@mui/x-charts-vendor 8.14.0 → 8.15.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. package/README.md +2 -7
  2. package/package.json +3 -6
  3. package/d3-delaunay.d.ts +0 -5
  4. package/d3-delaunay.js +0 -7
  5. package/delaunator.d.ts +0 -5
  6. package/delaunator.js +0 -7
  7. package/es/d3-delaunay.mjs +0 -6
  8. package/es/delaunator.mjs +0 -6
  9. package/es/robust-predicates.mjs +0 -6
  10. package/lib/d3-delaunay.js +0 -6
  11. package/lib/delaunator.js +0 -6
  12. package/lib/robust-predicates.js +0 -6
  13. package/lib-vendor/d3-delaunay/LICENSE +0 -14
  14. package/lib-vendor/d3-delaunay/dist/d3-delaunay.js +0 -1398
  15. package/lib-vendor/d3-delaunay/dist/d3-delaunay.min.js +0 -853
  16. package/lib-vendor/d3-delaunay/src/delaunay.js +0 -282
  17. package/lib-vendor/d3-delaunay/src/index.js +0 -20
  18. package/lib-vendor/d3-delaunay/src/path.js +0 -43
  19. package/lib-vendor/d3-delaunay/src/polygon.js +0 -24
  20. package/lib-vendor/d3-delaunay/src/voronoi.js +0 -390
  21. package/lib-vendor/delaunator/LICENSE +0 -15
  22. package/lib-vendor/delaunator/delaunator.js +0 -688
  23. package/lib-vendor/delaunator/delaunator.min.js +0 -316
  24. package/lib-vendor/delaunator/index.js +0 -440
  25. package/lib-vendor/robust-predicates/LICENSE +0 -24
  26. package/lib-vendor/robust-predicates/esm/incircle.js +0 -667
  27. package/lib-vendor/robust-predicates/esm/insphere.js +0 -693
  28. package/lib-vendor/robust-predicates/esm/orient2d.js +0 -174
  29. package/lib-vendor/robust-predicates/esm/orient3d.js +0 -422
  30. package/lib-vendor/robust-predicates/esm/util.js +0 -147
  31. package/lib-vendor/robust-predicates/index.js +0 -57
  32. package/lib-vendor/robust-predicates/umd/incircle.js +0 -798
  33. package/lib-vendor/robust-predicates/umd/incircle.min.js +0 -170
  34. package/lib-vendor/robust-predicates/umd/insphere.js +0 -828
  35. package/lib-vendor/robust-predicates/umd/insphere.min.js +0 -223
  36. package/lib-vendor/robust-predicates/umd/orient2d.js +0 -260
  37. package/lib-vendor/robust-predicates/umd/orient2d.min.js +0 -69
  38. package/lib-vendor/robust-predicates/umd/orient3d.js +0 -550
  39. package/lib-vendor/robust-predicates/umd/orient3d.min.js +0 -133
  40. package/lib-vendor/robust-predicates/umd/predicates.js +0 -2073
  41. package/lib-vendor/robust-predicates/umd/predicates.min.js +0 -468
  42. package/robust-predicates.d.ts +0 -5
  43. package/robust-predicates.js +0 -7
@@ -1,550 +0,0 @@
1
- "use strict";
2
-
3
- (function (global, factory) {
4
- typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.predicates = {}));
5
- })(this, function (exports) {
6
- 'use strict';
7
-
8
- const epsilon = 1.1102230246251565e-16;
9
- const splitter = 134217729;
10
- const resulterrbound = (3 + 8 * epsilon) * epsilon;
11
-
12
- // fast_expansion_sum_zeroelim routine from oritinal code
13
- function sum(elen, e, flen, f, h) {
14
- let Q, Qnew, hh, bvirt;
15
- let enow = e[0];
16
- let fnow = f[0];
17
- let eindex = 0;
18
- let findex = 0;
19
- if (fnow > enow === fnow > -enow) {
20
- Q = enow;
21
- enow = e[++eindex];
22
- } else {
23
- Q = fnow;
24
- fnow = f[++findex];
25
- }
26
- let hindex = 0;
27
- if (eindex < elen && findex < flen) {
28
- if (fnow > enow === fnow > -enow) {
29
- Qnew = enow + Q;
30
- hh = Q - (Qnew - enow);
31
- enow = e[++eindex];
32
- } else {
33
- Qnew = fnow + Q;
34
- hh = Q - (Qnew - fnow);
35
- fnow = f[++findex];
36
- }
37
- Q = Qnew;
38
- if (hh !== 0) {
39
- h[hindex++] = hh;
40
- }
41
- while (eindex < elen && findex < flen) {
42
- if (fnow > enow === fnow > -enow) {
43
- Qnew = Q + enow;
44
- bvirt = Qnew - Q;
45
