@mui/x-charts-vendor 8.14.0 → 8.14.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +2 -7
- package/package.json +2 -6
- package/d3-delaunay.d.ts +0 -5
- package/d3-delaunay.js +0 -7
- package/delaunator.d.ts +0 -5
- package/delaunator.js +0 -7
- package/es/d3-delaunay.mjs +0 -6
- package/es/delaunator.mjs +0 -6
- package/es/robust-predicates.mjs +0 -6
- package/lib/d3-delaunay.js +0 -6
- package/lib/delaunator.js +0 -6
- package/lib/robust-predicates.js +0 -6
- package/lib-vendor/d3-delaunay/LICENSE +0 -14
- package/lib-vendor/d3-delaunay/dist/d3-delaunay.js +0 -1398
- package/lib-vendor/d3-delaunay/dist/d3-delaunay.min.js +0 -853
- package/lib-vendor/d3-delaunay/src/delaunay.js +0 -282
- package/lib-vendor/d3-delaunay/src/index.js +0 -20
- package/lib-vendor/d3-delaunay/src/path.js +0 -43
- package/lib-vendor/d3-delaunay/src/polygon.js +0 -24
- package/lib-vendor/d3-delaunay/src/voronoi.js +0 -390
- package/lib-vendor/delaunator/LICENSE +0 -15
- package/lib-vendor/delaunator/delaunator.js +0 -688
- package/lib-vendor/delaunator/delaunator.min.js +0 -316
- package/lib-vendor/delaunator/index.js +0 -440
- package/lib-vendor/robust-predicates/LICENSE +0 -24
- package/lib-vendor/robust-predicates/esm/incircle.js +0 -667
- package/lib-vendor/robust-predicates/esm/insphere.js +0 -693
- package/lib-vendor/robust-predicates/esm/orient2d.js +0 -174
- package/lib-vendor/robust-predicates/esm/orient3d.js +0 -422
- package/lib-vendor/robust-predicates/esm/util.js +0 -147
- package/lib-vendor/robust-predicates/index.js +0 -57
- package/lib-vendor/robust-predicates/umd/incircle.js +0 -798
- package/lib-vendor/robust-predicates/umd/incircle.min.js +0 -170
- package/lib-vendor/robust-predicates/umd/insphere.js +0 -828
- package/lib-vendor/robust-predicates/umd/insphere.min.js +0 -223
- package/lib-vendor/robust-predicates/umd/orient2d.js +0 -260
- package/lib-vendor/robust-predicates/umd/orient2d.min.js +0 -69
- package/lib-vendor/robust-predicates/umd/orient3d.js +0 -550
- package/lib-vendor/robust-predicates/umd/orient3d.min.js +0 -133
- package/lib-vendor/robust-predicates/umd/predicates.js +0 -2073
- package/lib-vendor/robust-predicates/umd/predicates.min.js +0 -468
- package/robust-predicates.d.ts +0 -5
- package/robust-predicates.js +0 -7
|
@@ -1,223 +0,0 @@
|
|
|
1
|
-
"use strict";
|
|
2
|
-
|
|
3
|
-
!function (t, n) {
|
|
4
|
-
"object" == typeof exports && "undefined" != typeof module ? n(exports) : "function" == typeof define && define.amd ? define(["exports"], n) : n((t = "undefined" != typeof globalThis ? globalThis : t || self).predicates = {});
|
|
5
|
-
}(this, function (t) {
|
|
6
|
-
"use strict";
|
|
7
|
-
|
|
8
|
-
const n = 11102230246251565e-32,
|
|
9
|
-
e = 134217729,
|
|
10
|
-
r = (3 + 8 * n) * n;
|
|
11
|
-
function o(t, n, e, r, o) {
|
|
12
|
-
let a,
|
|
13
|
-
s,
|
|
14
|
-
f,
|
|
15
|
-
u,
|
|
16
|
-
i = n[0],
|
|
17
|
-
c = r[0],
|
|
18
|
-
h = 0,
|
|
19
|
-
b = 0;
|
|
20
|
-
c > i == c > -i ? (a = i, i = n[++h]) : (a = c, c = r[++b]);
|
|
21
|
-
let l = 0;
|
|
22
|
-
