@mui/x-charts-vendor 8.14.0 → 8.15.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +2 -7
- package/package.json +3 -6
- package/d3-delaunay.d.ts +0 -5
- package/d3-delaunay.js +0 -7
- package/delaunator.d.ts +0 -5
- package/delaunator.js +0 -7
- package/es/d3-delaunay.mjs +0 -6
- package/es/delaunator.mjs +0 -6
- package/es/robust-predicates.mjs +0 -6
- package/lib/d3-delaunay.js +0 -6
- package/lib/delaunator.js +0 -6
- package/lib/robust-predicates.js +0 -6
- package/lib-vendor/d3-delaunay/LICENSE +0 -14
- package/lib-vendor/d3-delaunay/dist/d3-delaunay.js +0 -1398
- package/lib-vendor/d3-delaunay/dist/d3-delaunay.min.js +0 -853
- package/lib-vendor/d3-delaunay/src/delaunay.js +0 -282
- package/lib-vendor/d3-delaunay/src/index.js +0 -20
- package/lib-vendor/d3-delaunay/src/path.js +0 -43
- package/lib-vendor/d3-delaunay/src/polygon.js +0 -24
- package/lib-vendor/d3-delaunay/src/voronoi.js +0 -390
- package/lib-vendor/delaunator/LICENSE +0 -15
- package/lib-vendor/delaunator/delaunator.js +0 -688
- package/lib-vendor/delaunator/delaunator.min.js +0 -316
- package/lib-vendor/delaunator/index.js +0 -440
- package/lib-vendor/robust-predicates/LICENSE +0 -24
- package/lib-vendor/robust-predicates/esm/incircle.js +0 -667
- package/lib-vendor/robust-predicates/esm/insphere.js +0 -693
- package/lib-vendor/robust-predicates/esm/orient2d.js +0 -174
- package/lib-vendor/robust-predicates/esm/orient3d.js +0 -422
- package/lib-vendor/robust-predicates/esm/util.js +0 -147
- package/lib-vendor/robust-predicates/index.js +0 -57
- package/lib-vendor/robust-predicates/umd/incircle.js +0 -798
- package/lib-vendor/robust-predicates/umd/incircle.min.js +0 -170
- package/lib-vendor/robust-predicates/umd/insphere.js +0 -828
- package/lib-vendor/robust-predicates/umd/insphere.min.js +0 -223
- package/lib-vendor/robust-predicates/umd/orient2d.js +0 -260
- package/lib-vendor/robust-predicates/umd/orient2d.min.js +0 -69
- package/lib-vendor/robust-predicates/umd/orient3d.js +0 -550
- package/lib-vendor/robust-predicates/umd/orient3d.min.js +0 -133
- package/lib-vendor/robust-predicates/umd/predicates.js +0 -2073
- package/lib-vendor/robust-predicates/umd/predicates.min.js +0 -468
- package/robust-predicates.d.ts +0 -5
- package/robust-predicates.js +0 -7
|
@@ -1,550 +0,0 @@
|
|
|
1
|
-
"use strict";
|
|
2
|
-
|
|
3
|
-
(function (global, factory) {
|
|
4
|
-
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.predicates = {}));
|
|
5
|
-
})(this, function (exports) {
|
|
6
|
-
'use strict';
|
|
7
|
-
|
|
8
|
-
const epsilon = 1.1102230246251565e-16;
|
|
9
|
-
const splitter = 134217729;
|
|
10
|
-
const resulterrbound = (3 + 8 * epsilon) * epsilon;
|
|
11
|
-
|
|
12
|
-
// fast_expansion_sum_zeroelim routine from oritinal code
|
|
13
|
-
function sum(elen, e, flen, f, h) {
|
|
14
|
-
let Q, Qnew, hh, bvirt;
|
|
15
|
-
let enow = e[0];
|
|
16
|
-
let fnow = f[0];
|
|
17
|
-
let eindex = 0;
|
|
18
|
-
let findex = 0;
|
|
19
|
-
if (fnow > enow === fnow > -enow) {
|
|
20
|
-
Q = enow;
|
|
21
|
-
enow = e[++eindex];
|
|
22
|
-
} else {
|
|
23
|
-
Q = fnow;
|
|
24
|
-
fnow = f[++findex];
|
|
25
|
-
}
|
|
26
|
-
let hindex = 0;
|
|
27
|
-
if (eindex < elen && findex < flen) {
|
|
28
|
-
if (fnow > enow === fnow > -enow) {
|
|
29
|
-
Qnew = enow + Q;
|
|
30
|
-
hh = Q - (Qnew - enow);
|
|
31
|
-
enow = e[++eindex];
|
|
32
|
-
} else {
|
|
33
|
-
Qnew = fnow + Q;
|
|
34
|
-
hh = Q - (Qnew - fnow);
|
|
35
|
-
fnow = f[++findex];
|
|
36
|
-
}
|
|
37
|
-
Q = Qnew;
|
|
38
|
-
if (hh !== 0) {
|
|
39
|
-
h[hindex++] = hh;
|
|
40
|
-
}
|
|
41
|
-
while (eindex < elen && findex < flen) {
|
|
42
|
-
if (fnow > enow === fnow > -enow) {
|
|
43
|
-
Qnew = Q + enow;
|
|
44
|
-
bvirt = Qnew - Q;
|
|
45
|
-
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
|
46
|
-
enow = e[++eindex];
|
|
47
|
-
} else {
|
|
48
|
-
Qnew = Q + fnow;
|
|
49
|
-
bvirt = Qnew - Q;
|
|
50
|
-
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
|
51
|
-
fnow = f[++findex];
|
|
52
|
-
}
|
|
53
|
-
Q = Qnew;
|
|
54
|
-
if (hh !== 0) {
|
|
55
|
-
h[hindex++] = hh;
|
|
56
|
-
}
|
|
57
|
-
}
|
|
58
|
-
}
|
|
59
|
-
while (eindex < elen) {
|
|
60
|
-
Qnew = Q + enow;
