSxJzYt3cErx1Rtc2+xlJaEBynLN4hLl/qOrgBM7a+yswC0Mh2OieA4SR6MfM9WK/FOWbVyoUBIUAKOhhIZp2LOgukk0/DInn7sF7dRP6Nw77MaAcYg6k0gdjQN9/1wtGVSBm+6LwkI+xfcK9l+JiWepXul+/EEdV7XXp/9lUsW4RQmIkda9H38FJj3EYJTrG4hEU9YWtNd2lKI1683cXFVzSMkh+2nuu9K0JUBoAnrYkKVZpAKF9G7y5n/KMZrP2xPuUFSOaruqriffSEX9Euj/k5dgewEyQCFTif83LhkIjt5qJ1LyI4ynIznWl1SoAdecEp+I5WmKBB2fr5yw33NX94q6HIP0jW3Np2E0r1f7fUjqdxV+iCRULU+yAwPXFvTL7HqfFLj+wCfIbOg+nsW03rGTf1haLvAZA/nC52pSDnC4f0qOiA6WtK20BldZUaA6GO3m5ZOCGyemGK4a12hM3BXnbladA/yTRV+pH7IiT/9WOijGGNXzV+K4wmdmRjU3It+QwUCRat2mGkEHhOcQY06pWeQqBGjHkWcceX8/drkk+tYysHMXVk8hLhLGjUVgivK1Ra4K+RtUcZO5fkVkWQ4W8fyo2tafhGEDSsflUH7yj8wsATBE9YpskR+r7Ac8xqdxtEAfRioGXSprjbLI2DAZZz9HAYR7rUHzvh/UPpFvrLbd/hFf7sF3RimWNpiGsQRZ11RqfZkck9IJu/FPU2DYr/HWUdskJHuLufXCvDbKn0F9sM31Hn3zIuAMTUc+tQsO9ll6jnNnW9Ulo7d32jEQMqJIrWQL5+Se0a8lKRp+XhYp4IfyUaTRC58vFEjKupeFEpU4EOp1AjeALc7vZV0ovza8QSl3ru6xFpY0/ckElMOChkhLWSDHLCKaFK/qC/SIfT50GJZnkCr5SgXZRddXq8Gc6XNjIzSdCF+9YlUFKMiri/sn1Gp/dEMhARah97GidLqitLNBlF+H8XoQmdrM3GXBSCN6izNn2ON0OzpCxOuM917OZCw2ZC0DSvNuTOFCGGYf1TYgUbgK2KKc4zm/25dz3GhVpFqs6x4yhZBbiy/6FD1vXW/aIcDiSUoIhwrUtxuGGZijb47Jz8JfUTblzx4eNPbXeYpygkQo1xXonjeouTuJvAH/zH+FK50zOLAtbN9AO6xjfX09CsjKitMVlHWmmQybLoBHBPkC5IbAZxvs3cH1VAcy2X90WL6y/0SXNsGeLBdr1OWVuYg+/wUNiR7QnP2ec7jNrZZOosT6Olwn02Dh6zSwKoDnMFLfk7lBO0p9mWjex7gEFXNfxFO19qmaoISUZEgdTuy7sHgrD/36o3XeFdzLFoFnOJa4yaENBXdTSmVZacz+5IGdVkEgjQt/TxuhNGHGtQuzNDfM4iNZ28Ly9S9WkUGMNAfDRLr4ipZkJxUA6HnlOi4Yb04/Ze8rB+HEXpDGC5Jpr4fN62LQh8o6kxknE1P5/rNmz43jehFlRUvCyNi3Y5St7lC7a2ogCt3Za6M7AshQdbVV2+R2DuuiLEJz0MLhnn/1/F2Z2U3h560PrnhR0Gc/5GW5DwO/DGrR/4PvL046BKjUp1lfrtKfE4osRTS9/oB0GrNW3cYgvhU8ld61sHhKOf4P94t4n7h9zdRXDaFv4ORPHokkY+NA9QA49RmsGMfJLu1/RXuluq0J4fsUUBoa9dL9T0yDJXvGtuoln8aYrNzoapa7E8cR73/wX6KwBPpwCUUlxsBtOj0rnca7zu5FqJC5W0U8Yt529SAI0S6nmWnS8zguQLRzf/gRLaqSQ6E9T6Q84u1cs56dzBMv2eBG+zAKw2V0x1NJX1gC8M2MYZpScdXEKPG1442UFWTEUlkM9OjbR4FurtJNV4IqEu1htlgltESO0SeZMHZ1JM7bNtYegevwPSCmW+S8uEGj7FTSSV0HbDg1rOnt4Ws8DxqN2T/HOXNd5NGboZ8VTSD6g6rLWcoWOwsyeG08GPG6KHPiLRunEdTPNmY74ObRGT1VCHP7nmBYmjnH+kqK6rDyrEoNjdqc8uG8yZrHWBXU9weqD5rpQ6S/annq7P/GiYepA2ZDdJA/GbdxpHYatPgkXt5sop564gVHZamW6cq/cdADaLCXWt1WgK7y11WaQR90YOen8BECQ56pmJbLvzzfWBhUUJP+dAEEK4o4wZv2+IBAFEdNkNF3mKntsLE5PDLA/IEiV0rziyORzLJsoxRMCQV/HlpCkXsaizcHT/vxU9iadf2hOkKehGum3973fFs7uRlqxz/oDerFL0617PqG+VYIxjeRb2IRLZJGH8vp8ITzF7U7HUg8Crs3WpVY5r8wxn8tzGvUUwY5csVu15Vmm1xcs0UL/lUCkrOXdLtlaa4pHLeQgpd/vu1ZzjMOcgzfQaIwiZK+fMZjRLAHUf83TSCOkovb3xPkD0jElmb4TBqFrwn8G4KWr+RM58qhCnlVimQ390m8YLz+fNHbBRDs7GJgHSK+v5Z9cwZq4glnR2eTjnqTy8Wo7BEg24CL/RT1AKzOIE7muo8oegzn8R6qab08LzTcbb0ippsScfjQoJhsr4jKG2pMVczpCYqptZcGD5rxTHFbL3+NDnEUptRMyARhF2FMiM7pgaB/IpAna1AHa5EPt7oBdzMGg7kOdSOpxrPXbdP3l/+QCfCLMpCsxFd3VAxA/IPVvK8JaenCYCadhyZ6rJeGxTUh11+OOAjrXIJxb/EbIy8rv6h7hywPp9ZhPCcgt9BN808JhGIaKwtL85jO5nipQyAF690xJ9A2DMuCx55TSG88fN6rqBMYDI+I+DtFmoAqJB27B/xxN9xMLnQwLcLCHOx4GIFCq3/6i7gwJePjoG/HKNb0XjhuEQmYFzTgtt/uIo1bBX4C+y1jrb+R0mRj+RyaDkRus8W4WW73qbcjpjIh2tGUY6KJyhEaKiK+LHG5euQeYZO4zXoKbZOWiJTvJNNVrWugpXkIIIE4zK/g4JKATQjtaC1qbJ6khaJHxOTS2goU5zGyjmaPKvVPrBh27E7E2iZ/6omwpBARV/9EKeU1m4Msz8Q7y3MzEF0C8VIIqAxB+Fk8qG970lhV/ZIX6CsxiHqybemqil3Qv/cWKm96fPoMJWSA1dcF03dSwSyNMdvKKBCYVYLuqr2pISKPaNRJJw2R43RNE6avh/TNA1tGJ/ilW/e4LbOvIh7cS2OsbjyXcD6WS0DYaDa+og0lSxehZQiDSt2fVdtF+DO7/cEUAM3uju47Fl17rUPkRPaheA+6/jpSYK5Nh6rSwO8Pbi1y4/L0L5SStva0NcscpH0pw/3Y9+Eqw1SDVvRn2r2d8vRC6YhQywdhKWraKGBMILqjiU2l5d3jb1tnQIwi95QiTJW7MAjJD4Plr9FGRGlM4NQyAiG8wSAKUbRCpmxE+zk9YhXjiC/Rbt983pV0VzovJW+90dH65IOb2VS+Wk+MpsRgZ86uEuxeGPyB++07HlAwqFjq0sm5Lvom/rcHSaLduJrDdabujYJRWbbY2QZptvGwTHAiaqsAafE9NQa2oq6hV8+E2YRbdEcrirxyx9JVWpti7CsFfA/egMevH0MR40/X1jQzMYbw6mr01MI833RiE3EuU79cpspC8tuN6QxFB7ExHF8yrFQ4vRniEkTgKc8kT2tC2HgNJJ+l/FwYXky6qbHj1cMtBGVOw3SFMHn5l5odYVrLqhL6R4DujKq/CEsEj742QjUogvrSb9DOh1Mm5Z7n6MI+YHii3bWp2abi25FJIiX3GM/137MQVr4wwQ5IQETnYx0CoXX1nLeqLjQ2VlOulhy58iVxN5d0Q2TEV6MPr+wA6lluGEC5890db42elDUvTbbMcjHGrT7WA4eEhNLqVT35NhLruSPkwg1UCAUz94Dj23i6dqS1MPh40Oyi0W+wfoWYXIw+siweU3qKdQM/IWLUwDjgMQuiK+CTyRgR/Cg+XmfazCLiF1JChK7C2x+ROCl4t2WjYngGRxBWRQqqrNqx1EesLx8Z8GOimBJK3Ip3O0TWp1z6fhibUBvCtBpCBH7Wz0MrsYEtW/6gd/rLbB2IcMxOrxgW5u+/ZBOjd+9Zg9SRf7ln5tqXgM7wZE2rj4u7BOezWvuyca2TpJkQOR8U/bR+LRjmN6RAS7MCfYSPtJWSbZYnQL8vGmJb39SyiYiER2Via1nlShjJEe3JgCwTOTiIQJ5h+NQeEs7qWkpIDJiQHb7VwcR7T1gLGhKAqUT5DPO5zvGPny/DOh+Lo+Xhxf5wTkF5p5yY0vM1gw2UZQ2nhCedQ+PBxACaAeuBYTyBs9aNWvYATPBLUtXJ3H/+rMIUQ3Xz5MJKdV6OhLEEK73rb9hfjPlA0gKO4j120U6VHh4AJvL3WqjaY/KCbwpCzUCADZmnJdpD4p4U5ry6/YuhcWXcVV4dFm5J8qADBWw9jPITjUtkf0lhIJkzhXLTcXQBZaaunvCCxyWh6ifYzNTTCGJcUD6DyfGam2zj4qdBy7DwBaL2S2IxicF7F2ubPDvx0+DEQVydAIF4Utn+/niyxDQpGlaaG5eRQcfYEHaZeHBOfZ8x6KnSsZnB8YZbLVBcEF3Mv/87cj4r/BYDYAaUWrrm/rWPImSVpvPlB3xQvVG305B+bCj4kIW4ZWzFnX7/nApDibPZxncAV04laDsD872g54z55DZylkUKHXF7Y5iFwsc0HDovYpJ1P+XIAb4pKZnw/e2BrTZn6jCeAAvAt6Z8EdXqS/KoRwK37xhZL7w17n2PYpqnoCtRAvnU/CocUq+el+PFEwM2GkhLBAJXvVbqxBMfPWlA8XMNY1+dfsV9Uy0C+WgSzcXw/ylN23DlELK9DPZ1nzFCvyDWygh1ABv0LXhuVuDEraYOrX0J/NpbYoxjl/mfncXN1DorfumMjOo/dWEk/OvdZ8w/66CtISpGM2htGRpT929qEz+kRM+2XpAqcSS9GOrLWVVUVIm3Ez/yIqAWm019Td/ytbE6eeYJaY+mJpelcp0h+4Y1hmcF9J6cZQEJi7foY8n1psVTCzE0QYMX+ScYxKxb/bU9eproUaSNTxHeNhomtba4y/CfLAZYXndn5ndeIjFIsRWRpwX3HwrIsKxRgd52tRs/iun5uy44w8u2wZgayiPbOTWGXUn/BDqak5EZebXbdQHyE0yEhUO5HcDnE6xlAuZFDSKLDTTZz9bWcfe1wy8KhSOwh15cBRibt+faUQgl7/5na6Nl5d1o7iUWTjOhjQa4z2Pha1PNGSn0hZFeICMKGtHJ6EGQbB+HF6+M2e8YSQjJ2cnG2SVpdzXlnkzxYqwXv0s0WM8nggSh7Viq5joXNiF3RJ0A9637p1HFJd2I7GrQ4ZTOWRi8jcZaL/25Pox9feMT7VDPV6TT++0Ri3a1aLS8IABZh2dWfxnBmXDWPdvrxmBiF3eePVqd2ZM5bI9YAN23/3qVLElDeD61xvgRdjkXkl2tqif3zsX1gGp9mzEm6suh1kWL75XC2kXlrCreiNi2pfI+iWVFJDXPd3MBNp7VSAZRp1jpt3ug1pQEM470lZXwotpDljklvGxuNeKwTuKNJw0EK74nc0d851QXL9P4pxZdM7pkmbA7IU2S2Xa/AJRP2VOz3Kyp9oW6FgoQi4noNkoHeNnprbQod8n+dQSSbMzNRZIuL/riHaxoOHkaGYwROCZwqcbK1tUnU2Qt1J+3UTvklj6wOD/d8lrZG7ucjZiCyHxK5XVtzq9lDJ4N1FvARCTUfnLeOLc5bmrtGvb8mmsr0lDDyR5607k41wzglZH1fExfmsXrEjiNLSzSKGb7FVusl07/BgeCclDsQkds2G654GVeUpX7UHaqQBEmJsIyvfxvz85+WyRaoYuQfSH9WpJLeUoXpUt7+Crnl1Jqz+eARyCmzL59OUUBwBuoQAl5VddIrfG6xvDA/RZBOV5AfwjOrJ2xRo4N42rCSFCcnOY7xfewl6tVLetiM2tGLqRLc9k/owyHriX1A9BnluzfDc5xdEUKyuwzWPG+tZGNDV0WLl1JyHPflzcBpj92G0AR0lGaMSZuKui5/LUMn69X9wPKc6FVkNEHEjHjQKPQjuFCokjN+N/6DlMscpE48IhHIa0Ghrc36GwGEiPRymXWKD/di92yfjZjDM3fdHBdwSxJRSBVKHSwh6Ey1/zWZRZ4kk+KMS8HuroIw1UPa+PDVpsSIKvmqZnZisbfHFWNW/dl9n5+wM4VIzhmrETz3k9WU3s+z84SHh2f7dGT/G5WvoisBYAgwm+pqFS0A8xyhy4PiKfgS+6TgnQD5hDEerpzgFSaMcw3yvDZ0+xfL0yznf0uY8N6APiqHdoJZOWqTPnTIbeBLc5dvFdh+mvD+sDtl8BAWzYR7QkSgnx30Ru7TH5a/g4byacurCNvG0lTgpkj9w42uqBp1zMsKr2riOCQwfCRKkuSX9CGADOYGqCHh1JUsk6RwvI9OvM9fCJoL7Sap8NUQ7mAvdB2ougA01NdqxVo8NeGta0R9C7QybiN4uAtDxw2zLTG9+0we68JkqZrj9tJilUV/f4wOLc83GfstXOVF2bAJ6zf56YworQQEDj6QnC+lqyMkGAr0QuAikm0jqS7fy9bYSBz5hekPILc94b8aUau3Kt69QI1kFEmcb19aFQA4bSegA9/hFi61RDIVQ7iOBqViYdGaK8d3zH5qWIjed0hR9e6o4zELdXWhOVOcPCmZIYYXvgUsAyGUoCszsCiTdwOaPEL2kRnYh0mNSZGb6/kr8XfbyUdbEZ7mDBYy0yTDxhkrpIoJmVutN6FHk/E4cTEolaGnv7x+QxQIKZus8IEygpdtBDxj+lC5M6HaJ313pLDYbjpCA+oYl11ISRJ/fB2oIdDBHFLefQmF1uHk7vtSmIyI7Q9HG0qxu8QRWecP8ipKR1o4bGrAhR2KcGEDE6k8r2F7N9lNUZCswXi/EXaOlPb9fdsaw1Sspku1xrmyADIImEs//XiPqI3Jl8BlrsHf1mAVCBmlqE7usMbDEpilt45ia5CXzVqlIZ95Fesu48LEATS3dyXVEjwQAqVbFBttbLfXvX4LhaGKv6P3XBsKWvqEFfq1rPYdohHtQH03ehlVMpZ/BRCBFV6dffGCrIa7OngRAbORd6wsIcR/gQSxhfrfHFmb9Ws3Pk/SikwIvAIYljNbXbvIpKTROSiPcmBDp4hxLkrjR+MfBFZLV5I4usLY6WYmjhT2kzW9XAxxLYCELLIf6lg6p/GFgpoRTm+yQ6PYtmKVvdTHyBxv28y3vTiy+reYBZqmC7x0TDasiMCcA+TxdKgDY4s61MpZyI1+RUzeMfx1qh9MBXg1tI/HSKpcUj7+qTrwp35J3ezefo6UZiEWMPBtx0/tJyaej7NUmUHVRBJfB1q0bsw4yHfui2ZOPNh/6R2/I0j09t9QGeRxpuJzB6DNbaPTOmER6WTXYEGXq7DhzkvCP247uSz6r7MfaasDs419fVF4RAt4XoxkFRmk3sjrhpNSeuDoG5RpjE4pI3rH/ESPaF6RIIJBiAbVU/ct/nKrDmBQPBYlNob0WmW07GhOvvz0m/BXTsPB8qA8Iesm6PsDuOLEEm5+jbniDFyXfndwIXHgWBB1GCyGV52MU+5iXguncQS8T+WyxaPDqCCXMjwPJxGObdF8mBkG2+SpqaBQkeN+1IL8Cbb72d3ySQUR/uO+N9v36KAiKVEPx8EERU0vfKi53JWN50+LSYqgHmF0UrnnHCNpcwfX8ezokGL4sK/rgFZlXnIqg6a8EJh7DfMOwMgTwRjjZ+TrXsj7SA6EaMRroFgxXRIOGDPYZgkadllrCosfuVZqNQwAY1cDJzuD4ocR7PgZYXbCA3g9Jd1PRx7PyRTNad56qFMVIv/9AYYd32opL/KQOuEa2LIoyMUHWsHVeJEgDnTAizkdfigKSmZVUDrztoGXA+B+9B+MYT2q5BETXJUKRLiEw3upTpXnlh7hkEk8/0D3rV1lUxxSlnDzLfFArxdnXRhBNu085RxiTwTISjItGPuj0MQknBfLTi9AeLTT9QUKRG7bxHm7P2Kei6fVAeNBP31q/OVsTuBJZfKaxLodsCxObxFdyJNLV2tAt+2SCAO5/VWcDOd7Or0wzbVGwbXJr73+/PYn3VfNQ4CSxdqgXNPWDqh9ZFVRQbSeb+bFmOpdkO7C70y6dTSHVuHlIY33/KV1QHDJ226atG4ltS4fk0ZNDrmPZ2Lps6qyMYO+Wkmsyw/ECuxfXcZ0zM7vmLjkk/LsX/XG0vaL3KZb2C51I5TVf8fBJmMxHHzKvaXDwSTGiya0f8ZZ3olqbqcd2cjXM0jicXlX0cJsaB81POyuItwEiYZwsHn4gymrnlD0mfAro2YoSC7KxDdL1DQVO+0a7fN1fLkv8ElaXx46Z8EGJ/W6akIr6uEuiFIQB9fHujgNzIzAgaDEYVITJJO5XQkyimdgaTBvra1hUbw4jb8imqVpd7G9dSoQVNPatqBlbm7NLsdI/einfpw6HdFlo9bpLb/wBxf2BGK/YWhn6LhzEvBuRuBZJTDv7HV9WfnA2SyT3HV/F6f+23aOYC8rxO7QQ1FI4/0m/OAHdCwYedzx6F6TIlSh668B+Id3ZxNP3V+Z82Tt/AHYSzDsxyYC8mxyk+Za4Q6u8y70AKpUm1NPP2WMeSHfqCc5mUcG67RR+sJWZg7P5iG4FPnFmWKv1nwwk+fM0IIA5p7xmHnj1zbj89sN0hc81tzI6enBjIyPd6P5GXzsmp9IRHKS506SAEK7IxfjQLxkNK1x+M8YAYLrD1qWXqo03kTvXgYllmtbguZX1FQGpXYjbZzgqSLxcXTKqQ/GhYqBJzZtvPaYGODBTozt0Rw6/vP+hTUJGOAYcEWWr5Mqy4792lLWmElkf2k2HiF5268DSkEL2oQl+VXl2NXgbfa8xxQoI7lpuNkURcA/pNz/go3LD+w41q4eQy20ecjCwekr0XfODump0XPUm2vvNfk4P/tAVA2PLhl21zoFOrSKjd6D1AiMtz/f41uWlBWCDDY4tDRMhyGsls4GW7P8b0/dGx6VTgC6oCCWxMyJyOgl5RPaFDE/EzGGGL9XUm5X9L3crn0DvEELm/Vx6HwlGWtnfZK7dA8/zJkr9b7PBgLeFlmXyfUBxZHF8kxgW5tcxvkEz0roS70jNLvk3QNCTUIwCHnqk5NRDEaewDCzjTR5lKzNzx1RHHJNiZZJ0lXrAsSM03iKPyYNdJfMwUAvRlKP49yIx7XS9cvseBWVvGNAc2I0PmR6Xc9KjqauqjgG/Q8i16OIPtQ2Ll3qDkunTNq2O65AEFG5qycHaB2/159N4n67iMEpyNowNdkq/ZlDxsX4dRKNvBUJaYqhID70qa2Rgq8+AzqTaJhuYrqrDDO1n/0rWggrBcFsYwo7ujJZblKGamFf+3B5MTAXNUOKn5PW91Gx56gtqTqz1dYMML1dFR/KZUZom7Wky7v9EfKnYbBseAvDuBFBFFCuXnhvWc/JS4ipUIe59Ls/kL+W5lteo1xt5bkJYfug17vGw6cqrOjTG4nQXZ+RbEDCMTf5JZ4DBcuVv+tGPyucc3B6R9NMF/lc4ubulrqcBPhRUjGBILbQ+4uBJ9eUHMAj2ijfMskRMLcV5FdgqIWhiEvxNVlZSRrzTzySfBUjZHCJQtbgDZ8nRWLwk6rQKWD5aSHuJh0vBgvlNTP+a4P7p59l0FYBPtoNpiFl/dOo05KHesQCueTxj7IB6io9sqTWxTu2PK2C3ACiXWNyxs52441hxg3eco87pSRV1NUvQeac35o3tgUpXtmtl2yHh3QO1mQ55wSqIri3PtVxJ57l0nOuyav/0ixzLEq3QlLZmLb8Y2JVlrdQMjhpcC1j0DS+VHrYIB4JgyXacVu9PCRoC5Y2+p8qfeJA3OFreaabxWxz5omyn/l55+ufQkO5e9iODCdLWl2crwLrUpaMCi8EUcVXGb3Z8oBCUdwuuohn1sivwQp1O+DaRFYXIbHQibdPfq4dU8WeiYJ4WKMlNEuQr/BRIGwOrAIM3Ppjmzvh27Lyx6xK14sUHgNy2ggNG57CBbXznFP/0NVrUQef5mMdso3AJ33SJxInqYebzcZ2pEVYHYczXE/+mcptBHb4ANtGohwQabL1xmFHav/wFH/al8TKjzGnYiFLEifJHL7OJD0x/rtzWuCrDToEWPBNtRKXFZqz/kBH6gsxzy/TUzP6R+C/A456FbGm8soK/uYyafgNmX0re6fgXeehUvtDCXdAUJElJt7AMv+VMdIrrOK7TAaHo6E8Khx1rq48yOqMqtC08so9cQh/AV760CiEtSm6PBL7JKCZBV4m7t8Gbbc4TQRawpuwTFyS/vt1JBnAQUBDPdEddlJlVAfbGy+OKkohOw9BB/JY9rDZQK1o/kpfl82umHijUnj0gVqhJCsrzUxYl+ygkRPDEPZqUIo/+AtsGplmBSxL8bUE1iBc8lCtShF2iqMC1DdHIH1DcucbSNtxOF9LY4IMng4T9eTYzDr+gnOPVxWBYMambJUexTzxyvFOneFg3r4FBEHqG3QZRgnKISYUQKv9B23A8vhFRe8uNZpBtiMtXqOQlVEbO/HzkRbqVaGj4s2XRVlhO+ewkvEaTp4pNLXG1OVF6ncxf3Fq94KmGuG29LLsFI1fuX35J0TsRNGo+TCioyTrXLVEjPztNVQL1/q5tGSrMPhfJEaQxHcrnqhVVqN1gfF+JK9Pgcud/lGa+Ig7eKQpJuUN+PYhBYQ/b6ahi4nLNe5+d8rQlfK/gl3OQ3WDGWuUMOt1YlBKoX+99JWlZr6tTAVgDF0NSHs5fqbU0euO7cXKnvVB3taBFHP6/KKZCBfGqzNo6DgZgiAELh1EYOni64dmOWUuwAQCKu+L8tnTFLlL6uKkaNtO8YGlOBVU9mQFYx4aGPgGEI/HTycxYXBClfKbmSErtcsuhalOh73FnzRz/thPjvRJcRwPtZmCHs1nYjivLMWWGprl4fRUOlrCDiwNU+9TZuaVsuCxj/4DzKfcla139igH7Z+0uskWkEq/c0mrsRLlVpl8ln0G77hwK9rLKc+RLeI6KLKy3Um5C6Of3qiKNoY/7ad3EFvdP4VICsuTMTii/bee9efmKAiym0A+l3hS7SofuEJ46In7BEO+Kf597wnd6s5mL1d5zNRBdOEmfNKyPdUuCW3u/SfFQes7nYlfV/B1DOE9p/pmgK+bx+eZdZUMu44uBGlaPvej5wxU9aumiyt/uCCZ4PyO0OYfFAMMqTaYcI8GxYeHO/3tDJsJisLleLpS/gvPLbEksIm3R4OCJ21S4P//uyzQ4EJZyYmWZjtknKJbz0vFEi0zDWnZHl4kvpMSPlVI8cEAG5r0JoNN59joEsMhUcPZ1YtIDYX9cnR711x6SQEnBGgTz6d3b1iebIdotlgqE03w87xlD0+qEykcVizaOB3Z+ocaMGWybZTIdpR4niV9mDm65EzKK8VQq59iMlABk54A7zAlMdkYNmaRuWJN+bLJ7RqEZf8vrpM0+3cwD0NctuwJJA13JIJVFlPStNIXzAW4pp1OnTx3rMZQfF+o4p92WDkF2tx1MUdC14Er9l1RlYsEYnOubj2IotL4tkgKwnE219ZsjXb8PJFkzakaWhRBJAkgbR6myiYFsJgC/lellsN9g1ML0j4HX4rwIzHbq20FDkBdfqN9SUnIbJf0QQr+QxHx4f0kRekXaqKZYUXYMbRKa6OObLPOaKGft7xFAgT2pHuSw7kdfloER91zsJPWQJbkAzyDFkkgUg80kW7n7n+WBN3CMXA3lU6QR23Ipx/98577h2OGkpcp5YiTX/TikBkcza+iwBGNBi/j+GwW8tGbKxpiSNEQqUDdqfscbVMQ+OSYGoeQKSLwREfUGDjR/emc+ZAJsy3sraTZkpHFZAI69dwO1dvsOw/Q+O/2lgghmEsk6NKzmfI+OYuOG2UoagP9Le/y9UABk4VHk54+6fW891qe1yVDT2KUc5hNeePBaQwVb5BQYPt/+2xEpqsHC4GY37hXyRSGvfwYa7DGUDbMKd8vud28h67mpOl7fe4uFRe/HOKf3TFs+9RX+QpL0+C2b4R/8VfkUQOABt4tcaDV34nU/UFXBUDvPYMYe0F24AZPIWphY9bLwt+tWvmuWwhvAgPN1rxvo3hpXvQNSPsVKgFUKENrmSCjWPYCUoQfJFpepI6oqpsVwJt6IlBFGO4soABNOS2KtnF9P7E9sSLK1WWOdGvYNhxKO5/D5ACMSM3oLy6XvjzPe57hP26DKKsIbhLZqcz8tJOcm1zlVKV87cVqDh5iOgGkNIKp7JU8eBp4VRPvv6peu3DR+ROhro3GOnpo6Cdltkq395hUi+pDXzwcONA2YjC4BKvX3JGZi77wJboSzwwPelRCe5297Gau3hHdjkNfDMaoCdfo4BX1IthlFNEHUm2nTsuiPe/rOux7FSlxIwT09NqnvyBmWQYcleqlPEreuoCZRFvXL07v84AxlxNdJM/atDmCjpmzumIoYOf4uVqV/8ZnSwV78WW0S0R7AwI0EDq4B6IaI6AUBwPrNLY0eeSw24zQ6qVAgBGW5aK79Mg+Skj4XxdPl8axMl4x6nwmnAfEBIju1ssp4yr/gdi9kl+ScGW3r5NVqJ1fXRkW9O0A6JBottvWGypQioSH2C46bepNpt5dXRK28XY0hseEnW9fDBaUMHziavWy8Q7jttulrsjOd5WunqGz20rPiwX/3fdKuQgv0g4CDqGBMamo9htCyKqN0qTOxWP5MmZG0lur+eIMwtcrfYqJujT19J3dps8mrCySt1MRdmlNIykG8cIMszw/nMlRV1DmpxNn2zf3gflXm1sXSH00EqrICj29dnyNSbIteQOqjPLqBf2QDDVVCAgcCz7vER9m5X4XkTIeB4ppqaFa2UHE05QSkAhs7FkyPf40UFGlKG8GnrdKq0ZLUk9m5jleTBwhdDsYP8HCDKRE6LS48qLHD4pvSl3XFvmH8KBEmyeyNwwJzAJQd8MqhmKsdandB6Ec1bHOw8agmVGP/vvY2C60X8AnR2r2HhdkUbclW9+ozjmxmipA1AJIZnqxg4aa1Le0RHfU2vkpf68y/rFMYgCXue7eNqxoS0NkOw9a9/WcDFJOh0Grb8zYjPgaSDENIFMCM0H5OlIqq2r2FKGkaQSMzVm87r9L7fysa4xxVMD0h7CIExLBVbCe1/r/WavK3yPhHVe3XBjyVTDOqI4/90N/Cm5KnqxFrVYOHbwMIXa3GwNwVME+38OpXvNwD6l+jN8BDCRDEjGDFC+WObTdm+5/tfm0QeEfVUYFtA7gTobiCnl8rywroMyBHNClofz+W7OhssrGuos+fRhh8kBA+Ni0fYdhKK+qCZaY0LUDpn17UUKCX6dOZccCYzSsD2iSQP74pFnhlkOzACsapdT20zbjF6ZqLgELUPT8IglaX38zP6zfdyBF+NjNf247XNtmIz4QCO5iRy/GcS8jjaWMfTxI3EbUvzrprtgRQDOz/eMnyVQVbbFiTMZfhfQLeu+j6iY0Qs/QYGFdHefwzAYuVpPhVZK/tXsy6DAioLlmNDzAu1eQ5ihCnobO+MOZtSD0+uTpiOAvPwGWf52xDUHj4zbdFtZULPV4c1TmWflDGMkg/Ia6kPHprHErwFTGoBg+1D6oX8lSPdz5srAF0RbktUTmq44+USAYYowZQOVbM3BWMc603Oy9SQD3buNTgzJ7yaMBbo/pjkzVrpW5xYH0Ra11ykiz32vo4nBg9Zvm92KHWhJm7uQJV5DMPA1JHBWBMcjz/uZupwXqjoTffeHZ17N3waXUaR7cZDs94ewlhsbQrmI7/A4zJDUZj0qKiVQhn3f3AneEhDwl6GUdCBdKY14q9n6ay58twW2PRXXPJ6UE6TUs6oqH/0xgDpP3bx/mfcCUy5oo91agCPtpTfowGZ0tyw5mIOsUqvdURDhjuWLX/WIqaPlYx3zmJ3ahTcxtC5xQgKWrQskF57LaOvwYN0lzIwz/joNYkiZwLyB7Joi0CsWWRC6SapEN5TClIisNQtNPmfwKaKYb+Hguo76RtcQMXdRZWjEJNHq8KZKeg/uWWDOW6aygLP9JDrNNW7JfWDyHPR8GL+29zBAD5FY1WZXsmYfdKU1VTLLzAHERJJGTpwKZH5k0uZrDYM8zG9WX+RVDM8bsmN8cI2wKz0Td8GEq9T4DvY6FuhMsqPGHC1tkLdxuwBYP0Lu2RvjXaxodrZhKfkkIwGcfm+lFS4WMFPCz3FwWwuvNLNqv7c85xnk3aXWl49yCW0YTzTqwyKuKWSIFJum5G8BBjvxx2yDOZMh18M2WhRGX5VA0p3eAilBsGa54P+iEat2c0lLnTrXg7fzDLJrjO/213hRmT/92zHwHShntUiR+9KUWKWRcx9OrMWfefEo/p2FR7dbNWoP/P/se7JJUfBzJixcPvTzMvSTQrccDAmpwoLnh6pnsAF37U9Cakvwb0EZzywhYhfUyAZ4oAu4R1X55yrbJifKRbLIC6NaYqZxbpzV9ec4/SFSjJKEvmVGa9tHfUJayAvrPPbVHNaxlbdJOOn7f43GTTdGGufXu/daAhuYtol2y5rFVUxlDpyKCfYRz3fOyJZEjhxizetlF5kpK8kUuEpKNWnSG9VEdmcn7Tu0/U9Pho+IZiTincXepD9zQXGusmr6j19TKRCe4dmbGmRl1cDDNABYeOKT51fHc6+d1Q9T2n1UMmkd+aiSUgNIrogqtnInezaEs7HmtmpjKttWg7ulLhPvEEnGE5TqPY3iCItPzYojGET4V755b+cNmqdG6OBTlbYjDs4AAp+ho1Iq8R/eWa0/FOyB4K5JLQ/WqwpaNPuaoufHcJMEld4peiw/7uIRZ9U4otV2lACBY2PfSUUu7vJ/iZUtvPoJmd8K/BmbnNo2iumTtQxEeARnjsHdzf1JrE1L6NGFsI7t81c5GCgmWILKM5pWDA5HO53I6aju6916JkUl1YcYyk9Hwwf/waKzGbNaeXD2d1jBd+rriDyPgR5p32kxAb41vjMM5QjUrVztISMmbVDBnx2qArnLJ6ECRGZcfK4U6LCAMxRtE+Y32MobWIYqbeJLCsaF4pCXyZjPABVmN36NRAavX8RXO80JuF2m/Snmg2NL0dSW67EVH9I4fcFSjpL73r6ohLh/V+uK3786Tpz4u9p1byZEEFVjn4eK4wBNeQ7DGhdbFbRTt6/9b55EBMfJGakrqZ4U+Fgnh2uIpidUcG+iBjHE5HMRX2ZKkKLyYQElkw/Kbj2w8OvDaxd8rzWoSUnwkiP9DB4L1FBdrrf9anTqNfPehHTBlyG9cgcQLrR8tQEZN9zuxs8BV1Zf+cIk9kSStcCODphQCbZP7NYhgTuqPh967gyo6DhJVEeM/gq2arEo3NkVtX7D7mzM4zzsjwEazeZbygY6xwP5F5NLqPJ0Hxncni2XMn/GdHQmTbQF1zee4LOhZaDlBzMZLsKXcJ3sJsBmPODcSW/FKYiVgzz7wLdz0C3bFpTwedWpIZzG+H0kpS6hOFF5yNj/xUGHEQK75qxYUFuXq2vFITPVf7aaAWUF+eBV5VbBqFcUccHNaTmGaDdRTdXTurKJ8ATxX0DHWz2qNhGP4nrYJRCKI12hvvahdfR6RlR+zca42mjybVuHEEGrU2KvnHy9+mmlQDH4jYHZKC6knkne5Q28ldgrISAF0p2u8YVTy2bGLZqUkIV6zWDXi0DuZMiQhOJwUgZQNnrjzpboxif7CaCAFdxHukA5fPTubF6aLOTWCnS/EP8ZSOIyNGpkn86BVLEgxNoCo5XDdJHdnSB0Zy+5O4NQSsoKdZzikwg0eSvXAE6j6WW27irlXjNHHxiuOY/LaFsSgXv62JfK2/O09r1DMjpxv32Y457Wd8wFBf9V6i6CdLP2Z9qNFsxcP88S7N6b5FAkZAkO78T3f4mpUVnXed/QQC1AAudBr+gg118i202+jHf4m1tBvD2iwt/8PqoAWQSajReU2kDJ91lZ9cqfgKVbzge5mUlKDSh7aeClFOoVz9UEdTQyNyjj+u7JaX9DWyqtt6955fcvBJF1aKEjjPQjYV4+FQr9Fnd8NqWavBRL91OUcILzXVselzvLQtPmmvtdhkUNi8G+O+b/qcVyHvls9lJjRGbe0YWtuq9zXA02yIjtBjoQd1vY0EmEFvb3u3xiPt9Wix6NZ7ljWQVbw229SAPrh/hsIECHTLmxKxWD3/K6TUieQeqJIfpcIoOQcgmvHDyyRUevzKImeikRzg+ly1+qSicz7hh/DCm/39Fyk6M86XNkhcEgJKANNt1matUHBPuMmqkqR0Irsee0uIofjg8efSzC4Ml6OzAV1PuydANODV+SaVqKrg8qTvT2ROpiQHqoOAq3EdFRo1QW+1ak/AYmGEVA4cF99A82GRm5mLHhLHqOSqBVNF5d+tjFko2morW+bAtWqE3Mhi2uYPJEeL+puWOoJaLV9uHtQIj2GvjqEnPiF3gSNk2kq1rb+v31DDwcalu1nsmfE1n7J39uQgliDyyoBoudkZrUtnIUrDsC6iGs/DA1YU+EpC8VYQ4iw91D0O8kJIRK0Zo3YzUzYnm6vxq+9EDAP5SWf+Eyupwlhcyq7rgfu0UcsS/cyy18bZBvpooyg1q0GNkTJ+MwtXBtDoaChHEqMdF/a7GjUgboSb8jHDJrfqRhQ/bbI62r8nHoOa6UgOaJLxxg1EhXpXmkd3Rch7uNxgpPzxP/mBdrGsygnoth1z7Q/YLYJb7LwpuGREdhP+ef4imi3CBmJrq9pWR8/s43S4uxqNYHUv9ha9RBACBhuz+S4xTQTZaCKSoDHnxC8CxGhiHczvJUTlt4rrWQpu9+AvsrR2wMvwqpTTd2ETTsO/P3JJiLBUvcs0TXCPCRY2h9Nx8ZqMz8XSEqa9ByDLoNM8PxxK/62v/Wkztb9dlxfHsl4u4UjIZo5lD7knNDevOZvFRYHhwFE22lXrX+Sffrt3y9R1DKaG/GlAPLQQX/Hetzpmce0TT69U3cFZSUWj1hcJa25OoCXx3O5jXSizjPu68eF6JRu4ly0GPmihJAcdY54LAu+PeTtHdGWaRfb6RVp9zxwP+2PoTSQm+qFhD5LkhsYuT1IwWLIAUjU9P0z7IOUj2QP4sYABt2vX5hJCVUnjOBPVGQTmwyR8LSRc2WvhlmD4DMitovW8AmruHvsuxxMnY/ybXB0f6jgvY+7tMu0sJN5r4DBEBXa37SH5PepbiAlY5L6+09qF9dbg57qZdXr+Lkj+9ODwIdoY9Ogs9QXAMPBK9sNLNDM1mFaODMVpqeBBx3+/X8BkyPofOmxl+kYJsG1PP50FDBXj0A4uVUwSXOnyDvjHd5pupMiy5DyOMVDjPDi22YVTeKKPxtGz5/wLm/x/DzHO4PBKlriUyR2fdazZ8MZwZO2yzm40RwLqezNhsNT7aqhOqWBMfTbYcyVtVzrROKLQ/cw8h9MBYgLQZ5m7RtajLhjAmwWRubbOysVY9+MbTxulvSqQymjxTj0/yGmowXOk8LorLHbyciHZbi5Wipq5e028xOnXPq0SO1Ei/BmXFCr+iw4toQwld1d5KXZJaq1eDPduqLEuVRpKA9CzB7KJsTTpdrYpMaOsIFM7Wgr9Oh/caoRAohQN6A6HSrmbUuxffYlS4ymc4W40QYfauuqpQ/JTXe2l3gW1vBU3Q0CQWi+YnGMAlM7QCe806vIrrgQmejgYb3z21bFn0KNZj8qMbtk0fubcrDYYwmBhjZezZtAK7N3MQKKCODWwtmN/WYEGctudKJzRB3xrBGIXPbh2oyOsQ4psvw2packPl36ulG2AlW5rvS3xsDrZG0jPgcLNOBZVquBKudvtx5EyYnivmLREWPn30cbkfL4RsfTwuJVSFZZJFh6UkofGq/bkz/WqbPwyDk8xppCVNz7JQstijvxEWrb40THMQJebLnzyY2q2jx2SLecaR7/0b676f5ddR3aDQqQxzS6YlPvFcYbw+8vic5SAk75H9CSsEorQCVlJSk7DU5HBRkzDnV2QtTJe9fsfqy1sQNBXqUXzv+3HDVDSjlHNPKEmNGm5+zlEP/Pa0mLR8hxOG5PeuHfsO4YAaC+btxGwKVWC9Se7tv8fBJBx1n+Kox6GyPB1SVukkNQkjh9dl8s6dR8uwRo6Ep3zrpyoDHwNvpGU0zV5/27gpveUjCyrt2ZF4TOPsS/WygLkfE2dbNXsNDXjU0kggbh+REnbrOGVNbeYAoc4ZX0aRdyTYOFzlRKaGo4MoHLkMH9FMwYlY+jItBYVbIzsByLIUmu7xM7N3q4VtOAzdBtYpwYx/5yTIIJ9yh2VZWg/uPZimDRgASUeaIeF/TU+n3NBLOkQvsf4CKuJi9s4FqpE2p0HLaw6yIcFU8mcl8Jx6XPWv+eL9Uv+Eyr1QVYQfaJcVwJ6kjFn9GSZ3uvbIxaZMwi7x+nNLp60sgdzogotqc5oVT+LDsygUDk+S361me7L2BWYFkcDER/Rx+J0tgDZ6wwKRu7kFtxCpqtt19WgsF6LzpqmDlLORvOsY68JnuZgBdo7ozFmFR6uGXxbySNeCvPKl92vkVsYEYjZ70nSsNQz9WiIy0pcd4Cjnd16gHVj3X+IIr+ZH/gTnYy0JQvVtpoQKA3yqTH8ZK5WAWFLSXjNeHCwtYmaan6uJoOWW3ktmR0n9j0uxSEniCHfobcaa4adhh6U65iKCHer9DsvpoFJxkj5jhGLhPSjJ+hLddzatV/1Ocn1CE5uZoZAMtgkhUYN5zk9+VUjJxOTjDsX8kQFan+fCSw0rK8IhXNp3dynfHXSYCNq076Pn60lpsgbLC41pl75UNjAtdkXJ0OFBP9SOFxYd/qxoACmCf2c4BNjgll3P8P77ikGQPLbKe6Bprf5RR7SLTcoLj+WEriYD+XvlnCQ6gwN09MIkc6PH+xS8JfJD7iyBoSsLx/L/1AzaxG7e0eIP2dxroERhpC6jg8arrg7XQBksDHIJZIPRhy16WjWaucMUOLtxrgBU9rezETjoCtMnBYdaOAagkVHdueRkp+p0+SRoZ4ejQaCwhOiYRYYJC7NsV73oO8dwYLioC3qILoo9B/eMud5uERJdTB+L3gaZcXObntZ43fegezhpmSwHyw4dM10xfsXF1MY5XAR1XmGR9Qz8Yrc2BSBiUUf1wSye1tGQLKtmsheBI0zWEKzJu8/tdWQ84lcWgnXo9INPwDU5XiJi0OyBQbwRH1ahR14L10g9kAYWlDK/0N3VzcgYYursjTtw/2wSHmfTGJsx5NOXmMmVliBLLHGu6G0jFBLZtUkH7EzFzorhlKhKRrLqXXlXpO8crQ3CHEcZLu9XzwCc9SvkPe94gxwonijdizLHtGfLLKLF1cdtXMFa7Mf4P/JQHiBZIRXBzCKoqPaIuvh7X4/SQdEJnxbsIECUF90ZnrLUpBjTXiX4XAc3Mse7eTXKyZp8Q3Sf1S3esZyDQl+BBER4PmbGOeQ+K1112FbEeyqQZg56WiQ0jRCUmP+Kew9A1ZxSjutLVOfkpuBwoSkP4RGNoe7WrmyTXKI6nk1Tnz0oe2Vm3PjBDf8Gwhe+fwAYSAjlPra1TtCj1uu1GcdIAm6ViQn9Srqf1ym9fPIxInLxt48mCIl6DSTi4ZJ+XkJrz2dXWQqhpSF4nNWapdIjJH+p1Opedufkw0xHlr4vORb9BCJ3W8vAPdZSqI7VxbNaaOfqhI/8w7L9horVKv7MLnEr2l2XgUM6+i5Ix58xgRlYVxa+ltEdaupD5yktPEOlldMIatEHTM9j7h7hxVvQPEbtQP6BmDdVaPz2u/o7+Aiy4lsXGE+Km2ss6828uqY4y28croxcwQBaemP2+4hEA88WmmXnQTmIMFje/i5qVzP/dynhApy5GEB55hU7+jPdveexxyrULupZB1hjyqISvKscuKXOXZUnp8dPLlTkOIlOhMu9t4Vx5PLPIDK0SdUiZ95AlS0+/1macnq6hXYYejgXigt9NePxN2PY9CC0HftH0q8httvBeLZ48ootbmSIZgK7/Wm1zqq/lUDZBL6CYC5KDyLg/WfRKIQMNyN2X432uLr/f/9AoV132hvDNWvIbdgJKmzFwnqjd8+MjwrCINW480Y/0ve7EpvtXHg4WzJv5MuILg89gjdMk86QRO9Q/YKdmb+HV6eMqRTq/oudO/E6zvH3NzGgHNz/zI4Clc1kXUMDTrnDpBI2KbWe//7iI6d1A8nhX4F+4tGki7hfsA4VOK83fdLmcdAGqQRjtItVXa3J7vhE+x0h3K+fVJpM2FZDdY7gVF9ME1rtQmyQOE+F7b6vQAUregqMnIegpxtIKRhyTvfx+DFWZLf+VUZHUO+CicH8sE+9LpldACFUpG+WMfE56X+8xIB5l+Eu4ij2kBUNYythq4o1kyIEuD1kt9XQ97gS9+waaIHokWae6jm/Y8Govgmk31Z2M0SBZAIeudbA/y6RkBys3zsWVHoPxD73jIs92cougppJ3Uxf/pQcoOw/qt20epdVJgHhT5/Rg5mNf+bvQ4LJnwSxs7VE9Qc/myZF4IFBUAom49bMTIghVW6RJ2gfXkP6ovc0THTEpxZWx4zTkARVTfH75vftaIkZptS+h3ERciwL+zFBfxojqrdRqqdkYWAVmXpf+ueckOfXPrN5b9eEwl8OJWgoXwyPM73RDn5ix09+qYTUbhIRquBAIHnO03H3q5TFdSXzP+sPDF+FV61ALiJwLttts7/NF2qhFJI57p4sixeZfoEtm0Dg5wGwPCH6tc6aqO8oe5R+IkDR8TuyFEN2w2kBdTxxvejaSoap3bQlCW4svakUIjVrpe7zCbbcGL0xSe/T3hysCfb20Xj0oFitmmY1Q+1QAbHJj3MfeeZfxuvYYoF7mLnb9sF2SPQEFrRwt08qapY0ODw4ReEM3TamVg4j3BvgKWWLIeWrMXPSM+I3hBzjUn6TbqMNWIPDWj5FBYrWBwXYB71BOpmX+5iYomjHoQ7LUcQ867QRS3qZXYnBbLy/FO2tEGfzE/rGyNxED2nvMySIIs4Fx3fZIsIZn/tCkocG9krZ5TWha4eDI3zmyCQeBMYsXlRDNsMfjEEBFh6/Qhq12c9IUp606kEY5bwbG/QnU+IAyJhlftn2f8iRL5A7v4R9oAJGU2GYjNHqZUGg2z6az4YMtQyXcV9X9WBRlaYnfVIRsmuVGDhDBIoG6C8AkCK6LdXd0NgeShgVCNpx7iacd6L5r4rVi1Gco6rCBwBfwyIJs4Fhnq8IZrURn9zhkJ2FenUPijnbIom4cDNJT3zqMfvySGt4ko2KqwoGDH25QLfuWMbcuRhuQwYKgCX9VgClxETR6DM5DNjTv7F3ysG0kI8NKZ5AZDzjJnJD4VVPwVR/fNKHpzgM8QQGSapVEbQCuiSw0xjHphp0eDxZeames1Mp9WwQ2puhmhj5ql1Lv0eYJEpN8RFa01yfNY0KZkTpYzcO/Ckhbb36k9esVXSMPl1G/K7/sR9Mcqvz7tEmdFwGaO02c6azfLxlRg6byx5y5aqHXBgH+N8X+0pGSjHsaENs0tEcJU4XtLrRLBJGIFVEe3TvIYkvc3siaU1d3xi9t7TPq1L/+hMRqojqmp8jBLyo7KEuYZeOKHFM3mUkV+XkyhiFhmwxtLgSsGMbh8fE6hCR2rTOIinlmsF74yj7IpViQkLbyCbrvDt5/yX6I7Y1abrFs7QBI3D9QnlxlwbgZHvFTKeaFKcI3NvUQFQURMimQ5M+eF6vwSlYff+7/cWpYmvPrIh9BVONzVYOe2tQdAWWT5fJSYL5Upt0L6Dl/pZObBEdo+FPC4b2+iU09eJ6vb/kc2/uq9CvCUV9KB+C/CPAJdOu7vq8wf/Yxy8081PEnm7VGsIzzoFYnDvfYTUyPhdXV2yICWljxWqkyEe4e1n+SZCRACDyiLTdzj5Dq5ThMdA+CNJhV09iM2iW1Pgf2XiLDkIpNo8ugDtNdVTMEBsO+uHzrqEI+EwMOFr2gevD8TkmyjvrYH9Bw6rkARUFwc7DRpOCIaACn2Edjv7bmiS3MFeVgdj1y0Rv+v1DYqY6EwHst3CNlpq6XBW7Q/fu+F1R20aHUR5Z1LIZ7wvY0E/w99bKzAyUjG7671ZUYF6F5+Ynv4Cm0twLZ+GTrBp8VL/LMeq8XYgzYldrklMglyWJS7iWBhdA5GraO3m3rO2AorN4N62bHcpIhG8kbvIkybnRVTEWt5a5f7iIYJN61OO1gLp+lMKa9CuaUR/y9eoF3/jHgqh6iPSadglFYQ/GTsLkzIXMTFtBelXwJHtvmQtoXItuOsLGvL2IK/M295YD8SaNfSND8zTfgUXGYQRyrzsPYC1cxWOto+YkW9R3EinZBFUy/5HWXF6WeqLcPADGeJH3U642mjV9hMqA/GY+7DcN2bpls25VizlGv+FyH0qhDmmd0gUS8y90rDX+Xk6y6McJ6S7gM/DYcoTHv/2NeKg4rjMw8TqrlL9LBcLKWQxtuJxVX7ObKDCs6fNlfUj6iRrGPFdJD+ziFknCJKgixZ5RJQEQZi2MefRmUYi5crYu3Oh50a5Jf+upvNzFAo7KhxO8WRvoqnLO0wvvdcPsaVUOIcvfZoUierdTyFyoxwnJI91KCBroEodybtBGshuLseewOL8RJP+H2Oqsca/SYdeeRtivXY+FFQeTQ33eeX3DdtS0+wgHXVCCQk/CkG/az4aY+ExO9eyJRmpeKAXose57USPZEoRKo6m3uIY0rsGhjw0xAS7X1DuBTFVuo29v3dChgu70cPjpl5/xQmrPdA36PXNZRWOszr9FtTYYxG7dHUooremnYo1QnUGWsN/xygLq9TDGLLhVH/pc4pD+15uGiALFzU4PINmfD25G8LAsJea1dQlpC1s7rkYJUQqIwFNDY4Eh0dawLn8fCol/rhUCEbEHM1dJlCBpXxKfm7zt/ZpsbXgy68nEkEoLjs9rk0E9GFFZoYLZv/4qZR7nl7qBbeALu0FWvdWoNb4hCvlkME+i5nbMafn9uVxxXlpXBlOxHA7IKvKJLMXQanWkuK9A+2VI1JSDoY06+R0/g5TPJIHfO3roljfhM9ncx6Qrk66xY1H0+2UgF+oQgm28A27u9+T4rGo0sT6suA8Jdwthg1T9gojZro33dFb5pubkZ5ZHchLzsKkibaR3DHxf769V4iImNuKKrpgMMK8vcvF4YgFx9Asca63MVyNPtp5+zXPASns3bwdmsxnn1S54GTdkB4DwX4L7JXMnQGqIaS+mPgWxbIZbFcDNIrMilEIEGFczfvcACtmReTyzqnpITyfsh5QK4RKX9ZWtvUy4bWXjsLYbNV7MrrZsT82c9cmf4f8I0sSYqVIlcUYgI782imxBuEKs3OWcogWDmwlr9TGLtVSSTlyzHUW4PU9f7Wv06gLioBSoAf5esTj3FD9kKtTKQZfTKEIOcCYWcfIk4IkcfoFGKSLqsHhBpBOTfEJ6dxkBJXCSlknDrb8XJYO4/96XFd4ThAg4/Heg3u5p1kP3QG2yMuUrty2cFQaT3cWMABIB2diEu/1KfFFSKbfjTp8aUhb99C/ZA5m7h8JWsGwT5Ml9Uhw6CmNHyRA15TyVwIsOH0I1tFeVqQaoqT7wGjyqrJ9bI+WtpjMv5CAGQfj+k2aPOJZ/zLvxAtkd/Bzh9BZPEwVE0I0DI82uWK72P5+mHKig5zbXYrQE5bSNA9/gHvSND2qLV3hLPnoJp5q/NeZX7mhb2aWf7qkF8iM4HEHQ6YiYA+E+kPmfMGabHq62QBi8sSJ3yb68iTcA4YT6f+gJb6G3adGkY9eeu7XQZiQEi2fXRSKUOj/zLkyh4R3hOAX6xhT1yCvCHT2Jb9tAzSMxe0RFbM3g6b/VHgP8nyZkt45j1ZYBTwOpQIaFU7nU5focNbiclNOds9b6I+FOnBXwyAf1ViJPMKBBofmR8wg+77g5o3CiYUzQ+KdNxUo14XQc58/GKrIq3XSIefM9azql5sX7KlTsU8DGT1HlHIYnd10cJYsAEHoN0mLKcHTySHsjTFesKWsmK+siZFXhlavE6F44mweXOrX6FBoELRrvIrsst4OH+O47VaML4CK/cNrjlTodfRr3u2XZsHCcw9kXLGX/15sm10DYmP3G3387x7LDyVoplrs0pzIvfcy41eb2Ob/wM6tQNLxQKnfSbL0eyYL+RWR09qeHT/lWpCFvcISYlmdF/jMaIWDyxE/LA1tguYOSiQtSqHfgqHr1n/k5nFhnUBnU1J1eys/8qySmWwIplgfD3uNcFHlg6trf2B11Om/f7E9onO53sWHhas4nNuhBJsUn2OjOnOAFZi2dcAvexHytVxIdybjHcEdXUcp0jkab19hwZ0RddTUGjtyulBmpbfGD+4d+oynTEjmMlYS/pfoCyhEk9XbgbBf7wtFs5qleFrCmB0NrUYZLxmw+2wFqYEUy2hYP3ZxY8uhRZeFXZfhOD58zGBx7lo4yMjiBc0zvOGqVQm8d4tk1CRpyGJOGJWVU4EpHPxqgMP6hV7f0IxJugziIEJHavrZauRXe0/THYEOKpl/a4jm/fah+oAzHRBqwetjJBSjNp5LaZ3ZUNQElZJBDOF1e4muumSHF6da394Cvppq45QN1B2wYBfbx4Y9fnq5b+heTNTCmP9XhMQGniDhmdhGzfPUY5YPvTUhEcaaA2ucNDUO/xvaUVhXDIodrM/05R31bnFkjUjn34N7Aiuagl9VB9SjYsu83Ws9eoevaZVwZMC4uiZko2GtNzZCyMHRq6GKhvEGBiM1gLyvMZk3eR2dGcn19YX72JnDBY6RWncG7lGAg0YZR9lyoCyQ13gtnyBi05gPlO9yOeIYGqQrhgRpR+pAvx4czdaBMpVI7SgZMAhMSsdPUEQ9stTtwSabBmrln0uHsOMhDvi0bNRUWUmqnu3eiLgzk2XKGyTaHCe59vZZcmDkk8aOO6pTw5H+DWALBPMcCOmfIz4cF9E5zesXbQkQNDFk7vlnAcetbpid+Ce9MnTb3Clhv0lL7lyusJYCpLpalVXmQ67YNR+IIDh9vW7XeWnU3FFfdnO0yqCON1josSLVMTTaH/T3Q7Y+gOUofDwwXaGyGRB+4GRC2kk7zANlgd7PmE5kXda4IpmTbP2OqUJ/O9EXW4aslQR5PtYy3tNMamtk4Lwzb6WIFll7MVBneG5vPfEGslblvK4unzLLIvceI6WxhiZNc/nr10k9nn8ikKPz5jmA9oC+lWIE8QR4XYTcO6WZ7VMORykmWLBbTE1NQc8/TBpYSaYjlsyOK50EEwZC6/hyMiltFDU/OcVfSs/4s0Rk68qJkU5mIFxzQcySQSzLKmqQzkbb2ZlC8MLMP8Tt/ui2UK3r3IoyOWjDNfAV+2/iYAbaU/gcEuC9PqZbBCpHpobrsMSJpIpAbdk+lZArMaQfdQP2kY9Krk6TsjNb/ad7Ghc/HTlJyxRISEoijGyuLhUJB5Ch35PrR1oibmRE3vvhC5cWj/AFFMlliT5ELHoj9ieMLEG0BOkVRUXKuv2bfaF8AdXORnzTtMfXYqB8UVY5TvybX4Mkg9YXaiDDrp7KV8wVHpmx3MIlmRkznG4Q7DbYNTZBEi2yxQfQW37NrAOyCP8AXP/EHi/BLLFg/ip1tleZLojlnpdzKgSmJyi4IRDWNifCtFxTRjzh2z9DNa3KUZLZnixrksQWHwp2gRkmuu7HYPHYIQrdjih0WnNb7CL7hFDLjbfGaVLQh5Fu7SHtZTqDYzgY4QnM/x2PC8v6+qmCAMbOvWxZOIxjgpUF1ud2/e41K1bJAXPTZ0ctJLsigJDqNH6fNsXGGXNx7cwJPgP6INK3Qxc3ylfv0L1e9m37k+CqkJJTN6MvvQuae8WjO1l0JvBh6yHIrZgf/Bt/DNS1QULgHfUCLdwH6GVXxn8JChzrTEJL4dTZGD6nCwPWD+eeU/jxNc/wph/HYngIZcSTOnA7ZoHemc7pUYXx0Nr45Sbce9CyAvFnCzoIYbXxoDXYVwt/7sf509VEfvoLzjbFrRKr4vntb5dgeDiwRX6neO0yQZsOSoVjVvOOSAuP4PT+ezKgOTL5CMeBFh5fTyCTneXHNexLrs1pBpLHH3kmt/Gi6938ByjJyGR1wM7/rvRQQoS1drQjQ0vefqIJKlavxUAyi0PuILAyGGfaeCzz00DKjY1cowpRuwwf7rYPEZOByjttnqj6EUZ84F5gZp+4HJmTpMjNq0q/lyKFhwHKG0wkVp5h+gESx82VKGR+mbao8YOh23JnEy+eNJ45yos7d1gFc6GC67dt+OzE5TpAYicEpe2YtuuIHNt0hQpdLBdS8eqx9D9RSrya3h16jYIp9Ogfv58USTrQa6bOJgC6Fuw3VSohoUOQpQ/XY+PVKw2eV8Q1N6yxzymT6QIiLizm3kcA+jtFVJVj/IlTTGr7Tj6P8fQmh0ag3AJfRbLs8nmEQ1QHGUtaUv9djTgKNG5hVLyiujHLL77tNlHcYLwqquU6Z2V+WMoDwfBiMDqK39/tNhs7dXQhQTHYkold5VgNmV+WJr8ETyoKTHTS8g1RZL+KCbZw1LZoGTgR6eNleq+XGRggG9pbw1+WcW0jzJpvQle+pDWTA3yPaJogeuohg7EijR/48Se6kjwNpGStelAHWNOtzrfgmNxtH9r1eSRWLz79nRNF5th43Vy+rZ9FcwK7PlfJojQmk6yDIgDVpS2IJtFflHkl2pdrA/ZK4Grks9dfURGUNk54HimplKaYEZX5dE2M9W/60vxTLBE6XeIZ01h4YiHBHGMX+eAHZAHpSk2dFZUbQL/ylbq8VdzyOCnwzB532xAsz2XqmJFNJCZ6YuvEpyZtLa07GuhPki8MeZUI63KN4jC30SSX7/bWpsMyfpqrzmMI+cCYlmRUB0Mu4kG/untuIlFzWG2JnuSThOvNB87WuxDF4K9MPLtApA2nPV+2yMqZtQu/5eBgMzg8/6FBhddJz3kV0onK4Jbo71w6dhI4czF3ksh7/wVe0vAH8B/pVGb1v7xscPIhg6KL+hvTtq6g1+kCPpBURUhkj6yrfPgZ3/Xtc22MaQJp0ouI8smF0IW7P8ZfkCNRlxyoz5rOlXJ2YoBYf+hZJACLpIW6Ecg7s2fptIWtvuAgGvGV7dSNLkYv17ghjkJQx6tLucnApd6V56PAKNj/7Yyi6MOC9uwvXC4HnQSolMT49c6/5ZRIfWauOyw+arQBxET3gqjgZPldHDuhPDdYxffuJ1ityuwa75OUwVzCfQ3DhhKAfuieBFYqqN1i5usxjNFwKad4V39gjt2wLjcS1yX59qz0LCyVW9KbSYU9A28hy5DC7hdtdQxRU9PX4vfg8R4KZzpT7OhJe4Rwnuob88KsYJT3Xdb5uQj/iI2b9k+IAL2RazReg2nxwi3ia771jH8mWcStAs1NJu+cMgx6oarFqLe8b1HSRxQ7za0WtQhVKdhOSo+l5MyUbO7l4rtMf8vOidRDYSBoESyiDirZR/lirb7mNwOHR9B00U3KDHjR+/6/p0FjHCVpWNOzJcWfIRQkZ6XmbdXoGNbYi+/6K31kVQSpEiFHlf0XTAzQKDh03BJv6aoldSXInQfAEINY34mN7TGvaILI1iq1F8qQD9LdUyM1y1GkmIcoViAyaqPmTF6srtanuyTM4L1D0wyuj0tEVAfuycGdwEON4fnsCqlt5T6S1obgnUutprS4s5WpzQgzd4U9TRXJErli2+o2bS7A/uISBZhgh/679K/zLda6gWtuZwAvTGNdCbAN9uwZti3Hk9kKWrIq/zDHz00+fSYLcc5sgjgY5sWd/F9nGirgGojICMTxUzGmVVyjsC+0iZ7i++UKuLA2KCekIgylXj+DAZVKUFgBgXYW5+1bwyASMUltB5MhCcaMuivyyhZw3MJ7OjjmJyH+sH7zwWOwFaztw+KQpl6ETunGZ4wgXDkkep9RDpXHKdERy5R1KfOfi61l4kXklOVi+UvIPbGuKxTqSuKxjgg5aUU0X3V/EKdOugbYyeYKlYTyfe6Py6u2Z+A0k4k2giHiUVqkoC8MKxTXxmChSs68WryAMhUxyo84ORdwTONcLdmrVJbnyH+ugmyyx9iKEPADsMijuo2U3uJDa7Wnfr9gcycQq006VxIwrhk0FV/BDjqzquNOsEJXdrimGw0G+JVU4/5BNk+lE5kSCYz9cOOfNBtbtPUoVHnu1jfPwwGlaTc7GUxPcDFnEgwaHh5znVnSwPAAdXz5o6vI34Epz0NKfx11wmUjfW8nTAn60/CwPV4XjHM2yzXbq/EA9hUimpPyH+gMWQc8fiEpaTtk7l1iADxvDO8EMdlaQ0nXdXnhCuCrsoC+Uvlb9IaXpTbhDyzTzYYUPRsJ1khYU6+UMPk1YHn7mE5V3/F28Yia/wrwDdF+R6TmVzsqudzix7NyUGk46wXs0WaHIURcZDicGiV7SEhoVNTU0zgBoaSd49LNnCcmSgWRMUa0JKdpcVnfovdDcIyEcqOXD4VeP1baW1O5XKi8DuZzNuEL/drafxlkHz2RIla0Jp8ILNn7S3fdeg9UhAx9q0+SKtkZq2KsJrdjjyAjr3GfTjVIDAz98414NxYOtS7EWs2ZaFK7+4WBYoC5Hkeq4b/TVXen2W5sxGUXGVbea0PfIOieEzqtacY9iZH8JBwrLvaO9mQx8S8Xs1qoQA5mRuhLUFIcDGMj1wJK/K+vclB5Bl071Plrpq5+L4WJ77f/haemR3QBDVN+DYo/NMMFkqokI7b1nRwuzDmI5dEx4XMlGANd6UtZZVQ12+CHjwiLfAM9yPWaei6wRjGbxBRZUWxyt/lA3BanlqVbrdSdMBG5p3j4Pa9sSfYjUr77zB9h2qpnC6V8u1+XFmGBTP3y97KCCHykGfB6mbCNng2OYcDfFxSp12MaqtqOwry+xB9gUkHlnfW9DENAGqcYOxFOWwZHAJEeIuPuyLr3pc8euQGkJA6K1rmHJDoeAl370hmHY+Wk02WBNr6bOj8owlbEPXZobBQ/xU4JVN9l2GH0nnIedokXyCvBiq+jOf90wECFhhyXgaKiOos+J5t5i72+cySCooSeyr88ULT2mwUuMCLDw9Pty72PByiEtatpiqNeZF8Kladg4jD+8iY+w8ru/PveAVmrABMft/YevFyzmyB1LNidUz8yrnolKmitwK2bPJrQzSfyMg7RCZtnj801QmxB2Hh1RdODJ04NYCR84mkyeVmLrySQsPfWBiZawIPusj3W803YTrCIFZh55a7RhYSAh5uolGsv0TMC+pfZ8CJFMfhrjIkPX4iPlpoVij0m+1EDPaObMhssohxiQLjAb8un88eH/6Z8SnJxoDDY9JjIkM28xe9G9BMqE8CdRizNqXF+yzFoq+i0JXmGCunk6mGwVz7dw0Aht2yZLXL1jgrrUpP84ikBVljLiJmABWcOUt5aq4e2FLPP4IYwNw6/6kBGhUw92jqGvzzSz2IXFoSGkFThCZ6Hdi95k3hbTR+UyOtNXxKf3qOHtoG1+tO5u2H6XvCe4OZ0IsSdV2C22f4X0XRjnoLI9dkAJcmaPzyLbgrWgj/dizWHsrNz5PzGCCZ7zywhZMyk6RrEJ5ucZ5k4Fosm8+U94ZyJFHYaHthMhJSLgoHd9plpggxNFeaBMx2BdSg8d0qM1P9s3xHTr7n+uvFsfU5qJafAkyfAi/gC+OLxCw0uMl/XJ+id3bpdG4VxQwyKvZaxCWrPaRHIy9KcdR43jv9jfykGUTzB9KjyF1G0SkyMHMeY5wgAmcEp9B8ffD92GR4FQExXAD/Rm70xyf9mrg0HowJ+Y5o1trz3gJx6Em+pGPt0PvCVSXsmyA7BLMqIiL8iKyvmFzR0O7FJPoUD5dZJ1eKn4tDUJJ4Umb72XTHqR1qs8KsHPpu1Bas2jM6FoTMyoX5aScTz2RVJH0xso6SkxxuMBg3uUblz4fj83SnK1GADX8ZJtrY6l5lrbF1/ZuSi1BShVAdFnfBB3Sh1SW4KQz2mL+Y4svWwspzeGp4W6pTFKdMDjOxHzkJHkAfLjLjqf+T1Axa9og+Cl7gRTi70bSWjsQM9F19HqH1IdJOoerLMQTLpuVpFU//G6/hsxG6sFsnzMJ7n73SbIizBrcriqJQot6sKe+uP1gONUVuBIPlDJA49atkvafSdkS4NR+zciAFrwoHjdIsVSJKqDxAVrM15uFJb4cUI1Z5j3Wgo4gLqLZDMdNtYKJ1P7oBTGSBKZGTqguAYXj9FtcQ4sSbuwAvEKj0iSHfGzNYpAzMhIVEl+O5tVLe4s/3uEd9Gsrl6bogS5HKQwX3XK8Vnj7lf+5qIQiTSzRnfkEpdxxgU0LAZG7OSxjiHkVD2gFaZ1GjKhIedce7dFUwac8qA8Ut250wwH7O4rKHFECWEhhPfyyNNFFWeFrcIjCB9QkpXuz0U80DXFirexggv6bCvxlzrpYL2A02HykHogeIIum14ATyzZnKSfKNZqYUHkFr6qN2/mPO1WK01C9CpwXcl3fLEficn+qMiFNH5a/JFJBAF2ZZWJ5EP8mGzPCF9CDlr0z0YHruP+6bAUG47CNw5yDdR0WDTjq/DqDE8W+/fc6iTB4r9945YbHjR76ZqoOFAkp3KnRniRLdWK5iKvLCCH/Jf9vzHnX4LfdHlAiEucOADd6aaTJnMDTB0DnLoW9pvA/TvJPoH2GYOwUyBgDkGv7VLqRPzjz9nIWylnnWqIlm7L9YRAuucHIleKaTQCeUrXP0Wnyp2nmBxzeDiVOPsap6l6MYLHO4xg8HBAK3J1dgvBpIjcYDKZexJV5mf8c0hpw5ODKTwdkKCeeTezcPXh/9nI/FlRcIYy8sH3nKCQ0EEucVi+uinLNXGTmZXSuB5jYC2k1R6X8FYDLSs7G3qg+Wa30/SZZVsN+vbIWPDRqs9HMz/V2eXRrxClGwzMRZTnpwuqrD1GTjLUluOf9uPygJGxe+/EB6Ak5UCCsCWe2GLD5iZX8ywqGyaP9CGKOOsQ504tSVjAMPPpKo7Ex8LT3xYdh4QReijfasLvMKd8/bu689y+WY+S8IO9LXV7KYzmOOycnb7imsjeiBPCZgNd2Hd2fLIQOaLorPkKjFZcGRaNO6lp+pBPTMvw9QIbYuQZBlhu48VmV3i/3Y0m71BChUWR3cdNSS4D96YC5J0Y7ZFqMHBW6G9p9pf1EMvsoq2dzX2wSvNYXqdP47zyePLrk+nreb97cBNao7U34lHDXeFQ+HqT8XvcE26g42SyQZmHFRlH2UZ0kohpcgm7Li2wAo0IHMre/0XfRV0HtarB6og11KC3Z7/RUcqKzEPA7ZEJQgZNgBZE02MFT702HN67p516Nvqkm0Gjx83wQdQMeqxlml8LDK0V5SdTdnatEK7C+bhiQ3CLRBupVuTeGYhJY/BbrqiE1SY1vdXZ2SFuvNbcrI6ErGJV8/qH1acDEtu58Cm9IYXlR4R//8FS+sjKjiIPcuzVQ+9bV25MODrRYTzxFJYbLhp2Um/HKOncgLdKHj7tOrMZfxR6CrV1qRAGh+vD5dMMDkqvh3RtFI8M/B+95gOm4879zLjARkfVycAOqjJdoBfgWjWNsJnafTkmc7B3nIQv/Doeol9zaGW/DlpeEHHLSCVAFpPcoRFbXqIB0NIfCnsKcK8GmaNVe1S1WmDjR9kV2WjYdDpu3d+gX3edjZ363f9jQEbUhFXtuRXOQv+gmYCubqBrqUoagUdP7xj0HIFEZg93/KZ2CrZfN9t0A6WcpUJBI5WLyoLnqf11jJxzi7XP7icTGifXh8HPdPwOvmb7A1BFcfY2H1yrgpQ9LL1WPc8f4dqfuE91BNq8DtcEql3/06rGk4gsNyWI77GnH9IKwUsAFlrpUmA3zzUPojorig8/2Cbd3TjsCKM9wxliCLyKPngKsM1KFkqM6bMFtyxYYrU2eewcxYM6RkLIzuCbt2tjjkrWkSVoIS5lGaeH9ACsgsCD8uBJTg2FG+jOXwTTSCvGIWOiSPmrIKKcqEISVvUcMWhHEeUKjXTMdtBmPl8s4WipwTYa2j7rmaa0RNf7IXAOT77NGep/q0h0KdWRo5UPERTufgAqHgtum1dZEPq6OH8ILA+nokd8MXPhCko+zgkNqNlrLQew5ugiVBI+TSaF0+Nh/0lIpsCoBQWlDacVD+Vx3x3aSXTbkp6URafBo7r4W0YMJYL0MnwFM5mzSBvH459mHAZ0yzT09dEXgjVW9/ggg2LxRO6yGo5FTpGQS5EwMSjG3crtd3U4X4CO+KX5W46TC5B/X/DpEipFhWLaE6rpYO0r44KwsS9Ge9H2dfFY3QNvXA1sWHN6WR25HgQ091u/FmxcmTXpvXerH0b5xRi1MwmGmrK4ZAT1TapoD8+smzXuW4xfFWkVDOL7zk9xNtB53A3+dJrIzc5OTB601UXSFtQkX3hWaSnhB0fIWaxp9w7vGQDYtDAeTTDigrLMhVNfLUpJcIxhrMjO0Amicb+Ubauev6gApJbByzVQRTWq047GGRSYgxukHnlk5+xWTYTi31cQQCJ9ILZRJ3tV05M1AIgNeeDW2H8IBJqkzSl9nnKSajGYOD7eMyjHHWbG4SEV8CvAH8Iew6SodPSlX4spOyb4O8XdYQ2bne98jMMolgBIbc8j1VfPhmdPcqVcmf5qMjZcC2VzGSMF9s4863hYPVGq86Huy5cmg6zBz+qDU3yje9vmEr3yJ6kZhF5z8UdlkJdjq/581O9VuCR2B3lyEAfQoUZot9HdVILawreyRxAy11JlpE3UoO/fi5/5omkUs0A7Gvb5+bsteFVIW+9l+qR2dINow47smAidv0bLLEr/yqKcUanjvixyzAQCM5CVzq0r7rDR9M7wjLxBq9eBWRVmyK9TfSJqXHjL8T3l8phqzWGZrkRC5oiPO6C5Wf59fFDP+ituUaiEqytebX0Feyu7U5Leql5gBMTdDPsmK7KUOyA5TuWxjGc7dN7kJKEYpro0VWRhjMArMIGbutu6vN2OSHb6nvd508S4Q34uCRKu96bSAD7YHASNVhzXv8N8jroYf5Y7E9s4wTpkvo3BZkkWqpF0M1vka3jjUC/JuZvw9V8avX+D9bciICl12vr/bQJxDe+TN9MQwDJwOe5HRWZKtCtH/1/2brHVDE381FF3JIILjZf20UTFL4MLwmZtFv3M88Bv1x6hEyoaAlZ5p5QEWzlw8bJBt8orARhiododtduYtJBSF7octT9JzbeKdozaif0LBWL/u9RjbeVNLZ8UV44Ye6Sz56Vn8QlwftWL01WoPryii3ZZ930Zx6Ins/HGvGQmHAD+2qvuKQAs8Y6ublb+Dvhp3Y2NNMjsuzOvb6m4YtkPzbhlctKadex8tBQuo0zhmSxfDIZm5VnEDdG2vZ6kcykYFxgAz3wrkVyXQnwxyQIeYMIHQYT+257jBWD0yJIiC3PqmohMzTC/65XVgSsowG2kgnlR7pYY18nBQ8aVfJ64D79rH2pymM4xMU1Zk/OS14XiDcldhO0c0RhQxiPSY72XYxpiaKVYmzOcEvI1PzQa7+LVZ6pBIwn8ffWvhqa38b3IskTs4RBkYs9i+i9/AqdAQg2IOeWv2fuo5tEcFyefI9nATJXQchbBEQO2Cj3kaBe2X+81o97B22kYSwjOkgZybf53qZFQ6p/N0dL/VnuL1cYTGi8k6rMpkKGx4j+Mc/fcHUVNXTKhyO10FkvHiN+qSbJGepJ/aLXoLZ8RET0Bshv/4hAQgzeS7yl0n74cedqdnmAeHmQ2CyXvMM0MWpEvA2ezZIKU+WvUSaGpTt1kvMloerqnqxHLfT01Yh2n3iD29EWnrQsyjedi1I5SUgvQKBM9G+oAai15cO1con2QFz3UK7w7ZgzM+vPmbk2QqR87fzlbdTSAhrLXzqVfLnWBA/4+5aC+0BRMZ6iX9lH3QXtKU9D01K3HprdilL456y5lsl38VQaMbz9hk0LgquziMY01Znz2WE4ClHG9cF/e7stVmn89oNFUE9NZ1RAc97KzDEWHLoKwlCG6L20/2Gj7/M6PDhsvhY+FMzYRg+v/0jo2gPT0UTCfaLBDRVvKQgUSYPMG1dr6ox7ohepBUS0msHq/V7A6Y9WfKDgSLatqTzwhOXnuXAoFc1LsdlV/Nv7XHqg5TAohZGa1mOn44SyY1fyPMCxL1QmxvhBC7mxDyj9DUnBpbjdAzrBW0mUzZ51brDVW3f0A8oKL6FYBf0mwK6YxDMJogq94OPgpZyKHKBYvJXMfs6u0pYnEn/jPeTVQMK6uY9Egww5setjqwdQmwi1ea0/uoNw7QKPorCWZohFt4VB+HUy/ObjCDdxryIg/y0wXGMwFyftSyf0v/ESOVaUNOHg1aA0SQ0KOwx/oqBneMvSoxZc7SqvQaHcx3ZLg7I0FQgQ9799KuVGTfGNgWvzIMnHqMNnCyCLJMNoNQK9XA4Wkq+6tVuCUREehKj+szE6KlaSwgAPfb6JeGqIyBrjJK/wNw2yPaYB9wHia3A56M5r4OplAvdVjO1vrsc4I8LAy1zqqpo0yM1hfixHeLNDG6ufXaX/4mWxYpqL3hBHpPbnox49P3jj/wGgdZFaJe1JTer036xd0Xak5qCI6SV86xqAdAChv6sj7ESw0SU7w0leCi/08lfYfucRQHdzjO3JkA7lvHw0ouMCSCweP+ms5HlStT1HLlgQ/pkLQ0HiDkuoPtTY6fDW0UPlH3ebKJKJsiIlEwAnWQ1ExfQhfs1IRdbEO6sgyC7u2YqSye9WFoH3s0+d4P2X78UPcUsRitbiSflMds3+5ixk47wEAbwHOouv3l0AUb9zZIP32hh+8n3fJx3LXT4wqErJXRmufydvyJuKW5IkA+rD7B5y3hJGUFrf+je8x2WEZ93MMZZjKF3R4hY4E82J7y0z9znWEXqtnGce0dejOBkrf6CbP1VCh4ixhRvmOXO9yA0A2XQqeWYNfk1eUkRWlybRDBiE5SOOtjudxOpqC6Hv0XRqdL58/dsrEItVoppvb13l9MrZRKzOe/vtw9JP9aAkOa7ra6MbT/3YE4LlEJ5ticKWKe+rOGibg+N20Vx6Vg7J3byZG9+hIpULnZWH4Tq3LmlMA+oUfgAbbzPl3twbDuQozSElI95KSsXaBWevUxIWPQdY+4eolMlTtLwn+51SP6BWFEiioYy+r2Rza4OqKJPMbx7t0CZCtpMKxYQ5JCowbAH7J4Y3Eh3C04j1H/2a7qH3cVo01mg0KjVVR59qENmLLCnQ4LNMS3i2XshEK7QAIvi4D+egZPpMUywog3s+tqRiaGXIEMFp3rd3TuvLXVT9tpJGxjgQLGMKXmGL1MVjoN97by2NaOn0JoIbOQqeBIHTVbBYNON5DD3XP+rStPIfVbuHd+90TJpGh8BlfV0dLneK2wDMnndVGVvQLhvaQxu6sL3XsvtxmQzeFWUSHLeAlmTc9yNQKkXtOJWS9faewS8yotiXdJQ6EI1vpVOHgh46gljSllVDRx9qlH7i2QFU/dKpaQEbpAFUBI/eSUGbpgT2ORGcUGXXDWjQJQo+nCkQVnIMRUCP367os5Iw4Rb3LDvOi+/mwcBozzUa4WkjVcSIURKO3RTFCiY9j3O6C5MBS6Y0WbBooC0nOzhKxL8xMIIaM/tnyEzIdlABrz3f9XlCiQ0hh+C7/bNp14eUvnjcHWjBOSw8E7BjzeXkRQkpIuZSOriwZ8PiOLZxCkXFOQ4hbXa4Tu69lccJ9Hd0F1lxkg5QnAhhfx5WdcTkBH3SibBUMCLPb/cYypz6s4GGDMV5smYibldp//j9gbCEhqanpxLsoexOMik4SOt879z21iz+8V3wgG8CicQsmxcsqCc5QUqOZhnpO4qAFgzHF+noxN835P4xf5EsOcPvYWwtzK3WEYVGy5tuvxE5WZB246SGIDgeC4sMge0B4p70Tse4b6NjlPHW+90GmqnySqY83r0ilaew46qmwi4RzmOcPehbn4YPCoISjQ44RURV++dfU53vcKhkSj6cWuh75tdSSUNMysFwoP+lN2gGTwxOfrha9wWxDPpimhEBVrt6dcBIvdoUbCLTDQDZuUOVVhZP4sATqq8z7Ai0STnGxzKmAHG+3I+/tvrDN/OOTHwR6W5aWSRj+M5wmS5hfdvimlus2z4pE6RV+l6scSEX3XjFUVgbSuuufln4qZfmgBxNvIZmkPtMh4WHAtuqRVdgDOLksqdhjqc9jrNVpRsYL4L5fXaKhNXYNJfTorxbaoSpoqj6ZEp05xsc4y4Qryx7BRs3iYvuHRbCUsiCPmmGdUPXDn6H7woEjiz1YeriH6NPF5au5aVrtcw0DvEgLLKMuVq6QvzE1mu+x9AFhhIEE3jVvzGWs7x+IBGJ2hfG8Kb57q5sDsPmddrc0s2doavGt3j59SpKkbETAVxcSwwHbpAEsYTNPM1KhVl7EPpQp+gNotyPx7hI11xG47CrYE7+4xlCFpaDwvf9FWescjE9qNrcgCXvSeme0GAOo6QjsttWQcRguwWZb6OG1VPN2xZcfyUeEGLHhPkrziDDf4SHNaCcXXJ9CtFdyRMVueZNWqaoSKhpFI91MMLSXju3pGbSzJlM8FPf/oxZbRADvlZZCyb8fbb4mQVBZZ3GWV4hj4PCrLA1qQvEqs9XLsRnoal9WaSQhWRzLJmCurnGGRc6wxyAAejp0pAR70k0M8R+ziXphTbSz5jU2xp2cFe1EhegrqPqjFAtYWbYwsm9X969oYf76RSVpD5DfI8iDfFILBkfvnZaZtHikQ2tfNY1T0QOYafZ+dfiQjWZxqrDxXDWbc/jYZSbOzpgJ0HvC9wodOgTk5d5d9dmNrnM0LH8bvtI4zgktUZdf/DkYM10EF8yMhbFqvpMTi+TaLBUNd9aLSzSGAqu41xsKxsEYHFPhxozYZMPCafc4U5t8Ja7k34czb9pTsN2JFnwl8AmZSpI39KzBoEcD8fz0CAcio2KlaDIhPF8V0HkEbwc2c0mkpBazhOMI1d4cxnKG15nlJ+haP4D9g/H1z7jIEHS7enL9st+r19iJpqLFuJiKD2NT7LXyBzaAcFxIJ/fo4roeZSvHUyfgqUjSVcPiszEAuk4Fgqjxih+ln6TZW8b5sbDIvrB1Ul++c1B63XbFgHdVJTaRPzIXeh5f5u+QYvfa7pHyQV0ZUIv4SnfFMvTC0g0/fdaaBd9rcpxu/CBpbobKZgCIyVRDZGdPlZs8UGyu7+Hxb64E/k0YIIyG0d7ZSIcU1dOwyAQt25Ow5B4W/oUhgU+Gf+qB/Eqf+V11+GylEkiyGag2sSabnAwgaqTr549u7USX8FH6EnKLv1g9jl2zIU7C6GM3aeDn8kP+9aBM0Agrl165RV4/UHaXPnrBjs3YOHlrMK9jziNkwwt6+rC5FPPvSm2uVuOQouD4+Rk/8X2VoT+8bijB9PNpfsOsNhiSOVgntu7dzfzJItraFExs2ylPt0vanTgZJP3SIxPvZsgaDSBNmxIh0KPLS+EZkJ1Xy0gY8WVOZDbYF9v0GJta6+GUy7ek8lisYumJ1nyw90NF5n7L6H1aFMYqA/WI2COJA7pWaf9Ugf5pniETIJNyNXtonwZOLeCG380p2a2m5Fs4WDJIbVCtkJ77ah+h3HMvJJ0fzW8OXfnZDuzbWB935lP5zr2+vOc7CL44LjNt8p2deJJKd+d8n1mwKwxWxUjkxJRVlpIqwq1a+Sfeu1oNGDaOXyS/LVoiWAi4/RFFK77j8sVBWyTeqc13DCYWKdEbHTgEcIdtBewm3fvU99V8J4gYLJijdis2O/D+3FBz8kG/SwAXwjzKgO1TmXuA3syLPxxfnEUxttkUPpzQJgAzcN6o79tpHr3QWX3TVy4USKZJPX/G7/sFv7TB2RKaM9LvG8518UTl/oNK6/mqMpSOqsv0xRVzNjumgamqz/e3LG3e1lkrW5SquqlrDJIrN90AProjO2hsva2vAv1ZNPbHVfvH6K8KnMmDbXcZImS+YAXafdXLVILS/Q0MSKuRaLPQABT6AsH1SpBlkiSLXyhT/gT5IbfD6Z1Jx0n7l33o2uGW4lgd8BRn8WUeEHBHEn2SCXVQwlREQtvN7iSC2y8qSngF4ytc3vgOucrGccauebyUn9sdKmkhMom+XHRGLg4yr7NW/ZAq8UDCTjimw0unj204NYoihtZTNdXwgmCpqzA6Y4a3S/braI7FEXELgpjVSnB+dqkyFq3Tny2G8lAz1OtN0TZdE3wgbqL8XtsE5Ut1NayTqmPNmEhJVC0f6ZfMop0HP5VawTxA+lq1XoeRAoIGH0ojuV+9O13sh2V2zoxj5jVyNGuZDtqZVlEeSIRI05PVi7nZfKw+EuT5YTkdX/qnx/AmQXABJR8mEbt5A8Oab2RqMdG+P0zvDI0gODnGDSO2w4ZOrD1zi5LnYaIljibbOMhpDWcwsd6Ry5eUmiLQ24OpaErO6a3/sYLybm9xOJLqfn7DNg/5SKBxEfKNyyUYP4KtkSMQI5Xo7dHcIhqH4l3CRK/gB7WtFU6bj0mReNJIitL8grYbUyZpqDuMDT5s5WQsWjOEmRSbMiH7HIkEIPvRu0WxMnRCJKjGFWdlKGqK96T7jlsEHCjsPjk/9VEQ4W5qB2tRAFGJ5YGgbmyYxqxGxduvkNdd3IZKcIbvtEtH4X7aHeyV4Dcn4wkEzUNRRhISM51Av5I1mwi2lj3DP8d6K9iFzNVDCSb+eb9pBu+SEqYrvFC8WKSi8OcZDj50KV871120hgz6n6OZy1KOh8OzKNuCKFt9mVlUfJKzD9gcuL53q+oTHGGIKFz4+4/zLC13N3l3y4Fn9dzM02uGyBGoJXmF3jrwW9OguOsh1FVykE1suM6kC/e005VRngkgcn29tixbfGSx7k8JzTId+5wTXE1HgKXCtGlwA7L6FxS+RUGGP2az1Em91D7THACjjqlVdoDOltQ7Yb4S8n4kG/m/CvtFfQB0e/e/JMgICLGKds6v5THENB7WYOdJ0P5s3GQzdbeXjUAG5Y2WCUBs5LZ6xDZzv1L7jfUHqBbmnHW7U4g+UTYB/tW7B0Ya0JAbpzWFSoVQH6CbY6q9fM8ccelwWdxeWdjZm+TcmBAHpje+emw8T5mUgl7Omvks7D2xk04/HjynzVyBN2dI3dBgxTkB1keL9tMN0WgyjY0ddKI8pigHP9lOa8hb7F2bZIa/FqS6JJPPHnlyPbVl+weIG7j4ocmWH/OkvaT4qtcbnafk2ocwOkjSqUob66ehit1UDMwKXreD2R92MZugTHNe/PWAZesANg9eBbm2p+4kqK52j8MW3AhqaffDN+kK195DUM4FLVYm8BQhOF+OWoM5tTD8LImCNRenutbU6qRxpaMDXCBU37/K3Y7eobcg/IaZaBuw44FteI67Hdgufk5VqCDjlK7jDBUtVq07hpPI9ymWW/m3nNLQlusNGDSBNYXOUBDRWNnHira/1eo9GEwVgpXn2tG1PUUxT15p/fbfGXCvpsj0QlzwErC0ge/Oqlsh7E0QhpqDAcvlBJOiXDD/bv01SkM269rmghWHJPUbmpq4trj7H6cCMXMIwWgOLaTXR0w3tamzJpReC8FXDNwkxSCbmg/ag17JdPyptz7mR3k6KvXor6tFCfEv85TW7CDWLEap1AC12Ym+LK9/CxdKPnXz9Qz4xNXGn3sG1wAfthifQfjDyiCnLo2uhuMzI9yKxH4PUTt52mReMLmnHFrrLpDYcPC+cU7ge55guYhGv/ANB92YzoXrI+Hs6gdXnnfE8GGhfydGwvKBKCtpDecGnu41Mz28j9/LTVtSV9WZEoxANMgPGo4BDbY2p69ixYGQWATdyg9TRDAK7f/Lrlubat60yuVZ9wcwqZ7NBP71mX6NEgdvfK1EgMnkZzsDQl/wWDHdAoOYCo4pKwY5I/V26cKTO4aMYcV/YDdgglOtas2KtIXBJAcgotsV4YfF+CDN4T5WdX808VdXh3/UXLrAdcMDF3QIXj1HyUHIOkXBH7DXICbJt9eNiowRXiuB0d1J/FqjPFe2IlNdXnwFwpRusB5PLSv0Lk/AdI1gQmao8wwLmnoh/L9riMbMMsWAOI+5B71d+lGTKlxx4hQn4ixRfedyZUUsRcpGrgAS1XqCKzggl0/LFuyQpe9BsgvZGkEHQ4ELkl6bcLtiHZ+7uFxmRjnV7v8PP1Whug1igIT3OTMnmb/dGJPuGKY5fRdvWoatxfNU3ABi+fY7eHiPqC0gQDpAC19twVfWBtBur+ST+y7fzmSE5Q0C3mcp8/31XIdqm7sEZJHtFnXBgaTyG+fWRGAY70K10IBvKH2TE6IMzm1k92/Cn2payTupKTtojgP3uaWIgFVgV0lD0WGR0PanqiKtrBFwqznvb/rz2PgpSjWd2BESLQpxY+6tmKXZnjvY9xfR12CQ8o/aKz1t+XxCSzy0uE5f/kaFUCrwxjL8gT7SEUJshp//5/yvPFJHgJlgsvXp+gRQCSzz+vS6rl3BhMsbj/HzwJYz8GsWppOQDGVswlOHEaFE/qhImhDrt2DUfNxtt21GW7KwJRn9/mtYIjlnnwgESPEpwoLyTru3SsVGzRxnZG6x+BiseUs57lTdb3H8KG7UPeH1SSjy9wZHELnar9x5cOtOR7lOvyjWm4Ab18Q+qoMxxLCFit0V8SmOu7AU8XGY3eSXb6Ly+kaQmDkRlOstgmcj+rD34KNz7LTvLL0O1Z9J/nCjp+1flOFgtbd7Yg0t5eNrPuppxYxJfSpnJRNL4S3YTffnV+x+zVsuioseET/On2wNi/TnL2rAQIKswi7Er3Sv48D/+PLsa2WJOSk6DqcCLmusILDiz0FwKEhMewrxtNyM2IAE0/6hiopIQoUgC6U8CLirhWbfVibSnCGZlF5uywIcaUlcEaYP/evokbi1NSquO62XNnWR4+fB3M1N7LaI5pwdHYOKEjg9OaSiTtEDypKGOVxZhdQS0jEvZ46foNS4SBpwZfPn60p6pQldNUmimhWeU5LUnEpZYjPJU6hmAsh4AKaLFfJANrZ9ou428yoEIFuiY9UgOYkqtSUocWxyijxK+NTtuDdbh7NJcyLIl6CUBWQjZiL34Bk0Qe3vmT9tpIKus3r5CvEdEu5Va2Wxm8CQJT9bESzuFBeH0QIRybKFAUVqNa9tCXukd1jwLXYKWsuMuFda8R1UjVG2cvAZ+R3lBV+nLksL4Ti6lubX3hKFcSyFsG5rK9pJt5nlSGIkBLP/HFqLL/KX0S96NdOo4CS+GYPBk+lBZxz6Yie12vvUj8l4t1ik/5PmvbLOTPCcaoPeZ7APUQIKIcxcNUDin3R1okbeAUGwt7Ja3G0ntQokBhlajisyXeqbfPLrTTKpTauclKp+DGdyBsbzFHEYtIqZnlLe5wjluF/UID6EgwWPGj0FVKM59Jom3+0Y1QTb+IKqHZv/0FIEEuVItlJHSixdza2w0UN80Hyc/eUGv6SBybC/EEs9cOcLBR1eeQXXe7p7hfIhtxxBrGhk9n7jom/4LXF125WzPmMCUiNyE8iO7sVSmRf/iSNFBveZWGPeCirfJ8a43fk5jCfA3NPEJyMAamu3Q5im0DKo8aonWXtye9iE8vraixlVTAGSXFMjP3+XiOE9jrnXTDzARnt7+9gvHctQpaAI0za6N7bq9R1lb55jILwmx4Ih4OA0K1/Xx7B9jytPFBRhEO8xqXLhxotsIRjnGRvnkMK/KJ1YhE9T2mNmclLYgMSn+7dzik8BzoHt+EcXstV8yNpTspqsnS96ATq3A66NbF449w9JqViBt4gWi7yVzt3kR4XSJ8iEB5anMqG+EsSyrMQVv0sMeEysGx+yYs6G2xPJw3zqTq4RzDQXPhYra/VMlt7E8zzl4D7L3HS3kkWf4ZkmFmnjcENPQdkmohl6p/gqkOg+8McyzNxxb5Fl19DsSr3MTuSMqhSKDn95ibzYCEdrZXJiKaqu7BFBuju+jSObOPchog2IsE/u/3U/UK2mntvSnD0qNkPYoRTskBnLJ3NJamL0V4sEbryX8NMr7MKMJ0+h2+xMKY4KERpvUrd0c6ABXWHqLdY1QTugC/5dhdoLy3+KwgG5FnL0MZw6qvOvHkKQRoQrcKLuwUld15s05QxurH67A9eAr02a/vUWNBIgP6vOa69ZZuZKElWttIerRDGIAkZ54fw7HBctSZtfspPxaliwbOEH/Laxot3ZQonzvXknSVodzZHA1Jw7BcNRsYvl+KJ0Y6pMRPpIbaN/QSuHtnjUoej+vlVhq5021xMUPKxCK/D8rSRbOmduHG85/JrIimgo5wXWP83lLvRaxwCxeTGVt44fTUqsfUARmQcS3f5DbHR9SZ4nJYIEvcCjIqLezJ3I6S7xBop57j3ZyMQX0Xxr5mc6IUmrlOXM9fJG5iDZQQ9rWsGZ0Y26GzTAEsD6pjPuDa1XAT1MRpxyZ8zN53sl1YEV0E0EHvZqcnBnqMTXRh6zC9PwDXEk3OHs2zLLIjBhY5+7lDxp1X0qcm8XtWorat33mUx+kEDDgaDUdpclQq/ZM6mMYoF433nKbCKDxCozugSPVaRjNPosMDy8FujvIJSb763XuBGBIYLS9x+HZhYiUa9xod0xKV9aRt7yczWWlLgfK8qn4fULHMBSP48m/wTWfDBdTH8uDAKt5WM033+2bCpxDhmZtE+d7XP65yBTOf9/EWaCG+Gs9/5kVbWS0JlfoDH6Si2tVCzCRGfV0XZAUWfXOMJ5F9dkMagbwaeqVqqbVONDQGg8zID5MUV7IkazdAz4JLOXsn1RuZnoZNIGV2Na15+dRKYUAmXFmkWBJpPMBwT8N4bd8VZwBnhm3WzH9S0sbpoP0sgf2OmPvQ6smMyfkVK+OLjXYubmtioAhdwDb5/pLRg3PGwfHEz6v9OOe4AK8iw2cma49tV44In8Rc9jGcqSQlFXPdlC8366ke4U/ITFy0/SQBl1vWvGk40KycwWGaLf8cCtEi/4X2W8961i6lYnpfNQhGcQyC8s2oIOW+Pw545Thq3ZBEyNC8YDr/pzCEmBI8U3A4IiQJoHiD9kUMNd8wfzysC2Kqc4OGeWYsJxmDev4Jn4HV+vqpgN6xxSEMABhRMdTteHiJAgnQEX9BR2V1sNqh5EcMvQNYYa5+bblQn7Rli1UFCtQkP6ECmGkxmPNkg2CGS2mmf0/WEuTZSyPMtbbrnftPgleOmJ3jSm0m1EU9fQHQo1NZti+KczpJ8mSYIVtXzXh4rNJcL3Fm7Bbftpjmj5UnuDpPk8HvqKOj2DGJyk4R0Md1x7umiH0DTOXaLwO0EI94k7n6R8nfqiwekgUQZ1rRek0HViM5YN0JLWp4f4NRE8ErcGNSHZd58+9Kx8lmkc9ogfQmX0rX1kB8QQzNbH+eVDee0jOQNUgQcew3y+0QbifXrtLHXDIxsqsej41Kz7vfcQRE1zUnY2phYNILK8a657zyHNMzPiRhxs28s1JX2kiCMEloubOXnc8BzU+n7LM9wztf63eFWN/eWHXVivSdCWg5DfWsk2CF8aFJrOP277QEPdkWlOlewCVEkLjyd5wUn9ZzaKOJKnDQDLfliiRLTKlU8TOeQj8jOU8FfpM9tayJTDpxw6sVlZuJRAILfxn+QAGIB/W1FGDjuuVu62hFDBdvzVSfge95Ebf9pclp0GrpV3S+gwBWn5J7aGiim/fRyIN7YVVXJsnAnVeq90vDdAV0XearTqjT2Ck/AMkBW6T/ls/6VUVnFWs01wxkahKR0tRwyLRKgHefm3RWie/pTVQpUMZw+/7ozQSW+7vuZd8lsvT1iX5rwlpiaFnOnDbHsr1As6vLETd5HVbcBCGbJHcS7ax9Byd50jdYyagUtjAaHYX8ryyuR/bDkw1o4j8+hXMfbzy+CVmgrfRDyl4dn+5LxrqRAXLoDKpQREAHqdLSsVSJh1s8KnZ/SsUVq27cq+O6LMSBmhT4X3E750rmWwCsoCre6bT//oFWYALjp2SbcxnULBaTvnYDHtfEbO1m/3c9nJk8ZO5KHQTV88ivTWN/S2EXwmisTPdcupMrvI8e48QZdkZu9WHyKron7MKhGFJw6Z0KZ3tleVrvvJo89siUwByPY+Hs4gkKPBQbLQOaedcv/xeM+Ih8rl1eHEC/C65xWVciToVqSGp9HfbhVzFSrO6kBnv7mJwnRLvMEwqiNankVdJJMw4icU3lKyw/ecNSWIUddqlbThYMiq8nHjRRufs+28cq0OI9zhpvxFvFgSZE/eAYvm0x+9lZO+EH9NkBngaqU1NMYhdombNuy3awUN9p0mJQ//e9L65YbShgoc+ZUlNy+c6F6gDEHXV0JrzevPIZFAe2RyRa2dNqzLvihAAMCszYueqszzXRkSyobx5+LTLK2V3lfg3wbS9DzP3QW7VHdHbjZcttQRvtjrGveJnNn2DE2ZDIbvkCrT0H8RzbGDdmIq4P1ey+hoY/W6NuZKOz4dv4HUNznxdKV1Wf3MvqUv35r2jTKvpPWBUWNm5fytX/QJwp6qkIOsSx7Y67BSCbCDVLM8/VcMG+T0j+INrgL9sfT1ICtACH8BI0G6ViUZPVzzCmQHW2oVIwZjAoFl6+meO/pD8teO1E+1y03mCpYfW9S8qhtH2GhlFlebPf4NbezVv9xbXKWz0xezRNQWqUqtYRTUbuzK7KTvjG4rQHfzBpVmK4wDLnSIwdSzTSk1fPNeY0WOpPZTLlvQ59xwgfFrb326vT2hS1JAZ9E6sujFtKTiJ7bxI6o4cBhDaX+adXREThhR+MwA4TqD7rga/o9iY7d6TVRe14CS2S3iSQsD0R6ApnhG/2Wa0A0AY2NtWTjmabdKU+KgIRDP9RQYVjXiF1qC+xyNVG03I9vpmEpY/G/zC4nLOKgXAZ/uTikHI9Afbkhfgfgo9arWbix5eH7WUo9RQygDzwCnVSjbXc7MihEufVj6WGbK963pw8VjY3RS8IH1cy2yZbIcKLO5CgAUcXJfF2+McnDLKtXxyZaf7SPA6KJq+zF2NHyfoeTOwHhGqNcnHVr1hT73pcoyXyfvCYBnG1Bp/aR9t8hoI7CXM3UZOisWGA1SHZ2jf7k9GlRnp3mF/c1AV+JjvUsnZrsybEOQJg/dn/9eJkyykQHjbF56zgcPX6DdMG03WKUMlYz+uOZ+5DZy9E9MZOZ9GMoLFdrIPPQQLjv+GlCMpoyHPXkzIODjHAID2PrnaRpqWVHh0rnieDILKq+Emrd5RnjgE9pDUXWTmHaKuqqYlcgEz4zbi46dbWrAAFBjsQq1rLHIiPJEcwFLCOY4JNlXRXQJqCUKXk2d1RSBGzDP6HDSpo863BhVRFFF6uIpjQV7j5ebFe3UkkO/+coIo2BTAcgBqOtQ134s9a4QJvofuqBYMGOBMsWZ+sn/2AOxDx6SfAnDFGw==", Pn = Uint8Array.from(atob(Bn), (e) => e.charCodeAt(0));
|
|
14218
|
-
var
|
|
14219
|
-
const
|
|
14213
|
+
}, Cn = "5L7pP4UXrOIr/VZ1G3f6p89FIWU7lqc7J3DPxKjJUXODJoHQzf/aNVM+ABlvhXeBGN7iC0WkmTjEaAqOItBfBdaK5KSGV1ET5SOKl3x9JOX5w2sAl6+6KjDhVUHgbqq7DZ5EeYzbdSNxtrQLW/KkPJoOTG4u5CBUZkCKHniY9l7DUgjuz708zG1HIC8qfohi1vPjPH9Lq47ksjRrjwXD4MlVCjdAqYFGodQ8tRmHkOfq4wVRIAHvoavPHvN1lpk3X4Y1yzAPGe8S9KBs3crc4GwlU1dEOXiWol/mgQqxkNqB1xd04+0Bmpwj0GcCc4NUi+c731FUxjvaexCkCJ0qhrJJ++htWqetNC4NewClu8aFRSwrqiJEGe+qtTg4CYCHaF1wJI0sy/ZBQAI0qAMyBvVjWZlv2pdkCaro9eWDLK5I4mbb8E4d7hZr9dDJiTJm6Bmb5S+2F7yal/JPdeLUfwq7jmVLaQfhv4tWMJAt7V4sG9LuAv2oPJgSj1nnlBvPibfHM2TrlWHwGCLGxW/5Jm2TotaDL+pHDM5pn1r0UuTZ24N8S5k68bLHW9tfD+2k4zGev23ExJb4YTRKWrj82N5LjJ26lj1BkGZ0CsXLGGELoPaYQomjTqPxYqhfwOwDliNGVqux9ffuybqOKgsbB51B1GbZfG8vHDBE2JQGib1mnCmWOWAMJcHN0cKeDHYTflbDTVXajtr68mwfRje6WueQ/6yWqmZMLWNH7P27zGFhMFqaqfg11Q88g/9UA/FROe9yfq0yOO0pnNAxvepFy2BpEbcgG+mCyjCC01JWlOZlIPdf1TtlyOt7L94ToYGCukoFt4OqwOrofamjECpSgKLLmrRM+sNRAw12eaqk8KtdFk7pn2IcDQiPXCh16t1a+psi+w9towHTKPyQM0StKr61b2BnN1HU+aezFNBLfHTiXwhGTbdxLLmrsAGIVSiNAeCGE8GlB0iOv2v78kP0CTmAPUEqnHYRSDlP+L6m/rYjEK6Q85GRDJi2W20/7NLPpSOaMR++IFvpkcwRuc59j8hh9tYlc1xjdt2jmp9KJczB7U9P43inuxLOv11P5/HYH5d6gLB0CsbGC8APjh+EcCP0zFWqlaACZweLhVfv3yiyd8R3bdVg8sRKsxPvhDaPpiFp9+MN+0Ua0bsPr+lhxfZhMhlevkLbR4ZvcSRP6ApQLy3+eMh9ehCB3z5DVAaN3P6J8pi5Qa88ZQsOuCTWyH6q8yMfBw8y8nm6jaOxJhPH6Hf0I4jmALUBsWKH4gWBnyijHh7z3/1HhQzFLRDRrIQwUtu11yk7U0gDw/FatOIZOJaBx3UqbUxSZ6dboFPm5pAyyXC2wYdSWlpZx/D2C6hDO2sJM4HT9IKWWmDkZIO2si/6BKHruXIEDpfAtz3xDlIdKnnlqnkfCyy6vNOPyuoWsSWBeiN0mcfIrnOtp2j7bxjOkr25skfS/lwOC692cEp7TKSlymbsyzoWg/0AN66SvQYo6BqpNwPpTaUu25zMWlwVUdfu1EEdc0O06TI0JmHk4f6GZQbfOs//OdgtGPO6uLoadJycR8Z80rkd88QoNmimZd8vcpQKScCFkxH1RMTkPlN3K7CL/NSMOiXEvxrn9VyUPFee63uRflgaPMSsafvqMgzTt3T1RaHNLLFatQbD0Vha4YXZ/6Ake7onM65nC9cyLkteYkDfHoJtef7wCrWXTK0+vH38VUBcFJP0+uUXpkiK0gDXNA39HL/qdVcaOA16kd2gzq8aHpNSaKtgMLJC6fdLLS/I/4lUWV2+djY9Rc3QuJOUrlHFQERtXN4xJaAHZERCUQZ9ND2pEtZg8dsnilcnqmqYn3c1sRyK0ziKpHNytEyi2gmzxEFchvT1uBWxZUikkAlWuyqvvhteSG9kFhTLNM97s3X1iS2UbE6cvApgbmeJ/KqtP0NNT3bZiG9TURInCZtVsNZzYus6On0wcdMlVfqo8XLhT5ojaOk4DtCyeoQkBt1mf5luFNaLFjI/1cnPefyCQwcq5ia/4pN4NB+xE/3SEPsliJypS964SI6o5fDVa0IERR8DoeQ+1iyRLU1qGYexB61ph4pkG1rf3c2YD6By1pFCmww9B0r2VjFeaubkIdgWx4RKLQRPLENdGo8ezI5mkNtdCws19aP1uHhenD+HKa8GDeLulb2fiMRhU2xJzzz9e4yOMPvEnGEfbCiQ17nUDpcFDWthr68mhZ4WiHUkRpaVWJNExuULcGkuyVLsQj59pf6OHFR7tofhy9FMrWPCEvX1d5sCVJt8yBFiB6NoOuwMy4wlso9I2G4E5/5B2c6vIZUUY9fFujT3hpkdTuVhbhBwLCtnlIjBpN4cq+waZ0wXSrmebcl+dcrb7sPh9jKxFINkScDTBgjSUfLkC3huJJs/M4M8AOFxbbSIVpBUarYFmLpGsv+V6TJnWNTwI41tubwo7QSI1VOdRKT/Pp8U3oK2ciDbeuWnAGAANvQjGfcewdAdo6H83XzqlK/4yudtFHJSv9Y+qJskwnVToH1I0+tJ3vsLBXtlvMzLIxUj/8LcqZnrNHfVRgabFNXW0qpUvDgxnP3f54KooR3NI+2Q/VHAYFigMkQE5dLH6C6fGs/TKeE6E2jOhZQcP9/rrJjJKcLYdn5cw6XLCUe9F7quk5Yhac+nYL5HOXvp6Q/5qbiQHkuebanX77YSNx34YaWYpcEHuY1u/lEVTCQ7taPaw3oNcn/qJhMzGPZUs3XAq48wj/hCIO2d5aFdfXnS0yg57/jxzDJBwkdOgeVnyyh19Iz1UqiysT4J1eeKwUuWEYln23ydtP7g3R1BnvnxqFPAnOMgOIop2dkXPfUh/9ZKV3ZQbZNactPD4ql5Qg9CxSBnIwzlj/tseQKWRstwNbf17neGwDFFWdm/8f+nDWt/WlKV3MUiAm3ci6xXMDSL5ubPXBg/gKEE7TsZVGUcrIbdXILcMngvGs7unvlPJh6oadeBDqiAviIZ/iyiUMdQZAuf/YBAY0VP1hcgInuWoKbx31AOjyTN2OOHrlthB3ny9JKHOAc8BMvqopikPldcwIQoFxTccKKIeI815GcwaKDLsMbCsxegrzXl8E0bpic/xffU9y1DCgeKZoF2PIY77RIn6kSRdBiGd8NtNwT74dyeFBMkYraPkudN26x9NPuBt4iCOAnBFaNSKVgKiZQruw22kM1fgBKG7cPYAxdHJ8M4V/jzBn2jEJg+jk/jjV4oMmMNOpKB5oVpVh7tK529Z+5vKZ0NSY2A4YdcT0x4BdkoNEDrpsTmekSTjvx9ZBiTHrm9M/n/hGmgpjz4WEjttRfAEy5DYH5vCK/9GuVPa4hoApFaNlrFD/n2PpKOw24iKujKhVIz41p1E0HwsCd/c17OA0H0RjZi1V/rjJLexUzpmXTMIMuzaOBbU4dxvQMgyvxJvR6DyF3BaHkaqT4P3FRYlm+zh8EEGgmkNqD1WRUubDW62VqLoH8UEelIpL7C8CguWWGGCAIDPma9bnh+7IJSt0Cn6ACER2mYk8dLsrN70RUVLiE0ig+08yPY9IOtuqHf/KYsT84BwhMcVq7t8q1WVjpJGNyXdtIPIjhAzabtrX03Itn29QO3TCixE9WpkHIOdAoGvqCrw1D3x9g9Px8u0yZZuulZuGy0veSY34KDSlhsO1zx2ZMrpDBzCHPB4niwApk6NevIvmBxU3+4yaewDvgEQDJ6Of5iRxjAIpp9UO8EzNY4blj4qh8SCSZTqbe/lShE6tNU9Y5IoWHeJxPcHF9KwYQD7lFcIpcscHrcfkHJfL2lL1zczKywEF7BwkjXEirgBcvNWayatqdTVT5oLbzTmED3EOYBSXFyb2VIYk3t0dOZWJdG1nP+W7Qfyeb8MSIyUGKEA57ptPxrPHKYGZPHsuBqQuVSrn0i8KJX+rlzAqo8AawchsJ26FckxTf5+joTcw+2y8c8bushpRYEbgrdr64ltEYPV2AbVgKXV3XACoD1gbs01CExbJALkuItjfYN3+6I8kbiTYmdzBLaNC+xu9z/eXcRQV1Lo8cJoSsKyWJPuTncu5vcmfMUAWmuwhjymK1rhYR8pQMXNQg9X+5ha5fEnap+LhUL1d5SURZz9rGdOWLhrMcMKSaU3LhOQ/6a6qSCwgzQxCW2gFs53fpvfWxhH+xDHdKRV6w29nQ6rNqd9by+zm1OpzYyJwvFyOkrVXQUwt4HaapnweCa7Tj2Mp/tT4YcY3Q/tk1czgkzlV5mpDrdp1spOYB8ionAwxujjdhj5y9qEHu0uc36PAKAYsKLaEoiwPnob0pdluPWdv4sNSlG8GWViI+x/Z4DkW/kSs2iE3ADFjg4TCvgCbX3v0Hz0KZkerrpzEIukAusidDs2g/w0zgmLnZXvVr5kkpwQTLZ0L6uaTHl0LVikIuNIVPmL3fOQJqIdfzymUN0zucIrDintBn6ICl/inj5zteISv5hEMGMqtHc2ghcFJvmH3ZhIZi34vqqTFCb9pltTYz582Y3dwYaHb9khdfve1YryzEwEKbI8qm62qv+NyllC+WxLLAJjz0ZaEF2aTn35qeFmkbP6LDYcbwqWxA0WKsteB7vy8bRHE4r8LhubWDc0pbe90XckSDDAkRej0TQlmWsWwaz18Tx2phykVvwuIRzf4kt9srT8N7gsMjMs0NLAAldabFf2tiMoaaxHcZSX51WPc1BrwApMxih227qTZkcgtkdK1h314XvZKUKh/XysWYnk1ST4kiBI1B9OlfTjB3WHzTAReFLofsGtikwpIXzQBc/gOjz2Thlj36WN0sxyf4RmAFtrYt64fwm+ThjbhlmUTZzebLl4yAkAqzJSfjPBZS2H/IvkkTUdVh0qdB6EuiHEjEil5lk9BTPzxmoW4Jx543hiyy4ASdYA2DNoprsR9iwGFwFG3F2vIROy4L5CZrl230+k733JwboSNBKngsaFPtqo+q3mFFSjC1k0kIAFmKihaYSwaSF7konmYHZWmchuaq15TpneA2ADSRvA07I7US0lTOOfKrgxhzRl0uJihcEZhhYWxObjvNTJ/5sR4Aa5wOQhGClGLb746cJhQ2E6Jie1hbGgWxUH7YSKETptrTeR/xfcMNk2WM12S0XElC9klR8O7jLYekEOZdscP0ypSdoCVZAoK+2ju2PHE869Q9rxCs9DVQco4BriiPbCjN/8tBjsah4IuboR5QbmbyDpcdXVxGMxvWKIjocBuKbjb+B4HvkunbG0wX0IFCjQKoNMFIKcJSJXtkP3EO+J16uh4img0LQlBAOYwBLupu5r1NALMo0g3xkd9b4f7KoCBWHeyk24FmYUCy/PGLv0xErOTyORp8TJ5nnc2k1dOVBTJok7iHye9dwxwRVP3c7eAS8pMmJYHGpzIHz6ii2WJm8HMTPAZdA4q+ugj3PNCL/N45kyglqvQV4f/+ryDDG5RPy5HVoV9FVuJcq2dxF9Y0heVoipV6q1LyfAeuMzbsUV+rsSBmCSV+1CdKlxy0T0Y6Om0X6701URm2Ml6DIQgJ/3KO6kwcMYRrmKsY7TfxWhSXZll+1PfyRXe9HS0t1IKTQMZL7ZqQ8D/o+en57Y9XAQ9C+kZYykNr0xOMxEwu2+Cppm69mQyTm3H7QX6kHvXF201r+KVAf354qypJC5OHSeBU47bM1bTaVmdVEWQ+9CcvvHdu8Ue5UndHM+EeukmR82voQpetZ7WJjyXs+tPS60nk09gymuORoHNtbm0VuvyigiEvOsyHiRBW7V6FyTCppLPEHvesan91SlEh1/QEunq+qgREFXByDwNKcAH5s8/RFg8hP4wcPmFqX0xXGSKY087bqRLsBZe52jThx0XLkhKQUWPvI18WQQS3g2Ra1pzQ1oNFKdfJJjyaH5tJH6w0/upJobwB8KZ5cIs9LnVGxfBaHXBfvLkNpab7dpU6TdcbBIc+A4bqXE/Xt8/xsGQOdoXra4Us5nDAM6v2BNBQaGMmgMfQQV+ikTteSHvyl8wUxULiYRIEKaiDxpBJnyf9OoqQdZVJ8ahqOvuwqq5mnDUAUzUr/Lvs1wLu2F+r4eZMfJPL4gV5mKLkITmozRnTvA7VABaxZmFRtkhvU5iH9RQ1z26ku7aABokvptx7RKZBVL6dveLKOzg0NC7HAxcg5kE1wuyJiEQLOpO0ma3AtWD2Q2Wmn2oPZeDYAwVyEpxuwDy7ivmdUDSL95ol3h2JByTMovOCgxZ1q4E5nwwa7+4WtDAse6bDdr27XgAi5Px3IWbyZ/vRiECKwOMeJSuIl8A4Ds0emI3SgKVVWVO5uyiEUET+ucEq0casA+DQyhzRc8j+Plo0pxKynB/t0uXod1FVV4fX1sC4kDfwFaUDGQ4p9HYgaMqIWX3OF/S8+vcR0JS0bDapWKJwAIIQiRUzvh5YwtzkjccbbrT9Ky/qt5X7MAGA0lzh43mDF9EB6lCGuO/aFCMhdOqNryvd73KdJNy3mxtT8AqgmG4xq7eE1jKu6rV0g8UGyMatzyIMjiOCf4lIJFzAfwDbIfC72TJ/TK+cGsLR8blpjlEILjD8Mxr7IffhbFhgo12CzXRQ2O8JqBJ70+t12385tSmFC8Or+U8svOaoGoojT1/EmjRMT7x2iTUZ7Ny02VGeMZTtGy029tGN1/9k7x3mFu63lYnaWjfJT1m1zpWO3HSXpGkFqVd/m3kDMv4X9rmLOpwEeu8r6TI6C2zUG+MT6v90OU3y5hKqLhpyFLGtkZhDmUg/W1JGSmA8N1TapR4Kny+P6+DuMadZ9+xBbv06nfOjMwkoTsjG0zFmNbvlxEjw+Pl5QYK+V8Qyb+nknZ0Nb/Ofi9+V0eoNtTrtD1/0wzUGGG5u2D/J1ouO/PjXFJVx6LurVnPOyFVbZx7s3ZSjSq+7YN3wzTbFbUvP8GBh7cKieJt56SIowQ2I577+UEXrxUKMFO+XaLLCALuiJWB2vUdpsT+kQ+adoeTfwOulXhd/KZ7ygjj6PhvGT1xzfT7hTwd6dzSB4xV70CesHC0dsg2VyujlMGBKjg5snbrHHX/LNj3SsoLGSX+bZNTDDCNTXh+dCVPlj4K8+hJ/kVddrbtZw26Hx5qYiv3oNNg5blHRSPtmojhZmBQAz8sLC9nAuWNSz1dIofFtlryEKklbdkhBCcx5dhj7pinXDNlCeatCeTCEjYCpZ3HRf5QzUcRR1Tdb3gwtYtpPdgMxmWfJGoZSu1EsCJbIhS16Ed97+8br4Ar1mB1GcnZVx/HPtJl4CgbHXrrDPwlE4od8deRQYLt9IlsvCqgesMmLAVxB+igH7WGTcY/e3lLHJ4rkBgh2p1QpUBRb/cSQsJCbosFDkalbJigimldVK7TIHKSq2w8mezku9hgw8fXJxGdXoL1ggma52kXzjP78l0d0zMwtTVlt0FqnRyGLPGEjmICzgSp7XPFlUr7AeMclQ4opqwBFInziM5F8oJJ8qeuckGOnAcZZOLl1+ZhGF17pfIuujipwFJL7ChIIB2vlo0IQZGTJPNa2YjNcGUw+a/gWYLkCp+bOGIYhWr08UIE709ZEHlUoEbumzgpJv1D0+hWYNEpj+laoZIK5weO2DFwLL6UBYNrXTm9YvvxeN9U9oKsB3zKBwzFFwDgid5ESMhy68xBnVa55sCZd+l5AnzT8etYjIwF/BGwEx1jjzFv32bk6EeJulESARh8RZ48o7rKw67UZpudPa15SDnL8AL8xMV2SC0D1P53p190zhCFkMmEiir2olwxcJppl/kLm6/0QSUQLNaxi1AC3Pg1CTosX2YQr73PjEIxIlg4mJ62vP7ZyoHE55B0SX9YrrrCPtNsrJEwtn6KOSt7nLT3n3DLJTPbLulcqQ1kETP6Huts29oP+JLEqRGWgnrqMD+mhCl1XCZifjgQ39AeudE8pyu2DqnYU3PyPbJhStq1HbP+VxgseWL+hQ+4w1okADlA9WqoaRuoS7IY77Cm40cJiE6FLomUMltT+xO3Upcv5dzSh9F57hodSBnMHukcH1kd9tqlpprBQ/Ij9E+wMQXrZG5PlzwYJ6jmRdnQtRj64wC/7vsDaaMFteBOUDR4ebRrNZJHhwlNEK9Bz3k7jqOV5KJpL74p2sQnd7vLE374Jz+G7H3RUbX17SobYOe9wKkL/Ja/zeiKExOBmPo0X29bURQMxJkN4ddbrHnOkn6+M1zTZHo0efsB23WSSsByfmye2ZuTEZ12J3Y8ffT6Fcv8XVfA/k+p+xJGreKHJRVUIBqfEIlRt987/QXkssXuvLkECSpVEBs+gE1meB6Xn1RWISG6sV3+KOVjiE9wGdRHS8rmTERRnk0mDNU/+kOQYN/6jdeq0IHeh9c6xlSNICo9OcX1MmAiEuvGay43xCZgxHeZqD7etZMigoJI5V2q7xDcXcPort7AEjLwWlEf4ouzy2iPa3lxpcJWdIcHjhLZf1zg/Kv3/yN1voOmCLrI1Fe0MuFbB0TFSUt+t4Wqe2Mj1o2KS0TFQPGRlFm26IvVP9OXKIQkjfueRtMPoqLfVgDhplKvWWJA673+52FgEEgm+HwEgzOjaTuBz639XtCTwaQL/DrCeRdXun0VU3HDmNmTkc6YrNR6tTVWnbqHwykSBswchFLnvouR0KRhDhZiTYYYNWdvXzY+61Jz5IBcTJavGXr9BcHdk/3tqaLbwCbfpwjxCFSUs1xfFcRzRfMAl+QYuCpsYGz9H01poc1LyzhXwmODmUSg/xFq/RosgYikz4Om/ni9QCcr28ZPISaKrY7O+CspM/s+sHtnA9o9WgFWhcBX2LDN2/AL5uB6UxL/RaBp7EI+JHGz6MeLfvSNJnBgI9THFdUwmg1AXb9pvd7ccLqRdmcHLRT1I2VuEAghBduBm7pHNrZIjb2UVrijpZPlGL68hr+SDlC31mdis0BjP4aZFEOcw+uB17y5u7WOnho60Vcy7gRr7BZ9z5zY1uIwo+tW1YKpuQpdR0Vi7AxKmaIa4jXTjUh7MRlNM0W/Ut/CSD7atFd4soMsX7QbcrUZZaWuN0KOVCL9E09UcJlX+esWK56mre/s6UO9ks0owQ+foaVopkuKG+HZYbE1L1e0VwY2J53aCpwC77HqtpyNtoIlBVzOPtFvzBpDV9TjiP3CcTTGqLKh+m7urHvtHSB/+cGuRk4SsTma9sPCVJ19UPvaAv5WB8u57lNeUewwKpXmmKm5XZV91+FqCCT6nVrrrOgXfYmGFlVjqsSn3/yufkGIdtmdD0yVBcYFR3hDx43e3E4iuiEtP3Me9gcsBqveQdKojKR//qD2nEDY0IktMgFvH+SqVWi9mAorym92NEGbY8MeDjp553MiTXCRSASPt+Ga5q7pB9vwFQCTpaoevx0yEfrq9rMs3eU6wclBMJ9Ve8m6QuLYZ58J41YG3jW/khW92h6M/vbFIUPuopZ6VVtpciesU74Ef7ic8iSymDohGeUn4ubT0vRsXmbsjaJaYhL8f+8I5EiD5l680MJbxX/4GYrOg4iPQqpKp0qddSu/HKtznHeVyxgTwhfEORMCwnaqetVSzvidaWN9P+fXtGXfEP9cTdwx2gKVfDdICq7hecgRhIs0qlCt6+5pGlCc6kWoplHa/KjP+FJdXBU/IDoKMxRjFhSYkggIkhvRKiN/b2ud8URPF+lB87AGAwyMjr/Wju2Uj5IrppXZWjI3d14BdKE2fhALyQPmHqqA+AXd2LwvRHcBq4mhOQ4oNRWH7wpzc6Pggfcbv9kqhLxrJKEaJqA6Rxi+TDNOJstd5DoRVCDjmVspCVyHJsFEWPg9+NA8l1e4X2PDvOd5MPZAGw6LRhWqeZoSQcPf9/dGJYAyzCmttlRnx0BfrKQ/G9i5DVJft9fuJwMi3OD/0Dv1bRoxcXAyZ0wMJ6rwk9RjRTF4ZK8JviCCNuVt/BqQYiphOzWCpnbwOZt6qXuiAabQWrS4mNXQ7cEErXR/yJcbdFp5nWE1bPBjD0fmG3ovMxmOq5blpcOs0DtNQpci1t+9DKERWAO53IVV/S4yhMklvIp0j0FIQgwjdUptqmoMYGVWSI5YkTKLHZdXRDv9zs+HdFZt1QVcdlGOgATro3fg6ticCrDQKUJC7bYX50wdvetilEwVenHhlr85HMLRLTD6nDXWId4ORLwwe5IXiOhpuZTVTv+xdkTxJofqeCRM/jcZqQlU0gFVTlYlfwMi6HKR2YG4fQ8TOtgR+yV+BMZb6L5OwDc/28/xdfD7GXFaVA2ZSObiIxBwT2Zev637EuvpM6rxcogdM4FJFa0ZhF7nrqtNsqWg5M7hZMORpjd4szf/wS+Ahs1shY54Ct5J1dOBO4sdEtSnRc0P9PhgyOCt6aQW98R22DpAcNTDe72AHK40vutKTPfpokghRPuGvz0dulBPKfC3O4KVDCyWrJGO7Ikdu06A0keKlVfi0tGcpO0NhzXEh75NHyMysAMV19fq7//sPC0For1k2uFEvq8lwrMAfmP7afR69U2RqaILHe7glpc8HmVf87Qb2ohsw+Di9U+ePdHLecS66MhB/0OwdcXR5WBcWTZLGq/kiAaT+bzkjR8GIpWdv6pfIgQ+Q0xdiKvo+gNB7/Nf9knNJGxnh7LeZEFtMn517tNc74PPS0M4K3I6HHZqNPA+VZcBc/g5a2ARyqKrJ4Z3krsuA+VOJJz2KJpBMgCCWFln3u7k6/q3DETAubKG/pt3ObaNT0NI0Qug90L2ip5dHnZJUjPTvK5E96aX/4mRU2u8n8kh6MKbY7ANBro3huF06U+JvfyELQP25oIaj+n0ITQ4KT9rXZD4EtBIOj95fYNldDN3io/VMIvWNj9P/b95WEMq8UAVfG2XG0N6fSYdnBEC7sUEbatbDICH9qA8TTuW9kEt9DlFOZFP7bdfYLa/khSY8W5K/AkIIAPXtMvyVKyESjKx9nfragssxC0jFMVY94d8lOAwRocdS/l/P43cBGa3IqDa0ihGPcmwS8O8Vj16Uy55rOrnN0shhRJZdW8I7F0Q0KeHc35GFo4aJOFc25gNafBu1V/VO0qS4Qkb6wjRrnlepUWjtYyaDABZceValuOMtoDdeIITWKOJiwGPpB12lQgwkmXh9M86podb0D117mNQ8ElluFvbaS8RTKQ6lyj88dUwoJU/ofOeubhoXWBF8eNumkVJu+As3ED/AvLlrV91UowIWI2m8HBG+a3k247ZKAGYsOcWe7fTWqL8eqwM5ZFuoXbeugPKuMOAtOsN+4dSwkhrSAlfGNTzFwEmCNWtzpa9CgPbYNcmoHtO8pj8qMvlGET6nrkJoQ2lp5MEUV1E2A4ZH70JUlCLXvqTIpZlzyxdr5p/GZiD1/BuFOGbyfFzhuxaC/l3lC2jjt6GNRBa06AqqPlYtdA7kiidYa5Qi0/XpXiMDyMXNOj3kmJEaXufW0GO8+DF8OoMULX1vvjCePKNis4AmxQKLCF+cjf/wyilCJvuiyLVPSdsuRTPZ0AhpdDF/1uFmDwG7iP3qYwNsKzqd3sYdnMolCOuQOIHWy1eQpWhuV+jmSeAC5zCc0/KsOIXkZPdiw8vtB33jEBpezpGDBP4JLY2wH1J7Fzp8y8RICqVd25mDT2tDb/L1mh4fv9TOfDH5dTeATqu+diOZi+/sIt18hiTovPsVQVaqXLPRx/4R/uH/86