@musashishao/agent-kit 1.0.0 → 1.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of @musashishao/agent-kit might be problematic. Click here for more details.

@@ -0,0 +1,313 @@
1
+ ---
2
+ name: meta-pattern-recognition
3
+ parent: problem-solving
4
+ description: Spot patterns appearing in 3+ domains to find universal principles worth extracting.
5
+ ---
6
+
7
+ # Meta-Pattern Recognition
8
+
9
+ > Universal truths hide at the intersection of unrelated domains.
10
+
11
+ ## When to Use
12
+
13
+ - Solving a problem that exists in many fields
14
+ - Looking for battle-tested principles
15
+ - Want to leverage cross-domain wisdom
16
+ - Need a higher-level perspective
17
+
18
+ ---
19
+
20
+ ## The Process
21
+
22
+ ### Step 1: Identify the Core Challenge
23
+
24
+ Abstract your problem to its essence:
25
+
26
+ ```
27
+ Specific: "Our codebase has too much tech debt"
28
+ Abstract: "How do you manage accumulating problems
29
+ that are easy to ignore?"
30
+
31
+ Specific: "Users don't return after signup"
32
+ Abstract: "How do you create lasting engagement
33
+ from initial interaction?"
34
+
35
+ Specific: "Our deploys are risky"
36
+ Abstract: "How do you make dangerous operations
37
+ safe and reversible?"
38
+ ```
39
+
40
+ ### Step 2: Find 3+ Domains with Similar Challenge
41
+
42
+ ```
43
+ Challenge: "Managing accumulating problems
44
+ that are easy to ignore"
45
+
46
+ Similar in other domains:
47
+ 1. Physical infrastructure: Building maintenance
48
+ 2. Personal health: Ignored minor symptoms
49
+ 3. Finance: Compound debt/interest
50
+ 4. Ecology: Environmental degradation
51
+ 5. Relationships: Unresolved conflicts
52
+ ```
53
+
54
+ ### Step 3: Extract Patterns from Each Domain
55
+
56
+ **Domain 1: Building Maintenance**
57
+ ```
58
+ Observations:
59
+ ├── Small cracks become structural failures
60
+ ├── Prevention is 10x cheaper than repair
61
+ ├── Regular inspections catch early
62
+ ├── Deferred maintenance compounds
63
+ └── "Emergency repairs" cost premium
64
+ ```
65
+
66
+ **Domain 2: Personal Health**
67
+ ```
68
+ Observations:
69
+ ├── Minor symptoms become chronic conditions
70
+ ├── Regular checkups catch early
71
+ ├── Health "debt" accumulates invisibly
72
+ ├── Crisis intervention is expensive
73
+ └── Preventive care is undervalued
74
+ ```
75
+
76
+ **Domain 3: Compound Finance**
77
+ ```
78
+ Observations:
79
+ ├── Interest compounds exponentially
80
+ ├── Minimum payments don't reduce principal
81
+ ├── Snowball method: pay smallest first
82
+ ├── Visualization motivates action
83
+ └── Avoiding new debt while paying old
84
+ ```
85
+
86
+ **Domain 4: Ecology**
87
+ ```
88
+ Observations:
89
+ ├── Degradation invisible until tipping point
90
+ ├── Restoration harder than prevention
91
+ ├── Systems are interconnected
92
+ ├── Small actions multiply over time
93
+ └── Monitoring is essential
94
+ ```
95
+
96
+ ### Step 4: Find Universal Patterns
97
+
98
+ | Pattern | Building | Health | Finance | Ecology | UNIVERSAL |
99
+ |---------|----------|--------|---------|---------|-----------|
100
+ | Growth | Compound | Compound | Compound | Compound | **Exponential when ignored** |
101
+ | Cost | 10x repair | 10x crisis | High interest | Restoration | **Prevention << Cure** |
102
+ | Visibility | Hidden | Hidden | Hidden | Hidden | **Invisible accumulation** |
103
+ | Solution | Inspect | Checkup | Track | Monitor | **Regular inspection** |
104