if (h < t && b < e) for (c > i == c > -i ? (s = i + a, f = a - (s - i), i = n[++h]) : (s = c + a, f = a - (s - c), c = r[++b]), a = s, 0 !== f && (o[l++] = f); h < t && b < e;) c > i == c > -i ? (s = a + i, u = s - a, f = a - (s - u) + (i - u), i = n[++h]) : (s = a + c, u = s - a, f = a - (s - u) + (c - u), c = r[++b]), a = s, 0 !== f && (o[l++] = f);
|
|
23
|
-
for (; h < t;) s = a + i, u = s - a, f = a - (s - u) + (i - u), i = n[++h], a = s, 0 !== f && (o[l++] = f);
|
|
24
|
-
for (; b < e;) s = a + c, u = s - a, f = a - (s - u) + (c - u), c = r[++b], a = s, 0 !== f && (o[l++] = f);
|
|
25
|
-
return 0 === a && 0 !== l || (o[l++] = a), l;
|
|
26
|
-
}
|
|
27
|
-
function a(t, n, e, r, a, s, f, u) {
|
|
28
|
-
return o(o(t, n, e, r, f), f, a, s, u);
|
|
29
|
-
}
|
|
30
|
-
function s(t, n, r, o) {
|
|
31
|
-
let a, s, f, u, i, c, h, b, l, M, d;
|
|
32
|
-
h = e * r, M = h - (h - r), d = r - M;
|
|
33
|
-
let p = n[0];
|
|
34
|
-
a = p * r, h = e * p, b = h - (h - p), l = p - b, f = l * d - (a - b * M - l * M - b * d);
|
|
35
|
-
let y = 0;
|
|
36
|
-
0 !== f && (o[y++] = f);
|
|
37
|
-
for (let x = 1; x < t; x++) p = n[x], u = p * r, h = e * p, b = h - (h - p), l = p - b, i = l * d - (u - b * M - l * M - b * d), s = a + i, c = s - a, f = a - (s - c) + (i - c), 0 !== f && (o[y++] = f), a = u + s, f = s - (a - u), 0 !== f && (o[y++] = f);
|
|
38
|
-
return 0 === a && 0 !== y || (o[y++] = a), y;
|
|
39
|
-
}
|
|
40
|
-
function f(t, n) {
|
|
41
|
-
for (let e = 0; e < t; e++) n[e] = -n[e];
|
|
42
|
-
return t;
|
|
43
|
-
}
|
|
44
|
-
function u(t) {
|
|
45
|
-
return new Float64Array(t);
|
|
46
|
-
}
|
|
47
|
-
const i = 5551115123125792e-31,
|
|
48
|
-
c = 8751425667295619e-46,
|
|
49
|
-
h = u(4),
|
|
50
|
-
b = u(4),
|
|
51
|
-
l = u(4),
|
|
52
|
-
M = u(4),
|
|
53
|
-
d = u(4),
|
|
54
|
-
p = u(4),
|
|
55
|
-
y = u(4),
|
|
56
|
-
x = u(4),
|
|
57
|
-
g = u(4),
|
|
58
|
-
m = u(4),
|
|
59
|
-
T = u(24),
|
|
60
|
-
j = u(24),
|
|
61
|
-
w = u(24),
|
|
62
|
-
A = u(24),
|
|
63
|
-
F = u(24),
|
|
64
|
-
k = u(24),
|
|
65
|
-
q = u(24),
|
|
66
|
-
v = u(24),
|
|
67
|
-
z = u(24),
|
|
68
|
-
B = u(24),
|
|
69
|
-
C = u(1152),
|
|
70
|
-
D = u(1152),
|
|
71
|
-
E = u(1152),
|
|
72
|
-
G = u(1152),
|
|
73
|
-
H = u(1152),
|
|
74
|
-
I = u(2304),
|
|
75
|
-
J = u(2304),
|
|
76
|
-
K = u(3456),
|
|
77
|
-
L = u(5760),
|
|
78
|
-
N = u(8),
|
|
79
|
-
O = u(8),
|
|
80
|
-
P = u(8),
|
|
81
|
-
Q = u(16),
|
|
82
|
-
R = u(24),
|
|
83
|
-
S = u(48),
|
|
84
|
-
U = u(48),
|
|
85
|
-
V = u(96),
|
|
86
|
-
W = u(192),
|
|
87
|
-
X = u(384),
|
|
88
|
-
Y = u(384),
|
|
89
|
-
Z = u(384),
|
|
90
|
-
$ = u(768);
|
|
91
|
-
function _(t, n, e, r, o, f, u) {
|
|
92
|
-
return a(s(4, t, r, N), N, s(4, n, o, O), O, s(4, e, f, P), P, Q, u);
|
|
93
|
-
}
|
|
94
|
-
function tt(t, n, e, r, u, i, c, h, b, l, M, d) {
|
|
95
|
-
const p = o(o(t, n, e, r, S), S, f(o(u, i, c, h, U), U), U, V);
|
|
96
|
-
return a(s(s(p, V, b, W), W, b, X), X, s(s(p, V, l, W), W, l, Y), Y, s(s(p, V, M, W), W, M, Z), Z, $, d);
|
|
97
|
-
}
|
|
98
|
-
const nt = u(96),
|
|
99
|
-
et = u(96),
|
|
100
|
-
rt = u(96),
|
|
101
|
-
ot = u(1152);
|
|
102
|
-
function at(t, n, e, r, o, f, u, i, c, h) {
|
|
103
|
-
const b = _(t, n, e, r, o, f, R);
|
|
104
|
-