|
|
61
|
-
bvirt = Qnew - Q;
|
|
62
|
-
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
|
63
|
-
enow = e[++eindex];
|
|
64
|
-
Q = Qnew;
|
|
65
|
-
if (hh !== 0) {
|
|
66
|
-
h[hindex++] = hh;
|
|
67
|
-
}
|
|
68
|
-
}
|
|
69
|
-
while (findex < flen) {
|
|
70
|
-
Qnew = Q + fnow;
|
|
71
|
-
bvirt = Qnew - Q;
|
|
72
|
-
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
|
73
|
-
fnow = f[++findex];
|
|
74
|
-
Q = Qnew;
|
|
75
|
-
if (hh !== 0) {
|
|
76
|
-
h[hindex++] = hh;
|
|
77
|
-
}
|
|
78
|
-
}
|
|
79
|
-
if (Q !== 0 || hindex === 0) {
|
|
80
|
-
h[hindex++] = Q;
|
|
81
|
-
}
|
|
82
|
-
return hindex;
|
|
83
|
-
}
|
|
84
|
-
|
|
85
|
-
// scale_expansion_zeroelim routine from oritinal code
|
|
86
|
-
function scale(elen, e, b, h) {
|
|
87
|
-
let Q, sum, hh, product1, product0;
|
|
88
|
-
let bvirt, c, ahi, alo, bhi, blo;
|
|
89
|
-
c = splitter * b;
|
|
90
|
-
bhi = c - (c - b);
|
|
91
|
-
blo = b - bhi;
|
|
92
|
-
let enow = e[0];
|
|
93
|
-
Q = enow * b;
|
|
94
|
-
c = splitter * enow;
|
|
95
|
-
ahi = c - (c - enow);
|
|
96
|
-
alo = enow - ahi;
|
|
97
|
-
hh = alo * blo - (Q - ahi * bhi - alo * bhi - ahi * blo);
|
|
98
|
-
let hindex = 0;
|
|
99
|
-
if (hh !== 0) {
|
|
100
|
-
h[hindex++] = hh;
|
|
101
|
-
}
|
|
102
|
-
for (let i = 1; i < elen; i++) {
|
|
103
|
-
enow = e[i];
|
|
104
|
-
product1 = enow * b;
|
|
105
|
-
c = splitter * enow;
|
|
106
|
-
ahi = c - (c - enow);
|
|
107
|
-
alo = enow - ahi;
|
|
108
|
-
product0 = alo * blo - (product1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
109
|
-
sum = Q + product0;
|
|
110
|
-
bvirt = sum - Q;
|
|
111
|
-
hh = Q - (sum - bvirt) + (product0 - bvirt);
|
|
112
|
-
if (hh !== 0) {
|
|
113
|
-
h[hindex++] = hh;
|
|
114
|
-
}
|
|
115
|
-
Q = product1 + sum;
|
|
116
|
-
hh = sum - (Q - product1);
|
|
117
|
-
if (hh !== 0) {
|
|
118
|
-
h[hindex++] = hh;
|
|
119
|
-
}
|
|
120
|
-
}
|
|
121
|
-
if (Q !== 0 || hindex === 0) {
|
|
122
|
-
h[hindex++] = Q;
|
|
123
|
-
}
|
|
124
|
-
return hindex;
|
|
125
|
-
}
|
|
126
|
-
function estimate(elen, e) {
|
|
127
|
-
let Q = e[0];
|
|
128
|
-
for (let i = 1; i < elen; i++) Q += e[i];
|
|
129
|
-
return Q;
|
|
130
|
-
}
|
|
131
|
-
function vec(n) {
|
|
132
|
-
return new Float64Array(n);
|
|
133
|
-
}
|
|
134
|
-
const o3derrboundA = (7 + 56 * epsilon) * epsilon;
|
|
135
|
-
const o3derrboundB = (3 + 28 * epsilon) * epsilon;
|
|
136
|
-
const o3derrboundC = (26 + 288 * epsilon) * epsilon * epsilon;
|
|
137
|
-
const bc = vec(4);
|
|
138
|
-
const ca = vec(4);
|
|
139
|
-
const ab = vec(4);
|
|
140
|
-
const at_b = vec(4);
|
|
141
|
-
const at_c = vec(4);
|
|
142
|
-
const bt_c = vec(4);
|
|
143
|
-
const bt_a = vec(4);
|
|
144
|
-
const ct_a = vec(4);
|
|
145
|
-
const ct_b = vec(4);
|
|
146
|
-
const bct = vec(8);
|
|
147
|
-
const cat = vec(8);
|
|
148
|
-
const abt = vec(8);
|
|
149
|
-
const u = vec(4);
|
|
150
|
-
const _8 = vec(8);
|
|
151
|
-
const _8b = vec(8);
|
|
152
|
-
const _16 = vec(8);
|
|
153
|
-
const _12 = vec(12);
|
|
154
|
-
let fin = vec(192);
|
|
155
|
-
let fin2 = vec(192);
|
|
156
|
-
function finadd(finlen, alen, a) {
|
|
157
|
-
finlen = sum(finlen, fin, alen, a, fin2);
|
|
158
|
-
const tmp = fin;
|
|
159
|
-
fin = fin2;
|
|
160
|
-
fin2 = tmp;
|
|
161
|
-
return finlen;
|
|
162
|
-
}
|
|
163
|
-
function tailinit(xtail, ytail, ax, ay, bx, by, a, b) {
|
|
164
|
-
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3, negate;
|
|
165
|
-
if (xtail === 0) {
|
|
166
|
-
if (ytail === 0) {
|
|
167
|
-
a[0] = 0;
|
|
168
|
-
b[0] = 0;
|
|
169
|
-
return 1;
|
|
170
|
-
} else {
|
|
171
|
-
negate = -ytail;
|
|
172
|
-
s1 = negate * ax;
|
|
173
|
-
c = splitter * negate;
|
|
174
|
-
ahi = c - (c - negate);
|
|
175
|
-
alo = negate - ahi;
|
|
176
|
-
c = splitter * ax;
|
|
177
|
-
bhi = c - (c - ax);
|
|
178
|
-
blo = ax - bhi;
|
|
179
|
-
a[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
180
|
-
a[1] = s1;
|
|
181
|
-
s1 = ytail * bx;
|
|
182
|
-
c = splitter * ytail;
|
|
183
|
-
ahi = c - (c - ytail);
|
|
184
|
-
alo = ytail - ahi;
|
|
185
|
-
c = splitter * bx;
|
|
186
|
-
bhi = c - (c - bx);
|
|
187
|
-
blo = bx - bhi;
|
|
188
|
-