+ | System | Connected | Connected | Connected | Connected | **Interconnection cascades** |
105
+
106
+ ### Step 5: Apply Universal Patterns
107
+
108
+ ```
109
+ Apply to tech debt:
110
+
111
+ PATTERN: Exponential growth when ignored
112
+ → Track debt "age" - older = higher priority
113
+ → Interest rate metaphor for severity
114
+
115
+ PATTERN: Prevention << Cure (10x+)
116
+ → Code review standards prevent debt creation
117
+ → "Boy scout rule": Leave cleaner than found
118
+ → Invest in prevention tooling
119
+
120
+ PATTERN: Invisible accumulation until crisis
121
+ → Make debt visible: Dashboard, metrics
122
+ → Regular "debt review" meetings
123
+ → Alert when debt threshold exceeded
124
+
125
+ PATTERN: Regular inspection is key
126
+ → Automated code quality scans
127
+ → Quarterly tech debt audits
128
+ → Part of sprint planning
129
+
130
+ PATTERN: Interconnection causes cascades
131
+ → Map dependencies
132
+ → Prioritize shared code/library debt
133
+ → Isolate risky areas
134
+ ```
135
+
136
+ ---
137
+
138
+ ## Common Universal Patterns
139
+
140
+ ### The Compound Effect
141
+ **Appears in:** Finance, health, habits, tech debt, relationships
142
+
143
+ ```
144
+ Pattern: Small, consistent actions compound over time
145
+ Neglect also compounds over time
146
+
147
+ Apply:
148
+ ├── Small daily improvements
149
+ ├── Early detection of problems
150
+ ├── Track metrics over time
151
+ └── Make progress visible
152
+ ```
153
+
154
+ ### The Pareto Principle (80/20)
155
+ **Appears in:** Economics, software bugs, productivity, sales
156
+
157
+ ```
158
+ Pattern: 80% of effects come from 20% of causes
159
+
160
+ Apply:
161
+ ├── Identify the vital few
162
+ ├── Focus resources on highest impact
163
+ ├── Eliminate the trivial many
164
+ └── Regularly re-assess the 20%
165
+ ```
166
+
167
+ ### The Feedback Loop
168
+ **Appears in:** Biology, climate, markets, social media
169
+
170
+ ```
171
+ Pattern: Outputs become inputs, amplifying or dampening
172
+
173
+ Apply:
174
+ ├── Design positive feedback for good behaviors
175
+ ├── Break negative feedback loops
176
+ ├── Fast feedback enables correction
177
+ └── Delayed feedback causes over/under-correction
178
+ ```
179
+
180
+ ### The Network Effect
181
+ **Appears in:** Phones, social networks, marketplaces, languages
182
+
183
+ ```
184
+ Pattern: Value increases exponentially with users
185
+
186
+ Apply:
187
+ ├── Early users are most important
188
+ ├── Reduce friction for adoption
189
+ ├── Make sharing valuable
190
+ └── Critical mass changes everything
191
+ ```
192
+
193
+ ### Antifragility
194
+ **Appears in:** Biology, economics, systems design, careers
195
+
196
+ ```
197
+ Pattern: Some things gain from disorder up to a point
198
+
199
+ Apply:
200
+ ├── Build systems that improve under stress
201
+ ├── Expose to small stressors (chaos engineering)
202
+ ├── Avoid fragile optimization
203
+ └── Maintain slack/redundancy
204
+ ```
205
+
206
+ ---
207
+
208
+ ## Pattern Recognition Template
209
+
210
+ ```
211
+ CHALLENGE: [Abstract your problem]
212
+
213
+ DOMAIN 1: [Domain name]
214
+ ├── Observation 1
215
+ ├── Observation 2
216
+ └── Observation 3
217
+
218
+ DOMAIN 2: [Domain name]
219
+ ├── Observation 1
220
+ ├── Observation 2
221
+ └── Observation 3
222
+
223
+ DOMAIN 3: [Domain name]
224
+ ├── Observation 1
225
+ ├── Observation 2
226
+ └── Observation 3
227
+
228
+ UNIVERSAL PATTERN:
229
+ [What appears in all 3+ domains?]