- hh = Q - (Qnew - bvirt) + (enow - bvirt);
46
- enow = e[++eindex];
47
- } else {
48
- Qnew = Q + fnow;
49
- bvirt = Qnew - Q;
50
- hh = Q - (Qnew - bvirt) + (fnow - bvirt);
51
- fnow = f[++findex];
52
- }
53
- Q = Qnew;
54
- if (hh !== 0) {
55
- h[hindex++] = hh;
56
- }
57
- }
58
- }
59
- while (eindex < elen) {
60
- Qnew = Q + enow;
61
- bvirt = Qnew - Q;
62
- hh = Q - (Qnew - bvirt) + (enow - bvirt);
63
- enow = e[++eindex];
64
- Q = Qnew;
65
- if (hh !== 0) {
66
- h[hindex++] = hh;
67
- }
68
- }
69
- while (findex < flen) {
70
- Qnew = Q + fnow;
71
- bvirt = Qnew - Q;
72
- hh = Q - (Qnew - bvirt) + (fnow - bvirt);
73
- fnow = f[++findex];
74
- Q = Qnew;
75
- if (hh !== 0) {
76
- h[hindex++] = hh;
77
- }
78
- }
79
- if (Q !== 0 || hindex === 0) {
80
- h[hindex++] = Q;
81
- }
82
- return hindex;
83
- }
84
-
85
- // scale_expansion_zeroelim routine from oritinal code
86
- function scale(elen, e, b, h) {
87
- let Q, sum, hh, product1, product0;
88
- let bvirt, c, ahi, alo, bhi, blo;
89
- c = splitter * b;
90
- bhi = c - (c - b);
91
- blo = b - bhi;
92
- let enow = e[0];
93
- Q = enow * b;
94
- c = splitter * enow;
95
- ahi = c - (c - enow);
96
- alo = enow - ahi;
97
- hh = alo * blo - (Q - ahi * bhi - alo * bhi - ahi * blo);
98
- let hindex = 0;
99
- if (hh !== 0) {
100
- h[hindex++] = hh;
101
- }
102
- for (let i = 1; i < elen; i++) {
103
- enow = e[i];
104
- product1 = enow * b;
105
- c = splitter * enow;
106
- ahi = c - (c - enow);
107
- alo = enow - ahi;
108
- product0 = alo * blo - (product1 - ahi * bhi - alo * bhi - ahi * blo);
109
- sum = Q + product0;
110
- bvirt = sum - Q;
111
- hh = Q - (sum - bvirt) + (product0 - bvirt);
112
- if (hh !== 0) {
113
- h[hindex++] = hh;
114
- }
115
- Q = product1 + sum;
116
- hh = sum - (Q - product1);
117
- if (hh !== 0) {
118
- h[hindex++] = hh;
119
- }
120
- }
121
- if (Q !== 0 || hindex === 0) {
122
- h[hindex++] = Q;
123
- }
124
- return hindex;
125
- }
126
- function estimate(elen, e) {
127
- let Q = e[0];
128
- for (let i = 1; i < elen; i++) Q += e[i];
129
- return Q;
130
- }
131
- function vec(n) {
132
- return new Float64Array(n);
133
- }
134
- const o3derrboundA = (7 + 56 * epsilon) * epsilon;
135
- const o3derrboundB = (3 + 28 * epsilon) * epsilon;
136
- const o3derrboundC = (26 + 288 * epsilon) * epsilon * epsilon;
137
- const bc = vec(4);
138
- const ca = vec(4);
139
- const ab = vec(4);
140
- const at_b = vec(4);
141
- const at_c = vec(4);
142
- const bt_c = vec(4);
143
- const bt_a = vec(4);
144
- const ct_a = vec(4);
145
- const ct_b = vec(4);
146
- const bct = vec(8);
147
- const cat = vec(8);
148
- const abt = vec(8);
149
- const u = vec(4);
150
- const _8 = vec(8);
151
- const _8b = vec(8);
152
- const _16 = vec(8);
153
- const _12 = vec(12);
154
- let fin = vec(192);
155
- let fin2 = vec(192);
156
- function finadd(finlen, alen, a) {
157
- finlen = sum(finlen, fin, alen, a, fin2);
158
- const tmp = fin;
159
- fin = fin2;
160
- fin2 = tmp;
161
- return finlen;
162
- }
163
- function tailinit(xtail, ytail, ax, ay, bx, by, a, b) {
164
- let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3, negate;
165
- if (xtail === 0) {
166
- if (ytail === 0) {
167
- a[0] = 0;
168
- b[0] = 0;
169
- return 1;
170
- } else {
171
- negate = -ytail;
172
- s1 = negate * ax;
173
- c = splitter * negate;
174
- ahi = c - (c - negate);
175
- alo = negate - ahi;
176
- c = splitter * ax;
177
- bhi = c - (c - ax);
178
- blo = ax - bhi;
179
- a[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
180
- a[1] = s1;
181
- s1 = ytail * bx;
182
- c = splitter * ytail;
183
- ahi = c - (c - ytail);
184
- alo = ytail - ahi;
185
- c = splitter * bx;
186
- bhi = c - (c - bx);
187
- blo = bx - bhi;