b[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
189
|
-
b[1] = s1;
|
|
190
|
-
return 2;
|
|
191
|
-
}
|
|
192
|
-
} else {
|
|
193
|
-
if (ytail === 0) {
|
|
194
|
-
s1 = xtail * ay;
|
|
195
|
-
c = splitter * xtail;
|
|
196
|
-
ahi = c - (c - xtail);
|
|
197
|
-
alo = xtail - ahi;
|
|
198
|
-
c = splitter * ay;
|
|
199
|
-
bhi = c - (c - ay);
|
|
200
|
-
blo = ay - bhi;
|
|
201
|
-
a[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
202
|
-
a[1] = s1;
|
|
203
|
-
negate = -xtail;
|
|
204
|
-
s1 = negate * by;
|
|
205
|
-
c = splitter * negate;
|
|
206
|
-
ahi = c - (c - negate);
|
|
207
|
-
alo = negate - ahi;
|
|
208
|
-
c = splitter * by;
|
|
209
|
-
bhi = c - (c - by);
|
|
210
|
-
blo = by - bhi;
|
|
211
|
-
b[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
212
|
-
b[1] = s1;
|
|
213
|
-
return 2;
|
|
214
|
-
} else {
|
|
215
|
-
s1 = xtail * ay;
|
|
216
|
-
c = splitter * xtail;
|
|
217
|
-
ahi = c - (c - xtail);
|
|
218
|
-
alo = xtail - ahi;
|
|
219
|
-
c = splitter * ay;
|
|
220
|
-
bhi = c - (c - ay);
|
|
221
|
-
blo = ay - bhi;
|
|
222
|
-
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
223
|
-
t1 = ytail * ax;
|
|
224
|
-
c = splitter * ytail;
|
|
225
|
-
ahi = c - (c - ytail);
|
|
226
|
-
alo = ytail - ahi;
|
|
227
|
-
c = splitter * ax;
|
|
228
|
-
bhi = c - (c - ax);
|
|
229
|
-
blo = ax - bhi;
|
|
230
|
-
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
231
|
-
_i = s0 - t0;
|
|
232
|
-
bvirt = s0 - _i;
|
|
233
|
-
a[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
|
234
|
-
_j = s1 + _i;
|
|
235
|
-
bvirt = _j - s1;
|
|
236
|
-
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
|
237
|
-
_i = _0 - t1;
|
|
238
|
-
bvirt = _0 - _i;
|
|
239
|
-
a[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
|
240
|
-
u3 = _j + _i;
|
|
241
|
-
bvirt = u3 - _j;
|
|
242
|
-
a[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
|
243
|
-
a[3] = u3;
|
|
244
|
-
s1 = ytail * bx;
|
|
245
|
-
c = splitter * ytail;
|
|
246
|
-
ahi = c - (c - ytail);
|
|
247
|
-
alo = ytail - ahi;
|
|
248
|
-
c = splitter * bx;
|
|
249
|
-
bhi = c - (c - bx);
|
|
250
|
-
blo = bx - bhi;
|
|
251
|
-
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
252
|
-
t1 = xtail * by;
|
|
253
|
-
c = splitter * xtail;
|
|
254
|
-
ahi = c - (c - xtail);
|
|
255
|
-
alo = xtail - ahi;
|
|
256
|
-
c = splitter * by;
|
|
257
|
-
bhi = c - (c - by);
|
|
258
|
-
blo = by - bhi;
|
|
259
|
-
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
260
|
-
_i = s0 - t0;
|
|
261
|
-
bvirt = s0 - _i;
|
|
262
|
-
b[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
|
263
|
-
_j = s1 + _i;
|
|
264
|
-
bvirt = _j - s1;
|
|
265
|
-
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
|
266
|
-
_i = _0 - t1;
|
|
267
|
-
bvirt = _0 - _i;
|
|
268
|
-
b[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
|
269
|
-
u3 = _j + _i;
|
|
270
|
-
bvirt = u3 - _j;
|
|
271
|
-
b[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
|
272
|
-
b[3] = u3;
|
|
273
|
-
return 4;
|
|
274
|
-
}
|
|
275
|
-
}
|
|
276
|
-
}
|
|
277
|
-
function tailadd(finlen, a, b, k, z) {
|
|
278
|
-
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _k, _0, s1, s0, u3;
|
|
279
|
-
s1 = a * b;
|
|
280
|
-
c = splitter * a;
|
|
281
|
-
ahi = c - (c - a);
|
|
282
|
-
alo = a - ahi;
|
|
283
|
-
c = splitter * b;
|
|
284
|
-
bhi = c - (c - b);
|
|
285
|
-
blo = b - bhi;
|
|
286
|
-
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
287
|
-
c = splitter * k;
|
|
288
|
-
bhi = c - (c - k);
|
|
289
|
-
blo = k - bhi;
|
|
290
|
-
_i = s0 * k;
|
|
291
|
-
c = splitter * s0;
|
|
292
|
-
ahi = c - (c - s0);
|
|
293
|
-
alo = s0 - ahi;
|
|
294
|
-
u[0] = alo * blo - (_i - ahi * bhi - alo * bhi - ahi * blo);
|
|
295
|
-
_j = s1 * k;
|
|
296
|
-
c = splitter * s1;
|
|
297
|
-
ahi = c - (c - s1);
|
|
298
|
-
alo = s1 - ahi;
|
|
299
|
-
_0 = alo * blo - (_j - ahi * bhi - alo * bhi - ahi * blo);
|
|
300
|
-
_k = _i + _0;
|
|
301
|
-
bvirt = _k - _i;
|
|
302
|
-
u[1] = _i - (_k - bvirt) + (_0 - bvirt);
|
|
303
|
-
u3 = _j + _k;
|
|
304
|
-
u[2] = _k - (u3 - _j);
|
|
305
|
-
u[3] = u3;
|
|
306
|
-
finlen = finadd(finlen, 4, u);
|
|
307
|
-
if (z !== 0) {
|
|
308