230
+
231
+ APPLY TO MY PROBLEM:
232
+ ├── Applies as: [How it translates]
233
+ ├── Action: [What to do]
234
+ └── Measure: [How to track]
235
+ ```
236
+
237
+ ---
238
+
239
+ ## Practice Exercise
240
+
241
+ ### Your Challenge (abstracted):
242
+ > _______________________________________________
243
+
244
+ ### Domain 1:
245
+ > Name: _______________________________________________
246
+ > How they solve it: _______________________________________________
247
+
248
+ ### Domain 2:
249
+ > Name: _______________________________________________
250
+ > How they solve it: _______________________________________________
251
+
252
+ ### Domain 3:
253
+ > Name: _______________________________________________
254
+ > How they solve it: _______________________________________________
255
+
256
+ ### Common Pattern Across All:
257
+ > _______________________________________________
258
+
259
+ ### Application to Your Problem:
260
+ > _______________________________________________
261
+
262
+ ---
263
+
264
+ ## Domain Suggestions by Problem Type
265
+
266
+ | Your Problem About... | Look At These Domains |
267
+ |----------------------|----------------------|
268
+ | Growth | Biology, finance, viruses, cities |
269
+ | Trust | Marriage, banking, diplomacy, medicine |
270
+ | Coordination | Orchestras, military, sports, flocks |
271
+ | Resilience | Ecosystems, immune systems, infrastructure |
272
+ | Learning | Children, athletes, craftsmen, AI |
273
+ | Scale | Logistics, nature, franchises, infrastructure |
274
+ | Quality | Luxury brands, surgery, aviation, food |
275
+ | Speed | Emergency services, racing, journalism |
276
+
277
+ ---
278
+
279
+ ## Quick Reference
280
+
281
+ ```
282
+ PATTERN RECOGNITION IN 60 SECONDS:
283
+
284
+ 1. Abstract your problem:
285
+ → "I'm really solving the problem of..."
286
+
287
+ 2. Find analogs:
288
+ → "What other fields solve this?"
289
+ → Pick 3 very different domains
290
+
291
+ 3. Extract what each does:
292
+ → "In [domain], they handle this by..."
293
+
294
+ 4. Find the common thread:
295
+ → "All of them do [pattern]"
296
+
297
+ 5. Apply to your context:
298
+ → "In my case, that means..."
299
+ ```
300
+
301
+ ---
302
+
303
+ ## Pro Tips
304
+
305
+ - The more distant the domain, the more surprising the insight
306
+ - Look at both successes AND failures
307
+ - Ancient wisdom often contains patterns
308
+ - Nature has solved most problems already
309
+ - If 3 domains converge, the pattern is likely true
310
+
311
+ ---
312
+
313
+ > **Remember:** You're not looking for analogies—you're looking for universal truths. If a pattern appears in biology, economics, AND social systems, it's probably a fundamental principle worth applying.
@@ -0,0 +1,300 @@
1
+ ---
2
+ name: scale-game
3
+ parent: problem-solving
4
+ description: Test at extremes (1000x bigger/smaller, instant/year-long) to expose fundamental truths hidden at normal scales.
5
+ ---
6
+
7
+ # Scale Game
8
+
9
+ > What breaks at 1000x? What's revealed at 0.001x?
10
+
11
+ ## When to Use
12
+
13
+ - Need to stress-test assumptions
14
+ - Want to find hidden constraints
15
+ - Validating architecture decisions
16
+ - Looking for edge cases
17
+ - Checking if solution is robust
18
+
19
+ ---
20
+
21
+ ## The Process
22
+
23
+ ### Step 1: Identify Scalable Variables
24
+
25
+ What can you scale up or down?
26
+
27
+ ```
28
+ System: E-commerce checkout
29
+
30
+ Scalable variables:
31
+ ├── Users: concurrent shoppers
32
+ ├── Orders: transactions per day
33
+ ├── Items: products in catalog
34
+ ├── Cart size: items per order
35
+ ├── Locations: geographic regions
36
+ ├── Time: seconds to checkout
37
+ └── Price: value per transaction
38
+ ```
39
+
40
+ ### Step 2: Scale Up (1000x)
41
+
42
+ Take each variable to extreme scale:
43
+
44
+ ```
45
+ Current: 100 orders/day
46
+ At 1000x: 100,000 orders/day
47
+
48
+ WHAT BREAKS?
49
+ ├── Database: Single instance can't handle
50
+ ├── Inventory: Race conditions on popular items
51
+ ├── Payments: Gateway rate limits hit
52
+ ├── Emails: Confirmation emails rate-limited
53
+ ├── Support: 1000x tickets
54
+
55
+ WHAT'S REVEALED?