188
- b[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
189
- b[1] = s1;
190
- return 2;
191
- }
192
- } else {
193
- if (ytail === 0) {
194
- s1 = xtail * ay;
195
- c = splitter * xtail;
196
- ahi = c - (c - xtail);
197
- alo = xtail - ahi;
198
- c = splitter * ay;
199
- bhi = c - (c - ay);
200
- blo = ay - bhi;
201
- a[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
202
- a[1] = s1;
203
- negate = -xtail;
204
- s1 = negate * by;
205
- c = splitter * negate;
206
- ahi = c - (c - negate);
207
- alo = negate - ahi;
208
- c = splitter * by;
209
- bhi = c - (c - by);
210
- blo = by - bhi;
211
- b[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
212
- b[1] = s1;
213
- return 2;
214
- } else {
215
- s1 = xtail * ay;
216
- c = splitter * xtail;
217
- ahi = c - (c - xtail);
218
- alo = xtail - ahi;
219
- c = splitter * ay;
220
- bhi = c - (c - ay);
221
- blo = ay - bhi;
222
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
223
- t1 = ytail * ax;
224
- c = splitter * ytail;
225
- ahi = c - (c - ytail);
226
- alo = ytail - ahi;
227
- c = splitter * ax;
228
- bhi = c - (c - ax);
229
- blo = ax - bhi;
230
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
231
- _i = s0 - t0;
232
- bvirt = s0 - _i;
233
- a[0] = s0 - (_i + bvirt) + (bvirt - t0);
234
- _j = s1 + _i;
235
- bvirt = _j - s1;
236
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
237
- _i = _0 - t1;
238
- bvirt = _0 - _i;
239
- a[1] = _0 - (_i + bvirt) + (bvirt - t1);
240
- u3 = _j + _i;
241
- bvirt = u3 - _j;
242
- a[2] = _j - (u3 - bvirt) + (_i - bvirt);
243
- a[3] = u3;
244
- s1 = ytail * bx;
245
- c = splitter * ytail;
246
- ahi = c - (c - ytail);
247
- alo = ytail - ahi;
248
- c = splitter * bx;
249
- bhi = c - (c - bx);
250
- blo = bx - bhi;
251
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
252
- t1 = xtail * by;
253
- c = splitter * xtail;
254
- ahi = c - (c - xtail);
255
- alo = xtail - ahi;
256
- c = splitter * by;
257
- bhi = c - (c - by);
258
- blo = by - bhi;
259
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
260
- _i = s0 - t0;
261
- bvirt = s0 - _i;
262
- b[0] = s0 - (_i + bvirt) + (bvirt - t0);
263
- _j = s1 + _i;
264
- bvirt = _j - s1;
265
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
266
- _i = _0 - t1;
267
- bvirt = _0 - _i;
268
- b[1] = _0 - (_i + bvirt) + (bvirt - t1);
269
- u3 = _j + _i;
270
- bvirt = u3 - _j;
271
- b[2] = _j - (u3 - bvirt) + (_i - bvirt);
272
- b[3] = u3;
273
- return 4;
274
- }
275
- }
276
- }
277
- function tailadd(finlen, a, b, k, z) {
278
- let bvirt, c, ahi, alo, bhi, blo, _i, _j, _k, _0, s1, s0, u3;
279
- s1 = a * b;
280
- c = splitter * a;
281
- ahi = c - (c - a);
282
- alo = a - ahi;
283
- c = splitter * b;
284
- bhi = c - (c - b);
285
- blo = b - bhi;
286
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
287
- c = splitter * k;
288
- bhi = c - (c - k);
289
- blo = k - bhi;
290
- _i = s0 * k;
291
- c = splitter * s0;
292
- ahi = c - (c - s0);
293
- alo = s0 - ahi;
294
- u[0] = alo * blo - (_i - ahi * bhi - alo * bhi - ahi * blo);
295
- _j = s1 * k;
296
- c = splitter * s1;
297
- ahi = c - (c - s1);
298
- alo = s1 - ahi;
299
- _0 = alo * blo - (_j - ahi * bhi - alo * bhi - ahi * blo);
300
- _k = _i + _0;
301
- bvirt = _k - _i;
302
- u[1] = _i - (_k - bvirt) + (_0 - bvirt);
303
- u3 = _j + _k;
304
- u[2] = _k - (u3 - _j);
305
- u[3] = u3;
306
- finlen = finadd(finlen, 4, u);
307
- if (z !== 0) {
308
- c = splitter * z;
309
- bhi = c - (c - z);
310
- blo = z - bhi;
311
- _i = s0 * z;
312
- c = splitter * s0;
313
- ahi = c - (c - s0);
314
- alo = s0 - ahi;
315
- u[0] = alo * blo - (_i - ahi * bhi - alo * bhi - ahi * blo);
316
- _j = s1 * z;
317
- c = splitter * s1;
318
- ahi = c - (c - s1);
319
- alo = s1 - ahi;
320
- _0 = alo * blo - (_j - ahi * bhi - alo * bhi - ahi * blo);
321
- _k = _i + _0;
322
- bvirt = _k - _i;
323
- u[1] = _i - (_k - bvirt) + (_0 - bvirt);
324
- u3 = _j + _k;
325
- u[2] = _k - (u3 - _j);
326
- u[3] = u3;
327
- finlen = finadd(finlen, 4, u);
328
- }
329
- return finlen;
330
- }
331
- function orient3dadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, permanent) {
332
- let finlen;
333
- let adxtail, bdxtail, cdxtail;
334
- let adytail, bdytail, cdytail;
335
- let adztail, bdztail, cdztail;
336
- let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
337
- const adx = ax - dx;
338
- const bdx = bx - dx;
339
- const cdx = cx - dx;
340
- const ady = ay - dy;
341
- const bdy = by - dy;
342
- const cdy = cy - dy;
343
- const adz = az - dz;
344
- const bdz = bz - dz;
345
- const cdz = cz - dz;
346
- s1 = bdx * cdy;
347
- c = splitter * bdx;
348
- ahi = c - (c - bdx);
349
- alo = bdx - ahi;
350
- c = splitter * cdy;
351
- bhi = c - (c - cdy);
352
- blo = cdy - bhi;
353
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
354
- t1 = cdx * bdy;
355
- c = splitter * cdx;
356
- ahi = c - (c - cdx);
357
- alo = cdx - ahi;
358
- c = splitter * bdy;
359
- bhi = c - (c - bdy);
360
- blo = bdy - bhi;
361
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
362
- _i = s0 - t0;
363
- bvirt = s0 - _i;
364
- bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
365
- _j = s1 + _i;
366
- bvirt = _j - s1;
367
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
368
- _i = _0 - t1;
369
- bvirt = _0 - _i;
370
- bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
371
- u3 = _j + _i;
372
- bvirt = u3 - _j;
373
- bc[2] = _j - (u3 - bvirt) + (_i - bvirt);
374
- bc[3] = u3;
375
- s1 = cdx * ady;
376
- c = splitter * cdx;
377
- ahi = c - (c - cdx);
378
- alo = cdx - ahi;
379
- c = splitter * ady;
380
- bhi = c - (c - ady);
381
- blo = ady - bhi;
382
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
383
- t1 = adx * cdy;
384
- c = splitter * adx;
385
- ahi = c - (c - adx);
386
- alo = adx - ahi;
387
- c = splitter * cdy;
388
- bhi = c - (c - cdy);
389
- blo = cdy - bhi;
390
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
391
- _i = s0 - t0;
392
- bvirt = s0 - _i;
393
- ca[0] = s0 - (_i + bvirt) + (bvirt - t0);
394
- _j = s1 + _i;
395
- bvirt = _j - s1;
396
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
397
- _i = _0 - t1;
398
- bvirt = _0 - _i;
399
- ca[1] = _0 - (_i + bvirt) + (bvirt - t1);
400
- u3 = _j + _i;
401
- bvirt = u3 - _j;
402
- ca[2] = _j - (u3 - bvirt) + (_i - bvirt);
403
- ca[3] = u3;
404
- s1 = adx * bdy;
405
- c = splitter * adx;
406
- ahi = c - (c - adx);
407
- alo = adx - ahi;
408
- c = splitter * bdy;
409
- bhi = c - (c - bdy);
410
- blo = bdy - bhi;
411
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
412
- t1 = bdx * ady;
413
- c = splitter * bdx;
414
- ahi = c - (c - bdx);
415
- alo = bdx - ahi;
416
- c = splitter * ady;
417
- bhi = c - (c - ady);
418
- blo = ady - bhi;
419
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
420
- _i = s0 - t0;
421
- bvirt = s0 - _i;
422
- ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
423
- _j = s1 + _i;
424
- bvirt = _j - s1;
425
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
426
- _i = _0 - t1;
427
- bvirt = _0 - _i;
428
- ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
429
- u3 = _j + _i;
430
- bvirt = u3 - _j;
431
- ab[2] = _j - (u3 - bvirt) + (_i - bvirt);
432
- ab[3] = u3;
433
- finlen = sum(sum(scale(4, bc, adz, _8), _8, scale(4, ca, bdz, _8b), _8b, _16), _16, scale(4, ab, cdz, _8), _8, fin);
434
- let det = estimate(finlen, fin);