tBMcF+WBkThKLfblcVCIECc8DgNRVX97KdrsCeIK+CvJZMfwrftcDZDZyp7G8HeKl7bPYnTKX88dXAwAyz66O2chkPDHy/2K2XcT/61XnlAKgPwtI8yP9Vu45yh55KHhJu93mL4nfo8szp/IyDjmFHtSMqqoWsj8WaVhbjXgzZxcqZcyOe7pUK6aXF/Y32LnBOt0WN28UmHRiOpL525C63I2JQPX8vvOU0fz2ij74OeJ1Apgu3JRObfdo9xGDpp7cv3TdULEfNS6Gu3EJu7drBsBsogUqUc6wAUW3ux0/1hLVI/JEKJrAGm8g72C2aJSsGAsKFW4CBvBXVlNIKa5r7HvT1BeGYBfxTR1vhNlFFNN8WQYwr39yT/13XzRGiF2IsfE8HcN0+lN1zN/OnzekVBKkFY11GgrK5CLxrE/2HCEMwQb9yOuP2rTXiZzTEETp/ismFGcTWmbM9G1Sn2D/x3G74uWYZY4rgKB2Zo2bTKS6QnM5x1Yee66Y1L7K44AyiY5K2MH5wrTwxMFh+S8LzNQ25z6sunWZyiRwFIIvSnioltUXNiOr+XMZ6O9h9HcHxZJkfF0tUm6QkU7iJ2ozXARitiL86aqVsMOpmvdIBROhUoanPtCjgft8up3hAaKpw9Qs9MzYtBA2ijHXotzarkV3zKEK0dFFQUwT74NgCmGGuSCEDmFCezXPC9BhyGhmzNa6rQeQQz+r9CmGUZjIQEPsHwe86oCOQhWaHERsv5ia9rZvJ//7UXO7B329YUkLLAiqpLRsVV5XpcfdawlJqi/BVcCqO6dr9YJTFFRMVGhfUbB9YWNvYPY6RyaydAFYq1YIBQxuNAGfYWLMAHtt2XRHoOKCLz+qf5HCVBDOPOktQ3SdJBfxUkaiD585bmTzMwU3oeXUHZ55EC99Kz9kk4ZXMIENwVVpqW2JmGIcUiutIMj2KkpjE2QD+dIZUCxcX57kH7hiuUPnKCTdaw4KN95XPeFRvMcvo5L8LexWqvaJPECzwXCs/4XPAlSMpWUzBBjK3pEnkbueMkMJQrYcnXf7PjbAoJra1VLX4YuscQLpaeYWbT+h24hCFrfcHjxxx6WTSe4AGY/KHRZCQKqTuFWt0D8RmGWmvXSdg1ptIefYPshuIVZT7CV4Ny67fvjJugy0TNYHqoCO45CB88kxrvIsih19DqjD0UqiJsTFPcGW3P/ULOG3nb8CjpgVTIoa5nO9ZYEX4uEHu8hLXrJPjV1lTQ5xTdZVagg+Wj8V0EE4yPsTc345KM6lVXqLiHtm+G6edC4GVEiPgd98g+twSYm18gCsPnjqlLcFm9e72CLJbYD+ocIZOxuVjrX6IKh9fh7WqdIZ66x9PWkDGOVVGkx7jM76Ywe16DX9ng205kg5eq+R2q2MguTJxYv/wWHliD9mOYpzZKNXYC3Wr4iBGkm54hBwkPzFhiX/VBHdVH/KJ1ZIMOHxIN6arKdxrm6EBsgwDt0mPe0MX1HRUMq8ctcmysU6xX0bzM1J07kAvq33jw1q0Pq2cyMWme8F7aVkfhzZEFdyi8fVBQav0YZqvAjZ83WKH726rBx5Bn7GHFthR6H4lFsltu+jWmsAibJ3kpWMG/QbncU7n9skIBL0MuXXtj9sJg+4Dl0XhKJ1LcrMydaIgyrgZgScP4k8YQvcsBmD26X1iYXKLzMYfZn2IfRjznsrJ1e5cnl/3a5xiNoI6n1x1U36FWckJbyx+hiSZg0QqAqeeSvzFYMlZ2REnO/a6yoQhu7PdHMYEPFIvfyGeyCU8e7rpju4DrlOhszj9rOIpNsvCkuD+TLyf5J7D/wsPkBpscFVI1q7oUSU9bN30vH5AqnO7bsf+9rGhtVjOJQ32H9hHSAzR2ape4L0Cz4WxaySm4jvuGXwkFp5NMMLrgZ8LdA+5uLuyxO5SMOmJNDBcbbLefv7z6LyxBwltnfQLd7qqpG1MmNcoLUcx73BkNF/xpdS0cKd6G646ntChXSeTZJJTFYGw39T7fqXDPKoG2cF7/ZcTvME42gXLVjTqzAER1Rt5m7GYsh0X0+XgOeW9MJqE5j/rpGzY6vUu6ACcCTzDMdZHiWELpDnvgE1hmztLcSYz0MtNyUBLqvylUJJnJu79Sku9NMHCTkgqozTnhMFfduV2NLCSYvAI5HUvQp1h/M02vKFD6eosIkGTg6mujUo1W8hy5Knf/erkBQC9LzNqPAYCgR+hczgevta88NNqSlBZryq9QNeUK7RpbvHjoNhUKAAeNYH55LeTW36KyFaXdAkBvyNP9xmRuBokPi2OhqDby6IZ61mwfzG+GmACkS+G80A4WGON5izgJWeeDK91jzusfOi0RmEsVJXwbVUr8u/J2LCQaMnHhi+wJTEPN9tS2b6W4GRGCNmtjAMgPsP357nOeD3H2tcDAPu5xQBKMHf/j4ZhXlkvvy3YmBJsjsd4pSOlfPZCnw5JvzxEXM5JIc+E2mU4CgB0mdJnH4NEsCHYNeVRDXFNuyZUE4nuvaJf1h+11AWLdAZ72D9XNRcxfb2+XHZN/SN48U7yl+sNZhg5gn/PD8wkBtnRj1zBUPIWnoMP6yGUEEzuT+VaX3x2jEIZAZsr3rs9wCfY1Ss0EdIFFzBbyruUup4EPanbSYew5tf16/ZWVup5iykttuqL4xoC/jdZWsAZeSfDSd3fP9kbyAFYXkf0Q2lmxaTkKRZrCo9XCoiUG4yP1URJ5G7+HSOhhJp0Anz0N07QZtyFUye6rcgiOFbtyoO1lkuV0iQ602MTyFK9xLqNHtNy4cJaTO6hjtiwNynVc34ZA6H7k8ai6S6eF6jIG0xJx+JfP97lzuCZr8vU5SIzImaNpiQhyvDbz23//PJcOk7hD4iIvJzfIgOGIR6ZPEJpWHZQoacbF+omeHw8aWHaNOfaIyGeG4lEryMfhtNmWh4RAIpn8dLs7ZE2eTVDwK++xDoSUgh47WDmKlZ/k6OosEUoQjk7Q+Kp7OxwgMFShAv6z4pTW8loVj2+qXLQ0T3hmIue8qHy1o/HXjm089m71t6mrrUyDftqMYtmfvQXKDlZ+K1HR/FkqPSqcjGlcPPIwbMw3wIFKBdVMJ4pFLt+oOIkWZMw8pkoYZ3byw4LmAF+7BdicGXFcb5PWtDw5XNNVc6eB9dv0rAEpgr5J+bLr010bpfGw+IkRoxDbkDFmQdEQUSElP5bViLo1ur/23KN0jEwl+rGC6AUMKxHcv+T9F1Ktpn8jSSrKxJnVkK8UD/tH5DN6nXB8mjUdFU539e9ywLtLYCwmHYVEVqnFmdubduaSd1ivIo4pTsX+mJcOAkrR1D60RIoocCBIdwJhCBM1rOE2XSlPo0U+khALvw+zfxYzwzd4roWlLJkZheFRR8QB8v4USwmAcDswUZ2P/7v7Xa51Fs7orYebYyww4YW5869Y/c6Kq2eTR9HLSjYuChTkXaDygoo8nz/yJ0KzfX8oowaNAwz8HvQdlLU9V9hjqYMURyYvPzZ60G0itmUdZwB+sY6rUkMAZZtWStbDFmnk/dQorhwr3121XQWffrK3as0g29ASwxbsZ3dZAq/96b7/XWckbjmo8+jwdE680DzoEUUivnBgowMuBQxHXoGyp+w/cSGY88rWtmwoyNNIvChs/QsZRnbdV7y8x7t2RkliJV/j8e6qfctrTsMV22zoqgQuTSNFh7U7p/Q49L0kygXNnEYXCBDgi5BeNWxu7VjULcUHI+lGj+OTCEATzWrDmaynq3wT9IAejtvh3esCu6sEu9JOsXxMDpqxm4Tzl+pt2Wa5Bq3TM5TKH4N7KLir8FGIPA569+uJ1VEL3fW8Jyigz/nEUjAVYrdCWq2MnS4hQVgcvXq9aF7Xke/k++rAtIQqckPNwjKrV2t7HCOrA1ps88Y5Rw1Zp+9itnB71j8tNiQc7mV1kUCQXkoi5fOsq1uC6hUPUL7Z69NAM6lg0c/aeiifHoi35v+pVBh7CDM1XfvYpiK5JIbIQFHafmnhHfRTnMagKcjdE7zzgtxkTPKVrObTySTT51g9bB5ro/dzn/sB24fNM2LGJuRQsmC49PLi1jTRfZaLpo8Txxxczij5Pl2vur+S1wQW3W5qyVcIUySZHtFDQHv+EYDoZG1T1J7D91vEIV8dHzUBzW1UyuxRbP+M/CM/vsas6RzmS5traXnQ0Jzv9hYXxKHcs15TQCP744XsLjzFjILYURXFnhM+nnV0iO6nwls9TR4tlz1J9/NvE8FGg5mgpZA4htS05AK0NnU2gxuqf2vjCyWlm3ypKvaX4vxh8Um1MHGB2NTeAFhbDyGm+5w2zqJAWxVlj6dVePb5yR+aMhuz05YubCQJ0BOtoYQ6PoDoW5fCwCtXj5SHvCgL/3B5z2mcXWaRTf8/GsFAfX/ntdWZWFc2xg8MJeenwZ4dZUToce43If4zVb1ex3BMAWGhgkPwR5EgktZhW3Yi+nsnZTUr9FYI160YhAraB0zMV+ouHz6hYm25/ETDM0MTmcypoGgZISSkfwYAQaHGY45yZ91K4A4Mm4fnbMk8GTc4orypT3NLBqAxYdcY/qCH82PpIkmVOEHi1NoYaUymuImLLcib5pmd2MHTB3JR+4rLdRc3gtQ9zeFdciciRiWviu3HkqaLSxJeI2rgc7OKQslItumACQow89elXmi4P3gTZeCauvMH5nF4VrBcLjjwGD+KlKqe/RWIEgT2wGqAgSuL6b+RTTPnQZzxZ5y5HQJkEEKJp5NfoB8hJBM8qn6xbOFtyzBjVBrwSS1zCJR3lEc9ODQ5Wu/xct9/2Q6qLHnmNx6XwZus/i8rEd6UsVxGtoDrm+Br0L5oUojlwdcqyVV4PIMsR60JhZwJtgX7izQWj+GOeF9DA8Wexdmv6DWjgR8LEBp9YuPAM8tJDu3uCumNqHnF2ATYX/tuVO55OgQuiUhmDmJbF9jJyifBRtxOVI9DCNLUY71IXZYTuiYcnILQ/XHuVJ8aHDStL0N+3eYNvXwHi2vEiTPnBqzsC4TsPnFVnYY042j5i7C11AVdBZ1pGSa52jM9dIL119rry0mgGxFzI8xPs+7bmMfYKh37A4HtA081olG1m9S4Zch2hoNCGVvVhd6UL7C2d5hKIBHoB+Uxarq/4aQXhh7IWjSj+ca7Vhqb4+ZwY3nHXh2S9JH4XZxQojbe/eINxYlozTYtT2rpU/xbj+W2hXjFQ+z+dQ8wh9751MP0UpjutQdxz3/FJYAEG5BF400JXWCBs7KrCRf/l+F+d9EuwVk6thOPDB+HNS9iWlLmDgXvY6K0vgiyoeA3An+jWufdAG1suUMBuJT+/w0FNJZbObUT8c5q5WtQxASQF6E+/u8UwVBs1eo8jTamCrcdhZJlADJbqn3crcDHQlBQNGq7btcGKiJXW6q0cn3F0xzf+k1JJS2testB3rx15ZPTDXm8QV5XE2qxBOdM2n6t5YbxyNOmEdsHx+hMp+y9pWkcgw1NikeXuafJvzcjaNwE1Ad6gG79S68aO7jWpKgBETYLmV4ONHhBk7Be8tjf2WVvWMDQvQdOnk448yeMv1tQKU1xev0L171e/qxkMZbmkfKnd29XRCK2hgNNJhwt1qiYWZGKz7Di6K3fGDT7DO2YQ7WU33svE/WKGbWQEvzUV2w+VNYDocI4yxQ6i3i4zU2TjmjCwu5Pk+Ja9HSwLpEoUswq3tFJ1jimthgMXd7KjSl6Qd0K+vxWT8G4/+xITHsWDGSfQTSdFQth5uVVfa8wrkDZHTGVgpJys2ik+3I0dSf6TNo6A/sVptyY/kx1hdAWKPI6t/xj6s+fPMU3hg1vkEB0RRHq/tCy3KUUhzU/d0JKxTyjvUms5iy1GbOFco0NA4t83SK9sBmtLWm4kOLLflyxqgQYP08iyXwYXzKnlQ6VTipuaspSJ9g5H5Lu3eLMnPKbhcwuEg0VZ80ppJWjUnhS3rL35erzysp+fJhxsUs86m28/UwW+IgrS5Y0zWaxlFJ8xML5wk8sg1ragF+eNajyI0Y4mwStxt1RZH2BjaAhvu+SnNNIK88thEgZEsoHv+ii+OMmXJL7dnAiINVDz3tCnqDgpQX9OguNGgZj3axcjq1UgxDw785yNIpqNiLgv57399jVmJ0/RStNswaFIs6FtnkilFZldxj6m562jL4p5g3Y9XCiXRJX6nq2PGJFifFR7EyPG4jDMnBM4t+O8ZpEp3th7TCxEw+ZG4afHl4sNFaqxyLh6+979tt0Aq9BrqI+CS2U7HJoKiGmyVU1lFa3/0O5mNC1bzRgNMy+GXyifLwJP7FwUSUmxmVRpn+gnXWoIuswPutsiciurvN6lsMG7yqEc2Y5ZI3jrPgPq0xEKPZpF7teJa0TQn8BQL4Th+hjv2ByfwKookyXEmj0d1KMcsmfKaeKK3cZZubiYqmSCrnGpYTwgPk5itKucVtjViuswQsDR6TuyGSIHYvlz7wkLg1Rr0K9kV1o8RgABlhbLrN74cVWJW6TnfXN0q12JFMpUbEa8t1+j440FA+17o8qa8PQ9igkctVROVIfB3jU5vtGm5pYYHYSDvU2TEc15pIz19ka1q6c/7WXfF8+POkApdOw7nn7Kqz6V4tru7NXgnA/u0g6+fPRT3hp/QrDQwMsjwNCZxdWrR6pgCBDJNc7/KAlwC0UZ4yWQs0KsuwbbOgcTxQPK54wiXr7s+221hzZ8RVxfoRUKM3e4lpxHC83JllxlrV760tl06f7/65qhE1jhMfivAUXIXfRMe3uY/G2TpWYzDrw5Cm5cS062Bx9lhHq9gtJp8xZwAtSdSuW/Kd7+orEAiswA76N8ezmVGYgNaYlQ/xk930LAWAtKVBC4U6R08L45IohB1kFia7XJs0TcaT2zBZoLFuOGu4iJaoAnfjL3uS6gnRH7G7A+aT6ETlmkYUfgrBuaSLLDJfhPJe01PfN0oqBTeQURasl3N8BZiQSgdr0aDv3hPTiog4NSyfAUyy98WP7dnTDWQTY+Qwzgk1uxwRqHl5MpC/84Cuw1TXfRlgJrwPop10kCHjmffnFdxCe2J3R3J5j+3H/sZn3IUu3Suy+I+dAOMWvzwExNR3RRPVelZAhtarKlXPWNjPRIVP4JsAFSRXs3o/fSYAPaV/zP8q6DltH47/rYhCLdy/LrpOsbaLf09eACcClJosNefetNElkSFSuCgeY7oTAAl+8Y2zOXJb/bgEDpoDXfQqc6lnlBr/WsmVznkBS1M7ufiqpxvKXjwvR4WxLbh5NbMNy8LsnX4UiuAi8XonbSUcVZKQOWBYUecSOMj6jMG8gHu7WNreBHY90lV7FocDprSrSbexkAtMW9KlXcnrOyLnZdodGYdxz8aw71HztIqLhRdCOB6NyzHPoS2hDy6wLk0I5Jr2t+U0A+A7EsgSn/Ih03A5CspHnVF4MOic+Lck3m61Um+GHDEe4DrHBhmgtDlRQl1XJ/V/VumCHtUDDcZCkgjVMBOmVOGYW0Rcdi1ahdjhBcFlfjA+5cRjBop1aNDvdrf7CxkLVgxiCxhRctW8wczM8+kVmIrGtkaHGlr8y2D098HXE23r7fnJFUU68zyeyM265igNOGPzFG0dIgUDWN6S3ZcfMERJdWVvpGhVEHXNLeWqHiTcF3wOt0FbJY4XHEpmkoG9MQPJJ4ueQ01+MB+SR0rCSGzlE8zod19q75LlLWgzogpnJoD4gPxUYcX+Gpc5Ly4nk+Zm8LDXcNR7SNVxLh6NAcx8ekjb/AC7ADlRnfuHaHJaBodZr7RBX9FLTvocY6kY8bavdAkQicE9bbwGLkZu6whTCJ56lOvM39ijehpTOFqR3V53nQx4hfOvwRPU2y2w7UU8yiRbcyaX6jGJ9CRvl9ybV1tebTp5MMuMnwLcx/lven0w9T0atJuiUE2WtYGiVMaP3EchABl5AsyaCpu/BKAWDFvU2vaCL2/fJBKCKLjxG6xzT4Mh4wHhH3/EqsGSoQAHu2wbHmXHj2LvoW19GXDa2oyeKRwGG1PU+S7mE/S+UmjHiDF1oqJ0R5QsdjAZYN1MzpNX5YDqWYfhfdjAXyFQaVyGKkp1oEGTR8MK6jaGfRDFd41u2Ex8ac8jKPYu3pXsk8gu+m9tr1RVzTTuDsACW4S1h32yFHX7qpXSmA0QVEcR8W9j2Juu0pcYqTmdis88VgT3gq7iYue5Hx/3K6hFQa9rZrNSDcjaSQlNn4LSqs20bypnKqpzvnnxjMdz5StbzvoAJKgVZa4DLCVoJW765/KyTF4s4YztmAT1c0pTmKJHTpa106FegDo8p2zD6uOnwpYi0vJlRMDe9wPT6964UfAf6lq3qWypUOx9q6BbKEYt7K3gWMXDNN6wAm1fNnSOnZ4JkbPq7jLQrl0wL1V7QwO/sXneKGfTgUL28I5iPVG9dA2gS7Ki005JUR7Vmw4gX4TJvy1WS74cIXD08LCF5obqcZwamuoZ+FPMJEck0TLHjyH1baPr55/Cy0ptDfRJ7d89pbP48tLMHG5dO11Z8xSSpPGQSgXDWmpsNsmm+MvxJjMCi7OFDHxxpmTtjgnOCq+c7Fi1DybfhAntviKccz+sj+OPKPYOKeYYPLvq6MpUx/chSvBccg9dfbeqetQNCs3eiCFZTU1mrDido/mib64STMgsa+IKLk9PyxGGbVSQB9GsHto6f5prAFIbRDSItDedz3t5+Nn69FFS0nEfmkF7hKBmNVce5xv65USKGBoHYxJyutSGnRIq7vMDsAMvirOEJOzNi5Kt7fypuSU2c2Npo6UH5jMOkePH0TwgpammO3Fb2FX6f11309z/mqRmQ949HHRj/wMzKNx95M9pwKf+UQkMEwisL3YVotvHhCv4y00Ui0Ql8dR7tGqFcSdYtmoAOuAodkBNs4PZSjAAF7S/szwLddFMdCyB/dWPgFUiUE+WmUUCjYrKfJLQfNNpQ4NKaF57w7Kp/isZVwQPUJyjJavN3fQNKU+F74jVBJYQEcEdw0Niinyea0l9PJ1/AcTm/LI91RZjDvLI81pnat7RKU2P4/TnIAa3hIEfeg4iGQ+wTDlURK6YjNpN5s5VkQW9w7sDYKU4XmjyZsCQLxztqd4SDQvLyuPDhURAJXKfR1c7tq3mRu4usFHPqz7HgS0X7kNxiWWR3fb3uVwbgKpmgLYkwKrXKt09COw4MjhxeZlDXKy7nNLHXAIKPtferWQnZLboonQXK81x+BB3oUidBehK1swSXxVbscj/LsfONu/xYEXYPM3aMqIYd+2hAnFvDHbdrJLhGEd3sG5PyxqhzejhQJo9wauFK3xmPYqxB99J8zYU9/yzrEZNzzbvPoR9vUlE3Ha4zspVDzHHffPZMJ1VLZkKqGCf8ZqupqMt6T+NRPfmPm2xeDgvzMrRJEL4/zzlu7Z35smvzbgeC25VP2CUrZkRxEi15A0769ojdO1d7C9OG+swj1ROMM3NgKdeBADoRMeJkRZcZ1FbQu6C0BS9NNSaoxtFzYT4lX7+PQ7BKa84yrN+ujVVef+SgnEie1G0N+eOtbZF/UU+wkeerWjloYqFiqo0vBnmxh+TwNMo9I/8lfU2XTCT0K4OoWE08ipyNHjxHvfhY6qa3x4HzdQ8+jkiO5+j91YkihS5memfpFREHP/2veN5XcRue2zCVuAub8V6vDlOvyP+PBm+owyRhMmng5wwGGIXsOkQekXrXpE/6dFjkHwwoFoj5bIFiqp+4wHpSWRbv2xGrRpd2c87FzMP6Hfj/3LWIBqFiNOAxBw+AAP1XqUBszdZhzOSQrQS4Ein4fyV7MaGsB0VsMF4bPb4lx/foTGQRJv45LpoxDd84xCawHaX7jpXUrOdkFxx2oUvY2xqpgIvcVufwd+zAnaaVTnEyDXD7S/o/xrrk4mgTjXhcjj5Rzrbr23NmuZQvpdNzny5MCR9bwvIRIqzOZZLsstZSCDYa56JTvzxgBs20dYTtTUbe21uljlWqGfSh2bYAzOpf6UguK30ZxNXgLHs6Y6urtxFA5iLYvlue5mDONW0MOtQjhqr8fRbCkYneiDkvzHkQVT4F9v9vxh2SIGPBH8bZb8ugo/BSgXojeSdNXbBAIDsB6DUNSXnwlu/bFLaCqSbvu4+YLplwO1JbtrMf9ZUfsxerAZjB7E/zl3qwgK27FswemUmSM4i37YAVhQSocuV8AcDI/CSeCDNPavESshDQ8A/lVIrAJAMdP/rHXouiNU8RL/TIvfQiuZEb6dkIKMGGOW5kT8vO8pivWnT4v7qmwuJo52AS1r/RyQ2g/7c9ZJgmMIzf0GvJJRfMNu1utRNuLWHOm9JIMcJK3qiDtVpGCDP45W1oTTMUnMC91kYhP0GHjhCW8V38xhjHgFFBfuWMsmSQ9MvNqKXiqtUhDAkIy0PW7YSKaKUv6zctAiIk+Jt17kG6LpNVOeMvJnlVBaJSkKe0HTJJUMvf8R2zna35/yh2wNlWLzIP3BJR5aRNxkV94ICOlycI1/JYRZtzvWMNoIpQrdNvyBuBydhSwhRwPo079Xk/XQZpbhzN/KK4NbdJQV0JIMP+Y5UBIM3TTYlFGYVjcvA5yVozkimco91Fx/eo+ydgAx1gMezTh+bYxCtXPYkMoPdtaElRusxlmdSV9zgF4Np+iylun3LVxCycAFxGCFsmARf6y4I6zXY0tx81aQyalr3/ih+ZjxGNWdhItgNLdEZ/BOIJpPoAveh2bKbEFxU/M0+4xqDo3Ox8MnNn8Lmv15NJigSvJV+y2W/ZogEXNiv0/nuFzZGr0pKujOShzcdkEVlMw8mNZXZCbtM9V+mfawtLxCTvo+enFWhJcFv8LVTFycDjPGBXRQKNN+z68HJtYdpH++g5WdhQpCO+DE7Qdu6TmZgtetrpU2ZlgpslOx+4hb3aXaqbdc92LCh51er8vm1GQ9uWD9+fAPRV50ixhgc5zi2Jsg1xQVxzlaELRWJ5biyF+eCwNV0oFnTbBHr3Glm9qlGVOpoOsQC8hlNG88fxeAekkCGnHFn6i5WzyO7ShDYbZ2KM4eqndyy01v+6TFhmkxgc0dndt7EzRCcEfBxSaWZwcev6MDZcuvSZQ9CNSd4Tx25TY6UAbrhikuP1vNFfPdZhCG1pe6vx4D6Ez3zIb0zDa42FPpxWvIpEeXb7YTcfZOahSpSYaWLH/vq0F3U1KO7ZxliZpoMBBYJs91IE0bOkrPNQ/USYY0qKCO3CU+AFbOYxzKWBkIglrX34377BZ18MKQCv1KWfIHEeguSpvrNH5RQOD4LeiH2gdx1MOAKphlL41F4RpxaU4dy8xERFgqoyICQq9XmQ8WJSokwqvhQM0fLtsvyCO2PAkJ3BZg5IqoR5q/GdTLgOWPFR53Nqw9Ma5vBzZcQ4+iZgetmKg5ZIn+/7Jbi+VlViXuD9CaAUtdEmnwWTS7wZWuskVvc/SDaaKV+Jz6HrZTHo3UrAu0IZDBkXWmL+mTTjdTb1A+MdhKkY/hvFNwXj1FzUngsN58u/kTdJ3Xi0hy7efR6faAOi4SKGaiOty8lxDFkiD9wq2GW1EZEsoWGw/WzxXhWDzYY8CC7WuLFHc+x19jhH+FiLXwDIARRtnkJPF2BUPZ9+grZ3tjqAWhhN3h74w5pooRQUNATy05A9HDLnILGSCtfESoSilqtqAIQ/TV2t3KhOc+teDf5t+DqZDdB8Ob9YXyklrSO73pR0QAxPvQj57c6FIR5dOciqeHZ2LRABMROo8Jk8V6JFewCL8TCd/A5MSbXLky1cW7mXobqgeEXdFDoEydKo5oCuyn+2JYI/7pIGFAzErlHZ5hOaiT17HC3zp2HpJwsIAb4/oIoZ8x8ak43Yp83Ermq55Dg8HxKGHXbXs47sh0PzQELTGFsf5eO3lYAuJjMneoYWk8W/3tW2WLntEKBZEW4hOFgo8K58Rj0vk5KLyezu1d8SO/JcuxpOJqFUM2sxBmbQ/9qqwb90R0WulpR/Ju84bQ5/fTh7po/pbBb7AQaYNdK3fatD3K4TLHAaa66MQzp/+ZGyCjzo5OXRzJ8UHyg/YpNHvvlOpwQIOjakpLHwGV4WsLDPjEIqG23ily3LL0dlkYQxj3Xx0ApCo35zYGoGOtIclYS83MnI5TwVdQ+Hg453WFQN694DaqhGaL/dm0KncXYqXLi5polgT4DOrzD4oSVhrkh8GW2PaXjOFDCLPcn4RQj8dRGIJuV81LxMPZ0UL6zpkaebhbFBxcRJe38UiTbUPDjFWk2jBqzrBvXcKmgdDcmRyJhIpuq+3DQY464AlY42z2EM0yIK0I6b+VgpanMfpdWo7OxKY8RM5tSJv340/qD8SxrYsybMuUkF8fHj7HcvxEPC5YYrH4LW1YKg6QaeFZLvPbrHZHvi4OXLKkN8cGQO8019OKqcv6QnBlj01e7qS5evoGm53rv+VmDxxCXDiOrDg+IaPeMPrn8TJ1oReXYI3yb+4HQbikxP5TQXHk4YXPUv95+KmkxGsRgTwP71YiMpqNXp0loHZeXRp9i3euKrVtxMM0e6XAoACwNtcc6sOuhZVb1htBLudzahrDFt5GkdlwHjZl5y0LbvSHwII+qYeDwRKTTzyXaInHIM+8rc5TrjUlPRVwB5LKFpQnV8e7vLv7T7V/iJTW9h9TnRtNCSGcofBWYm5P7wZcAq3AFamEW/GMbo27ldz0plt5HI53ddWkn9IuCZY+Iy0MATUh3YenRTbVgdLYtu893SuN6EL4e9V4NhlzUjI8nOS6B99ecyC1Ot8sDahQpWHbmt2YvWGyL3S9tEVLKYs+LnghBmmSl2uPWfqPobPwBHNLW21LUjfZb7jfLMTsMp3icGO1npK/rCsUgdBVKVg0Ys+/WKuTmVJoC8Oe5h3PK1TQhbpZ2ytP9nlutQPtLAEt+CVT90DfVkn7lHLOX8AfS6HLzfHeAhu1alnl19RHKV1LI0G7RPzYgVaSpX7th9f06uo2WpxjL86i/2uzK2qj/ClHbGDyQr3F9/axmq4kJ7zZFVXVVwfiFr5bhUGVZeQJHKFAcsnqPKsb8vHyB9SpFpT9U1U7D4aS9vYgqajxhC+hOkolJV2dKAxysCkWBo3SPiPUrSQYZxOWwWCoQzbV0oeaDEcgUtqI3nq9TSmpQ688/+wb26P2CHLY1H7q5lypXSrnwnnztq/jN1o9lyvLmLyGguV0VJnDCREkiUNrZqGG06MsyA+Phd9CuFoM5M1Pyk7S6TJaHdTw0ni3n5ysAup0kyxr65lFc81NcH8xSmpp+iOEtQZrH/y01k1rGMRJAGFhi+nDecpUlnrh+qBOCMZCcSCovOPJrxjZnZJDMLdpMVu+tBSVS1nKxsYjY9Dtq1/++riVfLUVhzofIcIgQQPOqHioELxU3EpCcZMoL9laa5YlOZAMEp5apx7CphrkL+fyKbBAf8ctwVd93FTo7F5Oc/alNsCgK6lHruPROtN2RybiLqx8P5LTUZXU+Aoyz08zYHasR3U8hPDKj+6arWXR9yWdJoMn45prCSURKKy3+JHgvs2Ot6v6GbEtdCumgCttv2VNoU3KOqUwqNIWHqYm4eMijTM9VWB7umEyp7UPOI8fduHJY0W9xSCZdvc2xMjo3Zdu2o/WZKDMOSh9UmLvo45IBppD2dG++HJu8kbfFdlwuIxk2KHhgHQeNKcHhFkYGRzL2VJVMOAb0Co64wvds5CaYl9ZmBm4zuGDeaO2eI1XM4+rD/HmZyRF62SabgAe8TF43VuMutigJJMfbW2UK0azGLFbOfujnHD+GGBYmSmOQbUCOY99HYvswBQA6r9hrc2jtsUUxLVjxnZ4JnIrTwIVdWCTPtpJpvlA7m01/4tbUMyz9mv1jdN1jkiHQCJXXKg8bJ+aqW6rbwbn5yDSHBTcFXIegrhHGAjJOZI1pyP83Z3vMYTAJoo8V9IwyS+U6OVg78+IhSYHDYjRs8FrF8smHQ9h4qAYxp49rRP2d5uxLAuP72GvZaYvfeLOkMrcg0PkPuq7NsXhMFmiZa6PKBH1l+oKHI5DBLdZCvCwTPdXqmnz8gLzVRb/ixLTSdit2nrzt0x+5rDeZT+ac31NKNskQs6noKlQccyD3UxzfVZFmcbpmrfPsZD0Ve34xpKWk/E9Khn4A5yVPVq+dwnv0EyYecPqXGU7R8suTW0A6NJWweLI3iSGDlQXzMYsSWkSMhFTfyA2vTDt/3wXk+mVU6bRNkZvNnyVHYiA4tmnNwdh/RVsk/EgSerfTIf5VBmuAc2IKSeL5Nbrg3acgFj80mI8SWsc3dNAGCBLLMP89gH5UnLTKq78d9SxQH/g7DVnBh/qnBdw5CDrw/uMzcdXSxWqGIFcnQZt/1aOHxUg88MN2w+FPx/V75gy2wzEVe6G51PQIR2tZsxbv62HhgjwtlzrVREw/yzlaAiuXC26cnpvQzWXp2mOgihyPCWqq38nEadX2T7f1Y5zGxEGBaT//IcL/BsquAJX5EDbX8X1p8nLWR2yyjFRvqC/jssoCJBCDJOsZvoBfXqQSEKhNARH1YfueeKBslAwLi24/wAO1BHptlf1kQFNsOPlDvlYednrEp3a4SAz/G7LIVEsZBu0EKWZu/euB/XKdkGonP6t6lgEcCOw8mceuzvEVzyoPnMyzrqoNQXJb9C8ZCXSiedKiCgNwfNkpVlHbUgE2Rb9WFScOeEad+T+jT8XlSc8rcvkIuhAv/gxRu2eb2GonLTyokjcGF1EBpCJbhy2H3lhL0rdZIw1okA5pBg2oRfQceXTPzhuNKorTEF7t1UIgDqIo7/loxyTgbtKu29o9K9KujvCqUGyPY7upcfiZLNBVKh5uXAAZjQjhlhBp0ukmO4Avxu4xAVhCtnsOIA/tAm94U3HEuSr3wq+ZLo8pyoC9EB/q3pOzQRyCTkozmJwo1Ln/2xEbtNnS2S0NUIS3yz3/mBIdxONHxqP9FW+uoGI1F415lI1nZwK0SoPA0+flaokBGEoXgZnO4GOExU7VOjdPns59ekmDxqNhEHeAF5i5N/3W2NC1XGFjTpqLrnCECiwVkOTrLtp2ehUIaejOG6+1336YQSKMSsL4zhUjw6SQKryVRz5Ldn3R5/r8AOi02RJkQXPdvPsl/FMg96E/cJmIFLmEDzr1Gkh9G3zisG4pqM/MV6XIz+CtDUh6hmJB97VzN8jaPSS90vgDjvnaNlKky2/zIhE9ObugwrftI+Oi2a4VVaB/Mwn3VmaWjsU9NOf2usbcN/GLQMjvfeU/YvyEERPKw1leXZWWk1HXzY3P9MUq6MZq1hkEgFzds51mv8mnp1i4pQprPwY0TId1szXwe5TG+R5mMD76nGPQr7/EhQWksjsgGs7Zy5QYvMcGV5tcXJR+6hlHFIAc/M6XjkKYtwm673Bi+K1tNO9i1YBePTur4I+gMsOK7f7980mcJXhgdWdhNzUN2JvFsvXq3zZRG2V30sJtJYxj0aUv1u4/ppVHi1iHnTY3gDHsrQS8YwMX5XwZ2gcFYYe2wd7ZO9swr0gb8zf/fXx8QWKPXcK1UdJk3760B/TMlpWLCbhkqVoSTsOqzgkmFmFteCCTGhNyvFhw1RrTIWzRxq8Tj5FirvKvtkp2GAVhnZ7vnr71pyI0rKwQbVxKZuqM7GAvn2mRBj5p8djlHUsh/r/eBECptpbbjP5nFyuN4mvQLZCaxeTkDUzd/kNGLIzBFv1CElQO+xmf7Dzt1f7GM1Bh+wLDCJZlhcVDXbtPuGssdEie3lZNiWcXMTjZtWAT5MCmpq6JCRuFSHZYGKcSFZ9kOYJfEqLIcWdzpTA+Hmu+ktgSUwXVSwkaa/aHdZXh7IOyrudCBalCZpgXGRNbhN2XpEY60DXXO1Ci5ayZSoxtG0WRCC50+XtgWz7qgX5MRA5S+jzXCYy7O7Nn0ljVxiBxQNCZKZMTqi6mPfy2LZx76uyRUXHjnpJJEimflHDUxyX7fFg7iJvSrsZMH6Uv2xbfQNx5eCbx3oKycUrBY22KPmgfg/w07CDVsw6tb5VxPg5/X38cQtXI47U7MAGGjO28II12T+PjaXHlstPtkUQNn0DKkCYis+kVAkA1wyAJgYKLGnKD3nlVCarYqCkNIZbiVwO2Ydjl7N6iOtvvbAfuq7VKZLo0jEdw1YdsRaHcuJQulgb51JyELzYBkP1hd03IDcZfPg5XmNvYQSOINsCSn3BuLtkCPZRalK7+S97zxvJHiJCZJM9XP785NZ8B8fqDe/Ot0BS3PH1ptErwxBtpgfOj4d/41nrSjJQf9bV1kfdBHJxYbHILxOsWkZvoP/Z4Sl0Yx3bDjTF96xf96+6uIoQ351Ce6DeTwTnkPr20YwATlnhskWIddUohklNITCq/07zkiEc3B58uiBG6d9YAc4h/7s44FN2RG1UuZWeojrOZIhElvDP4KqHcOYbqqS95o7ilQH5ONJfy+aYiB+sPpn35HfHG3duLpNvBjXc+Klf4IKrFHjeVty02xPTNnbdL4gtkqPqMLhSgR/fDXzxJbSScqewiF1wdVoJ/fGL/nGWZfVlDHOQKD+/i/mqwXqvNqxtZeRHwoe/bodk66B9soOnZp36gdzVMRRQsQiBFf+HXjRcrRf9FsGghw3+qoN0JeeMvDJrkSBPsESDai/uVOzn2Ohge+UVdi050fdWpsjP0D/QuTdYs6QyI9xnhU8WT2+KBKzoZ7Bq8fOdKPeLulUhJjT34/EOnUloqus8+pzqNh/UdUOhgTlrbkuTfsaIYDm87u/GNIl3N53uaU8bgaBjpz0jdu1f59K4KFDtwUUeEUoeYx6DEkWKHdi7dtHhQF44lbysk7PqERrsuAQu2D5tDMl7kFoGdI8r/s8rMytJzYBU40wqeFvTl0ZVLdOB6Ya9E/f8VPbGx5MdpYqYMLMyB0QxVdnoJ+tgAQVWfH+jtOHD3PsjuT8dOTSrupuvHWRHQoGI1Qj1Hc6k+Mg84FAZ/gzl3SEzuGWZKFwuo2D3EiG95D2Z1szTqAuFRmT1nEh20tkC4ysmXx6JtN0taK1iRR62s2uNW5rSAvMEJ8yotr3UhJe22brlQn8Gvcq1I0aODaHJucQKVe6SXyfcDWODMw8xf+2C7Zx5a4Qlh7pJs550DictL4OxcDXKvVmLgVWRwb3moxv4kcxzm89EERJXCl7X/BziBkGQWOHPGF+6K5NFJYOFVv4+NyFq+OPMaSWZKoydplufY+CYyL63T8MCMmwqLTmAE8h0prhi174wnx7DHZWYuRJSYZ63uz97AGOzyI3aebclnud77znbZetbWUripe+AadLQeZPtWsF+FNiaXCy/98km137lWewyc7Gamai1Hd3Ls+KMMVh0R3NKTQ08TIClDfMKwUGKy/7YZlJHU3uW60X0r74Afh02v5MJgVOYkjmors6GAaDU7yKHydfkXYd6nEjYc76xws1LDLWCNNKBtUHNyLseOyNDgmHiJ41lXvq638RzDGis8WIniOb/pbTs+HsQVGPi6mxG+CU+oflMR6/qx3pVP+GPgqa0U0lo8MVmI1cBgSnPGgrh+J+m9TVg8nivua0EQP7xai44ruC5gsAVOp9bLsDXfHQujo6IpBmpfbbU8PDavZpTuJtmflVQuOImnRQ5kKoQz2NBFjdiHH3cF9QLgDP5vz/W5trCy22Uk+TCjXjdbCCHB3rJhKYTwiyQUf8xu6yTKtIwrbw4tzFgXDODmWYEnnpDupk3b4AP3qz4AZ2En5wi6aZV287AgCF4vH8TlWLni1E5Hd93vLxSYLBWSuj3eXGFtWyWpBkIeKu+YsBh19VeakA8OePM0ILu6dYYl9DNIK3kU1ybH+A5xYhFI/EqSX3vtNs6V5eQgxYLvu0hYFjiG+n8JzqLQVROiVa8XNQDYJtDAetPFSuEtGI3B8rnbbrNo9TJn/z3lRYq0ecBIe7a03vLESwhKOm1bGTk2kPMv/Sh9wyCOmIore7JhSFT9HIjonBfi+gcdDLfFt7dpShJmW1gkcXmitWwm1cC480CraHm/or2MHphB9Q1bmt/SBXFqXJdcv5GTt3IS2fRgqThhInCjRkh7Dk1iS2vMBLSGtRPppb4FEu762JehUMQxxLQre365CKoJGvJwVde91XQ+bDp5ZsMu/QHmLgITmwGXSpQFQlQBajqquxlwIOe2cyfezaSHIoRNLcwjW+epnmAtmmWA9KU29v/cA2iuWbj9ZV7HR4anhHkjbxnzKPHnIZ7Mm5wAf2o/3xUhnfH++quS20TdhalHgNhusidPKWyKWV8ZjFLgb1fX2r7ifLyUtxuKHHIfCWXQJ/DKeU61vxmPT34MTi2Q9r7/sK1CYuHVqMBsgtfenn31bUzCoyPN89KiO5wHveqnk3uyHnJSUBVTQQ3NyRPmeRKTQvWEBZ4QWcSgMyZF0RQgvUXRcp6KflF056fwahSioP622TdcTVYi4cAwSZLWDvfjoKFLMowPQpzn6ogXHc93fFA5NZmnwslSuesOyNI1EE3RM8kzat6thkmpOiGmm69Yn8yNuxz1YuuPWekoybkee106T9WTPXo44ea9E5QH2Ig6FZn716DBa2FyXHG1B+YfnmhbEpANlOi61BoGO4+G3WMJDokJXj9GhNsFqdaLjA1pkhLP+/mGCZoYsxNI+A+sMvWyoj+PMWeR8koRz+r9pNVEWT70WhiAkNTrojdr0sBLwxIM7D4zT+cVy96ZE+ABi9CqkM9VK7iOfkJVp7AqCqQ9EZ9emn8rB8zfoQZUBrVd6YS2AqiTFt0nJ8HfPGmnBWf3Xi5CgyWoLAmHJp/AfTdHB0+Ns5DlhL6UJ+O/6xys+CWVKtL9S8fVHkpwZZMJn6jVtiUTtXjywmiVXw9a6f/G7Qd4tZtcoS3aytxXYA9aGGmEeBobjiammhUaMDicH3nlOkDvvz19NqWOvHC2SMv7OQHtDIykYerPuoLz6SQNOBtw6oX2Sj3ZLITBDcWNx9CuZYYVaE+vleXnATrwn+PnuQ34jL52tp85aIOk684SUlQ8uyO2t+eIOHndZ3oxD+BcMAba/JVxRYUAUZoEw3D80WWOz0/ul+fYbhFnffx3PgOy2LLiu82D5FMSpi+Pd4EkIFTgfv7p/0vnX1wp0VpNzyXs/5S/4z0RFS21vIF67k1ERTfFuhLM/8fdbKognohMqTNF/+oqvXXLuJB7IHeDdn1X2eParLBEpz8y9CAN2g5VdE7EimekAOhkw+tTzqeEsgyQL4iVDnWrP/RcBd6CDm16/5t+I1SAxCn9wo8knzmpg8DYP8V/vHw8Stu7cliAt+G/VR4XPNZXWF2rZBeQO75os2jFJrbtkfhN9BzHT4HGgXTjyTy8NGsiQdeOw12GjYKCyxP+34kRHZqYsn0pFvVubB0+/emKRgiGXNRWQwMSvAB1xvTprD0Zyt08BjP/4W9HGNfNBcA0Qb9qF5hdQ4dDqpKAFLoIW2gFEVKOganw3M9/4WP9ckP0/g6kaJDRurtxNgT+PjvWYEWlFa80wKYCkd/0ZChV94njjGyg0t98Pz3AL2AFAhvRRiJwdfRcQqqhWkv/o6X45d5w1YLJOye3v7rgta7Ya0jAl/an42ng5Wz4S5we7n2+1W94JnpoGyV8WW2HYjKLkKmp4hBKlNtb5y4W1MrsG/wfq2N5Xrz2kqhdPQL/YoxgCQd6Y2KNkADVu7TxugQRWVuNL0BUj3JRFyWNeCmB74Wsz54OPnbq0GFFxzSkoiJ3Rtq8yEJMKvOMMalFKH7YFHKjb2nwrKVfuUUuRtTfJDiBuaEHHoX+MUrM2bBaAsSdnY5PjqcMBn/wwojQxzt2MoOCC3OEArr09ghhsj2M0mue5ntQcmcC1R/sK3zfShGJuazS+mJUeKxk5u36CYj8+SJCq8ZEv7bNf1+BywGeDQoTDGq6Yh1xW3Suwo2O/ykazTPK/TdVOICyiwK8MuQpK+FX3mqSPzxfLwFJ/iYDjs0WgW2kqXYgm+gkNToB5+jYH83Xlt0cbtEmkkBaVGlHz61rVuWzrK1yjn5nYHKvKCrBPPRth3AKDQQB83fdrbgIeIfB3iHya5NPpEyxbzmtN5Dnk7GqrQ4uu4h3QSoHU+74zs31cWqIx4SZ2bwWLvIxUtR6gufZhNZoMcmSB5z1O9TKvHMORD+VmuiqzsyJKA1OaApB+b9x6u9FTvUkalgl0r7raV+wRqimc2D7B1z/OiSagdd5UME2igLGUcgPlMSX1VsKQp/9yDiYei87KTBA2NPCUmgaLwVdvQFFFxWp2vGCY/KCUvxt3FOu6xIgwS4Vybvbj6feUCkrQPpO/wPHJPhAobSj/aa5YrUvjHMcQkDZwfc9mvghrk/PIPvcJa5InhVBfjh3Xr9vIvA4ac+m+pywS/EqkSX55xgiyj0TB1EE0NT3W2CPFdVD88P72SpdFzHS/6XsmbGtM8JE/m8eojzd4PM1bNADliZ+XG/9hbcKg6PftVKyKKt/8Bz4lGsHyT0VKj2vDGp/qDGBajSHrqzmpEjW5LXsb5kTV6HgbMcnPW2dzQju9N1sI/gPVlgGmk0bHKOX2Ws1q4aPizhcM/XiJ5EZNUK6bZNUeFaUJVTvGxglRUY7vdnoVOe0Raho3huh1XDeTlHpk/2gBjjhUQXe8FN5A4zcRqkNtKpSVq0xyw9j3yQlQxq/Lnqklpz8lXmzHkz8sX9HJjHwyn8UAjblvN0ZFIk4liejx0lVACoKvpsT9+pQoLY4weMHRzcuVC60DUFkaqLfclS4UJti5WK4FE3dYcc0OilX50uscLJomlR6pXriD6ELNNBWOSMt50CJjPkyt3Zn/xj1dlPVP1t6XExK+b3jMoULLPOrEGvjELfAMM1qcuBb0AijkIuFca8f8xapUlkvLjmmJW7RK94r8HaPzvmHHSqX9MXdivNI4A+JHy0VCe79UZZJvzMGzpnsj+Q6k3EItDBiA12fTMlSbEOMAWCdQq9TtyUiAaAqJozMzryEg0k+yVHqCc/DyJcCE2V4WXIhEnsOc5c8f4ChWfUaONhPPWogpDs/lyVCvp3m0NSfrAJKNiVy5aNC9gZ6c9BqwYgj/cDO3kdam6gCjhR+akALFYmt4ixHkWxKhDTGs5K+CwRiKJnvxP9dbxRPCBHbiVa8gsd2GuiNHZD98MNwXMdMC0MubVodd7dnyk3UQFfCIIL1osPxY0ZJ6DvZXwtZ2I0th6aqlTMULVo+lhSIU/5qO63lTSa3MgPRJEOi0AJ8/UlZuvgqLw9dyEDQoHTKWOsq+6fzoAyvIpv14fLaY+braPd6NkSaq0RClMenK1QLH87NZriUaeuCo6SZ7/CfUt2K6VOt0AjIK2jR0vorf6R8+TVzxZb+QdLimH9pU5tQc73xW93QRPMGy/gCK+R+YzmV4fHK52GWBEBL05EEoTY6OYG1WWji66dWnVTg0uPNw839p/yjLxkCfdTaH+v6hVUCd6HlROj6W8Mil6AYGC7NI2+qkZvJh/dAw/iQspXQNwwWHr6slLIp0hBHYTDh/J7Ba7ZR6cp3iU4bSXdmzhTahYDev4yKiIHyN64EANhI5OHYv1G4KXfIOvQizYWchPhzQg5eVGNMxsqrvWVxjtIbkKuHzE+IcA2NZ83GKz0D8z5zmgRnoJGKigseP9TmMS7BgAqtqyixA/SLc1KEUWrhXOQ6kA5ZQRazp3wwSa404cppBnfsS8EsEpbr/gXyW36cZ9pt1RhzyxGxDUmnZeBz/Uf1AP+gyLIg9x04u1fThm2w/H1ZXGvVqsO1VqutV5gUhFkdkwoCjzz3F3FUr1v0njGYT2mSZYvoF/fSd1W11c5VIhkEO06US5wYRmHVPYXmZnbK5YHQ8pkIDJ0yqssqFK34CuHE8RWb+Dr4omk779QOOcYomAMYQ9ILt2KUk2uNlahW/IjGtenuGLxb/t3aFoVz4oNwMZ7iyp4td8mdzgJAfnCcYtklubGAUB9k6bGC5DSkf5VFarnGEBWz600VGR8QywZ+jIYFZbtKT2QdDOYP6k7D8qVgEZByGmRedZRWaQDTggLyNgDD6pQwEeSs82+hTxWypqwU3zuAWqfwil+mytzVnKztyvMFJyJwPFaPr4Z3mTjyxCR2Jv674JVGGMUSWb0l+GtcYtd+NBGChwr8mB2hlyccget9liJhQEb0XgXfgVRlHlbO+jlZ9CcAew0Nw+tRcWgNnz/GL9Kur7RohRhaYZBBmQA6JhvzkazHRcdZDn0zDkfBmYP1PfQjP3d6qqx6gE7vrb3lBKEfK3Y/nCe4COdpr23oZCoIpssGXmqE8CGpO2bEwkSN6uqeqR4UtWR+xsgOzNeR49PTLJpFEAkXha5YaecJ8t/KR+eG7/HKV23zPZAMvHDC1rdxQ0l+6wlIgZbUybjBe6yusL7isRuuYYwg4+8+4lia2ox8RCdvmXlt00ZshBnAIfLkSwIqUzCcsD/d1ZG6Az728L4FCIqBKpbA6bzkJ87lYQpbaHpwPpqu3S0UqNDCwgg3q9MEn02X16E4xibz/rLx7NMDtHcwMOt9r1dVU6Hws9TvJVH7THrnSFESgN5eBy53Nq2Fdb8mySTxz5CitvVE+ZjHaYS3hq9Bax+uS7TxMIT4qJE7HGdsHM1/9uPNBylhP04Lck39JMe8v2dPOSJzyQoy8m/8Fc6h+X+5/mBVA9jAsG4vmx/KdUW+NXxgRt//SS2Ib7aGILsjOz+ZZQu/NMeuAsP1pFRTN90rqIVULbJ20ZJlrjoZD1VxHEoDFFGVWCVOT3jGK+vFD06gc3yDUSnZ7ZHjGmw4ZiAglY2nm78aUpXxI4BfUHqL6YQKFDCazUIryLi53RczlaTh0ry7WN4WpWK9sPJ0J49fu6RGUMYZd3+NrRvEdOrS5n+EJOTkr4lNzo8vawcYnR/n1Dq0rCHu5o2BGBEHABJbsFLi/mlWFO1MjpvUu6UPJjXlXse6MtBROT/mQfyegWGmFRQ7Q/O+rJp471+tQF10+bvkExfBoTQrewd5UwhAUODpyeW+aK6vx2AroUo2bGBZ/ZjcsJFfMYEMsm47LdQSq7T7peI2Ex+4/9oIAJGfhidbXA9UYPNhxigFTg83CETNYfYVkoambj3vv4MZNtE/wrIfTguBNqkQk9ebLPTmY2U4UCzbYqPKO5vjaZXeVksobDAJzhVjoU7p9TdFmNMyLyCQJryBSOcm0hFk/pcwcV15KZ/+IIqeQGPkTbiY1haWSnuQYBeyW5uSPHGtYw28cQS/v3rToNAUGVBSQ6zpBt4CHvaOfEJhuDJYZCcxvPeOStdCzaoSQn9nDe8wDc1MXrJ0+9N9TAKcS6u8ANLCLY4UfHLGf884/LFIn4OLOlRcNl7FS1IJgu1/vLm4INkgHt5ISp2vC3MFJHz1zJnopnKS1AgJtCmhJRZDaW6wis8CJ0KAJW0Yy0+kWI3lJ9N8yqJht68FMNVgkgaAGi5LuKmkZWm+ztKvf9gT8hJrXZkM/QdHI6wy9BqVeWa7g7ZM1YLbUv37YSnLmGsCrl/UVi/tG+fZbzY4bGye0zH08VQpGmyd/v++fS9EtasmbkQEIYnmLZLxO+tNHp3myIGwYBZVXjlWvrCiQcsP/Fu9l0HWmLBu3gvuJ4phtJsXXllJdM8iZIQR8Z6zEMs+cqVL7+TYhxDd0c0l4sbyIEw6N+V0v3ZbUlidyekdcz/aIomGdZtmdI+1QUrrHw7eDXT+G3zbTZMXxpEgJc4zY5bH5az8eHzwoo8QUleUKpVRrsErGmSF6GPJ2OltKYL6/C4zx4rHdcfsrQTcWBmrBWMMiFiU4NGtpYeACqYafRyu8j8x7ltp3nxVbsPO0MSoaR8tv61/q+YCqHX3h4vy4HzjCYEl+4ZDtj2+mawuj4J0rBpcDw+spzuCQ2khFbks09lPGxK8HYJl0Y/lNLUxGLZ+2h6+EFSaD22bYzF7dk/EhCWh6u/v1HUVKC/r/Wl6JHtd1V68J9zdOTgbvJuQug4r4vUV3JJolQQ5tecHKqcNoYjOIs6BZTlfB+yHGfGdxTKsGxbU/4taKuH8Qpd/M7fIG5zebrpiDHV97T4jiUNt7K64/u1e/+erXV34aOjfddcKNO76EzIf1pfD+KivBsRlzlsjj17aDPq/lnKHQCLsD+3TK021HNzhZyuwpLRKS3KE0XH/0TqUOr3VqLMcsSZM6349QJDznPG+sUqeS6wwMWp28TAoDKdmjzW6f+2au71HsOzLIeWencRa5JapKkVTYpvwMIC8u2L+/hYGJmk0588rq6Nnqe041NMzU6lj1K5KmSj0ZRiVpzu2FSTl4PBYHAuhe5dtwnRQwvvNqIELVxKMFWedxxB7UO4zpYRe2x0zH4X6pI2m4g6YdCs08vR9B7omy/goQUYbUZA+wJamq7/c0FhkNm74Mp05NSCK1Dcy1+9qp82p8XVkUB4+SsVRJ/Tqtn8v2esmemr7zjCfjLicMb05JqNoL6zzz0KaYkXeStBrF9+T7EbZTo2Fa/wS5NhJvRoZc8QUfS46HX8HIZ8A6LK8zKtROnakAnEEFoonVlvYR71xYuBAXbjtxfu/bteN8WkArB3//qp+3btpi2SIMyK6rX03iCLnzOd2OrPnD6xqgVT35e6NUMpN7EJSz0DRRzyze1J+Dx3cfx0M577W84qifD51mZG8VNbBf+5PxmGGrGOmkO+Q41YnCkx51D+X3CXsNAjaz/XfcPJUXJ00vaQyfYDtmFq4kU1ZHdnep48T4IskzPsYT9or3rd/ubiYLqeBqjnGbuNWb9ZdPDxkeBmJwYTjsTU+VugQmtz5+C3QBX0piVh3d7BK+Hk4mO3q8qJVQXeIqs4hKuRvBfIwwUyKg9W1x8dv+EwESuk2Bgs1+Zc3wzx4eGasynWs3V360wH3fKXZFTckeHZdgtzTqcQPC2hCHhSXyFMyljvrneLE+c+b/YQ0XcDBam1oAPzvKmmcgER6AqnyC32Ic4HMP4FQN2rh4Y2ntrawByV+9oq/Z8hdwQEPYRYiELBCnuGGXDQbl3ZLuUo0vfKU/AuMwYfNXmNM2vkn/GRrpc5WDP+MEL80tbJDZfDNBRfpfcvVpf75u0LrkIIjnU4adaolZWzB2yjIVwNrF7zF//n4N5xHeaGc7Vh1EYRdc0h2l23qFvLBNQ5kHbmX8Yta2Vj4DU6eBN3XyJBvJf9iL4x+hw1hx/7Ej5U8EZr/Qhgoni5r9PxBfU3fdvXICGW9DzST7GV141bvyMDXblFG5PizNjJUVAWNSxIAStz6+eDAbkYeAKTj6DIR6ysFvZAloBLCgSdMFd3ol/WXDQh3BbBtLqO9hp08BfumZjLpTJGRAIHzDizXZfhbgqejNSS27BIXQLV0muwzgXGqYt9McSvtLWo1Fos3k6Nu2qGyFftqQyDz0/bmgvtZyiFce/SLYnjt2Q9BnlmUVBWOtbDPvUgOSizvJDhdiSkbLLP96MJ7dKO3eUK2nZnpb4s4b2XGF4T6gC4qo9TDv9z2SY4Rffb/RjPs76P0YiWADpPB/nQjC2tDRlxt4sdNCIjmMsLgU+cr8cpyaMSYI9maP4HHww2jTPkGKvF6H6+DFAF+jAZKT9oi23gpZ2zavE0xXPkF7a2FTNJ3bwxvsJV+o0fXZAkmouYq6B2+6ccHhnUIeL10QtZaPoZPJB7/Xry/2Nv+JJFmQ/p2NSiO5bYGA8ej1vh5QlWhaX3JMs5gMBnyyIfXIMf4im0WEUnCPAJzq9q04Tmxzy7nGKKEf31kAp6IFk95aj0AogL7iljLVJlOXNvV7BwZn4dKfuZweSEZBqy+Mvual0TVDHiwHuIuXbvaw+OkU7aeAfck0Hc6H0jgt9g6Rxb6dAuaiKEN1cUYtD88y0b9Arq1q6ML9B20/FunTnZNF+IHgsg641FfllDFpQ+dqrIPKQ8IkLx/2ppx0ivQSrehNaf5dwtBjnPHroRGzG/RWOdiW0COPzepxIqcsWjhfmBXSUD7YCvPm/qTGcSnhcriFKew6a5s0AgK03I1gEifX6y90cJBY9REbQ7yW/XB+zAXN1XZQVEs7r+0ajtx8KvVBKJksKj5YFGdhEennMbwgCJJIMdt/pJD6FIcNVegt2LiQS70DAJeiNNG86dQVNYNZmYEfo8oa002xKLh1+rHlBX40iY8Wlv7FqswQFktpyLn5oSdo1jBRz8V3aRIOmhSnrs2wxGwGBEVEXvRm8RZVvSQ0xlKMVWs9Y7nnmJ9jEVuDL08D2ES3plzvCNP3FpKQeSknFeVBXv5T1Yk0/X5vdj1J1LYa6Ffxxrv90ObLHARkCI+tz6+0i5cZTinvgIYLMVnV/OL+m4RCsTy/+9VQPsYv6X2qSSlVdQ3KM1SOntMNUBpb4C0MsDh10xHQ0cbJK0gsR6X93ru63BDYbRZmPISt1casVwVVE7+u3l55XJGJ0Ev6S+2zpNqOAH66RuzpVskXE6X8x6wHOfp5PAI/7YG3Zozh1U27IXGEEKIm13Rt/nTE3pKWA7i1NFdVQKQ0CNdqEsBkjiuM41dd5rIbR4DMnoDva07v1esxYBGU4JWJUJQyejYbI9p7pqjrpHZUNlz2exX1lTAks+WxY6CExoPlSlNNv6AIsE0VdPmHOj4m0a8bigDelTpIL1WoePLhblmhRlkPDKiZvkzz6eG8vLeJjCGJL1+VFa4QREBVyuhcpZm1ygJm9kuQ+8v4yEMw0VO+TKee6sMFRVc/kS4IirJupnw48LoR2aRk+GuDBZ25xnKFxdSYqZqvWlEcemsbzl7wvQg5z2xKxEUsquyGziyzd/X+XFl/ct9KRLzyyb6ComIL8Wam9x6LPNZXvhO0QQZmQ8T2MFjmRJ42WyRzfyLGkJKft94uO0Yy6Fflo3AoIEon3XBygpi3Je932ToU5EKoikvqkeLFACpsBN5dseemiMdHxOJKrVJDdTS0qCcTzPCyz506oyENFdelskwdghmUnWyXK2WeJX2CBXudNUBON/i8kMdtJm52REvmGqVmxe5aricuTCGLbgZtYvigT++E7xltEh/ZgUoMP+d8vaPU/HdhZaUjsgQ8OoqZeezvNR2JFm2on+IliVyYQ/58LmZ2stgKoBbs4SllwiTpNRw7ecL2WR8bbg05aTN00C8aGWtReWSsYsirJ0K0I97flI2gJRRN717wESryWahXUAFZAdyD08j9SIZQm+wq5GkoUkK5cQ3wk1x01x4fKLPgPIj6D6lZiylqvWGtl6KxCfoSQXlNZIHeDsrIRqhINxdrCinM0iMMkveNxhqrEzhnBn8F6nXVY5zUDLzOXpp338I2HycFa2pueObEof3HQgFEMnHS3/CDKwJAyYl3HyA4X5vXUE8MMa79gYELseTf0IEUJRsfSa873vl6n29lFq+GCqF1I+mB5PSyLFvgHv6hG5Hd14PAHTKhY+xzCgOwwRZxygPwNET0UiO9ynH0p3j7GAFEs+VSjl4ArhHJbySohRLfm6B7FxxYJLJxJlQr5UdD+5Vs0nM6CehSZZNYw4FzcpYoL6nS+wGGSNKLVLXgbgvzAbT4B1J4GMS16IKMlo5S/dzM/NM4NI+a1Fuk4qwaewoHqGp78vgp+SkuhLyAVhI2Or50Id4LlHwRon9o7JT3D2pibchFvFi2VTEx6cLX/qorW2YGSSmnu9+M8teW9DIRH1TfabuDIuLk16NFz3kNr5QLPGAd0JzN2IYFA140yqfi9LfBcZI3aUK/Gt2bfMMk8eqttN8c92OmUYKUaHbB9C9cpEwaOYs49MztuGtI0VMqDDHN8HiRP55BpRIJtIWbSyi0/LOC94XhzqGVyuzaVaBfg0f++sV8wy7ytxlQYA9w1ejE0XaCkpM9zbOrymf4OrEaIyQX84Z9e6wQ1czIvOihnSaq/fcFdkxJcMzE2kWcARwWT1U80dW6B+v6HdclWMyMWLYr49iKWrhm7o1yumJKxVGiv1Rx3Tw61jrh+vuNjikpFRxa0F9G7ZWs57nuhaIeT8ZRjYzuyq4WZBEXs4CyfvmZxGcS4/G2aWon2O/UkjqrfdbBUF0yavSPdNJacaaZxFQNejGDPK7SCF82XxiahbNpwFs/t07gbCJkDUvvKjqaYv1SNJBa21RKsOuGJNKO/F6HTjc1Q5t8lqLL4e83gWTT4aubYGtE+D4e9zdPPo2R3dvG7bDrCQosp62YhTaV3B/kEQGqtzvu59fbgA6lFyGe7urhYr3TWCBFYBmrEpB78fWnXUEd1z0LSzMcWL6vuh4CJYR0tg1jX4H0wkw9mkbM07MXopLJ2Rt7/aL3Hl3MjO8h/1lqNlK74QTbgkurmgd23XflEcMhjO52Y/Wsz+CqwkBCDN8SUcd0hvJ6srikURdDKw75ZZMyms8NdzvzfsXreeCzpVaPKbkgWo0BlD+qWqaXziVa7YTSezNkCD1UBphMwE3IFwG3+Oja0AILbwR+VMjirrIkRPt+DMtp+OKLpkiE15AVv3jn19brZGZkhhAsuT2sTiWSjLvxJkMICAGdQY6CcJ1bmQsycrXCCxoxrME8B5k7aYQkl31h4kmnvmUA1Uo5bGEJkzebQNuMeVIRwKr7shM3Y3iowzuO8Jm833ALhjeDbR9i+ajGdiv5nuQcBDW0PZ0CB/GHvnmE702e3iEmWKin/StmkbfvsVh9mXnjLzZCRfht3g5Fu6OpDSsq1DSVUie4hNThGTSTWkOhTKbARv54Bxp1m/BqW0CfvfUJMQYci+HzQBrAw7lHJI8klNzq1wbwtxf0zzTFIpYQcsU3ddDWDMuciKmN+BHJ47B6FkgX4uR5QSWzLqgN2wQK1aLp2hgMJGqMII4rLK56VcDk89QQhw6cy8PCM19olNpuDwdrQFvP+77wiyyKx8Z4MVJNxV5vJWOwvF+aDouZMW5HNno5d960qcPPO89qYm6Zh6UO7MyFx272aWYtu/0+UZ6eThOP3s/uMGRarrYNGVN2bkl0VbM7ZArP2AnCQLuPoIbkry4nTS/RsIdFmPg98zeYI4R0RY41FQsBym1OXnJcHtmKPjfEXuujVQGfCPrCZsaT+vFbMFWIvUy7OxquIvdi2DVp3+q3E3NGG06d/cz77wgHGWrfcy5LJIzCMZHkk6m2QnZCXYVXwMsVhJI9nJcgG/CrU5lgDb/DlVEsXG06BHIuqVfnTyLdAQZYmJlEEk43pdgF69V12XC+sB9W5Tfm3jPwiHn/VmGszkYx+Er49CLbyk3hDBSKuzDj+nzCo77ZO40EIP4ZROdSwWlf5S8wfYcAzjNdj/aZ8uknw3tur126RfCzMA+cUo5mPaZL9cVp33X0mRTUIS2vgtwDRgsSSX5xcJUWR8gZbdeqyqQEEAeDu3+BMlrgYP2SH/le2u1yfVFn5JX9VQ04X9mmABR/KOd3rAYqR+OQwLWao9MXVS1y+0OKo0FlXuirKuPaY1BQbY3Vo05Gf/+N+u4rDcFBQqiCrYhgRAEjvVW9eNCaOsukcJWEaDuo/pWCYGJLadm4ssTCPvVVEJNBfVXAcTIxH4EFtWFMJUy5of50QNXNZBl+oRuFIkdbt04DeU6j2A3vzzP+IkMahLD6zBVJv+xRBIc5fODvnJMmJRMI8kcyMFqxpeWZAHxC68tGFNyl6yyGN95SwNYXwDSIQCPlL9bzjZaWNWvs5puiP2lbEBlDw5vCHtVmb/sD8QBgOhRassChwM5o5g4lhlD4u86wmdmVmhmEXnCyLeQJ0rRtqYIWRhg72ieDnqmPvOkDTWtKR38TeJwrK/7IRYfbNspygrU6yV9YtJyw3I3uEkDgbPrpcNUpISYvzv3beFg3ZN+swedqf3IVKkcdiAezu/KpHGHPyvX9oT6qzTS342/DenW9ctM197UfFl4rk21KxSma1KnLIWlGGasMF4+G3dxTnqBscul4CqNda6Qy8ita7HCzKlYa86yljm+HQA2B5ArJoZy4LNxeT9izFuQhEoEhUTNJQj2pCc/O44h8GpQX6XgpaAvAQJLVNq0yXGFbzb3O54XQ6sm557+lT3A+VWPyCJn1MLbsssHIdFhJcMtBFQYi0bS+exQ4Rq74xNE2CIRSzi3nj5TNy2AoO0gdyBC0/2iH67UB581jmM92OHqgD4EzAzyxDauPnlIdZu0nWwB4dtxWN+meq/faIuQpK2hoRP/ULwIJ9r3xyxtXxfFwJ3YquXldSEnxoPiYD85u0OAHvKOG6+3eBraUiOgvdfp1EjiroeSLLFutuPPV9XqhAReYPaRy87OAkV5tzSqvyfufCvOMTtkpxApWsJ9n+cNM2uBWu4lj1oDjGasCfCt6cfgCzh6UbZanbL/qCgf/iHjKYaavIiRLJrU2BuzdsP97XHkXLYbbfsHVTlXSohKOXOJ+3LiR6ix9UFLo9qieejYk+P4e5wC64jGQLSxJzYt3cErx1Rtc2+xlJaEBynLN4hLl/qOrgBM7a+yswC0Mh2OieA4SR6MfM9WK/FOWbVyoUBIUAKOhhIZp2LOgukk0/DInn7sF7dRP6Nw77MaAcYg6k0gdjQN9/1wtGVSBm+6LwkI+xfcK9l+JiWepXul+/EEdV7XXp/9lUsW4RQmIkda9H38FJj3EYJTrG4hEU9YWtNd2lKI1683cXFVzSMkh+2nuu9K0JUBoAnrYkKVZpAKF9G7y5n/KMZrP2xPuUFSOaruqriffSEX9Euj/k5dgewEyQCFTif83LhkIjt5qJ1LyI4ynIznWl1SoAdecEp+I5WmKBB2fr5yw33NX94q6HIP0jW3Np2E0r1f7fUjqdxV+iCRULU+yAwPXFvTL7HqfFLj+wCfIbOg+nsW03rGTf1haLvAZA/nC52pSDnC4f0qOiA6WtK20BldZUaA6GO3m5ZOCGyemGK4a12hM3BXnbladA/yTRV+pH7IiT/9WOijGGNXzV+K4wmdmRjU3It+QwUCRat2mGkEHhOcQY06pWeQqBGjHkWcceX8/drkk+tYysHMXVk8hLhLGjUVgivK1Ra4K+RtUcZO5fkVkWQ4W8fyo2tafhGEDSsflUH7yj8wsATBE9YpskR+r7Ac8xqdxtEAfRioGXSprjbLI2DAZZz9HAYR7rUHzvh/UPpFvrLbd/hFf7sF3RimWNpiGsQRZ11RqfZkck9IJu/FPU2DYr/HWUdskJHuLufXCvDbKn0F9sM31Hn3zIuAMTUc+tQsO9ll6jnNnW9Ulo7d32jEQMqJIrWQL5+Se0a8lKRp+XhYp4IfyUaTRC58vFEjKupeFEpU4EOp1AjeALc7vZV0ovza8QSl3ru6xFpY0/ckElMOChkhLWSDHLCKaFK/qC/SIfT50GJZnkCr5SgXZRddXq8Gc6XNjIzSdCF+9YlUFKMiri/sn1Gp/dEMhARah97GidLqitLNBlF+H8XoQmdrM3GXBSCN6izNn2ON0OzpCxOuM917OZCw2ZC0DSvNuTOFCGGYf1TYgUbgK2KKc4zm/25dz3GhVpFqs6x4yhZBbiy/6FD1vXW/aIcDiSUoIhwrUtxuGGZijb47Jz8JfUTblzx4eNPbXeYpygkQo1xXonjeouTuJvAH/zH+FK50zOLAtbN9AO6xjfX09CsjKitMVlHWmmQybLoBHBPkC5IbAZxvs3cH1VAcy2X90WL6y/0SXNsGeLBdr1OWVuYg+/wUNiR7QnP2ec7jNrZZOosT6Olwn02Dh6zSwKoDnMFLfk7lBO0p9mWjex7gEFXNfxFO19qmaoISUZEgdTuy7sHgrD/36o3XeFdzLFoFnOJa4yaENBXdTSmVZacz+5IGdVkEgjQt/TxuhNGHGtQuzNDfM4iNZ28Ly9S9WkUGMNAfDRLr4ipZkJxUA6HnlOi4Yb04/Ze8rB+HEXpDGC5Jpr4fN62LQh8o6kxknE1P5/rNmz43jehFlRUvCyNi3Y5St7lC7a2ogCt3Za6M7AshQdbVV2+R2DuuiLEJz0MLhnn/1/F2Z2U3h560PrnhR0Gc/5GW5DwO/DGrR/4PvL046BKjUp1lfrtKfE4osRTS9/oB0GrNW3cYgvhU8ld61sHhKOf4P94t4n7h9zdRXDaFv4ORPHokkY+NA9QA49RmsGMfJLu1/RXuluq0J4fsUUBoa9dL9T0yDJXvGtuoln8aYrNzoapa7E8cR73/wX6KwBPpwCUUlxsBtOj0rnca7zu5FqJC5W0U8Yt529SAI0S6nmWnS8zguQLRzf/gRLaqSQ6E9T6Q84u1cs56dzBMv2eBG+zAKw2V0x1NJX1gC8M2MYZpScdXEKPG1442UFWTEUlkM9OjbR4FurtJNV4IqEu1htlgltESO0SeZMHZ1JM7bNtYegevwPSCmW+S8uEGj7FTSSV0HbDg1rOnt4Ws8DxqN2T/HOXNd5NGboZ8VTSD6g6rLWcoWOwsyeG08GPG6KHPiLRunEdTPNmY74ObRGT1VCHP7nmBYmjnH+kqK6rDyrEoNjdqc8uG8yZrHWBXU9weqD5rpQ6S/annq7P/GiYepA2ZDdJA/GbdxpHYatPgkXt5sop564gVHZamW6cq/cdADaLCXWt1WgK7y11WaQR90YOen8BECQ56pmJbLvzzfWBhUUJP+dAEEK4o4wZv2+IBAFEdNkNF3mKntsLE5PDLA/IEiV0rziyORzLJsoxRMCQV/HlpCkXsaizcHT/vxU9iadf2hOkKehGum3973fFs7uRlqxz/oDerFL0617PqG+VYIxjeRb2IRLZJGH8vp8ITzF7U7HUg8Crs3WpVY5r8wxn8tzGvUUwY5csVu15Vmm1xcs0UL/lUCkrOXdLtlaa4pHLeQgpd/vu1ZzjMOcgzfQaIwiZK+fMZjRLAHUf83TSCOkovb3xPkD0jElmb4TBqFrwn8G4KWr+RM58qhCnlVimQ390m8YLz+fNHbBRDs7GJgHSK+v5Z9cwZq4glnR2eTjnqTy8Wo7BEg24CL/RT1AKzOIE7muo8oegzn8R6qab08LzTcbb0ippsScfjQoJhsr4jKG2pMVczpCYqptZcGD5rxTHFbL3+NDnEUptRMyARhF2FMiM7pgaB/IpAna1AHa5EPt7oBdzMGg7kOdSOpxrPXbdP3l/+QCfCLMpCsxFd3VAxA/IPVvK8JaenCYCadhyZ6rJeGxTUh11+OOAjrXIJxb/EbIy8rv6h7hywPp9ZhPCcgt9BN808JhGIaKwtL85jO5nipQyAF690xJ9A2DMuCx55TSG88fN6rqBMYDI+I+DtFmoAqJB27B/xxN9xMLnQwLcLCHOx4GIFCq3/6i7gwJePjoG/HKNb0XjhuEQmYFzTgtt/uIo1bBX4C+y1jrb+R0mRj+RyaDkRus8W4WW73qbcjpjIh2tGUY6KJyhEaKiK+LHG5euQeYZO4zXoKbZOWiJTvJNNVrWugpXkIIIE4zK/g4JKATQjtaC1qbJ6khaJHxOTS2goU5zGyjmaPKvVPrBh27E7E2iZ/6omwpBARV/9EKeU1m4Msz8Q7y3MzEF0C8VIIqAxB+Fk8qG970lhV/ZIX6CsxiHqybemqil3Qv/cWKm96fPoMJWSA1dcF03dSwSyNMdvKKBCYVYLuqr2pISKPaNRJJw2R43RNE6avh/TNA1tGJ/ilW/e4LbOvIh7cS2OsbjyXcD6WS0DYaDa+og0lSxehZQiDSt2fVdtF+DO7/cEUAM3uju47Fl17rUPkRPaheA+6/jpSYK5Nh6rSwO8Pbi1y4/L0L5SStva0NcscpH0pw/3Y9+Eqw1SDVvRn2r2d8vRC6YhQywdhKWraKGBMILqjiU2l5d3jb1tnQIwi95QiTJW7MAjJD4Plr9FGRGlM4NQyAiG8wSAKUbRCpmxE+zk9YhXjiC/Rbt983pV0VzovJW+90dH65IOb2VS+Wk+MpsRgZ86uEuxeGPyB++07HlAwqFjq0sm5Lvom/rcHSaLduJrDdabujYJRWbbY2QZptvGwTHAiaqsAafE9NQa2oq6hV8+E2YRbdEcrirxyx9JVWpti7CsFfA/egMevH0MR40/X1jQzMYbw6mr01MI833RiE3EuU79cpspC8tuN6QxFB7ExHF8yrFQ4vRniEkTgKc8kT2tC2HgNJJ+l/FwYXky6qbHj1cMtBGVOw3SFMHn5l5odYVrLqhL6R4DujKq/CEsEj742QjUogvrSb9DOh1Mm5Z7n6MI+YHii3bWp2abi25FJIiX3GM/137MQVr4wwQ5IQETnYx0CoXX1nLeqLjQ2VlOulhy58iVxN5d0Q2TEV6MPr+wA6lluGEC5890db42elDUvTbbMcjHGrT7WA4eEhNLqVT35NhLruSPkwg1UCAUz94Dj23i6dqS1MPh40Oyi0W+wfoWYXIw+siweU3qKdQM/IWLUwDjgMQuiK+CTyRgR/Cg+XmfazCLiF1JChK7C2x+ROCl4t2WjYngGRxBWRQqqrNqx1EesLx8Z8GOimBJK3Ip3O0TWp1z6fhibUBvCtBpCBH7Wz0MrsYEtW/6gd/rLbB2IcMxOrxgW5u+/ZBOjd+9Zg9SRf7ln5tqXgM7wZE2rj4u7BOezWvuyca2TpJkQOR8U/bR+LRjmN6RAS7MCfYSPtJWSbZYnQL8vGmJb39SyiYiER2Via1nlShjJEe3JgCwTOTiIQJ5h+NQeEs7qWkpIDJiQHb7VwcR7T1gLGhKAqUT5DPO5zvGPny/DOh+Lo+Xhxf5wTkF5p5yY0vM1gw2UZQ2nhCedQ+PBxACaAeuBYTyBs9aNWvYATPBLUtXJ3H/+rMIUQ3Xz5MJKdV6OhLEEK73rb9hfjPlA0gKO4j120U6VHh4AJvL3WqjaY/KCbwpCzUCADZmnJdpD4p4U5ry6/YuhcWXcVV4dFm5J8qADBWw9jPITjUtkf0lhIJkzhXLTcXQBZaaunvCCxyWh6ifYzNTTCGJcUD6DyfGam2zj4qdBy7DwBaL2S2IxicF7F2ubPDvx0+DEQVydAIF4Utn+/niyxDQpGlaaG5eRQcfYEHaZeHBOfZ8x6KnSsZnB8YZbLVBcEF3Mv/87cj4r/BYDYAaUWrrm/rWPImSVpvPlB3xQvVG305B+bCj4kIW4ZWzFnX7/nApDibPZxncAV04laDsD872g54z55DZylkUKHXF7Y5iFwsc0HDovYpJ1P+XIAb4pKZnw/e2BrTZn6jCeAAvAt6Z8EdXqS/KoRwK37xhZL7w17n2PYpqnoCtRAvnU/CocUq+el+PFEwM2GkhLBAJXvVbqxBMfPWlA8XMNY1+dfsV9Uy0C+WgSzcXw/ylN23DlELK9DPZ1nzFCvyDWygh1ABv0LXhuVuDEraYOrX0J/NpbYoxjl/mfncXN1DorfumMjOo/dWEk/OvdZ8w/66CtISpGM2htGRpT929qEz+kRM+2XpAqcSS9GOrLWVVUVIm3Ez/yIqAWm019Td/ytbE6eeYJaY+mJpelcp0h+4Y1hmcF9J6cZQEJi7foY8n1psVTCzE0QYMX+ScYxKxb/bU9eproUaSNTxHeNhomtba4y/CfLAZYXndn5ndeIjFIsRWRpwX3HwrIsKxRgd52tRs/iun5uy44w8u2wZgayiPbOTWGXUn/BDqak5EZebXbdQHyE0yEhUO5HcDnE6xlAuZFDSKLDTTZz9bWcfe1wy8KhSOwh15cBRibt+faUQgl7/5na6Nl5d1o7iUWTjOhjQa4z2Pha1PNGSn0hZFeICMKGtHJ6EGQbB+HF6+M2e8YSQjJ2cnG2SVpdzXlnkzxYqwXv0s0WM8nggSh7Viq5joXNiF3RJ0A9637p1HFJd2I7GrQ4ZTOWRi8jcZaL/25Pox9feMT7VDPV6TT++0Ri3a1aLS8IABZh2dWfxnBmXDWPdvrxmBiF3eePVqd2ZM5bI9YAN23/3qVLElDeD61xvgRdjkXkl2tqif3zsX1gGp9mzEm6suh1kWL75XC2kXlrCreiNi2pfI+iWVFJDXPd3MBNp7VSAZRp1jpt3ug1pQEM470lZXwotpDljklvGxuNeKwTuKNJw0EK74nc0d851QXL9P4pxZdM7pkmbA7IU2S2Xa/AJRP2VOz3Kyp9oW6FgoQi4noNkoHeNnprbQod8n+dQSSbMzNRZIuL/riHaxoOHkaGYwROCZwqcbK1tUnU2Qt1J+3UTvklj6wOD/d8lrZG7ucjZiCyHxK5XVtzq9lDJ4N1FvARCTUfnLeOLc5bmrtGvb8mmsr0lDDyR5607k41wzglZH1fExfmsXrEjiNLSzSKGb7FVusl07/BgeCclDsQkds2G654GVeUpX7UHaqQBEmJsIyvfxvz85+WyRaoYuQfSH9WpJLeUoXpUt7+Crnl1Jqz+eARyCmzL59OUUBwBuoQAl5VddIrfG6xvDA/RZBOV5AfwjOrJ2xRo4N42rCSFCcnOY7xfewl6tVLetiM2tGLqRLc9k/owyHriX1A9BnluzfDc5xdEUKyuwzWPG+tZGNDV0WLl1JyHPflzcBpj92G0AR0lGaMSZuKui5/LUMn69X9wPKc6FVkNEHEjHjQKPQjuFCokjN+N/6DlMscpE48IhHIa0Ghrc36GwGEiPRymXWKD/di92yfjZjDM3fdHBdwSxJRSBVKHSwh6Ey1/zWZRZ4kk+KMS8HuroIw1UPa+PDVpsSIKvmqZnZisbfHFWNW/dl9n5+wM4VIzhmrETz3k9WU3s+z84SHh2f7dGT/G5WvoisBYAgwm+pqFS0A8xyhy4PiKfgS+6TgnQD5hDEerpzgFSaMcw3yvDZ0+xfL0yznf0uY8N6APiqHdoJZOWqTPnTIbeBLc5dvFdh+mvD+sDtl8BAWzYR7QkSgnx30Ru7TH5a/g4byacurCNvG0lTgpkj9w42uqBp1zMsKr2riOCQwfCRKkuSX9CGADOYGqCHh1JUsk6RwvI9OvM9fCJoL7Sap8NUQ7mAvdB2ougA01NdqxVo8NeGta0R9C7QybiN4uAtDxw2zLTG9+0we68JkqZrj9tJilUV/f4wOLc83GfstXOVF2bAJ6zf56YworQQEDj6QnC+lqyMkGAr0QuAikm0jqS7fy9bYSBz5hekPILc94b8aUau3Kt69QI1kFEmcb19aFQA4bSegA9/hFi61RDIVQ7iOBqViYdGaK8d3zH5qWIjed0hR9e6o4zELdXWhOVOcPCmZIYYXvgUsAyGUoCszsCiTdwOaPEL2kRnYh0mNSZGb6/kr8XfbyUdbEZ7mDBYy0yTDxhkrpIoJmVutN6FHk/E4cTEolaGnv7x+QxQIKZus8IEygpdtBDxj+lC5M6HaJ313pLDYbjpCA+oYl11ISRJ/fB2oIdDBHFLefQmF1uHk7vtSmIyI7Q9HG0qxu8QRWecP8ipKR1o4bGrAhR2KcGEDE6k8r2F7N9lNUZCswXi/EXaOlPb9fdsaw1Sspku1xrmyADIImEs//XiPqI3Jl8BlrsHf1mAVCBmlqE7usMbDEpilt45ia5CXzVqlIZ95Fesu48LEATS3dyXVEjwQAqVbFBttbLfXvX4LhaGKv6P3XBsKWvqEFfq1rPYdohHtQH03ehlVMpZ/BRCBFV6dffGCrIa7OngRAbORd6wsIcR/gQSxhfrfHFmb9Ws3Pk/SikwIvAIYljNbXbvIpKTROSiPcmBDp4hxLkrjR+MfBFZLV5I4usLY6WYmjhT2kzW9XAxxLYCELLIf6lg6p/GFgpoRTm+yQ6PYtmKVvdTHyBxv28y3vTiy+reYBZqmC7x0TDasiMCcA+TxdKgDY4s61MpZyI1+RUzeMfx1qh9MBXg1tI/HSKpcUj7+qTrwp35J3ezefo6UZiEWMPBtx0/tJyaej7NUmUHVRBJfB1q0bsw4yHfui2ZOPNh/6R2/I0j09t9QGeRxpuJzB6DNbaPTOmER6WTXYEGXq7DhzkvCP247uSz6r7MfaasDs419fVF4RAt4XoxkFRmk3sjrhpNSeuDoG5RpjE4pI3rH/ESPaF6RIIJBiAbVU/ct/nKrDmBQPBYlNob0WmW07GhOvvz0m/BXTsPB8qA8Iesm6PsDuOLEEm5+jbniDFyXfndwIXHgWBB1GCyGV52MU+5iXguncQS8T+WyxaPDqCCXMjwPJxGObdF8mBkG2+SpqaBQkeN+1IL8Cbb72d3ySQUR/uO+N9v36KAiKVEPx8EERU0vfKi53JWN50+LSYqgHmF0UrnnHCNpcwfX8ezokGL4sK/rgFZlXnIqg6a8EJh7DfMOwMgTwRjjZ+TrXsj7SA6EaMRroFgxXRIOGDPYZgkadllrCosfuVZqNQwAY1cDJzuD4ocR7PgZYXbCA3g9Jd1PRx7PyRTNad56qFMVIv/9AYYd32opL/KQOuEa2LIoyMUHWsHVeJEgDnTAizkdfigKSmZVUDrztoGXA+B+9B+MYT2q5BETXJUKRLiEw3upTpXnlh7hkEk8/0D3rV1lUxxSlnDzLfFArxdnXRhBNu085RxiTwTISjItGPuj0MQknBfLTi9AeLTT9QUKRG7bxHm7P2Kei6fVAeNBP31q/OVsTuBJZfKaxLodsCxObxFdyJNLV2tAt+2SCAO5/VWcDOd7Or0wzbVGwbXJr73+/PYn3VfNQ4CSxdqgXNPWDqh9ZFVRQbSeb+bFmOpdkO7C70y6dTSHVuHlIY33/KV1QHDJ226atG4ltS4fk0ZNDrmPZ2Lps6qyMYO+Wkmsyw/ECuxfXcZ0zM7vmLjkk/LsX/XG0vaL3KZb2C51I5TVf8fBJmMxHHzKvaXDwSTGiya0f8ZZ3olqbqcd2cjXM0jicXlX0cJsaB81POyuItwEiYZwsHn4gymrnlD0mfAro2YoSC7KxDdL1DQVO+0a7fN1fLkv8ElaXx46Z8EGJ/W6akIr6uEuiFIQB9fHujgNzIzAgaDEYVITJJO5XQkyimdgaTBvra1hUbw4jb8imqVpd7G9dSoQVNPatqBlbm7NLsdI/einfpw6HdFlo9bpLb/wBxf2BGK/YWhn6LhzEvBuRuBZJTDv7HV9WfnA2SyT3HV/F6f+23aOYC8rxO7QQ1FI4/0m/OAHdCwYedzx6F6TIlSh668B+Id3ZxNP3V+Z82Tt/AHYSzDsxyYC8mxyk+Za4Q6u8y70AKpUm1NPP2WMeSHfqCc5mUcG67RR+sJWZg7P5iG4FPnFmWKv1nwwk+fM0IIA5p7xmHnj1zbj89sN0hc81tzI6enBjIyPd6P5GXzsmp9IRHKS506SAEK7IxfjQLxkNK1x+M8YAYLrD1qWXqo03kTvXgYllmtbguZX1FQGpXYjbZzgqSLxcXTKqQ/GhYqBJzZtvPaYGODBTozt0Rw6/vP+hTUJGOAYcEWWr5Mqy4792lLWmElkf2k2HiF5268DSkEL2oQl+VXl2NXgbfa8xxQoI7lpuNkURcA/pNz/go3LD+w41q4eQy20ecjCwekr0XfODump0XPUm2vvNfk4P/tAVA2PLhl21zoFOrSKjd6D1AiMtz/f41uWlBWCDDY4tDRMhyGsls4GW7P8b0/dGx6VTgC6oCCWxMyJyOgl5RPaFDE/EzGGGL9XUm5X9L3crn0DvEELm/Vx6HwlGWtnfZK7dA8/zJkr9b7PBgLeFlmXyfUBxZHF8kxgW5tcxvkEz0roS70jNLvk3QNCTUIwCHnqk5NRDEaewDCzjTR5lKzNzx1RHHJNiZZJ0lXrAsSM03iKPyYNdJfMwUAvRlKP49yIx7XS9cvseBWVvGNAc2I0PmR6Xc9KjqauqjgG/Q8i16OIPtQ2Ll3qDkunTNq2O65AEFG5qycHaB2/159N4n67iMEpyNowNdkq/ZlDxsX4dRKNvBUJaYqhID70qa2Rgq8+AzqTaJhuYrqrDDO1n/0rWggrBcFsYwo7ujJZblKGamFf+3B5MTAXNUOKn5PW91Gx56gtqTqz1dYMML1dFR/KZUZom7Wky7v9EfKnYbBseAvDuBFBFFCuXnhvWc/JS4ipUIe59Ls/kL+W5lteo1xt5bkJYfug17vGw6cqrOjTG4nQXZ+RbEDCMTf5JZ4DBcuVv+tGPyucc3B6R9NMF/lc4ubulrqcBPhRUjGBILbQ+4uBJ9eUHMAj2ijfMskRMLcV5FdgqIWhiEvxNVlZSRrzTzySfBUjZHCJQtbgDZ8nRWLwk6rQKWD5aSHuJh0vBgvlNTP+a4P7p59l0FYBPtoNpiFl/dOo05KHesQCueTxj7IB6io9sqTWxTu2PK2C3ACiXWNyxs52441hxg3eco87pSRV1NUvQeac35o3tgUpXtmtl2yHh3QO1mQ55wSqIri3PtVxJ57l0nOuyav/0ixzLEq3QlLZmLb8Y2JVlrdQMjhpcC1j0DS+VHrYIB4JgyXacVu9PCRoC5Y2+p8qfeJA3OFreaabxWxz5omyn/l55+ufQkO5e9iODCdLWl2crwLrUpaMCi8EUcVXGb3Z8oBCUdwuuohn1sivwQp1O+DaRFYXIbHQibdPfq4dU8WeiYJ4WKMlNEuQr/BRIGwOrAIM3Ppjmzvh27Lyx6xK14sUHgNy2ggNG57CBbXznFP/0NVrUQef5mMdso3AJ33SJxInqYebzcZ2pEVYHYczXE/+mcptBHb4ANtGohwQabL1xmFHav/wFH/al8TKjzGnYiFLEifJHL7OJD0x/rtzWuCrDToEWPBNtRKXFZqz/kBH6gsxzy/TUzP6R+C/A456FbGm8soK/uYyafgNmX0re6fgXeehUvtDCXdAUJElJt7AMv+VMdIrrOK7TAaHo6E8Khx1rq48yOqMqtC08so9cQh/AV760CiEtSm6PBL7JKCZBV4m7t8Gbbc4TQRawpuwTFyS/vt1JBnAQUBDPdEddlJlVAfbGy+OKkohOw9BB/JY9rDZQK1o/kpfl82umHijUnj0gVqhJCsrzUxYl+ygkRPDEPZqUIo/+AtsGplmBSxL8bUE1iBc8lCtShF2iqMC1DdHIH1DcucbSNtxOF9LY4IMng4T9eTYzDr+gnOPVxWBYMambJUexTzxyvFOneFg3r4FBEHqG3QZRgnKISYUQKv9B23A8vhFRe8uNZpBtiMtXqOQlVEbO/HzkRbqVaGj4s2XRVlhO+ewkvEaTp4pNLXG1OVF6ncxf3Fq94KmGuG29LLsFI1fuX35J0TsRNGo+TCioyTrXLVEjPztNVQL1/q5tGSrMPhfJEaQxHcrnqhVVqN1gfF+JK9Pgcud/lGa+Ig7eKQpJuUN+PYhBYQ/b6ahi4nLNe5+d8rQlfK/gl3OQ3WDGWuUMOt1YlBKoX+99JWlZr6tTAVgDF0NSHs5fqbU0euO7cXKnvVB3taBFHP6/KKZCBfGqzNo6DgZgiAELh1EYOni64dmOWUuwAQCKu+L8tnTFLlL6uKkaNtO8YGlOBVU9mQFYx4aGPgGEI/HTycxYXBClfKbmSErtcsuhalOh73FnzRz/thPjvRJcRwPtZmCHs1nYjivLMWWGprl4fRUOlrCDiwNU+9TZuaVsuCxj/4DzKfcla139igH7Z+0uskWkEq/c0mrsRLlVpl8ln0G77hwK9rLKc+RLeI6KLKy3Um5C6Of3qiKNoY/7ad3EFvdP4VICsuTMTii/bee9efmKAiym0A+l3hS7SofuEJ46In7BEO+Kf597wnd6s5mL1d5zNRBdOEmfNKyPdUuCW3u/SfFQes7nYlfV/B1DOE9p/pmgK+bx+eZdZUMu44uBGlaPvej5wxU9aumiyt/uCCZ4PyO0OYfFAMMqTaYcI8GxYeHO/3tDJsJisLleLpS/gvPLbEksIm3R4OCJ21S4P//uyzQ4EJZyYmWZjtknKJbz0vFEi0zDWnZHl4kvpMSPlVI8cEAG5r0JoNN59joEsMhUcPZ1YtIDYX9cnR711x6SQEnBGgTz6d3b1iebIdotlgqE03w87xlD0+qEykcVizaOB3Z+ocaMGWybZTIdpR4niV9mDm65EzKK8VQq59iMlABk54A7zAlMdkYNmaRuWJN+bLJ7RqEZf8vrpM0+3cwD0NctuwJJA13JIJVFlPStNIXzAW4pp1OnTx3rMZQfF+o4p92WDkF2tx1MUdC14Er9l1RlYsEYnOubj2IotL4tkgKwnE219ZsjXb8PJFkzakaWhRBJAkgbR6myiYFsJgC/lellsN9g1ML0j4HX4rwIzHbq20FDkBdfqN9SUnIbJf0QQr+QxHx4f0kRekXaqKZYUXYMbRKa6OObLPOaKGft7xFAgT2pHuSw7kdfloER91zsJPWQJbkAzyDFkkgUg80kW7n7n+WBN3CMXA3lU6QR23Ipx/98577h2OGkpcp5YiTX/TikBkcza+iwBGNBi/j+GwW8tGbKxpiSNEQqUDdqfscbVMQ+OSYGoeQKSLwREfUGDjR/emc+ZAJsy3sraTZkpHFZAI69dwO1dvsOw/Q+O/2lgghmEsk6NKzmfI+OYuOG2UoagP9Le/y9UABk4VHk54+6fW891qe1yVDT2KUc5hNeePBaQwVb5BQYPt/+2xEpqsHC4GY37hXyRSGvfwYa7DGUDbMKd8vud28h67mpOl7fe4uFRe/HOKf3TFs+9RX+QpL0+C2b4R/8VfkUQOABt4tcaDV34nU/UFXBUDvPYMYe0F24AZPIWphY9bLwt+tWvmuWwhvAgPN1rxvo3hpXvQNSPsVKgFUKENrmSCjWPYCUoQfJFpepI6oqpsVwJt6IlBFGO4soABNOS2KtnF9P7E9sSLK1WWOdGvYNhxKO5/D5ACMSM3oLy6XvjzPe57hP26DKKsIbhLZqcz8tJOcm1zlVKV87cVqDh5iOgGkNIKp7JU8eBp4VRPvv6peu3DR+ROhro3GOnpo6Cdltkq395hUi+pDXzwcONA2YjC4BKvX3JGZi77wJboSzwwPelRCe5297Gau3hHdjkNfDMaoCdfo4BX1IthlFNEHUm2nTsuiPe/rOux7FSlxIwT09NqnvyBmWQYcleqlPEreuoCZRFvXL07v84AxlxNdJM/atDmCjpmzumIoYOf4uVqV/8ZnSwV78WW0S0R7AwI0EDq4B6IaI6AUBwPrNLY0eeSw24zQ6qVAgBGW5aK79Mg+Skj4XxdPl8axMl4x6nwmnAfEBIju1ssp4yr/gdi9kl+ScGW3r5NVqJ1fXRkW9O0A6JBottvWGypQioSH2C46bepNpt5dXRK28XY0hseEnW9fDBaUMHziavWy8Q7jttulrsjOd5WunqGz20rPiwX/3fdKuQgv0g4CDqGBMamo9htCyKqN0qTOxWP5MmZG0lur+eIMwtcrfYqJujT19J3dps8mrCySt1MRdmlNIykG8cIMszw/nMlRV1DmpxNn2zf3gflXm1sXSH00EqrICj29dnyNSbIteQOqjPLqBf2QDDVVCAgcCz7vER9m5X4XkTIeB4ppqaFa2UHE05QSkAhs7FkyPf40UFGlKG8GnrdKq0ZLUk9m5jleTBwhdDsYP8HCDKRE6LS48qLHD4pvSl3XFvmH8KBEmyeyNwwJzAJQd8MqhmKsdandB6Ec1bHOw8agmVGP/vvY2C60X8AnR2r2HhdkUbclW9+ozjmxmipA1AJIZnqxg4aa1Le0RHfU2vkpf68y/rFMYgCXue7eNqxoS0NkOw9a9/WcDFJOh0Grb8zYjPgaSDENIFMCM0H5OlIqq2r2FKGkaQSMzVm87r9L7fysa4xxVMD0h7CIExLBVbCe1/r/WavK3yPhHVe3XBjyVTDOqI4/90N/Cm5KnqxFrVYOHbwMIXa3GwNwVME+38OpXvNwD6l+jN8BDCRDEjGDFC+WObTdm+5/tfm0QeEfVUYFtA7gTobiCnl8rywroMyBHNClofz+W7OhssrGuos+fRhh8kBA+Ni0fYdhKK+qCZaY0LUDpn17UUKCX6dOZccCYzSsD2iSQP74pFnhlkOzACsapdT20zbjF6ZqLgELUPT8IglaX38zP6zfdyBF+NjNf247XNtmIz4QCO5iRy/GcS8jjaWMfTxI3EbUvzrprtgRQDOz/eMnyVQVbbFiTMZfhfQLeu+j6iY0Qs/QYGFdHefwzAYuVpPhVZK/tXsy6DAioLlmNDzAu1eQ5ihCnobO+MOZtSD0+uTpiOAvPwGWf52xDUHj4zbdFtZULPV4c1TmWflDGMkg/Ia6kPHprHErwFTGoBg+1D6oX8lSPdz5srAF0RbktUTmq44+USAYYowZQOVbM3BWMc603Oy9SQD3buNTgzJ7yaMBbo/pjkzVrpW5xYH0Ra11ykiz32vo4nBg9Zvm92KHWhJm7uQJV5DMPA1JHBWBMcjz/uZupwXqjoTffeHZ17N3waXUaR7cZDs94ewlhsbQrmI7/A4zJDUZj0qKiVQhn3f3AneEhDwl6GUdCBdKY14q9n6ay58twW2PRXXPJ6UE6TUs6oqH/0xgDpP3bx/mfcCUy5oo91agCPtpTfowGZ0tyw5mIOsUqvdURDhjuWLX/WIqaPlYx3zmJ3ahTcxtC5xQgKWrQskF57LaOvwYN0lzIwz/joNYkiZwLyB7Joi0CsWWRC6SapEN5TClIisNQtNPmfwKaKYb+Hguo76RtcQMXdRZWjEJNHq8KZKeg/uWWDOW6aygLP9JDrNNW7JfWDyHPR8GL+29zBAD5FY1WZXsmYfdKU1VTLLzAHERJJGTpwKZH5k0uZrDYM8zG9WX+RVDM8bsmN8cI2wKz0Td8GEq9T4DvY6FuhMsqPGHC1tkLdxuwBYP0Lu2RvjXaxodrZhKfkkIwGcfm+lFS4WMFPCz3FwWwuvNLNqv7c85xnk3aXWl49yCW0YTzTqwyKuKWSIFJum5G8BBjvxx2yDOZMh18M2WhRGX5VA0p3eAilBsGa54P+iEat2c0lLnTrXg7fzDLJrjO/213hRmT/92zHwHShntUiR+9KUWKWRcx9OrMWfefEo/p2FR7dbNWoP/P/se7JJUfBzJixcPvTzMvSTQrccDAmpwoLnh6pnsAF37U9Cakvwb0EZzywhYhfUyAZ4oAu4R1X55yrbJifKRbLIC6NaYqZxbpzV9ec4/SFSjJKEvmVGa9tHfUJayAvrPPbVHNaxlbdJOOn7f43GTTdGGufXu/daAhuYtol2y5rFVUxlDpyKCfYRz3fOyJZEjhxizetlF5kpK8kUuEpKNWnSG9VEdmcn7Tu0/U9Pho+IZiTincXepD9zQXGusmr6j19TKRCe4dmbGmRl1cDDNABYeOKT51fHc6+d1Q9T2n1UMmkd+aiSUgNIrogqtnInezaEs7HmtmpjKttWg7ulLhPvEEnGE5TqPY3iCItPzYojGET4V755b+cNmqdG6OBTlbYjDs4AAp+ho1Iq8R/eWa0/FOyB4K5JLQ/WqwpaNPuaoufHcJMEld4peiw/7uIRZ9U4otV2lACBY2PfSUUu7vJ/iZUtvPoJmd8K/BmbnNo2iumTtQxEeARnjsHdzf1JrE1L6NGFsI7t81c5GCgmWILKM5pWDA5HO53I6aju6916JkUl1YcYyk9Hwwf/waKzGbNaeXD2d1jBd+rriDyPgR5p32kxAb41vjMM5QjUrVztISMmbVDBnx2qArnLJ6ECRGZcfK4U6LCAMxRtE+Y32MobWIYqbeJLCsaF4pCXyZjPABVmN36NRAavX8RXO80JuF2m/Snmg2NL0dSW67EVH9I4fcFSjpL73r6ohLh/V+uK3786Tpz4u9p1byZEEFVjn4eK4wBNeQ7DGhdbFbRTt6/9b55EBMfJGakrqZ4U+Fgnh2uIpidUcG+iBjHE5HMRX2ZKkKLyYQElkw/Kbj2w8OvDaxd8rzWoSUnwkiP9DB4L1FBdrrf9anTqNfPehHTBlyG9cgcQLrR8tQEZN9zuxs8BV1Zf+cIk9kSStcCODphQCbZP7NYhgTuqPh967gyo6DhJVEeM/gq2arEo3NkVtX7D7mzM4zzsjwEazeZbygY6xwP5F5NLqPJ0Hxncni2XMn/GdHQmTbQF1zee4LOhZaDlBzMZLsKXcJ3sJsBmPODcSW/FKYiVgzz7wLdz0C3bFpTwedWpIZzG+H0kpS6hOFF5yNj/xUGHEQK75qxYUFuXq2vFITPVf7aaAWUF+eBV5VbBqFcUccHNaTmGaDdRTdXTurKJ8ATxX0DHWz2qNhGP4nrYJRCKI12hvvahdfR6RlR+zca42mjybVuHEEGrU2KvnHy9+mmlQDH4jYHZKC6knkne5Q28ldgrISAF0p2u8YVTy2bGLZqUkIV6zWDXi0DuZMiQhOJwUgZQNnrjzpboxif7CaCAFdxHukA5fPTubF6aLOTWCnS/EP8ZSOIyNGpkn86BVLEgxNoCo5XDdJHdnSB0Zy+5O4NQSsoKdZzikwg0eSvXAE6j6WW27irlXjNHHxiuOY/LaFsSgXv62JfK2/O09r1DMjpxv32Y457Wd8wFBf9V6i6CdLP2Z9qNFsxcP88S7N6b5FAkZAkO78T3f4mpUVnXed/QQC1AAudBr+gg118i202+jHf4m1tBvD2iwt/8PqoAWQSajReU2kDJ91lZ9cqfgKVbzge5mUlKDSh7aeClFOoVz9UEdTQyNyjj+u7JaX9DWyqtt6955fcvBJF1aKEjjPQjYV4+FQr9Fnd8NqWavBRL91OUcILzXVselzvLQtPmmvtdhkUNi8G+O+b/qcVyHvls9lJjRGbe0YWtuq9zXA02yIjtBjoQd1vY0EmEFvb3u3xiPt9Wix6NZ7ljWQVbw229SAPrh/hsIECHTLmxKxWD3/K6TUieQeqJIfpcIoOQcgmvHDyyRUevzKImeikRzg+ly1+qSicz7hh/DCm/39Fyk6M86XNkhcEgJKANNt1matUHBPuMmqkqR0Irsee0uIofjg8efSzC4Ml6OzAV1PuydANODV+SaVqKrg8qTvT2ROpiQHqoOAq3EdFRo1QW+1ak/AYmGEVA4cF99A82GRm5mLHhLHqOSqBVNF5d+tjFko2morW+bAtWqE3Mhi2uYPJEeL+puWOoJaLV9uHtQIj2GvjqEnPiF3gSNk2kq1rb+v31DDwcalu1nsmfE1n7J39uQgliDyyoBoudkZrUtnIUrDsC6iGs/DA1YU+EpC8VYQ4iw91D0O8kJIRK0Zo3YzUzYnm6vxq+9EDAP5SWf+Eyupwlhcyq7rgfu0UcsS/cyy18bZBvpooyg1q0GNkTJ+MwtXBtDoaChHEqMdF/a7GjUgboSb8jHDJrfqRhQ/bbI62r8nHoOa6UgOaJLxxg1EhXpXmkd3Rch7uNxgpPzxP/mBdrGsygnoth1z7Q/YLYJb7LwpuGREdhP+ef4imi3CBmJrq9pWR8/s43S4uxqNYHUv9ha9RBACBhuz+S4xTQTZaCKSoDHnxC8CxGhiHczvJUTlt4rrWQpu9+AvsrR2wMvwqpTTd2ETTsO/P3JJiLBUvcs0TXCPCRY2h9Nx8ZqMz8XSEqa9ByDLoNM8PxxK/62v/Wkztb9dlxfHsl4u4UjIZo5lD7knNDevOZvFRYHhwFE22lXrX+Sffrt3y9R1DKaG/GlAPLQQX/Hetzpmce0TT69U3cFZSUWj1hcJa25OoCXx3O5jXSizjPu68eF6JRu4ly0GPmihJAcdY54LAu+PeTtHdGWaRfb6RVp9zxwP+2PoTSQm+qFhD5LkhsYuT1IwWLIAUjU9P0z7IOUj2QP4sYABt2vX5hJCVUnjOBPVGQTmwyR8LSRc2WvhlmD4DMitovW8AmruHvsuxxMnY/ybXB0f6jgvY+7tMu0sJN5r4DBEBXa37SH5PepbiAlY5L6+09qF9dbg57qZdXr+Lkj+9ODwIdoY9Ogs9QXAMPBK9sNLNDM1mFaODMVpqeBBx3+/X8BkyPofOmxl+kYJsG1PP50FDBXj0A4uVUwSXOnyDvjHd5pupMiy5DyOMVDjPDi22YVTeKKPxtGz5/wLm/x/DzHO4PBKlriUyR2fdazZ8MZwZO2yzm40RwLqezNhsNT7aqhOqWBMfTbYcyVtVzrROKLQ/cw8h9MBYgLQZ5m7RtajLhjAmwWRubbOysVY9+MbTxulvSqQymjxTj0/yGmowXOk8LorLHbyciHZbi5Wipq5e028xOnXPq0SO1Ei/BmXFCr+iw4toQwld1d5KXZJaq1eDPduqLEuVRpKA9CzB7KJsTTpdrYpMaOsIFM7Wgr9Oh/caoRAohQN6A6HSrmbUuxffYlS4ymc4W40QYfauuqpQ/JTXe2l3gW1vBU3Q0CQWi+YnGMAlM7QCe806vIrrgQmejgYb3z21bFn0KNZj8qMbtk0fubcrDYYwmBhjZezZtAK7N3MQKKCODWwtmN/WYEGctudKJzRB3xrBGIXPbh2oyOsQ4psvw2packPl36ulG2AlW5rvS3xsDrZG0jPgcLNOBZVquBKudvtx5EyYnivmLREWPn30cbkfL4RsfTwuJVSFZZJFh6UkofGq/bkz/WqbPwyDk8xppCVNz7JQstijvxEWrb40THMQJebLnzyY2q2jx2SLecaR7/0b676f5ddR3aDQqQxzS6YlPvFcYbw+8vic5SAk75H9CSsEorQCVlJSk7DU5HBRkzDnV2QtTJe9fsfqy1sQNBXqUXzv+3HDVDSjlHNPKEmNGm5+zlEP/Pa0mLR8hxOG5PeuHfsO4YAaC+btxGwKVWC9Se7tv8fBJBx1n+Kox6GyPB1SVukkNQkjh9dl8s6dR8uwRo6Ep3zrpyoDHwNvpGU0zV5/27gpveUjCyrt2ZF4TOPsS/WygLkfE2dbNXsNDXjU0kggbh+REnbrOGVNbeYAoc4ZX0aRdyTYOFzlRKaGo4MoHLkMH9FMwYlY+jItBYVbIzsByLIUmu7xM7N3q4VtOAzdBtYpwYx/5yTIIJ9yh2VZWg/uPZimDRgASUeaIeF/TU+n3NBLOkQvsf4CKuJi9s4FqpE2p0HLaw6yIcFU8mcl8Jx6XPWv+eL9Uv+Eyr1QVYQfaJcVwJ6kjFn9GSZ3uvbIxaZMwi7x+nNLp60sgdzogotqc5oVT+LDsygUDk+S361me7L2BWYFkcDER/Rx+J0tgDZ6wwKRu7kFtxCpqtt19WgsF6LzpqmDlLORvOsY68JnuZgBdo7ozFmFR6uGXxbySNeCvPKl92vkVsYEYjZ70nSsNQz9WiIy0pcd4Cjnd16gHVj3X+IIr+ZH/gTnYy0JQvVtpoQKA3yqTH8ZK5WAWFLSXjNeHCwtYmaan6uJoOWW3ktmR0n9j0uxSEniCHfobcaa4adhh6U65iKCHer9DsvpoFJxkj5jhGLhPSjJ+hLddzatV/1Ocn1CE5uZoZAMtgkhUYN5zk9+VUjJxOTjDsX8kQFan+fCSw0rK8IhXNp3dynfHXSYCNq076Pn60lpsgbLC41pl75UNjAtdkXJ0OFBP9SOFxYd/qxoACmCf2c4BNjgll3P8P77ikGQPLbKe6Bprf5RR7SLTcoLj+WEriYD+XvlnCQ6gwN09MIkc6PH+xS8JfJD7iyBoSsLx/L/1AzaxG7e0eIP2dxroERhpC6jg8arrg7XQBksDHIJZIPRhy16WjWaucMUOLtxrgBU9rezETjoCtMnBYdaOAagkVHdueRkp+p0+SRoZ4ejQaCwhOiYRYYJC7NsV73oO8dwYLioC3qILoo9B/eMud5uERJdTB+L3gaZcXObntZ43fegezhpmSwHyw4dM10xfsXF1MY5XAR1XmGR9Qz8Yrc2BSBiUUf1wSye1tGQLKtmsheBI0zWEKzJu8/tdWQ84lcWgnXo9INPwDU5XiJi0OyBQbwRH1ahR14L10g9kAYWlDK/0N3VzcgYYursjTtw/2wSHmfTGJsx5NOXmMmVliBLLHGu6G0jFBLZtUkH7EzFzorhlKhKRrLqXXlXpO8crQ3CHEcZLu9XzwCc9SvkPe94gxwonijdizLHtGfLLKLF1cdtXMFa7Mf4P/JQHiBZIRXBzCKoqPaIuvh7X4/SQdEJnxbsIECUF90ZnrLUpBjTXiX4XAc3Mse7eTXKyZp8Q3Sf1S3esZyDQl+BBER4PmbGOeQ+K1112FbEeyqQZg56WiQ0jRCUmP+Kew9A1ZxSjutLVOfkpuBwoSkP4RGNoe7WrmyTXKI6nk1Tnz0oe2Vm3PjBDf8Gwhe+fwAYSAjlPra1TtCj1uu1GcdIAm6ViQn9Srqf1ym9fPIxInLxt48mCIl6DSTi4ZJ+XkJrz2dXWQqhpSF4nNWapdIjJH+p1Opedufkw0xHlr4vORb9BCJ3W8vAPdZSqI7VxbNaaOfqhI/8w7L9horVKv7MLnEr2l2XgUM6+i5Ix58xgRlYVxa+ltEdaupD5yktPEOlldMIatEHTM9j7h7hxVvQPEbtQP6BmDdVaPz2u/o7+Aiy4lsXGE+Km2ss6828uqY4y28croxcwQBaemP2+4hEA88WmmXnQTmIMFje/i5qVzP/dynhApy5GEB55hU7+jPdveexxyrULupZB1hjyqISvKscuKXOXZUnp8dPLlTkOIlOhMu9t4Vx5PLPIDK0SdUiZ95AlS0+/1macnq6hXYYejgXigt9NePxN2PY9CC0HftH0q8httvBeLZ48ootbmSIZgK7/Wm1zqq/lUDZBL6CYC5KDyLg/WfRKIQMNyN2X432uLr/f/9AoV132hvDNWvIbdgJKmzFwnqjd8+MjwrCINW480Y/0ve7EpvtXHg4WzJv5MuILg89gjdMk86QRO9Q/YKdmb+HV6eMqRTq/oudO/E6zvH3NzGgHNz/zI4Clc1kXUMDTrnDpBI2KbWe//7iI6d1A8nhX4F+4tGki7hfsA4VOK83fdLmcdAGqQRjtItVXa3J7vhE+x0h3K+fVJpM2FZDdY7gVF9ME1rtQmyQOE+F7b6vQAUregqMnIegpxtIKRhyTvfx+DFWZLf+VUZHUO+CicH8sE+9LpldACFUpG+WMfE56X+8xIB5l+Eu4ij2kBUNYythq4o1kyIEuD1kt9XQ97gS9+waaIHokWae6jm/Y8Govgmk31Z2M0SBZAIeudbA/y6RkBys3zsWVHoPxD73jIs92cougppJ3Uxf/pQcoOw/qt20epdVJgHhT5/Rg5mNf+bvQ4LJnwSxs7VE9Qc/myZF4IFBUAom49bMTIghVW6RJ2gfXkP6ovc0THTEpxZWx4zTkARVTfH75vftaIkZptS+h3ERciwL+zFBfxojqrdRqqdkYWAVmXpf+ueckOfXPrN5b9eEwl8OJWgoXwyPM73RDn5ix09+qYTUbhIRquBAIHnO03H3q5TFdSXzP+sPDF+FV61ALiJwLttts7/NF2qhFJI57p4sixeZfoEtm0Dg5wGwPCH6tc6aqO8oe5R+IkDR8TuyFEN2w2kBdTxxvejaSoap3bQlCW4svakUIjVrpe7zCbbcGL0xSe/T3hysCfb20Xj0oFitmmY1Q+1QAbHJj3MfeeZfxuvYYoF7mLnb9sF2SPQEFrRwt08qapY0ODw4ReEM3TamVg4j3BvgKWWLIeWrMXPSM+I3hBzjUn6TbqMNWIPDWj5FBYrWBwXYB71BOpmX+5iYomjHoQ7LUcQ867QRS3qZXYnBbLy/FO2tEGfzE/rGyNxED2nvMySIIs4Fx3fZIsIZn/tCkocG9krZ5TWha4eDI3zmyCQeBMYsXlRDNsMfjEEBFh6/Qhq12c9IUp606kEY5bwbG/QnU+IAyJhlftn2f8iRL5A7v4R9oAJGU2GYjNHqZUGg2z6az4YMtQyXcV9X9WBRlaYnfVIRsmuVGDhDBIoG6C8AkCK6LdXd0NgeShgVCNpx7iacd6L5r4rVi1Gco6rCBwBfwyIJs4Fhnq8IZrURn9zhkJ2FenUPijnbIom4cDNJT3zqMfvySGt4ko2KqwoGDH25QLfuWMbcuRhuQwYKgCX9VgClxETR6DM5DNjTv7F3ysG0kI8NKZ5AZDzjJnJD4VVPwVR/fNKHpzgM8QQGSapVEbQCuiSw0xjHphp0eDxZeames1Mp9WwQ2puhmhj5ql1Lv0eYJEpN8RFa01yfNY0KZkTpYzcO/Ckhbb36k9esVXSMPl1G/K7/sR9Mcqvz7tEmdFwGaO02c6azfLxlRg6byx5y5aqHXBgH+N8X+0pGSjHsaENs0tEcJU4XtLrRLBJGIFVEe3TvIYkvc3siaU1d3xi9t7TPq1L/+hMRqojqmp8jBLyo7KEuYZeOKHFM3mUkV+XkyhiFhmwxtLgSsGMbh8fE6hCR2rTOIinlmsF74yj7IpViQkLbyCbrvDt5/yX6I7Y1abrFs7QBI3D9QnlxlwbgZHvFTKeaFKcI3NvUQFQURMimQ5M+eF6vwSlYff+7/cWpYmvPrIh9BVONzVYOe2tQdAWWT5fJSYL5Upt0L6Dl/pZObBEdo+FPC4b2+iU09eJ6vb/kc2/uq9CvCUV9KB+C/CPAJdOu7vq8wf/Yxy8081PEnm7VGsIzzoFYnDvfYTUyPhdXV2yICWljxWqkyEe4e1n+SZCRACDyiLTdzj5Dq5ThMdA+CNJhV09iM2iW1Pgf2XiLDkIpNo8ugDtNdVTMEBsO+uHzrqEI+EwMOFr2gevD8TkmyjvrYH9Bw6rkARUFwc7DRpOCIaACn2Edjv7bmiS3MFeVgdj1y0Rv+v1DYqY6EwHst3CNlpq6XBW7Q/fu+F1R20aHUR5Z1LIZ7wvY0E/w99bKzAyUjG7671ZUYF6F5+Ynv4Cm0twLZ+GTrBp8VL/LMeq8XYgzYldrklMglyWJS7iWBhdA5GraO3m3rO2AorN4N62bHcpIhG8kbvIkybnRVTEWt5a5f7iIYJN61OO1gLp+lMKa9CuaUR/y9eoF3/jHgqh6iPSadglFYQ/GTsLkzIXMTFtBelXwJHtvmQtoXItuOsLGvL2IK/M295YD8SaNfSND8zTfgUXGYQRyrzsPYC1cxWOto+YkW9R3EinZBFUy/5HWXF6WeqLcPADGeJH3U642mjV9hMqA/GY+7DcN2bpls25VizlGv+FyH0qhDmmd0gUS8y90rDX+Xk6y6McJ6S7gM/DYcoTHv/2NeKg4rjMw8TqrlL9LBcLKWQxtuJxVX7ObKDCs6fNlfUj6iRrGPFdJD+ziFknCJKgixZ5RJQEQZi2MefRmUYi5crYu3Oh50a5Jf+upvNzFAo7KhxO8WRvoqnLO0wvvdcPsaVUOIcvfZoUierdTyFyoxwnJI91KCBroEodybtBGshuLseewOL8RJP+H2Oqsca/SYdeeRtivXY+FFQeTQ33eeX3DdtS0+wgHXVCCQk/CkG/az4aY+ExO9eyJRmpeKAXose57USPZEoRKo6m3uIY0rsGhjw0xAS7X1DuBTFVuo29v3dChgu70cPjpl5/xQmrPdA36PXNZRWOszr9FtTYYxG7dHUooremnYo1QnUGWsN/xygLq9TDGLLhVH/pc4pD+15uGiALFzU4PINmfD25G8LAsJea1dQlpC1s7rkYJUQqIwFNDY4Eh0dawLn8fCol/rhUCEbEHM1dJlCBpXxKfm7zt/ZpsbXgy68nEkEoLjs9rk0E9GFFZoYLZv/4qZR7nl7qBbeALu0FWvdWoNb4hCvlkME+i5nbMafn9uVxxXlpXBlOxHA7IKvKJLMXQanWkuK9A+2VI1JSDoY06+R0/g5TPJIHfO3roljfhM9ncx6Qrk66xY1H0+2UgF+oQgm28A27u9+T4rGo0sT6suA8Jdwthg1T9gojZro33dFb5pubkZ5ZHchLzsKkibaR3DHxf769V4iImNuKKrpgMMK8vcvF4YgFx9Asca63MVyNPtp5+zXPASns3bwdmsxnn1S54GTdkB4DwX4L7JXMnQGqIaS+mPgWxbIZbFcDNIrMilEIEGFczfvcACtmReTyzqnpITyfsh5QK4RKX9ZWtvUy4bWXjsLYbNV7MrrZsT82c9cmf4f8I0sSYqVIlcUYgI782imxBuEKs3OWcogWDmwlr9TGLtVSSTlyzHUW4PU9f7Wv06gLioBSoAf5esTj3FD9kKtTKQZfTKEIOcCYWcfIk4IkcfoFGKSLqsHhBpBOTfEJ6dxkBJXCSlknDrb8XJYO4/96XFd4ThAg4/Heg3u5p1kP3QG2yMuUrty2cFQaT3cWMABIB2diEu/1KfFFSKbfjTp8aUhb99C/ZA5m7h8JWsGwT5Ml9Uhw6CmNHyRA15TyVwIsOH0I1tFeVqQaoqT7wGjyqrJ9bI+WtpjMv5CAGQfj+k2aPOJZ/zLvxAtkd/Bzh9BZPEwVE0I0DI82uWK72P5+mHKig5zbXYrQE5bSNA9/gHvSND2qLV3hLPnoJp5q/NeZX7mhb2aWf7qkF8iM4HEHQ6YiYA+E+kPmfMGabHq62QBi8sSJ3yb68iTcA4YT6f+gJb6G3adGkY9eeu7XQZiQEi2fXRSKUOj/zLkyh4R3hOAX6xhT1yCvCHT2Jb9tAzSMxe0RFbM3g6b/VHgP8nyZkt45j1ZYBTwOpQIaFU7nU5focNbiclNOds9b6I+FOnBXwyAf1ViJPMKBBofmR8wg+77g5o3CiYUzQ+KdNxUo14XQc58/GKrIq3XSIefM9azql5sX7KlTsU8DGT1HlHIYnd10cJYsAEHoN0mLKcHTySHsjTFesKWsmK+siZFXhlavE6F44mweXOrX6FBoELRrvIrsst4OH+O47VaML4CK/cNrjlTodfRr3u2XZsHCcw9kXLGX/15sm10DYmP3G3387x7LDyVoplrs0pzIvfcy41eb2Ob/wM6tQNLxQKnfSbL0eyYL+RWR09qeHT/lWpCFvcISYlmdF/jMaIWDyxE/LA1tguYOSiQtSqHfgqHr1n/k5nFhnUBnU1J1eys/8qySmWwIplgfD3uNcFHlg6trf2B11Om/f7E9onO53sWHhas4nNuhBJsUn2OjOnOAFZi2dcAvexHytVxIdybjHcEdXUcp0jkab19hwZ0RddTUGjtyulBmpbfGD+4d+oynTEjmMlYS/pfoCyhEk9XbgbBf7wtFs5qleFrCmB0NrUYZLxmw+2wFqYEUy2hYP3ZxY8uhRZeFXZfhOD58zGBx7lo4yMjiBc0zvOGqVQm8d4tk1CRpyGJOGJWVU4EpHPxqgMP6hV7f0IxJugziIEJHavrZauRXe0/THYEOKpl/a4jm/fah+oAzHRBqwetjJBSjNp5LaZ3ZUNQElZJBDOF1e4muumSHF6da394Cvppq45QN1B2wYBfbx4Y9fnq5b+heTNTCmP9XhMQGniDhmdhGzfPUY5YPvTUhEcaaA2ucNDUO/xvaUVhXDIodrM/05R31bnFkjUjn34N7Aiuagl9VB9SjYsu83Ws9eoevaZVwZMC4uiZko2GtNzZCyMHRq6GKhvEGBiM1gLyvMZk3eR2dGcn19YX72JnDBY6RWncG7lGAg0YZR9lyoCyQ13gtnyBi05gPlO9yOeIYGqQrhgRpR+pAvx4czdaBMpVI7SgZMAhMSsdPUEQ9stTtwSabBmrln0uHsOMhDvi0bNRUWUmqnu3eiLgzk2XKGyTaHCe59vZZcmDkk8aOO6pTw5H+DWALBPMcCOmfIz4cF9E5zesXbQkQNDFk7vlnAcetbpid+Ce9MnTb3Clhv0lL7lyusJYCpLpalVXmQ67YNR+IIDh9vW7XeWnU3FFfdnO0yqCON1josSLVMTTaH/T3Q7Y+gOUofDwwXaGyGRB+4GRC2kk7zANlgd7PmE5kXda4IpmTbP2OqUJ/O9EXW4aslQR5PtYy3tNMamtk4Lwzb6WIFll7MVBneG5vPfEGslblvK4unzLLIvceI6WxhiZNc/nr10k9nn8ikKPz5jmA9oC+lWIE8QR4XYTcO6WZ7VMORykmWLBbTE1NQc8/TBpYSaYjlsyOK50EEwZC6/hyMiltFDU/OcVfSs/4s0Rk68qJkU5mIFxzQcySQSzLKmqQzkbb2ZlC8MLMP8Tt/ui2UK3r3IoyOWjDNfAV+2/iYAbaU/gcEuC9PqZbBCpHpobrsMSJpIpAbdk+lZArMaQfdQP2kY9Krk6TsjNb/ad7Ghc/HTlJyxRISEoijGyuLhUJB5Ch35PrR1oibmRE3vvhC5cWj/AFFMlliT5ELHoj9ieMLEG0BOkVRUXKuv2bfaF8AdXORnzTtMfXYqB8UVY5TvybX4Mkg9YXaiDDrp7KV8wVHpmx3MIlmRkznG4Q7DbYNTZBEi2yxQfQW37NrAOyCP8AXP/EHi/BLLFg/ip1tleZLojlnpdzKgSmJyi4IRDWNifCtFxTRjzh2z9DNa3KUZLZnixrksQWHwp2gRkmuu7HYPHYIQrdjih0WnNb7CL7hFDLjbfGaVLQh5Fu7SHtZTqDYzgY4QnM/x2PC8v6+qmCAMbOvWxZOIxjgpUF1ud2/e41K1bJAXPTZ0ctJLsigJDqNH6fNsXGGXNx7cwJPgP6INK3Qxc3ylfv0L1e9m37k+CqkJJTN6MvvQuae8WjO1l0JvBh6yHIrZgf/Bt/DNS1QULgHfUCLdwH6GVXxn8JChzrTEJL4dTZGD6nCwPWD+eeU/jxNc/wph/HYngIZcSTOnA7ZoHemc7pUYXx0Nr45Sbce9CyAvFnCzoIYbXxoDXYVwt/7sf509VEfvoLzjbFrRKr4vntb5dgeDiwRX6neO0yQZsOSoVjVvOOSAuP4PT+ezKgOTL5CMeBFh5fTyCTneXHNexLrs1pBpLHH3kmt/Gi6938ByjJyGR1wM7/rvRQQoS1drQjQ0vefqIJKlavxUAyi0PuILAyGGfaeCzz00DKjY1cowpRuwwf7rYPEZOByjttnqj6EUZ84F5gZp+4HJmTpMjNq0q/lyKFhwHKG0wkVp5h+gESx82VKGR+mbao8YOh23JnEy+eNJ45yos7d1gFc6GC67dt+OzE5TpAYicEpe2YtuuIHNt0hQpdLBdS8eqx9D9RSrya3h16jYIp9Ogfv58USTrQa6bOJgC6Fuw3VSohoUOQpQ/XY+PVKw2eV8Q1N6yxzymT6QIiLizm3kcA+jtFVJVj/IlTTGr7Tj6P8fQmh0ag3AJfRbLs8nmEQ1QHGUtaUv9djTgKNG5hVLyiujHLL77tNlHcYLwqquU6Z2V+WMoDwfBiMDqK39/tNhs7dXQhQTHYkold5VgNmV+WJr8ETyoKTHTS8g1RZL+KCbZw1LZoGTgR6eNleq+XGRggG9pbw1+WcW0jzJpvQle+pDWTA3yPaJogeuohg7EijR/48Se6kjwNpGStelAHWNOtzrfgmNxtH9r1eSRWLz79nRNF5th43Vy+rZ9FcwK7PlfJojQmk6yDIgDVpS2IJtFflHkl2pdrA/ZK4Grks9dfURGUNk54HimplKaYEZX5dE2M9W/60vxTLBE6XeIZ01h4YiHBHGMX+eAHZAHpSk2dFZUbQL/ylbq8VdzyOCnwzB532xAsz2XqmJFNJCZ6YuvEpyZtLa07GuhPki8MeZUI63KN4jC30SSX7/bWpsMyfpqrzmMI+cCYlmRUB0Mu4kG/untuIlFzWG2JnuSThOvNB87WuxDF4K9MPLtApA2nPV+2yMqZtQu/5eBgMzg8/6FBhddJz3kV0onK4Jbo71w6dhI4czF3ksh7/wVe0vAH8B/pVGb1v7xscPIhg6KL+hvTtq6g1+kCPpBURUhkj6yrfPgZ3/Xtc22MaQJp0ouI8smF0IW7P8ZfkCNRlxyoz5rOlXJ2YoBYf+hZJACLpIW6Ecg7s2fptIWtvuAgGvGV7dSNLkYv17ghjkJQx6tLucnApd6V56PAKNj/7Yyi6MOC9uwvXC4HnQSolMT49c6/5ZRIfWauOyw+arQBxET3gqjgZPldHDuhPDdYxffuJ1ityuwa75OUwVzCfQ3DhhKAfuieBFYqqN1i5usxjNFwKad4V39gjt2wLjcS1yX59qz0LCyVW9KbSYU9A28hy5DC7hdtdQxRU9PX4vfg8R4KZzpT7OhJe4Rwnuob88KsYJT3Xdb5uQj/iI2b9k+IAL2RazReg2nxwi3ia771jH8mWcStAs1NJu+cMgx6oarFqLe8b1HSRxQ7za0WtQhVKdhOSo+l5MyUbO7l4rtMf8vOidRDYSBoESyiDirZR/lirb7mNwOHR9B00U3KDHjR+/6/p0FjHCVpWNOzJcWfIRQkZ6XmbdXoGNbYi+/6K31kVQSpEiFHlf0XTAzQKDh03BJv6aoldSXInQfAEINY34mN7TGvaILI1iq1F8qQD9LdUyM1y1GkmIcoViAyaqPmTF6srtanuyTM4L1D0wyuj0tEVAfuycGdwEON4fnsCqlt5T6S1obgnUutprS4s5WpzQgzd4U9TRXJErli2+o2bS7A/uISBZhgh/679K/zLda6gWtuZwAvTGNdCbAN9uwZti3Hk9kKWrIq/zDHz00+fSYLcc5sgjgY5sWd/F9nGirgGojICMTxUzGmVVyjsC+0iZ7i++UKuLA2KCekIgylXj+DAZVKUFgBgXYW5+1bwyASMUltB5MhCcaMuivyyhZw3MJ7OjjmJyH+sH7zwWOwFaztw+KQpl6ETunGZ4wgXDkkep9RDpXHKdERy5R1KfOfi61l4kXklOVi+UvIPbGuKxTqSuKxjgg5aUU0X3V/EKdOugbYyeYKlYTyfe6Py6u2Z+A0k4k2giHiUVqkoC8MKxTXxmChSs68WryAMhUxyo84ORdwTONcLdmrVJbnyH+ugmyyx9iKEPADsMijuo2U3uJDa7Wnfr9gcycQq006VxIwrhk0FV/BDjqzquNOsEJXdrimGw0G+JVU4/5BNk+lE5kSCYz9cOOfNBtbtPUoVHnu1jfPwwGlaTc7GUxPcDFnEgwaHh5znVnSwPAAdXz5o6vI34Epz0NKfx11wmUjfW8nTAn60/CwPV4XjHM2yzXbq/EA9hUimpPyH+gMWQc8fiEpaTtk7l1iADxvDO8EMdlaQ0nXdXnhCuCrsoC+Uvlb9IaXpTbhDyzTzYYUPRsJ1khYU6+UMPk1YHn7mE5V3/F28Yia/wrwDdF+R6TmVzsqudzix7NyUGk46wXs0WaHIURcZDicGiV7SEhoVNTU0zgBoaSd49LNnCcmSgWRMUa0JKdpcVnfovdDcIyEcqOXD4VeP1baW1O5XKi8DuZzNuEL/drafxlkHz2RIla0Jp8ILNn7S3fdeg9UhAx9q0+SKtkZq2KsJrdjjyAjr3GfTjVIDAz98414NxYOtS7EWs2ZaFK7+4WBYoC5Hkeq4b/TVXen2W5sxGUXGVbea0PfIOieEzqtacY9iZH8JBwrLvaO9mQx8S8Xs1qoQA5mRuhLUFIcDGMj1wJK/K+vclB5Bl071Plrpq5+L4WJ77f/haemR3QBDVN+DYo/NMMFkqokI7b1nRwuzDmI5dEx4XMlGANd6UtZZVQ12+CHjwiLfAM9yPWaei6wRjGbxBRZUWxyt/lA3BanlqVbrdSdMBG5p3j4Pa9sSfYjUr77zB9h2qpnC6V8u1+XFmGBTP3y97KCCHykGfB6mbCNng2OYcDfFxSp12MaqtqOwry+xB9gUkHlnfW9DENAGqcYOxFOWwZHAJEeIuPuyLr3pc8euQGkJA6K1rmHJDoeAl370hmHY+Wk02WBNr6bOj8owlbEPXZobBQ/xU4JVN9l2GH0nnIedokXyCvBiq+jOf90wECFhhyXgaKiOos+J5t5i72+cySCooSeyr88ULT2mwUuMCLDw9Pty72PByiEtatpiqNeZF8Kladg4jD+8iY+w8ru/PveAVmrABMft/YevFyzmyB1LNidUz8yrnolKmitwK2bPJrQzSfyMg7RCZtnj801QmxB2Hh1RdODJ04NYCR84mkyeVmLrySQsPfWBiZawIPusj3W803YTrCIFZh55a7RhYSAh5uolGsv0TMC+pfZ8CJFMfhrjIkPX4iPlpoVij0m+1EDPaObMhssohxiQLjAb8un88eH/6Z8SnJxoDDY9JjIkM28xe9G9BMqE8CdRizNqXF+yzFoq+i0JXmGCunk6mGwVz7dw0Aht2yZLXL1jgrrUpP84ikBVljLiJmABWcOUt5aq4e2FLPP4IYwNw6/6kBGhUw92jqGvzzSz2IXFoSGkFThCZ6Hdi95k3hbTR+UyOtNXxKf3qOHtoG1+tO5u2H6XvCe4OZ0IsSdV2C22f4X0XRjnoLI9dkAJcmaPzyLbgrWgj/dizWHsrNz5PzGCCZ7zywhZMyk6RrEJ5ucZ5k4Fosm8+U94ZyJFHYaHthMhJSLgoHd9plpggxNFeaBMx2BdSg8d0qM1P9s3xHTr7n+uvFsfU5qJafAkyfAi/gC+OLxCw0uMl/XJ+id3bpdG4VxQwyKvZaxCWrPaRHIy9KcdR43jv9jfykGUTzB9KjyF1G0SkyMHMeY5wgAmcEp9B8ffD92GR4FQExXAD/Rm70xyf9mrg0HowJ+Y5o1trz3gJx6Em+pGPt0PvCVSXsmyA7BLMqIiL8iKyvmFzR0O7FJPoUD5dZJ1eKn4tDUJJ4Umb72XTHqR1qs8KsHPpu1Bas2jM6FoTMyoX5aScTz2RVJH0xso6SkxxuMBg3uUblz4fj83SnK1GADX8ZJtrY6l5lrbF1/ZuSi1BShVAdFnfBB3Sh1SW4KQz2mL+Y4svWwspzeGp4W6pTFKdMDjOxHzkJHkAfLjLjqf+T1Axa9og+Cl7gRTi70bSWjsQM9F19HqH1IdJOoerLMQTLpuVpFU//G6/hsxG6sFsnzMJ7n73SbIizBrcriqJQot6sKe+uP1gONUVuBIPlDJA49atkvafSdkS4NR+zciAFrwoHjdIsVSJKqDxAVrM15uFJb4cUI1Z5j3Wgo4gLqLZDMdNtYKJ1P7oBTGSBKZGTqguAYXj9FtcQ4sSbuwAvEKj0iSHfGzNYpAzMhIVEl+O5tVLe4s/3uEd9Gsrl6bogS5HKQwX3XK8Vnj7lf+5qIQiTSzRnfkEpdxxgU0LAZG7OSxjiHkVD2gFaZ1GjKhIedce7dFUwac8qA8Ut250wwH7O4rKHFECWEhhPfyyNNFFWeFrcIjCB9QkpXuz0U80DXFirexggv6bCvxlzrpYL2A02HykHogeIIum14ATyzZnKSfKNZqYUHkFr6qN2/mPO1WK01C9CpwXcl3fLEficn+qMiFNH5a/JFJBAF2ZZWJ5EP8mGzPCF9CDlr0z0YHruP+6bAUG47CNw5yDdR0WDTjq/DqDE8W+/fc6iTB4r9945YbHjR76ZqoOFAkp3KnRniRLdWK5iKvLCCH/Jf9vzHnX4LfdHlAiEucOADd6aaTJnMDTB0DnLoW9pvA/TvJPoH2GYOwUyBgDkGv7VLqRPzjz9nIWylnnWqIlm7L9YRAuucHIleKaTQCeUrXP0Wnyp2nmBxzeDiVOPsap6l6MYLHO4xg8HBAK3J1dgvBpIjcYDKZexJV5mf8c0hpw5ODKTwdkKCeeTezcPXh/9nI/FlRcIYy8sH3nKCQ0EEucVi+uinLNXGTmZXSuB5jYC2k1R6X8FYDLSs7G3qg+Wa30/SZZVsN+vbIWPDRqs9HMz/V2eXRrxClGwzMRZTnpwuqrD1GTjLUluOf9uPygJGxe+/EB6Ak5UCCsCWe2GLD5iZX8ywqGyaP9CGKOOsQ504tSVjAMPPpKo7Ex8LT3xYdh4QReijfasLvMKd8/bu689y+WY+S8IO9LXV7KYzmOOycnb7imsjeiBPCZgNd2Hd2fLIQOaLorPkKjFZcGRaNO6lp+pBPTMvw9QIbYuQZBlhu48VmV3i/3Y0m71BChUWR3cdNSS4D96YC5J0Y7ZFqMHBW6G9p9pf1EMvsoq2dzX2wSvNYXqdP47zyePLrk+nreb97cBNao7U34lHDXeFQ+HqT8XvcE26g42SyQZmHFRlH2UZ0kohpcgm7Li2wAo0IHMre/0XfRV0HtarB6og11KC3Z7/RUcqKzEPA7ZEJQgZNgBZE02MFT702HN67p516Nvqkm0Gjx83wQdQMeqxlml8LDK0V5SdTdnatEK7C+bhiQ3CLRBupVuTeGYhJY/BbrqiE1SY1vdXZ2SFuvNbcrI6ErGJV8/qH1acDEtu58Cm9IYXlR4R//8FS+sjKjiIPcuzVQ+9bV25MODrRYTzxFJYbLhp2Um/HKOncgLdKHj7tOrMZfxR6CrV1qRAGh+vD5dMMDkqvh3RtFI8M/B+95gOm4879zLjARkfVycAOqjJdoBfgWjWNsJnafTkmc7B3nIQv/Doeol9zaGW/DlpeEHHLSCVAFpPcoRFbXqIB0NIfCnsKcK8GmaNVe1S1WmDjR9kV2WjYdDpu3d+gX3edjZ363f9jQEbUhFXtuRXOQv+gmYCubqBrqUoagUdP7xj0HIFEZg93/KZ2CrZfN9t0A6WcpUJBI5WLyoLnqf11jJxzi7XP7icTGifXh8HPdPwOvmb7A1BFcfY2H1yrgpQ9LL1WPc8f4dqfuE91BNq8DtcEql3/06rGk4gsNyWI77GnH9IKwUsAFlrpUmA3zzUPojorig8/2Cbd3TjsCKM9wxliCLyKPngKsM1KFkqM6bMFtyxYYrU2eewcxYM6RkLIzuCbt2tjjkrWkSVoIS5lGaeH9ACsgsCD8uBJTg2FG+jOXwTTSCvGIWOiSPmrIKKcqEISVvUcMWhHEeUKjXTMdtBmPl8s4WipwTYa2j7rmaa0RNf7IXAOT77NGep/q0h0KdWRo5UPERTufgAqHgtum1dZEPq6OH8ILA+nokd8MXPhCko+zgkNqNlrLQew5ugiVBI+TSaF0+Nh/0lIpsCoBQWlDacVD+Vx3x3aSXTbkp6URafBo7r4W0YMJYL0MnwFM5mzSBvH459mHAZ0yzT09dEXgjVW9/ggg2LxRO6yGo5FTpGQS5EwMSjG3crtd3U4X4CO+KX5W46TC5B/X/DpEipFhWLaE6rpYO0r44KwsS9Ge9H2dfFY3QNvXA1sWHN6WR25HgQ091u/FmxcmTXpvXerH0b5xRi1MwmGmrK4ZAT1TapoD8+smzXuW4xfFWkVDOL7zk9xNtB53A3+dJrIzc5OTB601UXSFtQkX3hWaSnhB0fIWaxp9w7vGQDYtDAeTTDigrLMhVNfLUpJcIxhrMjO0Amicb+Ubauev6gApJbByzVQRTWq047GGRSYgxukHnlk5+xWTYTi31cQQCJ9ILZRJ3tV05M1AIgNeeDW2H8IBJqkzSl9nnKSajGYOD7eMyjHHWbG4SEV8CvAH8Iew6SodPSlX4spOyb4O8XdYQ2bne98jMMolgBIbc8j1VfPhmdPcqVcmf5qMjZcC2VzGSMF9s4863hYPVGq86Huy5cmg6zBz+qDU3yje9vmEr3yJ6kZhF5z8UdlkJdjq/581O9VuCR2B3lyEAfQoUZot9HdVILawreyRxAy11JlpE3UoO/fi5/5omkUs0A7Gvb5+bsteFVIW+9l+qR2dINow47smAidv0bLLEr/yqKcUanjvixyzAQCM5CVzq0r7rDR9M7wjLxBq9eBWRVmyK9TfSJqXHjL8T3l8phqzWGZrkRC5oiPO6C5Wf59fFDP+ituUaiEqytebX0Feyu7U5Leql5gBMTdDPsmK7KUOyA5TuWxjGc7dN7kJKEYpro0VWRhjMArMIGbutu6vN2OSHb6nvd508S4Q34uCRKu96bSAD7YHASNVhzXv8N8jroYf5Y7E9s4wTpkvo3BZkkWqpF0M1vka3jjUC/JuZvw9V8avX+D9bciICl12vr/bQJxDe+TN9MQwDJwOe5HRWZKtCtH/1/2brHVDE381FF3JIILjZf20UTFL4MLwmZtFv3M88Bv1x6hEyoaAlZ5p5QEWzlw8bJBt8orARhiododtduYtJBSF7octT9JzbeKdozaif0LBWL/u9RjbeVNLZ8UV44Ye6Sz56Vn8QlwftWL01WoPryii3ZZ930Zx6Ins/HGvGQmHAD+2qvuKQAs8Y6ublb+Dvhp3Y2NNMjsuzOvb6m4YtkPzbhlctKadex8tBQuo0zhmSxfDIZm5VnEDdG2vZ6kcykYFxgAz3wrkVyXQnwxyQIeYMIHQYT+257jBWD0yJIiC3PqmohMzTC/65XVgSsowG2kgnlR7pYY18nBQ8aVfJ64D79rH2pymM4xMU1Zk/OS14XiDcldhO0c0RhQxiPSY72XYxpiaKVYmzOcEvI1PzQa7+LVZ6pBIwn8ffWvhqa38b3IskTs4RBkYs9i+i9/AqdAQg2IOeWv2fuo5tEcFyefI9nATJXQchbBEQO2Cj3kaBe2X+81o97B22kYSwjOkgZybf53qZFQ6p/N0dL/VnuL1cYTGi8k6rMpkKGx4j+Mc/fcHUVNXTKhyO10FkvHiN+qSbJGepJ/aLXoLZ8RET0Bshv/4hAQgzeS7yl0n74cedqdnmAeHmQ2CyXvMM0MWpEvA2ezZIKU+WvUSaGpTt1kvMloerqnqxHLfT01Yh2n3iD29EWnrQsyjedi1I5SUgvQKBM9G+oAai15cO1con2QFz3UK7w7ZgzM+vPmbk2QqR87fzlbdTSAhrLXzqVfLnWBA/4+5aC+0BRMZ6iX9lH3QXtKU9D01K3HprdilL456y5lsl38VQaMbz9hk0LgquziMY01Znz2WE4ClHG9cF/e7stVmn89oNFUE9NZ1RAc97KzDEWHLoKwlCG6L20/2Gj7/M6PDhsvhY+FMzYRg+v/0jo2gPT0UTCfaLBDRVvKQgUSYPMG1dr6ox7ohepBUS0msHq/V7A6Y9WfKDgSLatqTzwhOXnuXAoFc1LsdlV/Nv7XHqg5TAohZGa1mOn44SyY1fyPMCxL1QmxvhBC7mxDyj9DUnBpbjdAzrBW0mUzZ51brDVW3f0A8oKL6FYBf0mwK6YxDMJogq94OPgpZyKHKBYvJXMfs6u0pYnEn/jPeTVQMK6uY9Egww5setjqwdQmwi1ea0/uoNw7QKPorCWZohFt4VB+HUy/ObjCDdxryIg/y0wXGMwFyftSyf0v/ESOVaUNOHg1aA0SQ0KOwx/oqBneMvSoxZc7SqvQaHcx3ZLg7I0FQgQ9799KuVGTfGNgWvzIMnHqMNnCyCLJMNoNQK9XA4Wkq+6tVuCUREehKj+szE6KlaSwgAPfb6JeGqIyBrjJK/wNw2yPaYB9wHia3A56M5r4OplAvdVjO1vrsc4I8LAy1zqqpo0yM1hfixHeLNDG6ufXaX/4mWxYpqL3hBHpPbnox49P3jj/wGgdZFaJe1JTer036xd0Xak5qCI6SV86xqAdAChv6sj7ESw0SU7w0leCi/08lfYfucRQHdzjO3JkA7lvHw0ouMCSCweP+ms5HlStT1HLlgQ/pkLQ0HiDkuoPtTY6fDW0UPlH3ebKJKJsiIlEwAnWQ1ExfQhfs1IRdbEO6sgyC7u2YqSye9WFoH3s0+d4P2X78UPcUsRitbiSflMds3+5ixk47wEAbwHOouv3l0AUb9zZIP32hh+8n3fJx3LXT4wqErJXRmufydvyJuKW5IkA+rD7B5y3hJGUFrf+je8x2WEZ93MMZZjKF3R4hY4E82J7y0z9znWEXqtnGce0dejOBkrf6CbP1VCh4ixhRvmOXO9yA0A2XQqeWYNfk1eUkRWlybRDBiE5SOOtjudxOpqC6Hv0XRqdL58/dsrEItVoppvb13l9MrZRKzOe/vtw9JP9aAkOa7ra6MbT/3YE4LlEJ5ticKWKe+rOGibg+N20Vx6Vg7J3byZG9+hIpULnZWH4Tq3LmlMA+oUfgAbbzPl3twbDuQozSElI95KSsXaBWevUxIWPQdY+4eolMlTtLwn+51SP6BWFEiioYy+r2Rza4OqKJPMbx7t0CZCtpMKxYQ5JCowbAH7J4Y3Eh3C04j1H/2a7qH3cVo01mg0KjVVR59qENmLLCnQ4LNMS3i2XshEK7QAIvi4D+egZPpMUywog3s+tqRiaGXIEMFp3rd3TuvLXVT9tpJGxjgQLGMKXmGL1MVjoN97by2NaOn0JoIbOQqeBIHTVbBYNON5DD3XP+rStPIfVbuHd+90TJpGh8BlfV0dLneK2wDMnndVGVvQLhvaQxu6sL3XsvtxmQzeFWUSHLeAlmTc9yNQKkXtOJWS9faewS8yotiXdJQ6EI1vpVOHgh46gljSllVDRx9qlH7i2QFU/dKpaQEbpAFUBI/eSUGbpgT2ORGcUGXXDWjQJQo+nCkQVnIMRUCP367os5Iw4Rb3LDvOi+/mwcBozzUa4WkjVcSIURKO3RTFCiY9j3O6C5MBS6Y0WbBooC0nOzhKxL8xMIIaM/tnyEzIdlABrz3f9XlCiQ0hh+C7/bNp14eUvnjcHWjBOSw8E7BjzeXkRQkpIuZSOriwZ8PiOLZxCkXFOQ4hbXa4Tu69lccJ9Hd0F1lxkg5QnAhhfx5WdcTkBH3SibBUMCLPb/cYypz6s4GGDMV5smYibldp//j9gbCEhqanpxLsoexOMik4SOt879z21iz+8V3wgG8CicQsmxcsqCc5QUqOZhnpO4qAFgzHF+noxN835P4xf5EsOcPvYWwtzK3WEYVGy5tuvxE5WZB246SGIDgeC4sMge0B4p70Tse4b6NjlPHW+90GmqnySqY83r0ilaew46qmwi4RzmOcPehbn4YPCoISjQ44RURV++dfU53vcKhkSj6cWuh75tdSSUNMysFwoP+lN2gGTwxOfrha9wWxDPpimhEBVrt6dcBIvdoUbCLTDQDZuUOVVhZP4sATqq8z7Ai0STnGxzKmAHG+3I+/tvrDN/OOTHwR6W5aWSRj+M5wmS5hfdvimlus2z4pE6RV+l6scSEX3XjFUVgbSuuufln4qZfmgBxNvIZmkPtMh4WHAtuqRVdgDOLksqdhjqc9jrNVpRsYL4L5fXaKhNXYNJfTorxbaoSpoqj6ZEp05xsc4y4Qryx7BRs3iYvuHRbCUsiCPmmGdUPXDn6H7woEjiz1YeriH6NPF5au5aVrtcw0DvEgLLKMuVq6QvzE1mu+x9AFhhIEE3jVvzGWs7x+IBGJ2hfG8Kb57q5sDsPmddrc0s2doavGt3j59SpKkbETAVxcSwwHbpAEsYTNPM1KhVl7EPpQp+gNotyPx7hI11xG47CrYE7+4xlCFpaDwvf9FWescjE9qNrcgCXvSeme0GAOo6QjsttWQcRguwWZb6OG1VPN2xZcfyUeEGLHhPkrziDDf4SHNaCcXXJ9CtFdyRMVueZNWqaoSKhpFI91MMLSXju3pGbSzJlM8FPf/oxZbRADvlZZCyb8fbb4mQVBZZ3GWV4hj4PCrLA1qQvEqs9XLsRnoal9WaSQhWRzLJmCurnGGRc6wxyAAejp0pAR70k0M8R+ziXphTbSz5jU2xp2cFe1EhegrqPqjFAtYWbYwsm9X969oYf76RSVpD5DfI8iDfFILBkfvnZaZtHikQ2tfNY1T0QOYafZ+dfiQjWZxqrDxXDWbc/jYZSbOzpgJ0HvC9wodOgTk5d5d9dmNrnM0LH8bvtI4zgktUZdf/DkYM10EF8yMhbFqvpMTi+TaLBUNd9aLSzSGAqu41xsKxsEYHFPhxozYZMPCafc4U5t8Ja7k34czb9pTsN2JFnwl8AmZSpI39KzBoEcD8fz0CAcio2KlaDIhPF8V0HkEbwc2c0mkpBazhOMI1d4cxnKG15nlJ+haP4D9g/H1z7jIEHS7enL9st+r19iJpqLFuJiKD2NT7LXyBzaAcFxIJ/fo4roeZSvHUyfgqUjSVcPiszEAuk4Fgqjxih+ln6TZW8b5sbDIvrB1Ul++c1B63XbFgHdVJTaRPzIXeh5f5u+QYvfa7pHyQV0ZUIv4SnfFMvTC0g0/fdaaBd9rcpxu/CBpbobKZgCIyVRDZGdPlZs8UGyu7+Hxb64E/k0YIIyG0d7ZSIcU1dOwyAQt25Ow5B4W/oUhgU+Gf+qB/Eqf+V11+GylEkiyGag2sSabnAwgaqTr549u7USX8FH6EnKLv1g9jl2zIU7C6GM3aeDn8kP+9aBM0Agrl165RV4/UHaXPnrBjs3YOHlrMK9jziNkwwt6+rC5FPPvSm2uVuOQouD4+Rk/8X2VoT+8bijB9PNpfsOsNhiSOVgntu7dzfzJItraFExs2ylPt0vanTgZJP3SIxPvZsgaDSBNmxIh0KPLS+EZkJ1Xy0gY8WVOZDbYF9v0GJta6+GUy7ek8lisYumJ1nyw90NF5n7L6H1aFMYqA/WI2COJA7pWaf9Ugf5pniETIJNyNXtonwZOLeCG380p2a2m5Fs4WDJIbVCtkJ77ah+h3HMvJJ0fzW8OXfnZDuzbWB935lP5zr2+vOc7CL44LjNt8p2deJJKd+d8n1mwKwxWxUjkxJRVlpIqwq1a+Sfeu1oNGDaOXyS/LVoiWAi4/RFFK77j8sVBWyTeqc13DCYWKdEbHTgEcIdtBewm3fvU99V8J4gYLJijdis2O/D+3FBz8kG/SwAXwjzKgO1TmXuA3syLPxxfnEUxttkUPpzQJgAzcN6o79tpHr3QWX3TVy4USKZJPX/G7/sFv7TB2RKaM9LvG8518UTl/oNK6/mqMpSOqsv0xRVzNjumgamqz/e3LG3e1lkrW5SquqlrDJIrN90AProjO2hsva2vAv1ZNPbHVfvH6K8KnMmDbXcZImS+YAXafdXLVILS/Q0MSKuRaLPQABT6AsH1SpBlkiSLXyhT/gT5IbfD6Z1Jx0n7l33o2uGW4lgd8BRn8WUeEHBHEn2SCXVQwlREQtvN7iSC2y8qSngF4ytc3vgOucrGccauebyUn9sdKmkhMom+XHRGLg4yr7NW/ZAq8UDCTjimw0unj204NYoihtZTNdXwgmCpqzA6Y4a3S/braI7FEXELgpjVSnB+dqkyFq3Tny2G8lAz1OtN0TZdE3wgbqL8XtsE5Ut1NayTqmPNmEhJVC0f6ZfMop0HP5VawTxA+lq1XoeRAoIGH0ojuV+9O13sh2V2zoxj5jVyNGuZDtqZVlEeSIRI05PVi7nZfKw+EuT5YTkdX/qnx/AmQXABJR8mEbt5A8Oab2RqMdG+P0zvDI0gODnGDSO2w4ZOrD1zi5LnYaIljibbOMhpDWcwsd6Ry5eUmiLQ24OpaErO6a3/sYLybm9xOJLqfn7DNg/5SKBxEfKNyyUYP4KtkSMQI5Xo7dHcIhqH4l3CRK/gB7WtFU6bj0mReNJIitL8grYbUyZpqDuMDT5s5WQsWjOEmRSbMiH7HIkEIPvRu0WxMnRCJKjGFWdlKGqK96T7jlsEHCjsPjk/9VEQ4W5qB2tRAFGJ5YGgbmyYxqxGxduvkNdd3IZKcIbvtEtH4X7aHeyV4Dcn4wkEzUNRRhISM51Av5I1mwi2lj3DP8d6K9iFzNVDCSb+eb9pBu+SEqYrvFC8WKSi8OcZDj50KV871120hgz6n6OZy1KOh8OzKNuCKFt9mVlUfJKzD9gcuL53q+oTHGGIKFz4+4/zLC13N3l3y4Fn9dzM02uGyBGoJXmF3jrwW9OguOsh1FVykE1suM6kC/e005VRngkgcn29tixbfGSx7k8JzTId+5wTXE1HgKXCtGlwA7L6FxS+RUGGP2az1Em91D7THACjjqlVdoDOltQ7Yb4S8n4kG/m/CvtFfQB0e/e/JMgICLGKds6v5THENB7WYOdJ0P5s3GQzdbeXjUAG5Y2WCUBs5LZ6xDZzv1L7jfUHqBbmnHW7U4g+UTYB/tW7B0Ya0JAbpzWFSoVQH6CbY6q9fM8ccelwWdxeWdjZm+TcmBAHpje+emw8T5mUgl7Omvks7D2xk04/HjynzVyBN2dI3dBgxTkB1keL9tMN0WgyjY0ddKI8pigHP9lOa8hb7F2bZIa/FqS6JJPPHnlyPbVl+weIG7j4ocmWH/OkvaT4qtcbnafk2ocwOkjSqUob66ehit1UDMwKXreD2R92MZugTHNe/PWAZesANg9eBbm2p+4kqK52j8MW3AhqaffDN+kK195DUM4FLVYm8BQhOF+OWoM5tTD8LImCNRenutbU6qRxpaMDXCBU37/K3Y7eobcg/IaZaBuw44FteI67Hdgufk5VqCDjlK7jDBUtVq07hpPI9ymWW/m3nNLQlusNGDSBNYXOUBDRWNnHira/1eo9GEwVgpXn2tG1PUUxT15p/fbfGXCvpsj0QlzwErC0ge/Oqlsh7E0QhpqDAcvlBJOiXDD/bv01SkM269rmghWHJPUbmpq4trj7H6cCMXMIwWgOLaTXR0w3tamzJpReC8FXDNwkxSCbmg/ag17JdPyptz7mR3k6KvXor6tFCfEv85TW7CDWLEap1AC12Ym+LK9/CxdKPnXz9Qz4xNXGn3sG1wAfthifQfjDyiCnLo2uhuMzI9yKxH4PUTt52mReMLmnHFrrLpDYcPC+cU7ge55guYhGv/ANB92YzoXrI+Hs6gdXnnfE8GGhfydGwvKBKCtpDecGnu41Mz28j9/LTVtSV9WZEoxANMgPGo4BDbY2p69ixYGQWATdyg9TRDAK7f/Lrlubat60yuVZ9wcwqZ7NBP71mX6NEgdvfK1EgMnkZzsDQl/wWDHdAoOYCo4pKwY5I/V26cKTO4aMYcV/YDdgglOtas2KtIXBJAcgotsV4YfF+CDN4T5WdX808VdXh3/UXLrAdcMDF3QIXj1HyUHIOkXBH7DXICbJt9eNiowRXiuB0d1J/FqjPFe2IlNdXnwFwpRusB5PLSv0Lk/AdI1gQmao8wwLmnoh/L9riMbMMsWAOI+5B71d+lGTKlxx4hQn4ixRfedyZUUsRcpGrgAS1XqCKzggl0/LFuyQpe9BsgvZGkEHQ4ELkl6bcLtiHZ+7uFxmRjnV7v8PP1Whug1igIT3OTMnmb/dGJPuGKY5fRdvWoatxfNU3ABi+fY7eHiPqC0gQDpAC19twVfWBtBur+ST+y7fzmSE5Q0C3mcp8/31XIdqm7sEZJHtFnXBgaTyG+fWRGAY70K10IBvKH2TE6IMzm1k92/Cn2payTupKTtojgP3uaWIgFVgV0lD0WGR0PanqiKtrBFwqznvb/rz2PgpSjWd2BESLQpxY+6tmKXZnjvY9xfR12CQ8o/aKz1t+XxCSzy0uE5f/kaFUCrwxjL8gT7SEUJshp//5/yvPFJHgJlgsvXp+gRQCSzz+vS6rl3BhMsbj/HzwJYz8GsWppOQDGVswlOHEaFE/qhImhDrt2DUfNxtt21GW7KwJRn9/mtYIjlnnwgESPEpwoLyTru3SsVGzRxnZG6x+BiseUs57lTdb3H8KG7UPeH1SSjy9wZHELnar9x5cOtOR7lOvyjWm4Ab18Q+qoMxxLCFit0V8SmOu7AU8XGY3eSXb6Ly+kaQmDkRlOstgmcj+rD34KNz7LTvLL0O1Z9J/nCjp+1flOFgtbd7Yg0t5eNrPuppxYxJfSpnJRNL4S3YTffnV+x+zVsuioseET/On2wNi/TnL2rAQIKswi7Er3Sv48D/+PLsa2WJOSk6DqcCLmusILDiz0FwKEhMewrxtNyM2IAE0/6hiopIQoUgC6U8CLirhWbfVibSnCGZlF5uywIcaUlcEaYP/evokbi1NSquO62XNnWR4+fB3M1N7LaI5pwdHYOKEjg9OaSiTtEDypKGOVxZhdQS0jEvZ46foNS4SBpwZfPn60p6pQldNUmimhWeU5LUnEpZYjPJU6hmAsh4AKaLFfJANrZ9ou428yoEIFuiY9UgOYkqtSUocWxyijxK+NTtuDdbh7NJcyLIl6CUBWQjZiL34Bk0Qe3vmT9tpIKus3r5CvEdEu5Va2Wxm8CQJT9bESzuFBeH0QIRybKFAUVqNa9tCXukd1jwLXYKWsuMuFda8R1UjVG2cvAZ+R3lBV+nLksL4Ti6lubX3hKFcSyFsG5rK9pJt5nlSGIkBLP/HFqLL/KX0S96NdOo4CS+GYPBk+lBZxz6Yie12vvUj8l4t1ik/5PmvbLOTPCcaoPeZ7APUQIKIcxcNUDin3R1okbeAUGwt7Ja3G0ntQokBhlajisyXeqbfPLrTTKpTauclKp+DGdyBsbzFHEYtIqZnlLe5wjluF/UID6EgwWPGj0FVKM59Jom3+0Y1QTb+IKqHZv/0FIEEuVItlJHSixdza2w0UN80Hyc/eUGv6SBybC/EEs9cOcLBR1eeQXXe7p7hfIhtxxBrGhk9n7jom/4LXF125WzPmMCUiNyE8iO7sVSmRf/iSNFBveZWGPeCirfJ8a43fk5jCfA3NPEJyMAamu3Q5im0DKo8aonWXtye9iE8vraixlVTAGSXFMjP3+XiOE9jrnXTDzARnt7+9gvHctQpaAI0za6N7bq9R1lb55jILwmx4Ih4OA0K1/Xx7B9jytPFBRhEO8xqXLhxotsIRjnGRvnkMK/KJ1YhE9T2mNmclLYgMSn+7dzik8BzoHt+EcXstV8yNpTspqsnS96ATq3A66NbF449w9JqViBt4gWi7yVzt3kR4XSJ8iEB5anMqG+EsSyrMQVv0sMeEysGx+yYs6G2xPJw3zqTq4RzDQXPhYra/VMlt7E8zzl4D7L3HS3kkWf4ZkmFmnjcENPQdkmohl6p/gqkOg+8McyzNxxb5Fl19DsSr3MTuSMqhSKDn95ibzYCEdrZXJiKaqu7BFBuju+jSObOPchog2IsE/u/3U/UK2mntvSnD0qNkPYoRTskBnLJ3NJamL0V4sEbryX8NMr7MKMJ0+h2+xMKY4KERpvUrd0c6ABXWHqLdY1QTugC/5dhdoLy3+KwgG5FnL0MZw6qvOvHkKQRoQrcKLuwUld15s05QxurH67A9eAr02a/vUWNBIgP6vOa69ZZuZKElWttIerRDGIAkZ54fw7HBctSZtfspPxaliwbOEH/Laxot3ZQonzvXknSVodzZHA1Jw7BcNRsYvl+KJ0Y6pMRPpIbaN/QSuHtnjUoej+vlVhq5021xMUPKxCK/D8rSRbOmduHG85/JrIimgo5wXWP83lLvRaxwCxeTGVt44fTUqsfUARmQcS3f5DbHR9SZ4nJYIEvcCjIqLezJ3I6S7xBop57j3ZyMQX0Xxr5mc6IUmrlOXM9fJG5iDZQQ9rWsGZ0Y26GzTAEsD6pjPuDa1XAT1MRpxyZ8zN53sl1YEV0E0EHvZqcnBnqMTXRh6zC9PwDXEk3OHs2zLLIjBhY5+7lDxp1X0qcm8XtWorat33mUx+kEDDgaDUdpclQq/ZM6mMYoF433nKbCKDxCozugSPVaRjNPosMDy8FujvIJSb763XuBGBIYLS9x+HZhYiUa9xod0xKV9aRt7yczWWlLgfK8qn4fULHMBSP48m/wTWfDBdTH8uDAKt5WM033+2bCpxDhmZtE+d7XP65yBTOf9/EWaCG+Gs9/5kVbWS0JlfoDH6Si2tVCzCRGfV0XZAUWfXOMJ5F9dkMagbwaeqVqqbVONDQGg8zID5MUV7IkazdAz4JLOXsn1RuZnoZNIGV2Na15+dRKYUAmXFmkWBJpPMBwT8N4bd8VZwBnhm3WzH9S0sbpoP0sgf2OmPvQ6smMyfkVK+OLjXYubmtioAhdwDb5/pLRg3PGwfHEz6v9OOe4AK8iw2cma49tV44In8Rc9jGcqSQlFXPdlC8366ke4U/ITFy0/SQBl1vWvGk40KycwWGaLf8cCtEi/4X2W8961i6lYnpfNQhGcQyC8s2oIOW+Pw545Thq3ZBEyNC8YDr/pzCEmBI8U3A4IiQJoHiD9kUMNd8wfzysC2Kqc4OGeWYsJxmDev4Jn4HV+vqpgN6xxSEMABhRMdTteHiJAgnQEX9BR2V1sNqh5EcMvQNYYa5+bblQn7Rli1UFCtQkP6ECmGkxmPNkg2CGS2mmf0/WEuTZSyPMtbbrnftPgleOmJ3jSm0m1EU9fQHQo1NZti+KczpJ8mSYIVtXzXh4rNJcL3Fm7Bbftpjmj5UnuDpPk8HvqKOj2DGJyk4R0Md1x7umiH0DTOXaLwO0EI94k7n6R8nfqiwekgUQZ1rRek0HViM5YN0JLWp4f4NRE8ErcGNSHZd58+9Kx8lmkc9ogfQmX0rX1kB8QQzNbH+eVDee0jOQNUgQcew3y+0QbifXrtLHXDIxsqsej41Kz7vfcQRE1zUnY2phYNILK8a657zyHNMzPiRhxs28s1JX2kiCMEloubOXnc8BzU+n7LM9wztf63eFWN/eWHXVivSdCWg5DfWsk2CF8aFJrOP277QEPdkWlOlewCVEkLjyd5wUn9ZzaKOJKnDQDLfliiRLTKlU8TOeQj8jOU8FfpM9tayJTDpxw6sVlZuJRAILfxn+QAGIB/W1FGDjuuVu62hFDBdvzVSfge95Ebf9pclp0GrpV3S+gwBWn5J7aGiim/fRyIN7YVVXJsnAnVeq90vDdAV0XearTqjT2Ck/AMkBW6T/ls/6VUVnFWs01wxkahKR0tRwyLRKgHefm3RWie/pTVQpUMZw+/7ozQSW+7vuZd8lsvT1iX5rwlpiaFnOnDbHsr1As6vLETd5HVbcBCGbJHcS7ax9Byd50jdYyagUtjAaHYX8ryyuR/bDkw1o4j8+hXMfbzy+CVmgrfRDyl4dn+5LxrqRAXLoDKpQREAHqdLSsVSJh1s8KnZ/SsUVq27cq+O6LMSBmhT4X3E750rmWwCsoCre6bT//oFWYALjp2SbcxnULBaTvnYDHtfEbO1m/3c9nJk8ZO5KHQTV88ivTWN/S2EXwmisTPdcupMrvI8e48QZdkZu9WHyKron7MKhGFJw6Z0KZ3tleVrvvJo89siUwByPY+Hs4gkKPBQbLQOaedcv/xeM+Ih8rl1eHEC/C65xWVciToVqSGp9HfbhVzFSrO6kBnv7mJwnRLvMEwqiNankVdJJMw4icU3lKyw/ecNSWIUddqlbThYMiq8nHjRRufs+28cq0OI9zhpvxFvFgSZE/eAYvm0x+9lZO+EH9NkBngaqU1NMYhdombNuy3awUN9p0mJQ//e9L65YbShgoc+ZUlNy+c6F6gDEHXV0JrzevPIZFAe2RyRa2dNqzLvihAAMCszYueqszzXRkSyobx5+LTLK2V3lfg3wbS9DzP3QW7VHdHbjZcttQRvtjrGveJnNn2DE2ZDIbvkCrT0H8RzbGDdmIq4P1ey+hoY/W6NuZKOz4dv4HUNznxdKV1Wf3MvqUv35r2jTKvpPWBUWNm5fytX/QJwp6qkIOsSx7Y67BSCbCDVLM8/VcMG+T0j+INrgL9sfT1ICtACH8BI0G6ViUZPVzzCmQHW2oVIwZjAoFl6+meO/pD8teO1E+1y03mCpYfW9S8qhtH2GhlFlebPf4NbezVv9xbXKWz0xezRNQWqUqtYRTUbuzK7KTvjG4rQHfzBpVmK4wDLnSIwdSzTSk1fPNeY0WOpPZTLlvQ59xwgfFrb326vT2hS1JAZ9E6sujFtKTiJ7bxI6o4cBhDaX+adXREThhR+MwA4TqD7rga/o9iY7d6TVRe14CS2S3iSQsD0R6ApnhG/2Wa0A0AY2NtWTjmabdKU+KgIRDP9RQYVjXiF1qC+xyNVG03I9vpmEpY/G/zC4nLOKgXAZ/uTikHI9Afbkhfgfgo9arWbix5eH7WUo9RQygDzwCnVSjbXc7MihEufVj6WGbK963pw8VjY3RS8IH1cy2yZbIcKLO5CgAUcXJfF2+McnDLKtXxyZaf7SPA6KJq+zF2NHyfoeTOwHhGqNcnHVr1hT73pcoyXyfvCYBnG1Bp/aR9t8hoI7CXM3UZOisWGA1SHZ2jf7k9GlRnp3mF/c1AV+JjvUsnZrsybEOQJg/dn/9eJkyykQHjbF56zgcPX6DdMG03WKUMlYz+uOZ+5DZy9E9MZOZ9GMoLFdrIPPQQLjv+GlCMpoyHPXkzIODjHAID2PrnaRpqWVHh0rnieDILKq+Emrd5RnjgE9pDUXWTmHaKuqqYlcgEz4zbi46dbWrAAFBjsQq1rLHIiPJEcwFLCOY4JNlXRXQJqCUKXk2d1RSBGzDP6HDSpo863BhVRFFF6uIpjQV7j5ebFe3UkkO/+coIo2BTAcgBqOtQ134s9a4QJvofuqBYMGOBMsWZ+sn/2AOxDx6SfAnDFGw==", yn = Uint8Array.from(atob(Cn), (e) => e.charCodeAt(0));
|
|
14214
|
+
var Oi = yn;
|
|
14215
|
+
const Mn = parseInt(Re.replace(/\D+/g, "")), Ni = Mn >= 162 ? class extends T {
|
|
14220
14216
|
constructor(e = 1, t = 1, i = 1, r = {}) {
|
|
14221
14217
|
super(e, t, {
|
|
14222
14218
|
...r,
|
|
@@ -14250,16 +14246,16 @@ const In = parseInt(Re.replace(/\D+/g, "")), Hi = In >= 162 ? class extends T {
|
|
|
14250
14246
|
return this;
|
|
14251
14247
|
}
|
|
14252
14248
|
};
|
|
14253
|