56
+ ├── No caching strategy exists
57
+ ├── Inventory system is synchronous
58
+ ├── No queue for async operations
59
+ ├── Single point of failure in payments
60
+ └── Monitoring doesn't alert until crash
61
+ ```
62
+
63
+ ### Step 3: Scale Down (0.001x)
64
+
65
+ ```
66
+ At 0.001x: 0.1 orders/day (1 order every 10 days)
67
+
68
+ WHAT BREAKS?
69
+ ├── Sessions: Cart expires before purchase
70
+ ├── Data: Prices/availability become stale
71
+ ├── Engagement: Users forget they have cart
72
+ ├── Economics: Fixed costs don't scale down
73
+
74
+ WHAT'S REVEALED?
75
+ ├── Need re-engagement for long cycles
76
+ ├── "Save cart" feature becomes critical
77
+ ├── Price guarantee for saved items
78
+ ├── Different UX for low-frequency users
79
+ └── Batch processing inefficient
80
+ ```
81
+
82
+ ### Step 4: Extreme Dimensions
83
+
84
+ Explore time, speed, size extremes:
85
+
86
+ ```
87
+ TIME EXTREMES:
88
+ ┌─────────────────────────────────────────────────────────┐
89
+ │ What if checkout took 1 SECOND total? │
90
+ ├─────────────────────────────────────────────────────────┤
91
+ │ → Must pre-authorize everything │
92
+ │ → One-click only, saved payment │
93
+ │ → No real-time inventory check possible │
94
+ │ → Trust over verification │
95
+ └─────────────────────────────────────────────────────────┘
96
+
97
+ ┌─────────────────────────────────────────────────────────┐
98
+ │ What if checkout took 1 WEEK? │
99
+ ├─────────────────────────────────────────────────────────┤
100
+ │ → Multi-session persistence │
101
+ │ → Approval workflows (enterprise) │
102
+ │ → Price/availability guarantees │
103
+ │ → Multiple stakeholder access │
104
+ │ → Robust save/resume │
105
+ └─────────────────────────────────────────────────────────┘
106
+ ```
107
+
108
+ ---
109
+
110
+ ## Scale Game Template
111
+
112
+ ### Variable Matrix
113
+
114
+ | Variable | Current | 1000x | 0.001x | Insight |
115
+ |----------|---------|-------|--------|---------|
116
+ | Users | 1K | 1M | 1 | |
117
+ | Data size | 1GB | 1TB | 1MB | |
118
+ | Latency | 100ms | 100s | 0.1ms | |
119
+ | Requests/sec | 10 | 10K | 0.01 | |
120
+ | Team size | 10 | 10K | 1 | |
121
+ | Time to deliver | 1 week | 1000 weeks | 1 hour | |
122
+
123
+ ### Time Dimension
124
+
125
+ | Scenario | What Changes? |
126
+ |----------|---------------|
127
+ | 1000x faster (instant) | |
128
+ | 1000x slower (ages) | |
129
+ | Event happens once | |
130
+ | Event happens constantly | |
131
+
132
+ ### Size Dimension
133
+
134
+ | Scenario | What Changes? |
135
+ |----------|---------------|
136
+ | 1000x larger | |
137
+ | 1000x smaller | |
138
+ | Single item | |
139
+ | Infinite items | |
140
+
141
+ ---
142
+
143
+ ## Example: API Design
144
+
145
+ ### Problem
146
+ Design a user search API
147
+
148
+ ### Scale Analysis
149
+
150
+ **SCALE UP: 1M users**
151
+ ```
152
+ Current: 10K users, search by name
153
+
154
+ At 1M users:
155
+ ├── Full-text search on database fails
156
+ ├── Need: Elasticsearch/Algolia
157
+ ├── Need: Result pagination (not all)
158
+ ├── Need: Caching of popular searches
159
+ ├── Need: Rate limiting
160
+ └── Need: Async indexing
161
+
162
+ INSIGHT: Design for search engine from start
163
+ ```
164
+
165
+ **SCALE DOWN: 10 users**
166
+ ```
167
+ At 10 users:
168
+ ├── Full-text search is overkill
169
+ ├── Simple filter works
170
+ ├── No pagination needed
171
+ ├── No caching needed
172
+ └── Direct database query fine
173
+
174
+ INSIGHT: Over-engineering is real
175
+ ```