return a(s(s(b, R, u, S), S, u, nt), nt, s(s(b, R, i, S), S, i, et), et, s(s(b, R, c, S), S, c, rt), rt, W, h);
|
|
105
|
-
}
|
|
106
|
-
function st(t, n, s, u, N, O, P, Q, R, S, U, V, W, X, Y, Z) {
|
|
107
|
-
let $, nt, et, rt, st, ft, ut, it, ct, ht, bt, lt, Mt, dt, pt, yt, xt, gt, mt, Tt, jt, wt, At, Ft, kt, qt, vt, zt, Bt, Ct, Dt;
|
|
108
|
-
const Et = t - W,
|
|
109
|
-
Gt = u - W,
|
|
110
|
-
Ht = P - W,
|
|
111
|
-
It = S - W,
|
|
112
|
-
Jt = n - X,
|
|
113
|
-
Kt = N - X,
|
|
114
|
-
Lt = Q - X,
|
|
115
|
-
Nt = U - X,
|
|
116
|
-
Ot = s - Y,
|
|
117
|
-
Pt = O - Y,
|
|
118
|
-
Qt = R - Y,
|
|
119
|
-
Rt = V - Y;
|
|
120
|
-
zt = Et * Kt, Tt = e * Et, jt = Tt - (Tt - Et), wt = Et - jt, Tt = e * Kt, At = Tt - (Tt - Kt), Ft = Kt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = Gt * Jt, Tt = e * Gt, jt = Tt - (Tt - Gt), wt = Gt - jt, Tt = e * Jt, At = Tt - (Tt - Jt), Ft = Jt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, h[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, h[1] = vt - (kt + mt) + (mt - Ct), $ = qt + kt, mt = $ - qt, h[2] = qt - ($ - mt) + (kt - mt), h[3] = $, zt = Gt * Lt, Tt = e * Gt, jt = Tt - (Tt - Gt), wt = Gt - jt, Tt = e * Lt, At = Tt - (Tt - Lt), Ft = Lt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = Ht * Kt, Tt = e * Ht, jt = Tt - (Tt - Ht), wt = Ht - jt, Tt = e * Kt, At = Tt - (Tt - Kt), Ft = Kt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, b[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, b[1] = vt - (kt + mt) + (mt - Ct), nt = qt + kt, mt = nt - qt, b[2] = qt - (nt - mt) + (kt - mt), b[3] = nt, zt = Ht * Nt, Tt = e * Ht, jt = Tt - (Tt - Ht), wt = Ht - jt, Tt = e * Nt, At = Tt - (Tt - Nt), Ft = Nt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = It * Lt, Tt = e * It, jt = Tt - (Tt - It), wt = It - jt, Tt = e * Lt, At = Tt - (Tt - Lt), Ft = Lt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, l[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, l[1] = vt - (kt + mt) + (mt - Ct), et = qt + kt, mt = et - qt, l[2] = qt - (et - mt) + (kt - mt), l[3] = et, zt = It * Jt, Tt = e * It, jt = Tt - (Tt - It), wt = It - jt, Tt = e * Jt, At = Tt - (Tt - Jt), Ft = Jt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = Et * Nt, Tt = e * Et, jt = Tt - (Tt - Et), wt = Et - jt, Tt = e * Nt, At = Tt - (Tt - Nt), Ft = Nt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, g[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, g[1] = vt - (kt + mt) + (mt - Ct), rt = qt + kt, mt = rt - qt, g[2] = qt - (rt - mt) + (kt - mt), g[3] = rt, zt = Et * Lt, Tt = e * Et, jt = Tt - (Tt - Et), wt = Et - jt, Tt = e * Lt, At = Tt - (Tt - Lt), Ft = Lt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = Ht * Jt, Tt = e * Ht, jt = Tt - (Tt - Ht), wt = Ht - jt, Tt = e * Jt, At = Tt - (Tt - Jt), Ft = Jt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, p[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, p[1] = vt - (kt + mt) + (mt - Ct), st = qt + kt, mt = st - qt, p[2] = qt - (st - mt) + (kt - mt), p[3] = st, zt = Gt * Nt, Tt = e * Gt, jt = Tt - (Tt - Gt), wt = Gt - jt, Tt = e * Nt, At = Tt - (Tt - Nt), Ft = Nt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = It * Kt, Tt = e * It, jt = Tt - (Tt - It), wt = It - jt, Tt = e * Kt, At = Tt - (Tt - Kt), Ft = Kt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, y[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, y[1] = vt - (kt + mt) + (mt - Ct), ft = qt + kt, mt = ft - qt, y[2] = qt - (ft - mt) + (kt - mt), y[3] = ft;