|
-
c = splitter * z;
|
|
309
|
-
bhi = c - (c - z);
|
|
310
|
-
blo = z - bhi;
|
|
311
|
-
_i = s0 * z;
|
|
312
|
-
c = splitter * s0;
|
|
313
|
-
ahi = c - (c - s0);
|
|
314
|
-
alo = s0 - ahi;
|
|
315
|
-
u[0] = alo * blo - (_i - ahi * bhi - alo * bhi - ahi * blo);
|
|
316
|
-
_j = s1 * z;
|
|
317
|
-
c = splitter * s1;
|
|
318
|
-
ahi = c - (c - s1);
|
|
319
|
-
alo = s1 - ahi;
|
|
320
|
-
_0 = alo * blo - (_j - ahi * bhi - alo * bhi - ahi * blo);
|
|
321
|
-
_k = _i + _0;
|
|
322
|
-
bvirt = _k - _i;
|
|
323
|
-
u[1] = _i - (_k - bvirt) + (_0 - bvirt);
|
|
324
|
-
u3 = _j + _k;
|
|
325
|
-
u[2] = _k - (u3 - _j);
|
|
326
|
-
u[3] = u3;
|
|
327
|
-
finlen = finadd(finlen, 4, u);
|
|
328
|
-
}
|
|
329
|
-
return finlen;
|
|
330
|
-
}
|
|
331
|
-
function orient3dadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, permanent) {
|
|
332
|
-
let finlen;
|
|
333
|
-
let adxtail, bdxtail, cdxtail;
|
|
334
|
-
let adytail, bdytail, cdytail;
|
|
335
|
-
let adztail, bdztail, cdztail;
|
|
336
|
-
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
|
|
337
|
-
const adx = ax - dx;
|
|
338
|
-
const bdx = bx - dx;
|
|
339
|
-
const cdx = cx - dx;
|
|
340
|
-
const ady = ay - dy;
|
|
341
|
-
const bdy = by - dy;
|
|
342
|
-
const cdy = cy - dy;
|
|
343
|
-
const adz = az - dz;
|
|
344
|
-
const bdz = bz - dz;
|
|
345
|
-
const cdz = cz - dz;
|
|
346
|
-
s1 = bdx * cdy;
|
|
347
|
-
c = splitter * bdx;
|
|
348
|
-
ahi = c - (c - bdx);
|
|
349
|
-
alo = bdx - ahi;
|
|
350
|
-
c = splitter * cdy;
|
|
351
|
-
bhi = c - (c - cdy);
|
|
352
|
-
blo = cdy - bhi;
|
|
353
|
-
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
354
|
-
t1 = cdx * bdy;
|
|
355
|
-
c = splitter * cdx;
|
|
356
|
-
ahi = c - (c - cdx);
|
|
357
|
-
alo = cdx - ahi;
|
|
358
|
-
c = splitter * bdy;
|
|
359
|
-
bhi = c - (c - bdy);
|
|
360
|
-
blo = bdy - bhi;
|
|
361
|
-
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
362
|
-
_i = s0 - t0;
|
|
363
|
-
bvirt = s0 - _i;
|
|
364
|
-
bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
|
365
|
-
_j = s1 + _i;
|
|
366
|
-
bvirt = _j - s1;
|
|
367
|
-
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
|
368
|
-
_i = _0 - t1;
|
|
369
|
-
bvirt = _0 - _i;
|
|
370
|
-
bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
|
371
|
-
u3 = _j + _i;
|
|
372
|
-
bvirt = u3 - _j;
|
|
373
|
-
bc[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
|
374
|
-
bc[3] = u3;
|
|
375
|
-
s1 = cdx * ady;
|
|
376
|
-
c = splitter * cdx;
|
|
377
|
-
ahi = c - (c - cdx);
|
|
378
|
-
alo = cdx - ahi;
|
|
379
|
-
c = splitter * ady;
|
|
380
|
-
bhi = c - (c - ady);
|
|
381
|
-
blo = ady - bhi;
|
|
382
|
-
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
383
|
-
t1 = adx * cdy;
|
|
384
|
-
c = splitter * adx;
|
|
385
|
-
ahi = c - (c - adx);
|
|
386
|
-
alo = adx - ahi;
|
|
387
|
-
c = splitter * cdy;
|
|
388
|
-
bhi = c - (c - cdy);
|
|
389
|
-
blo = cdy - bhi;
|
|
390
|
-
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
391
|
-
_i = s0 - t0;
|
|
392
|
-
bvirt = s0 - _i;
|
|
393
|
-
ca[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
|
394
|
-
_j = s1 + _i;
|
|
395
|
-
bvirt = _j - s1;
|
|
396
|
-
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
|
397
|
-
_i = _0 - t1;
|
|
398
|
-
bvirt = _0 - _i;
|
|
399
|
-
ca[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
|
400
|
-
u3 = _j + _i;
|
|
401
|
-
bvirt = u3 - _j;
|
|
402
|
-
ca[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
|
403
|
-
ca[3] = u3;
|
|
404
|
-
s1 = adx * bdy;
|
|
405
|
-
c = splitter * adx;
|
|
406
|
-
ahi = c - (c - adx);
|
|
407
|
-
alo = adx - ahi;
|
|
408
|
-
c = splitter * bdy;
|
|
409
|
-
bhi = c - (c - bdy);
|
|
410
|
-
blo = bdy - bhi;
|
|
411
|
-
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
412
|
-
t1 = bdx * ady;
|
|
413
|
-
c = splitter * bdx;
|
|
414
|
-
ahi = c - (c - bdx);
|
|
415
|
-
alo = bdx - ahi;
|
|
416
|
-
c = splitter * ady;
|
|
417
|
-
bhi = c - (c - ady);
|
|
418
|
-
blo = ady - bhi;
|
|
419
|
-
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
420
|
-
_i = s0 - t0;
|
|
421
|
-
bvirt = s0 - _i;
|
|
422
|
-
ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
|
423
|
-