435
- let errbound = o3derrboundB * permanent;
436
- if (det >= errbound || -det >= errbound) {
437
- return det;
438
- }
439
- bvirt = ax - adx;
440
- adxtail = ax - (adx + bvirt) + (bvirt - dx);
441
- bvirt = bx - bdx;
442
- bdxtail = bx - (bdx + bvirt) + (bvirt - dx);
443
- bvirt = cx - cdx;
444
- cdxtail = cx - (cdx + bvirt) + (bvirt - dx);
445
- bvirt = ay - ady;
446
- adytail = ay - (ady + bvirt) + (bvirt - dy);
447
- bvirt = by - bdy;
448
- bdytail = by - (bdy + bvirt) + (bvirt - dy);
449
- bvirt = cy - cdy;
450
- cdytail = cy - (cdy + bvirt) + (bvirt - dy);
451
- bvirt = az - adz;
452
- adztail = az - (adz + bvirt) + (bvirt - dz);
453
- bvirt = bz - bdz;
454
- bdztail = bz - (bdz + bvirt) + (bvirt - dz);
455
- bvirt = cz - cdz;
456
- cdztail = cz - (cdz + bvirt) + (bvirt - dz);
457
- if (adxtail === 0 && bdxtail === 0 && cdxtail === 0 && adytail === 0 && bdytail === 0 && cdytail === 0 && adztail === 0 && bdztail === 0 && cdztail === 0) {
458
- return det;
459
- }
460
- errbound = o3derrboundC * permanent + resulterrbound * Math.abs(det);
461
- det += adz * (bdx * cdytail + cdy * bdxtail - (bdy * cdxtail + cdx * bdytail)) + adztail * (bdx * cdy - bdy * cdx) + bdz * (cdx * adytail + ady * cdxtail - (cdy * adxtail + adx * cdytail)) + bdztail * (cdx * ady - cdy * adx) + cdz * (adx * bdytail + bdy * adxtail - (ady * bdxtail + bdx * adytail)) + cdztail * (adx * bdy - ady * bdx);
462
- if (det >= errbound || -det >= errbound) {
463
- return det;
464
- }
465
- const at_len = tailinit(adxtail, adytail, bdx, bdy, cdx, cdy, at_b, at_c);
466
- const bt_len = tailinit(bdxtail, bdytail, cdx, cdy, adx, ady, bt_c, bt_a);
467
- const ct_len = tailinit(cdxtail, cdytail, adx, ady, bdx, bdy, ct_a, ct_b);
468
- const bctlen = sum(bt_len, bt_c, ct_len, ct_b, bct);
469
- finlen = finadd(finlen, scale(bctlen, bct, adz, _16), _16);
470
- const catlen = sum(ct_len, ct_a, at_len, at_c, cat);
471
- finlen = finadd(finlen, scale(catlen, cat, bdz, _16), _16);
472
- const abtlen = sum(at_len, at_b, bt_len, bt_a, abt);
473
- finlen = finadd(finlen, scale(abtlen, abt, cdz, _16), _16);
474
- if (adztail !== 0) {
475
- finlen = finadd(finlen, scale(4, bc, adztail, _12), _12);
476
- finlen = finadd(finlen, scale(bctlen, bct, adztail, _16), _16);
477
- }
478
- if (bdztail !== 0) {
479
- finlen = finadd(finlen, scale(4, ca, bdztail, _12), _12);
480
- finlen = finadd(finlen, scale(catlen, cat, bdztail, _16), _16);
481
- }
482
- if (cdztail !== 0) {
483
- finlen = finadd(finlen, scale(4, ab, cdztail, _12), _12);
484
- finlen = finadd(finlen, scale(abtlen, abt, cdztail, _16), _16);
485
- }
486
- if (adxtail !== 0) {
487
- if (bdytail !== 0) {
488
- finlen = tailadd(finlen, adxtail, bdytail, cdz, cdztail);
489
- }
490
- if (cdytail !== 0) {
491
- finlen = tailadd(finlen, -adxtail, cdytail, bdz, bdztail);
492
- }
493
- }
494
- if (bdxtail !== 0) {
495
- if (cdytail !== 0) {
496
- finlen = tailadd(finlen, bdxtail, cdytail, adz, adztail);
497
- }
498
- if (adytail !== 0) {
499
- finlen = tailadd(finlen, -bdxtail, adytail, cdz, cdztail);
500
- }
501
- }
502
- if (cdxtail !== 0) {
503
- if (adytail !== 0) {
504
- finlen = tailadd(finlen, cdxtail, adytail, bdz, bdztail);
505
- }
506
- if (bdytail !== 0) {
507
- finlen = tailadd(finlen, -cdxtail, bdytail, adz, adztail);
508
- }
509
- }
510
- return fin[finlen - 1];
511
- }
512
- function orient3d(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz) {
513
- const adx = ax - dx;
514
- const bdx = bx - dx;
515
- const cdx = cx - dx;
516
- const ady = ay - dy;
517
- const bdy = by - dy;
518
- const cdy = cy - dy;
519
- const adz = az - dz;
520
- const bdz = bz - dz;
521