176
+
177
+ **SCALE TIME: Search in 1ms**
178
+ ```
179
+ At 1ms response:
180
+ ├── Must be pre-computed
181
+ ├── Must be local (no network)
182
+ ├── Must fit in memory
183
+ ├── No database round-trip
184
+
185
+ INSIGHT: Need edge caching for speed
186
+ ```
187
+
188
+ **SCALE: Infinite concurrent searches**
189
+ ```
190
+ At infinite concurrent:
191
+ ├── Stateless required
192
+ ├── Horizontal scaling
193
+ ├── Load balancing
194
+ ├── No shared state
195
+
196
+ INSIGHT: Stateless from day 1
197
+ ```
198
+
199
+ ### Final Design Decisions
200
+ Based on scale analysis:
201
+ 1. Use Elasticsearch (for 1M scale)
202
+ 2. Add result caching (for speed)
203
+ 3. Keep API stateless (for concurrency)
204
+ 4. Add pagination from start (for large results)
205
+ 5. Rate limit per user (for protection)
206
+
207
+ ---
208
+
209
+ ## Scale Thinking Shortcuts
210
+
211
+ ### "What breaks at 1000x?"
212
+ Reveals: scalability issues, bottlenecks, single points of failure
213
+
214
+ ### "What breaks at 0.001x?"
215
+ Reveals: overhead, minimum viable requirements, edge cases
216
+
217
+ ### "What if it's instant?"
218
+ Reveals: async vs sync decisions, caching needs
219
+
220
+ ### "What if it takes a year?"
221
+ Reveals: state management, persistence needs
222
+
223
+ ### "What if there's only one?"
224
+ Reveals: over-engineering, unnecessary abstraction
225
+
226
+ ### "What if there's infinite?"
227
+ Reveals: resource limits, throttling needs
228
+
229
+ ---
230
+
231
+ ## Practice Exercise
232
+
233
+ ### Your System:
234
+ > _______________________________________________
235
+
236
+ ### Variables to Scale:
237
+ 1. _______________________________________________
238
+ 2. _______________________________________________
239
+ 3. _______________________________________________
240
+
241
+ ### Scale Up (1000x)
242
+ | Variable | At 1000x | What Breaks? | What's Revealed? |
243
+ |----------|----------|--------------|-----------------|
244
+ | | | | |
245
+ | | | | |
246
+ | | | | |
247
+
248
+ ### Scale Down (0.001x)
249
+ | Variable | At 0.001x | What Breaks? | What's Revealed? |
250
+ |----------|-----------|--------------|-----------------|
251
+ | | | | |
252
+ | | | | |
253
+ | | | | |
254
+
255
+ ### Time Extremes
256
+ | If instant... | If takes a year... |
257
+ |---------------|-------------------|
258
+ | | |
259
+
260
+ ### Key Insights:
261
+ 1. _______________________________________________
262
+ 2. _______________________________________________
263
+ 3. _______________________________________________
264
+
265
+ ---
266
+
267
+ ## Quick Reference
268
+
269
+ ```
270
+ SCALE GAME IN 30 SECONDS:
271
+
272
+ 1. Pick a variable (users, data, speed, time)
273
+
274
+ 2. Scale UP 1000x:
275
+ → "At 1000x [variable], what breaks?"
276
+
277
+ 3. Scale DOWN 0.001x:
278
+ → "At 0.001x [variable], what breaks?"
279
+
280
+ 4. Extract insight:
281
+ → "This reveals that we need..."
282
+
283
+ 5. Apply to current design:
284
+ → "So we should change..."
285
+ ```
286
+
287
+ ---
288
+
289
+ ## Warning Signs
290
+
291
+ You need Scale Game when you hear:
292
+ - "That'll never happen"
293
+ - "We'll worry about scale later"
294
+ - "This is just a prototype"
295
+ - "Our users won't do that"
296
+ - "We only have X users now"
297
+
298
+ ---
299
+
300
+ > **Remember:** Scale Game isn't about predicting the future. It's about stress-testing your assumptions. The insights from extremes often reveal the right design for normal scales.