_j = s1 + _i;
|
|
424
|
-
bvirt = _j - s1;
|
|
425
|
-
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
|
426
|
-
_i = _0 - t1;
|
|
427
|
-
bvirt = _0 - _i;
|
|
428
|
-
ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
|
429
|
-
u3 = _j + _i;
|
|
430
|
-
bvirt = u3 - _j;
|
|
431
|
-
ab[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
|
432
|
-
ab[3] = u3;
|
|
433
|
-
finlen = sum(sum(scale(4, bc, adz, _8), _8, scale(4, ca, bdz, _8b), _8b, _16), _16, scale(4, ab, cdz, _8), _8, fin);
|
|
434
|
-
let det = estimate(finlen, fin);
|
|
435
|
-
let errbound = o3derrboundB * permanent;
|
|
436
|
-
if (det >= errbound || -det >= errbound) {
|
|
437
|
-
return det;
|
|
438
|
-
}
|
|
439
|
-
bvirt = ax - adx;
|
|
440
|
-
adxtail = ax - (adx + bvirt) + (bvirt - dx);
|
|
441
|
-
bvirt = bx - bdx;
|
|
442
|
-
bdxtail = bx - (bdx + bvirt) + (bvirt - dx);
|
|
443
|
-
bvirt = cx - cdx;
|
|
444
|
-
cdxtail = cx - (cdx + bvirt) + (bvirt - dx);
|
|
445
|
-
bvirt = ay - ady;
|
|
446
|
-
adytail = ay - (ady + bvirt) + (bvirt - dy);
|
|
447
|
-
bvirt = by - bdy;
|
|
448
|
-
bdytail = by - (bdy + bvirt) + (bvirt - dy);
|
|
449
|
-
bvirt = cy - cdy;
|
|
450
|
-
cdytail = cy - (cdy + bvirt) + (bvirt - dy);
|
|
451
|
-
bvirt = az - adz;
|
|
452
|
-
adztail = az - (adz + bvirt) + (bvirt - dz);
|
|
453
|
-
bvirt = bz - bdz;
|
|
454
|
-
bdztail = bz - (bdz + bvirt) + (bvirt - dz);
|
|
455
|
-
bvirt = cz - cdz;
|
|
456
|
-
cdztail = cz - (cdz + bvirt) + (bvirt - dz);
|
|
457
|
-
if (adxtail === 0 && bdxtail === 0 && cdxtail === 0 && adytail === 0 && bdytail === 0 && cdytail === 0 && adztail === 0 && bdztail === 0 && cdztail === 0) {
|
|
458
|
-
return det;
|
|
459
|
-
}
|
|
460
|
-
errbound = o3derrboundC * permanent + resulterrbound * Math.abs(det);
|
|
461
|
-
det += adz * (bdx * cdytail + cdy * bdxtail - (bdy * cdxtail + cdx * bdytail)) + adztail * (bdx * cdy - bdy * cdx) + bdz * (cdx * adytail + ady * cdxtail - (cdy * adxtail + adx * cdytail)) + bdztail * (cdx * ady - cdy * adx) + cdz * (adx * bdytail + bdy * adxtail - (ady * bdxtail + bdx * adytail)) + cdztail * (adx * bdy - ady * bdx);
|
|
462
|
-
if (det >= errbound || -det >= errbound) {
|
|
463
|
-
return det;
|
|
464
|
-
}
|
|
465
|
-
const at_len = tailinit(adxtail, adytail, bdx, bdy, cdx, cdy, at_b, at_c);
|
|
466
|
-
const bt_len = tailinit(bdxtail, bdytail, cdx, cdy, adx, ady, bt_c, bt_a);
|
|
467
|
-
const ct_len = tailinit(cdxtail, cdytail, adx, ady, bdx, bdy, ct_a, ct_b);
|
|
468
|
-
const bctlen = sum(bt_len, bt_c, ct_len, ct_b, bct);
|
|
469
|
-
finlen = finadd(finlen, scale(bctlen, bct, adz, _16), _16);
|
|
470
|
-
const catlen = sum(ct_len, ct_a, at_len, at_c, cat);
|
|
471
|
-
finlen = finadd(finlen, scale(catlen, cat, bdz, _16), _16);
|
|
472
|
-
const abtlen = sum(at_len, at_b, bt_len, bt_a, abt);
|
|
473
|
-
finlen = finadd(finlen, scale(abtlen, abt, cdz, _16), _16);
|
|
474
|
-
if (adztail !== 0) {
|
|
475
|
-
finlen = finadd(finlen, scale(4, bc, adztail, _12), _12);
|
|
476
|
-
finlen = finadd(finlen, scale(bctlen, bct, adztail, _16), _16);
|
|
477
|
-
}
|
|
478
|
-
if (bdztail !== 0) {
|
|
479
|
-
finlen = finadd(finlen, scale(4, ca, bdztail, _12), _12);
|
|
480
|
-
finlen = finadd(finlen, scale(catlen, cat, bdztail, _16), _16);
|
|
481
|
-
}
|
|
482
|
-
if (cdztail !== 0) {
|
|
483
|
-
finlen = finadd(finlen, scale(4, ab, cdztail, _12), _12);
|
|
484
|
-
finlen = finadd(finlen, scale(abtlen, abt, cdztail, _16), _16);
|
|
485
|
-
}
|
|
486
|
-
if (adxtail !== 0) {
|
|
487
|
-
if (bdytail !== 0) {
|
|
488
|
-
finlen = tailadd(finlen, adxtail, bdytail, cdz, cdztail);
|
|
489
|
-
}
|
|
490
|
-
if (cdytail !== 0) {
|
|
491
|
-
finlen = tailadd(finlen, -adxtail, cdytail, bdz, bdztail);
|
|
492
|
-
}
|
|
493
|
-
}
|
|
494
|
-
if (bdxtail !== 0) {
|
|
495
|
-
if (cdytail !== 0) {
|
|
496
|
-
finlen = tailadd(finlen, bdxtail, cdytail, adz, adztail);
|
|
497
|
-
}
|
|
498
|
-
if (adytail !== 0) {
|
|
499
|
-
finlen = tailadd(finlen, -bdxtail, adytail, cdz, cdztail);
|
|
500
|
-
}
|
|
501
|
-
}
|
|
502
|
-
if (cdxtail !== 0) {
|
|
503
|
-
if (adytail !== 0) {
|
|
504
|
-
finlen = tailadd(finlen, cdxtail, adytail, bdz, bdztail);
|
|
505
|
-
}
|
|