- const cdz = cz - dz;
522
- const bdxcdy = bdx * cdy;
523
- const cdxbdy = cdx * bdy;
524
- const cdxady = cdx * ady;
525
- const adxcdy = adx * cdy;
526
- const adxbdy = adx * bdy;
527
- const bdxady = bdx * ady;
528
- const det = adz * (bdxcdy - cdxbdy) + bdz * (cdxady - adxcdy) + cdz * (adxbdy - bdxady);
529
- const permanent = (Math.abs(bdxcdy) + Math.abs(cdxbdy)) * Math.abs(adz) + (Math.abs(cdxady) + Math.abs(adxcdy)) * Math.abs(bdz) + (Math.abs(adxbdy) + Math.abs(bdxady)) * Math.abs(cdz);
530
- const errbound = o3derrboundA * permanent;
531
- if (det > errbound || -det > errbound) {
532
- return det;
533
- }
534
- return orient3dadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, permanent);
535
- }
536
- function orient3dfast(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz) {
537
- const adx = ax - dx;
538
- const bdx = bx - dx;
539
- const cdx = cx - dx;
540
- const ady = ay - dy;
541
- const bdy = by - dy;
542
- const cdy = cy - dy;
543
- const adz = az - dz;
544
- const bdz = bz - dz;
545
- const cdz = cz - dz;
546
- return adx * (bdy * cdz - bdz * cdy) + bdx * (cdy * adz - cdz * ady) + cdx * (ady * bdz - adz * bdy);
547
- }
548
- exports.orient3d = orient3d;
549
- exports.orient3dfast = orient3dfast;
550
- });
@@ -1,133 +0,0 @@
1
- "use strict";
2
-
3
- !function (t, n) {
4
- "object" == typeof exports && "undefined" != typeof module ? n(exports) : "function" == typeof define && define.amd ? define(["exports"], n) : n((t = "undefined" != typeof globalThis ? globalThis : t || self).predicates = {});
5
- }(this, function (t) {
6
- "use strict";
7
-
8
- const n = 11102230246251565e-32,
9
- e = 134217729,
10
- o = (3 + 8 * n) * n;
11
- function r(t, n, e, o, r) {
12
- let f,
13
- s,
14
- u,
15
- i,
16
- a = n[0],
17
- c = o[0],
18
- l = 0,
19
- b = 0;
20
- c > a == c > -a ? (f = a, a = n[++l]) : (f = c, c = o[++b]);
21
- let h = 0;
22
- if (l < t && b < e) for (c > a == c > -a ? (s = a + f, u = f - (s - a), a = n[++l]) : (s = c + f, u = f - (s - c), c = o[++b]), f = s, 0 !== u && (r[h++] = u); l < t && b < e;) c > a == c > -a ? (s = f + a, i = s - f, u = f - (s - i) + (a - i), a = n[++l]) : (s = f + c, i = s - f, u = f - (s - i) + (c - i), c = o[++b]), f = s, 0 !== u && (r[h++] = u);
23
- for (; l < t;) s = f + a, i = s - f, u = f - (s - i) + (a - i), a = n[++l], f = s, 0 !== u && (r[h++] = u);
24
- for (; b < e;) s = f + c, i = s - f, u = f - (s - i) + (c - i), c = o[++b], f = s, 0 !== u && (r[h++] = u);
25
- return 0 === f && 0 !== h || (r[h++] = f), h;
26
- }
27
- function f(t, n, o, r) {
28
- let f, s, u, i, a, c, l, b, h, d, M;
29
- l = e * o, d = l - (l - o), M = o - d;
30
- let p = n[0];
31
- f = p * o, l = e * p, b = l - (l - p), h = p - b, u = h * M - (f - b * d - h * d - b * M);
32
- let y = 0;
33
- 0 !== u && (r[y++] = u);
34
- for (let x = 1; x < t; x++) p = n[x], i = p * o, l = e * p, b = l - (l - p), h = p - b, a = h * M - (i - b * d - h * d - b * M), s = f + a, c = s - f, u = f - (s - c) + (a - c), 0 !== u && (r[y++] = u), f = i + s, u = s - (f - i), 0 !== u && (r[y++] = u);
35
- return 0 === f && 0 !== y || (r[y++] = f), y;
36
- }
37
- function s(t) {
38
- return new Float64Array(t);
39
- }
40
- const u = 3330669073875473e-31,
41
- i = 32047474274603644e-47,
42
- a = s(4),
43
- c = s(4),
44
- l = s(4),
45
- b = s(4),
46
- h = s(4),
47
- d = s(4),
48
- M = s(4),
49
- p = s(4),
50
- y = s(4),
51
- x = s(8),
52
- g = s(8),
53
- m = s(8),
54
- T = s(4),
55
- j = s(8),
56
- w = s(8),
57
- A = s(8),
58
- F = s(12);
59
- let k = s(192),
60
- q = s(192);
61
- function v(t, n, e) {
62
- t = r(t, k, n, e, q);
63
- const o = k;
64
- return k = q, q = o, t;
65
- }
66