-
function
|
|
14249
|
+
function Hi(e, t, i) {
|
|
14254
14250
|
if (t.getQueryParameter(e, t.QUERY_RESULT_AVAILABLE)) {
|
|
14255
14251
|
const n = t.getQueryParameter(e, t.QUERY_RESULT) / 1e6;
|
|
14256
14252
|
i.lastTime = i.lastTime === 0 ? n : i.timeRollingAverage * i.lastTime + (1 - i.timeRollingAverage) * n;
|
|
14257
14253
|
} else
|
|
14258
14254
|
setTimeout(() => {
|
|
14259
|
-
|
|
14255
|
+
Hi(e, t, i);
|
|
14260
14256
|
}, 1);
|
|
14261
14257
|
}
|
|
14262
|
-
class
|
|
14258
|
+
class Bn extends H {
|
|
14263
14259
|
/**
|
|
14264
14260
|
*
|
|
14265
14261
|
* @param {THREE.Scene} scene
|
|
@@ -14369,10 +14365,10 @@ class Rn extends H {
|
|
|
14369
14365
|
gl_FragColor = vec4(color.rgb, 1.0 / (frame + 1.0));
|
|
14370
14366
|
}
|
|
14371
14367
|
`
|
|
14372
|
-
})), this.bluenoise = new it(
|
|
14368
|
+
})), this.bluenoise = new it(Oi, 128, 128), this.bluenoise.colorSpace = tt, this.bluenoise.wrapS = se, this.bluenoise.wrapT = se, this.bluenoise.minFilter = P, this.bluenoise.magFilter = P, this.bluenoise.needsUpdate = !0, this.lastTime = 0, this.timeRollingAverage = 0.99, this.needsDepthTexture = !0, this.needsSwap = !0, this._r = new p(), this._c = new N();
|
|
14373
14369
|
}
|
|
14374
14370
|
configureHalfResTargets() {
|
|
14375
|
-
this.firstFrame(), this.configuration.halfRes ? (this.depthDownsampleTarget = new
|
|
14371
|
+
this.firstFrame(), this.configuration.halfRes ? (this.depthDownsampleTarget = new Ni(this.width / 2, this.height / 2, 2), this.depthDownsampleTarget.textures[0].format = rt, this.depthDownsampleTarget.textures[0].type = J, this.depthDownsampleTarget.textures[0].minFilter = P, this.depthDownsampleTarget.textures[0].magFilter = P, this.depthDownsampleTarget.textures[0].depthBuffer = !1, this.depthDownsampleTarget.textures[1].format = z, this.depthDownsampleTarget.textures[1].type = $, this.depthDownsampleTarget.textures[1].minFilter = P, this.depthDownsampleTarget.textures[1].magFilter = P, this.depthDownsampleTarget.textures[1].depthBuffer = !1, this.depthDownsampleQuad = new _(new w(Li))) : (this.depthDownsampleTarget && (this.depthDownsampleTarget.dispose(), this.depthDownsampleTarget = null), this.depthDownsampleQuad && (this.depthDownsampleQuad.dispose(), this.depthDownsampleQuad = null));
|
|
14376
14372
|
}
|
|
14377
14373
|
detectTransparency() {
|
|
14378
14374
|
if (this.autoDetectTransparency) {
|
|
@@ -14452,7 +14448,7 @@ class Rn extends H {
|
|
|
14452
14448
|
configureAOPass(t = M.Default, i = !1) {
|
|
14453
14449
|
this.firstFrame(), this.samples = this.generateHemisphereSamples(this.configuration.aoSamples);
|
|
14454
14450
|
const r = {
|
|
14455
|
-
...
|
|
14451
|
+
...bi
|
|
14456
14452
|
};
|
|
14457
14453
|
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14458
14454
|
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
@@ -14463,7 +14459,7 @@ class Rn extends H {
|
|
|
14463
14459
|
configureDenoisePass(t = M.Default, i = !1) {
|
|
14464
14460
|
this.firstFrame(), this.samplesDenoise = this.generateDenoiseSamples(this.configuration.denoiseSamples, 11);
|
|
14465
14461
|
const r = {
|
|
14466
|
-
...
|
|
14462
|
+
...Fi
|
|
14467
14463
|
};
|
|
14468
14464
|
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14469
14465
|
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
@@ -14473,7 +14469,7 @@ class Rn extends H {
|
|
|
14473
14469
|
configureEffectCompositer(t = M.Default, i = !1) {
|
|
14474
14470
|
this.firstFrame();
|
|
14475
14471
|
const r = {
|
|
14476
|
-
...
|
|
14472
|
+
...Ui
|
|
14477
14473
|
};
|
|
14478
14474
|
t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14479
14475
|
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
@@ -14539,7 +14535,7 @@ class Rn extends H {
|
|
|
14539
14535
|
/* this.renderToScreen ? null :
|
|
14540
14536
|
outputBuffer*/
|
|
14541
14537
|
this.outputTargetInternal
|
|
14542
|
-
), this.effectCompositerQuad.render(t), t.setRenderTarget(this.renderToScreen ? null : r), this.copyQuad.material.uniforms.tDiffuse.value = this.outputTargetInternal.texture, this.copyQuad.render(t), this.debugMode && (n.endQuery(s.TIME_ELAPSED_EXT),
|
|
14538
|
+
), this.effectCompositerQuad.render(t), t.setRenderTarget(this.renderToScreen ? null : r), this.copyQuad.material.uniforms.tDiffuse.value = this.outputTargetInternal.texture, this.copyQuad.render(t), this.debugMode && (n.endQuery(s.TIME_ELAPSED_EXT), Hi(o, n, this)), t.xr.enabled = a;
|
|
14543
14539
|
}
|
|
14544
14540
|
/**
|
|
14545
14541
|
* Enables the debug mode of the AO, meaning the lastTime value will be updated.
|
|
@@ -14574,13 +14570,13 @@ class Rn extends H {
|
|
|
14574
14570
|
t === "Performance" ? (this.configuration.aoSamples = 8, this.configuration.denoiseSamples = 4, this.configuration.denoiseRadius = 12) : t === "Low" ? (this.configuration.aoSamples = 16, this.configuration.denoiseSamples = 4, this.configuration.denoiseRadius = 12) : t === "Medium" ? (this.configuration.aoSamples = 16, this.configuration.denoiseSamples = 8, this.configuration.denoiseRadius = 12) : t === "High" ? (this.configuration.aoSamples = 64, this.configuration.denoiseSamples = 8, this.configuration.denoiseRadius = 6) : t === "Ultra" && (this.configuration.aoSamples = 64, this.configuration.denoiseSamples = 16, this.configuration.denoiseRadius = 6);
|
|
14575
14571
|
}
|
|
14576
14572
|
}
|
|
14577
|
-
function
|
|
14573
|
+
function zi(e, t, i) {
|
|
14578
14574
|
if (t.getQueryParameter(e, t.QUERY_RESULT_AVAILABLE)) {
|
|
14579
14575
|
const n = t.getQueryParameter(e, t.QUERY_RESULT) / 1e6;
|
|
14580
14576
|
i.lastTime = i.lastTime === 0 ? n : i.timeRollingAverage * i.lastTime + (1 - i.timeRollingAverage) * n;
|
|
14581
14577
|
} else
|
|
14582
14578
|
setTimeout(() => {
|
|
14583
|
-
|
|
14579
|
+
zi(e, t, i);
|
|
14584
14580
|
}, 1);
|
|
14585
14581
|
}
|
|
14586
14582
|
const M = {
|
|
@@ -14588,7 +14584,7 @@ const M = {
|
|
|
14588
14584
|
Log: 2,
|
|
14589
14585
|
Reverse: 3
|
|
14590
14586
|
};
|
|
14591
|
-
class
|
|
14587
|
+
class Pn extends er {
|
|
14592
14588
|
/**
|
|
14593
14589
|
*
|
|
14594
14590
|
* @param {THREE.Scene} scene
|
|
@@ -14634,7 +14630,7 @@ class bn extends rr {
|
|
|
14634
14630
|
type: $,
|
|
14635
14631
|
format: z,
|
|
14636
14632
|
stencilBuffer: o
|
|
14637
|
-
}), this.beautyRenderTarget.depthTexture = new ye(this.width, this.height, o ?
|
|
14633
|
+
}), this.beautyRenderTarget.depthTexture = new ye(this.width, this.height, o ? Zt : Le), this.beautyRenderTarget.depthTexture.format = o ? Xt : Rt), !0;
|
|
14638
14634
|
}
|
|
14639
14635
|
}), this.samples = [], this.samplesDenoise = [], this.autoDetectTransparency = !0, this.frame = 0, this.lastViewMatrix = new O(), this.lastProjectionMatrix = new O(), this.beautyRenderTarget = new T(this.width, this.height, {
|
|
14640
14636
|
minFilter: R,
|
|
@@ -14642,7 +14638,7 @@ class bn extends rr {
|
|
|
14642
14638
|
type: $,
|
|
14643
14639
|
format: z,
|
|
14644
14640
|
stencilBuffer: !1
|
|
14645
|
-
}), this.beautyRenderTarget.depthTexture = new ye(this.width, this.height, Le), this.beautyRenderTarget.depthTexture.format =
|
|
14641
|
+
}), this.beautyRenderTarget.depthTexture = new ye(this.width, this.height, Le), this.beautyRenderTarget.depthTexture.format = Rt, this.configureEffectCompositer(this.configuration.depthBufferType, this.camera.isOrthographicCamera), this.configureSampleDependentPasses(), this.configureHalfResTargets(), this.detectTransparency(), this.configureTransparencyTarget(), this.writeTargetInternal = new T(this.width, this.height, {
|
|
14646
14642
|
minFilter: R,
|
|
14647
14643
|
magFilter: R,
|
|
14648
14644
|
depthBuffer: !1,
|
|
@@ -14661,7 +14657,7 @@ class bn extends rr {
|
|
|
14661
14657
|
stencilBuffer: !1,
|
|
14662
14658
|
depthBuffer: !1,
|
|
14663
14659
|
alpha: !0
|
|
14664
|
-
}), this.bluenoise = new it(
|
|
14660
|
+
}), this.bluenoise = new it(Oi, 128, 128), this.accumulationQuad = new _(new w({
|
|
14665
14661
|
uniforms: {
|
|
14666
14662
|
frame: {
|
|
14667
14663
|
value: 0
|
|
@@ -14691,9 +14687,9 @@ class bn extends rr {
|
|
|
14691
14687
|
}
|
|
14692
14688
|
configureHalfResTargets() {
|
|
14693
14689
|
if (this.firstFrame(), this.configuration.halfRes) {
|
|
14694
|
-
this.depthDownsampleTarget = new
|
|
14690
|
+
this.depthDownsampleTarget = new Ni(this.width / 2, this.height / 2, 2), this.depthDownsampleTarget.textures[0].format = rt, this.depthDownsampleTarget.textures[0].type = J, this.depthDownsampleTarget.textures[0].minFilter = P, this.depthDownsampleTarget.textures[0].magFilter = P, this.depthDownsampleTarget.textures[0].depthBuffer = !1, this.depthDownsampleTarget.textures[1].format = z, this.depthDownsampleTarget.textures[1].type = $, this.depthDownsampleTarget.textures[1].minFilter = P, this.depthDownsampleTarget.textures[1].magFilter = P, this.depthDownsampleTarget.textures[1].depthBuffer = !1;
|
|
14695
14691
|
const t = {
|
|
14696
|
-
...
|
|
14692
|
+
...Li
|
|
14697
14693
|
};
|
|
14698
14694
|
this.configuration.depthBufferType === M.Reverse && (t.fragmentShader = `#define REVERSEDEPTH
|
|
14699
14695
|
` + t.fragmentShader), this.depthDownsampleQuad = new _(new w(t));
|
|
@@ -14778,7 +14774,7 @@ class bn extends rr {
|
|
|
14778
14774
|
configureAOPass(t = M.Default, i = !1) {
|
|
14779
14775
|
this.firstFrame(), this.samples = this.generateHemisphereSamples(this.configuration.aoSamples);
|
|
14780
14776
|
const r = {
|
|
14781
|
-
...
|
|
14777
|
+
...bi
|
|
14782
14778
|
};
|
|
14783
14779
|
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.aoSamples).replace("16.0", this.configuration.aoSamples + ".0"), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14784
14780
|
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
@@ -14789,7 +14785,7 @@ class bn extends rr {
|
|
|
14789
14785
|
configureDenoisePass(t = M.Default, i = !1) {
|
|
14790
14786
|
this.firstFrame(), this.samplesDenoise = this.generateDenoiseSamples(this.configuration.denoiseSamples, 11);
|
|
14791
14787
|
const r = {
|
|
14792
|
-
...
|
|
14788
|
+
...Fi
|
|
14793
14789
|
};
|
|
14794
14790
|
r.fragmentShader = r.fragmentShader.replace("16", this.configuration.denoiseSamples), t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14795
14791
|
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
@@ -14799,7 +14795,7 @@ class bn extends rr {
|
|
|
14799
14795
|
configureEffectCompositer(t = M.Default, i = !1) {
|
|
14800
14796
|
this.firstFrame();
|
|
14801
14797
|
const r = {
|
|
14802
|
-
...
|
|
14798
|
+
...Ui
|
|
14803
14799
|
};
|
|
14804
14800
|
t === M.Log ? r.fragmentShader = `#define LOGDEPTH
|
|
14805
14801
|
` + r.fragmentShader : t === M.Reverse && (r.fragmentShader = `#define REVERSEDEPTH
|
|
@@ -14861,7 +14857,7 @@ class bn extends rr {
|
|
|
14861
14857
|
const h = t.autoClear;
|
|
14862
14858
|
t.autoClear = !1, this.accumulationQuad.material.uniforms.tDiffuse.value = this.writeTargetInternal.texture, this.accumulationQuad.material.uniforms.frame.value = this.frame, this.accumulationQuad.render(t), t.autoClear = h;
|
|
14863
14859
|
}
|
|
14864
|
-
this.configuration.transparencyAware && (this.effectCompositerQuad.material.uniforms.transparencyDWFalse.value = this.transparencyRenderTargetDWFalse.texture, this.effectCompositerQuad.material.uniforms.transparencyDWTrue.value = this.transparencyRenderTargetDWTrue.texture, this.effectCompositerQuad.material.uniforms.transparencyDWTrueDepth.value = this.transparencyRenderTargetDWTrue.depthTexture, this.effectCompositerQuad.material.uniforms.transparencyAware.value = !0), this.effectCompositerQuad.material.uniforms.sceneDiffuse.value = this.beautyRenderTarget.texture, this.effectCompositerQuad.material.uniforms.sceneDepth.value = this.beautyRenderTarget.depthTexture, this.effectCompositerQuad.material.uniforms.aoTones.value = this.configuration.aoTones, this.effectCompositerQuad.material.uniforms.near.value = this.camera.near, this.effectCompositerQuad.material.uniforms.far.value = this.camera.far, this.effectCompositerQuad.material.uniforms.projectionMatrixInv.value = this.camera.projectionMatrixInverse, this.effectCompositerQuad.material.uniforms.viewMatrixInv.value = this.camera.matrixWorld, this.effectCompositerQuad.material.uniforms.ortho.value = this.camera.isOrthographicCamera, this.effectCompositerQuad.material.uniforms.downsampledDepth.value = this.configuration.halfRes ? this.depthDownsampleTarget.textures[0] : this.beautyRenderTarget.depthTexture, this.effectCompositerQuad.material.uniforms.resolution.value = this._r, this.effectCompositerQuad.material.uniforms.blueNoise.value = this.bluenoise, this.effectCompositerQuad.material.uniforms.intensity.value = this.configuration.intensity, this.effectCompositerQuad.material.uniforms.renderMode.value = this.configuration.renderMode, this.effectCompositerQuad.material.uniforms.screenSpaceRadius.value = this.configuration.screenSpaceRadius, this.effectCompositerQuad.material.uniforms.radius.value = f, this.effectCompositerQuad.material.uniforms.distanceFalloff.value = this.configuration.distanceFalloff, this.effectCompositerQuad.material.uniforms.gammaCorrection.value = this.configuration.gammaCorrection, this.effectCompositerQuad.material.uniforms.tDiffuse.value = this.accumulationRenderTarget.texture, this.effectCompositerQuad.material.uniforms.color.value = this._c.copy(this.configuration.color).convertSRGBToLinear(), this.effectCompositerQuad.material.uniforms.colorMultiply.value = this.configuration.colorMultiply, this.effectCompositerQuad.material.uniforms.cameraPos.value = this.camera.getWorldPosition(new L()), this.effectCompositerQuad.material.uniforms.fog.value = !!this.scene.fog, this.scene.fog && (this.scene.fog.isFog ? (this.effectCompositerQuad.material.uniforms.fogExp.value = !1, this.effectCompositerQuad.material.uniforms.fogNear.value = this.scene.fog.near, this.effectCompositerQuad.material.uniforms.fogFar.value = this.scene.fog.far) : this.scene.fog.isFogExp2 ? (this.effectCompositerQuad.material.uniforms.fogExp.value = !0, this.effectCompositerQuad.material.uniforms.fogDensity.value = this.scene.fog.density) : console.error(`Unsupported fog type ${this.scene.fog.constructor.name} in SSAOPass.`)), t.setRenderTarget(this.renderToScreen ? null : i), this.effectCompositerQuad.render(t), this.debugMode && (s.endQuery(o.TIME_ELAPSED_EXT),
|
|
14860
|
+
this.configuration.transparencyAware && (this.effectCompositerQuad.material.uniforms.transparencyDWFalse.value = this.transparencyRenderTargetDWFalse.texture, this.effectCompositerQuad.material.uniforms.transparencyDWTrue.value = this.transparencyRenderTargetDWTrue.texture, this.effectCompositerQuad.material.uniforms.transparencyDWTrueDepth.value = this.transparencyRenderTargetDWTrue.depthTexture, this.effectCompositerQuad.material.uniforms.transparencyAware.value = !0), this.effectCompositerQuad.material.uniforms.sceneDiffuse.value = this.beautyRenderTarget.texture, this.effectCompositerQuad.material.uniforms.sceneDepth.value = this.beautyRenderTarget.depthTexture, this.effectCompositerQuad.material.uniforms.aoTones.value = this.configuration.aoTones, this.effectCompositerQuad.material.uniforms.near.value = this.camera.near, this.effectCompositerQuad.material.uniforms.far.value = this.camera.far, this.effectCompositerQuad.material.uniforms.projectionMatrixInv.value = this.camera.projectionMatrixInverse, this.effectCompositerQuad.material.uniforms.viewMatrixInv.value = this.camera.matrixWorld, this.effectCompositerQuad.material.uniforms.ortho.value = this.camera.isOrthographicCamera, this.effectCompositerQuad.material.uniforms.downsampledDepth.value = this.configuration.halfRes ? this.depthDownsampleTarget.textures[0] : this.beautyRenderTarget.depthTexture, this.effectCompositerQuad.material.uniforms.resolution.value = this._r, this.effectCompositerQuad.material.uniforms.blueNoise.value = this.bluenoise, this.effectCompositerQuad.material.uniforms.intensity.value = this.configuration.intensity, this.effectCompositerQuad.material.uniforms.renderMode.value = this.configuration.renderMode, this.effectCompositerQuad.material.uniforms.screenSpaceRadius.value = this.configuration.screenSpaceRadius, this.effectCompositerQuad.material.uniforms.radius.value = f, this.effectCompositerQuad.material.uniforms.distanceFalloff.value = this.configuration.distanceFalloff, this.effectCompositerQuad.material.uniforms.gammaCorrection.value = this.configuration.gammaCorrection, this.effectCompositerQuad.material.uniforms.tDiffuse.value = this.accumulationRenderTarget.texture, this.effectCompositerQuad.material.uniforms.color.value = this._c.copy(this.configuration.color).convertSRGBToLinear(), this.effectCompositerQuad.material.uniforms.colorMultiply.value = this.configuration.colorMultiply, this.effectCompositerQuad.material.uniforms.cameraPos.value = this.camera.getWorldPosition(new L()), this.effectCompositerQuad.material.uniforms.fog.value = !!this.scene.fog, this.scene.fog && (this.scene.fog.isFog ? (this.effectCompositerQuad.material.uniforms.fogExp.value = !1, this.effectCompositerQuad.material.uniforms.fogNear.value = this.scene.fog.near, this.effectCompositerQuad.material.uniforms.fogFar.value = this.scene.fog.far) : this.scene.fog.isFogExp2 ? (this.effectCompositerQuad.material.uniforms.fogExp.value = !0, this.effectCompositerQuad.material.uniforms.fogDensity.value = this.scene.fog.density) : console.error(`Unsupported fog type ${this.scene.fog.constructor.name} in SSAOPass.`)), t.setRenderTarget(this.renderToScreen ? null : i), this.effectCompositerQuad.render(t), this.debugMode && (s.endQuery(o.TIME_ELAPSED_EXT), zi(l, s, this)), t.xr.enabled = u;
|
|
14865
14861
|
}
|
|
14866
14862
|
/**
|
|
14867
14863
|
* Enables the debug mode of the AO, meaning the lastTime value will be updated.
|
|
@@ -14896,14 +14892,14 @@ class bn extends rr {
|
|
|
14896
14892
|
t === "Performance" ? (this.configuration.aoSamples = 8, this.configuration.denoiseSamples = 4, this.configuration.denoiseRadius = 12) : t === "Low" ? (this.configuration.aoSamples = 16, this.configuration.denoiseSamples = 4, this.configuration.denoiseRadius = 12) : t === "Medium" ? (this.configuration.aoSamples = 16, this.configuration.denoiseSamples = 8, this.configuration.denoiseRadius = 12) : t === "High" ? (this.configuration.aoSamples = 64, this.configuration.denoiseSamples = 8, this.configuration.denoiseRadius = 6) : t === "Ultra" && (this.configuration.aoSamples = 64, this.configuration.denoiseSamples = 16, this.configuration.denoiseRadius = 6);
|
|
14897
14893
|
}
|
|
14898
14894
|
}
|
|
14899
|
-
const
|
|
14895
|
+
const Un = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
|
|
14900
14896
|
__proto__: null,
|
|
14901
14897
|
DepthType: M,
|
|
14902
|
-
N8AOPass:
|
|
14903
|
-
N8AOPostPass:
|
|
14898
|
+
N8AOPass: Pn,
|
|
14899
|
+
N8AOPostPass: Bn
|
|
14904
14900
|
}, Symbol.toStringTag, { value: "Module" }));
|
|
14905
14901
|
export {
|
|
14906
14902
|
V as EffectAttribute,
|
|
14907
|
-
|
|
14908
|
-
|
|
14903
|
+
Un as N8AO,
|
|
14904
|
+
bn as index
|
|
14909
14905
|
};
|