506
|
-
if (bdytail !== 0) {
|
|
507
|
-
finlen = tailadd(finlen, -cdxtail, bdytail, adz, adztail);
|
|
508
|
-
}
|
|
509
|
-
}
|
|
510
|
-
return fin[finlen - 1];
|
|
511
|
-
}
|
|
512
|
-
function orient3d(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz) {
|
|
513
|
-
const adx = ax - dx;
|
|
514
|
-
const bdx = bx - dx;
|
|
515
|
-
const cdx = cx - dx;
|
|
516
|
-
const ady = ay - dy;
|
|
517
|
-
const bdy = by - dy;
|
|
518
|
-
const cdy = cy - dy;
|
|
519
|
-
const adz = az - dz;
|
|
520
|
-
const bdz = bz - dz;
|
|
521
|
-
const cdz = cz - dz;
|
|
522
|
-
const bdxcdy = bdx * cdy;
|
|
523
|
-
const cdxbdy = cdx * bdy;
|
|
524
|
-
const cdxady = cdx * ady;
|
|
525
|
-
const adxcdy = adx * cdy;
|
|
526
|
-
const adxbdy = adx * bdy;
|
|
527
|
-
const bdxady = bdx * ady;
|
|
528
|
-
const det = adz * (bdxcdy - cdxbdy) + bdz * (cdxady - adxcdy) + cdz * (adxbdy - bdxady);
|
|
529
|
-
const permanent = (Math.abs(bdxcdy) + Math.abs(cdxbdy)) * Math.abs(adz) + (Math.abs(cdxady) + Math.abs(adxcdy)) * Math.abs(bdz) + (Math.abs(adxbdy) + Math.abs(bdxady)) * Math.abs(cdz);
|
|
530
|
-
const errbound = o3derrboundA * permanent;
|
|
531
|
-
if (det > errbound || -det > errbound) {
|
|
532
|
-
return det;
|
|
533
|
-
}
|
|
534
|
-
return orient3dadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, permanent);
|
|
535
|
-
}
|
|
536
|
-
function orient3dfast(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz) {
|
|
537
|
-
const adx = ax - dx;
|
|
538
|
-
const bdx = bx - dx;
|
|
539
|
-
const cdx = cx - dx;
|
|
540
|
-
const ady = ay - dy;
|
|
541
|
-
const bdy = by - dy;
|
|
542
|
-
const cdy = cy - dy;
|
|
543
|
-
const adz = az - dz;
|
|
544
|
-
const bdz = bz - dz;
|
|
545
|
-
const cdz = cz - dz;
|
|
546
|
-
return adx * (bdy * cdz - bdz * cdy) + bdx * (cdy * adz - cdz * ady) + cdx * (ady * bdz - adz * bdy);
|
|
547
|
-
}
|
|
548
|
-
exports.orient3d = orient3d;
|
|
549
|
-
exports.orient3dfast = orient3dfast;
|
|
550
|
-
});
|
|
@@ -1,133 +0,0 @@
|
|
|
1
|
-
"use strict";
|
|
2
|
-
|
|
3
|
-
!function (t, n) {
|
|
4
|
-
"object" == typeof exports && "undefined" != typeof module ? n(exports) : "function" == typeof define && define.amd ? define(["exports"], n) : n((t = "undefined" != typeof globalThis ? globalThis : t || self).predicates = {});
|
|
5
|
-
}(this, function (t) {
|
|
6
|
-
"use strict";
|
|
7
|
-
|
|
8
|
-
const n = 11102230246251565e-32,
|
|
9
|
-
e = 134217729,
|
|
10
|
-
o = (3 + 8 * n) * n;
|
|
11
|
-
function r(t, n, e, o, r) {
|
|
12
|
-
let f,
|
|
13
|
-
s,
|
|
14
|
-
u,
|
|
15
|
-
i,
|
|
16
|
-
a = n[0],
|
|
17
|
-
c = o[0],
|
|
18
|
-
l = 0,
|
|
19
|
-
b = 0;
|
|
20
|
-
c > a == c > -a ? (f = a, a = n[++l]) : (f = c, c = o[++b]);
|
|
21
|
-
let h = 0;
|
|
22
|
-
if (l < t && b < e) for (c > a == c > -a ? (s = a + f, u = f - (s - a), a = n[++l]) : (s = c + f, u = f - (s - c), c = o[++b]), f = s, 0 !== u && (r[h++] = u); l < t && b < e;) c > a == c > -a ? (s = f + a, i = s - f, u = f - (s - i) + (a - i), a = n[++l]) : (s = f + c, i = s - f, u = f - (s - i) + (c - i), c = o[++b]), f = s, 0 !== u && (r[h++] = u);
|
|
23
|
-
for (; l < t;) s = f + a, i = s - f, u = f - (s - i) + (a - i), a = n[++l], f = s, 0 !== u && (r[h++] = u);
|
|
24
|
-
for (; b < e;) s = f + c, i = s - f, u = f - (s - i) + (c - i), c = o[++b], f = s, 0 !== u && (r[h++] = u);
|
|
25
|
-
return 0 === f && 0 !== h || (r[h++] = f), h;
|
|
26
|
-
}
|
|
27
|
-
function f(t, n, o, r) {
|
|
28
|
-
let f, s, u, i, a, c, l, b, h, d, M;
|
|
29
|
-
l = e * o, d = l - (l - o), M = o - d;
|
|
30
|
-
let p = n[0];
|
|
31
|
-
f = p * o, l = e * p, b = l - (l - p), h = p - b, u = h * M - (f - b * d - h * d - b * M);
|
|
32
|
-
let y = 0;
|
|
33
|
-
0 !== u && (r[y++] = u);
|
|
34
|
-
for (let x = 1; x < t; x++) p = n[x], i = p * o, l = e * p, b = l - (l - p), h = p - b, a = h * M - (i - b * d - h * d - b * M), s = f + a, c = s - f, u = f - (s - c) + (a - c), 0 !== u && (r[y++] = u), f = i + s, u = s - (f - i), 0 !== u && (r[y++] = u);
|
|
35
|
-
return 0 === f && 0 !== y || (r[y++] = f), y;
|
|
36
|
-
}
|
|
37
|
-
function s(t) {
|
|
38
|
-
return new Float64Array(t);
|
|
39
|
-
}
|
|
40
|
-
const u = 3330669073875473e-31,