- function z(t, n, o, r, f, s, u, i) {
67
- let a, c, l, b, h, d, M, p, y, x, g, m, T, j, w;
68
- return 0 === t ? 0 === n ? (u[0] = 0, i[0] = 0, 1) : (w = -n, x = w * o, c = e * w, l = c - (c - w), b = w - l, c = e * o, h = c - (c - o), d = o - h, u[0] = b * d - (x - l * h - b * h - l * d), u[1] = x, x = n * f, c = e * n, l = c - (c - n), b = n - l, c = e * f, h = c - (c - f), d = f - h, i[0] = b * d - (x - l * h - b * h - l * d), i[1] = x, 2) : 0 === n ? (x = t * r, c = e * t, l = c - (c - t), b = t - l, c = e * r, h = c - (c - r), d = r - h, u[0] = b * d - (x - l * h - b * h - l * d), u[1] = x, w = -t, x = w * s, c = e * w, l = c - (c - w), b = w - l, c = e * s, h = c - (c - s), d = s - h, i[0] = b * d - (x - l * h - b * h - l * d), i[1] = x, 2) : (x = t * r, c = e * t, l = c - (c - t), b = t - l, c = e * r, h = c - (c - r), d = r - h, g = b * d - (x - l * h - b * h - l * d), m = n * o, c = e * n, l = c - (c - n), b = n - l, c = e * o, h = c - (c - o), d = o - h, T = b * d - (m - l * h - b * h - l * d), M = g - T, a = g - M, u[0] = g - (M + a) + (a - T), p = x + M, a = p - x, y = x - (p - a) + (M - a), M = y - m, a = y - M, u[1] = y - (M + a) + (a - m), j = p + M, a = j - p, u[2] = p - (j - a) + (M - a), u[3] = j, x = n * f, c = e * n, l = c - (c - n), b = n - l, c = e * f, h = c - (c - f), d = f - h, g = b * d - (x - l * h - b * h - l * d), m = t * s, c = e * t, l = c - (c - t), b = t - l, c = e * s, h = c - (c - s), d = s - h, T = b * d - (m - l * h - b * h - l * d), M = g - T, a = g - M, i[0] = g - (M + a) + (a - T), p = x + M, a = p - x, y = x - (p - a) + (M - a), M = y - m, a = y - M, i[1] = y - (M + a) + (a - m), j = p + M, a = j - p, i[2] = p - (j - a) + (M - a), i[3] = j, 4);
69
- }
70
- function B(t, n, o, r, f) {
71
- let s, u, i, a, c, l, b, h, d, M, p, y, x;
72
- return p = n * o, u = e * n, i = u - (u - n), a = n - i, u = e * o, c = u - (u - o), l = o - c, y = a * l - (p - i * c - a * c - i * l), u = e * r, c = u - (u - r), l = r - c, b = y * r, u = e * y, i = u - (u - y), a = y - i, T[0] = a * l - (b - i * c - a * c - i * l), h = p * r, u = e * p, i = u - (u - p), a = p - i, M = a * l - (h - i * c - a * c - i * l), d = b + M, s = d - b, T[1] = b - (d - s) + (M - s), x = h + d, T[2] = d - (x - h), T[3] = x, t = v(t, 4, T), 0 !== f && (u = e * f, c = u - (u - f), l = f - c, b = y * f, u = e * y, i = u - (u - y), a = y - i, T[0] = a * l - (b - i * c - a * c - i * l), h = p * f, u = e * p, i = u - (u - p), a = p - i, M = a * l - (h - i * c - a * c - i * l), d = b + M, s = d - b, T[1] = b - (d - s) + (M - s), x = h + d, T[2] = d - (x - h), T[3] = x, t = v(t, 4, T)), t;
73
- }
74
- t.orient3d = function (t, n, s, T, q, C, D, E, G, H, I, J) {
75
- const K = t - H,
76
- L = T - H,
77
- N = D - H,
78
- O = n - I,
79
- P = q - I,
80
- Q = E - I,
81
- R = s - J,
82
- S = C - J,
83
- U = G - J,
84
- V = L * Q,
85
- W = N * P,
86
- X = N * O,
87
- Y = K * Q,
88
- Z = K * P,
89
- $ = L * O,
90
- _ = R * (V - W) + S * (X - Y) + U * (Z - $),
91
- tt = (Math.abs(V) + Math.abs(W)) * Math.abs(R) + (Math.abs(X) + Math.abs(Y)) * Math.abs(S) + (Math.abs(Z) + Math.abs($)) * Math.abs(U),
92
- nt = 7771561172376103e-31 * tt;
93
- return _ > nt || -_ > nt ? _ : function (t, n, s, T, q, C, D, E, G, H, I, J, K) {
94
- let L, N, O, P, Q, R, S, U, V, W, X, Y, Z, $, _, tt, nt, et, ot, rt, ft, st, ut, it;
95
- const at = t - H,
96
- ct = T - H,
97
- lt = D - H,
98
- bt = n - I,
99
- ht = q - I,
100
- dt = E - I,
101
- Mt = s - J,
102
- pt = C - J,
103
- yt = G - J;
104
- rt = ct * dt, Y = e * ct, Z = Y - (Y - ct), $ = ct - Z, Y = e * dt, _ = Y - (Y - dt), tt = dt - _, ft = $ * tt - (rt - Z * _ - $ * _ - Z * tt), st = lt * ht, Y = e * lt, Z = Y - (Y - lt), $ = lt - Z, Y = e * ht, _ = Y - (Y - ht), tt = ht - _, ut = $ * tt - (st - Z * _ - $ * _ - Z * tt), nt = ft - ut, X = ft - nt, a[0] = ft - (nt + X) + (X - ut), et = rt + nt, X = et - rt, ot = rt - (et - X) + (nt - X), nt = ot - st, X = ot - nt, a[1] = ot - (nt + X) + (X - st), it = et + nt, X = it - et, a[2] = et - (it - X) + (nt - X), a[3] = it, rt = lt * bt, Y = e * lt, Z = Y - (Y - lt), $ = lt - Z, Y = e * bt, _ = Y - (Y - bt), tt = bt - _, ft = $ * tt - (rt - Z * _ - $ * _ - Z * tt), st = at * dt, Y = e * at, Z = Y - (Y - at), $ = at - Z, Y = e * dt, _ = Y - (Y - dt), tt = dt - _, ut = $ * tt - (st - Z * _ - $ * _ - Z * tt), nt = ft - ut, X = ft - nt, c[0] = ft - (nt + X) + (X - ut), et = rt + nt, X = et - rt, ot = rt - (et - X) + (nt - X), nt = ot - st, X = ot - nt, c[1] = ot - (nt + X) + (X - st), it = et + nt, X = it - et, c[2] = et - (it - X) + (nt - X), c[3] = it, rt = at * ht, Y = e * at, Z = Y - (Y - at), $ = at - Z, Y = e * ht, _ = Y - (Y - ht), tt = ht - _, ft = $ * tt - (rt - Z * _ - $ * _ - Z * tt), st = ct * bt, Y = e * ct, Z = Y - (Y - ct), $ = ct - Z, Y = e * bt, _ = Y - (Y - bt), tt = bt - _, ut = $ * tt - (st - Z * _ - $ * _ - Z * tt), nt = ft - ut, X = ft - nt, l[0] = ft - (nt + X) + (X - ut), et = rt + nt, X = et - rt, ot = rt - (et - X) + (nt - X), nt = ot - st, X = ot - nt, l[1] = ot - (nt + X) + (X - st), it = et + nt, X = it - et, l[2] = et - (it - X) + (nt - X), l[3] = it, L = r(r(f(4, a, Mt, j), j, f(4, c, pt, w), w, A), A, f(4, l, yt, j), j, k);
105
- let xt = function (t, n) {
106
- let e = n[0];
107
- for (let o = 1; o < t; o++) e += n[o];
108
- return e;
109
- }(L, k),
110
- gt = u * K;
111
- if (xt >= gt || -xt >= gt) return xt;
112
- if (X = t - at, N = t - (at + X) + (X - H), X = T - ct, O = T - (ct + X) + (X - H), X = D - lt, P = D - (lt + X) + (X - H), X = n - bt, Q = n - (bt + X) + (X - I), X = q - ht, R = q - (ht + X) + (X - I), X = E - dt, S = E - (dt + X) + (X - I), X = s - Mt, U = s - (Mt + X) + (X - J), X = C - pt, V = C - (pt + X) + (X - J), X = G - yt, W = G - (yt + X) + (X - J), 0 === N && 0 === O && 0 === P && 0 === Q && 0 === R && 0 === S && 0 === U && 0 === V && 0 === W) return xt;
113
- if (gt = i * K + o * Math.abs(xt), xt += Mt * (ct * S + dt * O - (ht * P + lt * R)) + U * (ct * dt - ht * lt) + pt * (lt * Q + bt * P - (dt * N + at * S)) + V * (lt * bt - dt * at) + yt * (at * R + ht * N - (bt * O + ct * Q)) + W * (at * ht - bt * ct), xt >= gt || -xt >= gt) return xt;
114
- const mt = z(N, Q, ct, ht, lt, dt, b, h),
115
- Tt = z(O, R, lt, dt, at, bt, d, M),
116
- jt = z(P, S, at, bt, ct, ht, p, y),
117
- wt = r(Tt, d, jt, y, x);
118
- L = v(L, f(wt, x, Mt, A), A);
119
- const At = r(jt, p, mt, h, g);
120
- L = v(L, f(At, g, pt, A), A);
121
- const Ft = r(mt, b, Tt, M, m);
122
- return L = v(L, f(Ft, m, yt, A), A), 0 !== U && (L = v(L, f(4, a, U, F), F), L = v(L, f(wt, x, U, A), A)), 0 !== V && (L = v(L, f(4, c, V, F), F), L = v(L, f(At, g, V, A), A)), 0 !== W && (L = v(L, f(4, l, W, F), F), L = v(L, f(Ft, m, W, A), A)), 0 !== N && (0 !== R && (L = B(L, N, R, yt, W)), 0 !== S && (L = B(L, -N, S, pt, V))), 0 !== O && (0 !== S && (L = B(L, O, S, Mt, U)), 0 !== Q && (L = B(L, -O, Q, yt, W))), 0 !== P && (0 !== Q && (L = B(L, P, Q, pt, V)), 0 !== R && (L = B(L, -P, R, Mt, U))), k[L - 1];
123
- }(t, n, s, T, q, C, D, E, G, H, I, J, tt);
124
- }, t.orient3dfast = function (t, n, e, o, r, f, s, u, i, a, c, l) {
125
- const b = n - c,
126
- h = r - c,
127
- d = u - c,
128
- M = e - l,
129
- p = f - l,
130
- y = i - l;
131
- return (t - a) * (h * y - p * d) + (o - a) * (d * M - y * b) + (s - a) * (b * p - M * h);
132
- };
133
- });