|
|
41
|
-
i = 32047474274603644e-47,
|
|
42
|
-
a = s(4),
|
|
43
|
-
c = s(4),
|
|
44
|
-
l = s(4),
|
|
45
|
-
b = s(4),
|
|
46
|
-
h = s(4),
|
|
47
|
-
d = s(4),
|
|
48
|
-
M = s(4),
|
|
49
|
-
p = s(4),
|
|
50
|
-
y = s(4),
|
|
51
|
-
x = s(8),
|
|
52
|
-
g = s(8),
|
|
53
|
-
m = s(8),
|
|
54
|
-
T = s(4),
|
|
55
|
-
j = s(8),
|
|
56
|
-
w = s(8),
|
|
57
|
-
A = s(8),
|
|
58
|
-
F = s(12);
|
|
59
|
-
let k = s(192),
|
|
60
|
-
q = s(192);
|
|
61
|
-
function v(t, n, e) {
|
|
62
|
-
t = r(t, k, n, e, q);
|
|
63
|
-
const o = k;
|
|
64
|
-
return k = q, q = o, t;
|
|
65
|
-
}
|
|
66
|
-
function z(t, n, o, r, f, s, u, i) {
|
|
67
|
-
let a, c, l, b, h, d, M, p, y, x, g, m, T, j, w;
|
|
68
|
-
return 0 === t ? 0 === n ? (u[0] = 0, i[0] = 0, 1) : (w = -n, x = w * o, c = e * w, l = c - (c - w), b = w - l, c = e * o, h = c - (c - o), d = o - h, u[0] = b * d - (x - l * h - b * h - l * d), u[1] = x, x = n * f, c = e * n, l = c - (c - n), b = n - l, c = e * f, h = c - (c - f), d = f - h, i[0] = b * d - (x - l * h - b * h - l * d), i[1] = x, 2) : 0 === n ? (x = t * r, c = e * t, l = c - (c - t), b = t - l, c = e * r, h = c - (c - r), d = r - h, u[0] = b * d - (x - l * h - b * h - l * d), u[1] = x, w = -t, x = w * s, c = e * w, l = c - (c - w), b = w - l, c = e * s, h = c - (c - s), d = s - h, i[0] = b * d - (x - l * h - b * h - l * d), i[1] = x, 2) : (x = t * r, c = e * t, l = c - (c - t), b = t - l, c = e * r, h = c - (c - r), d = r - h, g = b * d - (x - l * h - b * h - l * d), m = n * o, c = e * n, l = c - (c - n), b = n - l, c = e * o, h = c - (c - o), d = o - h, T = b * d - (m - l * h - b * h - l * d), M = g - T, a = g - M, u[0] = g - (M + a) + (a - T), p = x + M, a = p - x, y = x - (p - a) + (M - a), M = y - m, a = y - M, u[1] = y - (M + a) + (a - m), j = p + M, a = j - p, u[2] = p - (j - a) + (M - a), u[3] = j, x = n * f, c = e * n, l = c - (c - n), b = n - l, c = e * f, h = c - (c - f), d = f - h, g = b * d - (x - l * h - b * h - l * d), m = t * s, c = e * t, l = c - (c - t), b = t - l, c = e * s, h = c - (c - s), d = s - h, T = b * d - (m - l * h - b * h - l * d), M = g - T, a = g - M, i[0] = g - (M + a) + (a - T), p = x + M, a = p - x, y = x - (p - a) + (M - a), M = y - m, a = y - M, i[1] = y - (M + a) + (a - m), j = p + M, a = j - p, i[2] = p - (j - a) + (M - a), i[3] = j, 4);
|
|
69
|
-
}
|
|
70
|
-
function B(t, n, o, r, f) {
|
|
71
|
-
let s, u, i, a, c, l, b, h, d, M, p, y, x;
|
|
72
|
-
return p = n * o, u = e * n, i = u - (u - n), a = n - i, u = e * o, c = u - (u - o), l = o - c, y = a * l - (p - i * c - a * c - i * l), u = e * r, c = u - (u - r), l = r - c, b = y * r, u = e * y, i = u - (u - y), a = y - i, T[0] = a * l - (b - i * c - a * c - i * l), h = p * r, u = e * p, i = u - (u - p), a = p - i, M = a * l - (h - i * c - a * c - i * l), d = b + M, s = d - b, T[1] = b - (d - s) + (M - s), x = h + d, T[2] = d - (x - h), T[3] = x, t = v(t, 4, T), 0 !== f && (u = e * f, c = u - (u - f), l = f - c, b = y * f, u = e * y, i = u - (u - y), a = y - i, T[0] = a * l - (b - i * c - a * c - i * l), h = p * f, u = e * p, i = u - (u - p), a = p - i, M = a * l - (h - i * c - a * c - i * l), d = b + M, s = d - b, T[1] = b - (d - s) + (M - s), x = h + d, T[2] = d - (x - h), T[3] = x, t = v(t, 4, T)), t;
|
|
73
|
-
}
|
|
74
|
-
t.orient3d = function (t, n, s, T, q, C, D, E, G, H, I, J) {
|
|
75
|
-
const K = t - H,
|
|
76
|
-
L = T - H,
|
|
77
|
-
N = D - H,
|
|
78
|
-
O = n - I,
|
|
79
|
-
P = q - I,
|
|
80
|
-
Q = E - I,
|
|
81
|
-
R = s - J,
|
|
82
|
-
S = C - J,
|
|
83
|
-
U = G - J,
|
|
84
|
-
V = L * Q,
|
|
85
|
-
W = N * P,
|
|
86
|
-
X = N * O,
|
|
87
|
-
Y = K * Q,
|
|
88
|
-
Z = K * P,
|
|
89
|
-
$ = L * O,
|
|
90
|
-
_ = R * (V - W) + S * (X - Y) + U * (Z - $),
|
|
91
|
-
tt = (Math.abs(V) + Math.abs(W)) * Math.abs(R) + (Math.abs(X) + Math.abs(Y)) * Math.abs(S) + (Math.abs(Z) + Math.abs($)) * Math.abs(U),
|
|
92
|
-
nt = 7771561172376103e-31 * tt;
|
|
93
|
-
return _ > nt || -_ > nt ? _ : function (t, n, s, T, q, C, D, E, G, H, I, J, K) {
|
|
94
|
-
let L, N, O, P, Q, R, S, U, V, W, X, Y, Z, $, _, tt, nt, et, ot, rt, ft, st, ut, it;
|
|
95
|
-
const at = t - H,
|
|
96
|
-
ct = T - H,
|
|
97
|
-
lt = D - H,
|
|
98
|
-
bt = n - I,
|
|
99
|
-
ht = q - I,
|
|
100
|
-
dt = E - I,
|
|
101
|
-
Mt = s - J,
|
|
102
|
-
pt = C - J,
|
|
103
|
-
yt = G - J;
|
|
104
|
-
rt = ct * dt, Y = e * ct, Z = Y - (Y - ct), $ = ct - Z, Y = e * dt, _ = Y - (Y - dt), tt = dt - _, ft = $ * tt - (rt - Z * _ - $ * _ - Z * tt), st = lt * ht, Y = e * lt, Z = Y - (Y - lt), $ = lt - Z, Y = e * ht, _ = Y - (Y - ht), tt = ht - _, ut = $ * tt - (st - Z * _ - $ * _ - Z * tt), nt = ft - ut, X = ft - nt, a[0] = ft - (nt + X) + (X - ut), et = rt + nt, X = et - rt, ot = rt - (et - X) + (nt - X), nt = ot - st, X = ot - nt, a[1] = ot - (nt + X) + (X - st), it = et + nt, X = it - et, a[2] = et - (it - X) + (nt - X), a[3] = it, rt = lt * bt, Y = e * lt, Z = Y - (Y - lt), $ = lt - Z, Y = e * bt, _ = Y - (Y - bt), tt = bt - _, ft = $ * tt - (rt - Z * _ - $ * _ - Z * tt), st = at * dt, Y = e * at, Z = Y - (Y - at), $ = at - Z, Y = e * dt, _ = Y - (Y - dt), tt = dt - _, ut = $ * tt - (st - Z * _ - $ * _ - Z * tt), nt = ft - ut, X = ft - nt, c[0] = ft - (nt + X) + (X - ut), et = rt + nt, X = et - rt, ot = rt - (et - X) + (nt - X), nt = ot - st, X = ot - nt, c[1] = ot - (nt + X) + (X - st), it = et + nt, X = it - et, c[2] = et - (it - X) + (nt - X), c[3] = it, rt = at * ht, Y = e * at, Z = Y - (Y - at), $ = at - Z, Y = e * ht, _ = Y - (Y - ht), tt = ht - _, ft = $ * tt - (rt - Z * _ - $ * _ - Z * tt), st = ct * bt, Y = e * ct, Z = Y - (Y - ct), $ = ct - Z, Y = e * bt, _ = Y - (Y - bt), tt = bt - _, ut = $ * tt - (st - Z * _ - $ * _ - Z * tt), nt = ft - ut, X = ft - nt, l[0] = ft - (nt + X) + (X - ut), et = rt + nt, X = et - rt, ot = rt - (et - X) + (nt - X), nt = ot - st, X = ot - nt, l[1] = ot - (nt + X) + (X - st), it = et + nt, X = it - et, l[2] = et - (it - X) + (nt - X), l[3] = it, L = r(r(f(4, a, Mt, j), j, f(4, c, pt, w), w, A), A, f(4, l, yt, j), j, k);
|
|
105
|
-
let xt = function (t, n) {
|
|
106
|
-
let e = n[0];
|
|
107
|
-
for (let o = 1; o < t; o++) e += n[o];
|
|
108
|
-
return e;
|
|
109
|
-
}(L, k),
|
|
110
|
-
gt = u * K;
|
|
111
|
-
if (xt >= gt || -xt >= gt) return xt;
|
|
112
|
-
if (X = t - at, N = t - (at + X) + (X - H), X = T - ct, O = T - (ct + X) + (X - H), X = D - lt, P = D - (lt + X) + (X - H), X = n - bt, Q = n - (bt + X) + (X - I), X = q - ht, R = q - (ht + X) + (X - I), X = E - dt, S = E - (dt + X) + (X - I), X = s - Mt, U = s - (Mt + X) + (X - J), X = C - pt, V = C - (pt + X) + (X - J), X = G - yt, W = G - (yt + X) + (X - J), 0 === N && 0 === O && 0 === P && 0 === Q && 0 === R && 0 === S && 0 === U && 0 === V && 0 === W) return xt;
|
|
113
|
-
if (gt = i * K + o * Math.abs(xt), xt += Mt * (ct * S + dt * O - (ht * P + lt * R)) + U * (ct * dt - ht * lt) + pt * (lt * Q + bt * P - (dt * N + at * S)) + V * (lt * bt - dt * at) + yt * (at * R + ht * N - (bt * O + ct * Q)) + W * (at * ht - bt * ct), xt >= gt || -xt >= gt) return xt;
|
|
114
|
-
const mt = z(N, Q, ct, ht, lt, dt, b, h),
|
|
115
|
-
Tt = z(O, R, lt, dt, at, bt, d, M),
|
|
116
|
-
jt = z(P, S, at, bt, ct, ht, p, y),
|
|
117
|
-
wt = r(Tt, d, jt, y, x);
|
|
118
|
-
L = v(L, f(wt, x, Mt, A), A);
|
|
119
|
-
const At = r(jt, p, mt, h, g);
|
|
120
|
-
L = v(L, f(At, g, pt, A), A);
|
|
121
|
-
const Ft = r(mt, b, Tt, M, m);
|
|
122
|
-
return L = v(L, f(Ft, m, yt, A), A), 0 !== U && (L = v(L, f(4, a, U, F), F), L = v(L, f(wt, x, U, A), A)), 0 !== V && (L = v(L, f(4, c, V, F), F), L = v(L, f(At, g, V, A), A)), 0 !== W && (L = v(L, f(4, l, W, F), F), L = v(L, f(Ft, m, W, A), A)), 0 !== N && (0 !== R && (L = B(L, N, R, yt, W)), 0 !== S && (L = B(L, -N, S, pt, V))), 0 !== O && (0 !== S && (L = B(L, O, S, Mt, U)), 0 !== Q && (L = B(L, -O, Q, yt, W))), 0 !== P && (0 !== Q && (L = B(L, P, Q, pt, V)), 0 !== R && (L = B(L, -P, R, Mt, U))), k[L - 1];
|
|
123
|
-
}(t, n, s, T, q, C, D, E, G, H, I, J, tt);
|
|
124
|
-
}, t.orient3dfast = function (t, n, e, o, r, f, s, u, i, a, c, l) {
|
|
125
|
-
const b = n - c,
|
|
126
|
-
h = r - c,
|
|
127
|
-
d = u - c,
|
|
128
|
-
M = e - l,
|
|
129
|
-
p = f - l,
|
|
130
|
-
y = i - l;
|
|
131
|
-
return (t - a) * (h * y - p * d) + (o - a) * (d * M - y * b) + (s - a) * (b * p - M * h);
|
|
132
|
-
};
|
|
133
|
-
});
|