|
|
121
|
-
let St = function (t, n) {
|
|
122
|
-
let e = n[0];
|
|
123
|
-
for (let r = 1; r < t; r++) e += n[r];
|
|
124
|
-
return e;
|
|
125
|
-
}(o(o(f(at(b, l, y, Rt, Pt, -Qt, Et, Jt, Ot, C), C), C, at(l, g, p, Ot, Qt, Rt, Gt, Kt, Pt, D), D, I), I, o(f(at(g, h, y, Pt, Rt, Ot, Ht, Lt, Qt, E), E), E, at(h, b, p, Qt, Ot, -Pt, It, Nt, Rt, G), G, J), J, ot), ot),
|
|
126
|
-
Ut = i * Z;
|
|
127
|
-
if (St >= Ut || -St >= Ut) return St;
|
|
128
|
-
if (mt = t - Et, ut = t - (Et + mt) + (mt - W), mt = n - Jt, bt = n - (Jt + mt) + (mt - X), mt = s - Ot, pt = s - (Ot + mt) + (mt - Y), mt = u - Gt, it = u - (Gt + mt) + (mt - W), mt = N - Kt, lt = N - (Kt + mt) + (mt - X), mt = O - Pt, yt = O - (Pt + mt) + (mt - Y), mt = P - Ht, ct = P - (Ht + mt) + (mt - W), mt = Q - Lt, Mt = Q - (Lt + mt) + (mt - X), mt = R - Qt, xt = R - (Qt + mt) + (mt - Y), mt = S - It, ht = S - (It + mt) + (mt - W), mt = U - Nt, dt = U - (Nt + mt) + (mt - X), mt = V - Rt, gt = V - (Rt + mt) + (mt - Y), 0 === ut && 0 === bt && 0 === pt && 0 === it && 0 === lt && 0 === yt && 0 === ct && 0 === Mt && 0 === xt && 0 === ht && 0 === dt && 0 === gt) return St;
|
|
129
|
-
Ut = c * Z + r * Math.abs(St);
|
|
130
|
-
const Vt = Et * lt + Kt * ut - (Jt * it + Gt * bt),
|
|
131
|
-
Wt = Gt * Mt + Lt * it - (Kt * ct + Ht * lt),
|
|
132
|
-
Xt = Ht * dt + Nt * ct - (Lt * ht + It * Mt),
|
|
133
|
-
Yt = It * bt + Jt * ht - (Nt * ut + Et * dt),
|
|
134
|
-
Zt = Et * Mt + Lt * ut - (Jt * ct + Ht * bt),
|
|
135
|
-
$t = Gt * dt + Nt * it - (Kt * ht + It * lt);
|
|
136
|
-
return St += (Gt * Gt + Kt * Kt + Pt * Pt) * (Qt * Yt + Rt * Zt + Ot * Xt + (xt * rt + gt * st + pt * et)) + (It * It + Nt * Nt + Rt * Rt) * (Ot * Wt - Pt * Zt + Qt * Vt + (pt * nt - yt * st + xt * $)) - ((Et * Et + Jt * Jt + Ot * Ot) * (Pt * Xt - Qt * $t + Rt * Wt + (yt * et - xt * ft + gt * nt)) + (Ht * Ht + Lt * Lt + Qt * Qt) * (Rt * Vt + Ot * $t + Pt * Yt + (gt * $ + pt * ft + yt * rt))) + 2 * ((Gt * it + Kt * lt + Pt * yt) * (Qt * rt + Rt * st + Ot * et) + (It * ht + Nt * dt + Rt * gt) * (Ot * nt - Pt * st + Qt * $) - ((Et * ut + Jt * bt + Ot * pt) * (Pt * et - Qt * ft + Rt * nt) + (Ht * ct + Lt * Mt + Qt * xt) * (Rt * $ + Ot * ft + Pt * rt))), St >= Ut || -St >= Ut ? St : function (t, n, r, o, s, f, u, i, c, N, O, P, Q, R, S) {
|
|
137
|
-
let U, V, W, X, Y, Z, $, nt, et, rt, ot, at, st, ft;
|
|
138
|
-
rt = t * s, V = e * t, W = V - (V - t), X = t - W, V = e * s, Y = V - (V - s), Z = s - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = o * n, V = e * o, W = V - (V - o), X = o - W, V = e * n, Y = V - (V - n), Z = n - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, h[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, h[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, h[2] = nt - (ft - U) + ($ - U), h[3] = ft, rt = o * i, V = e * o, W = V - (V - o), X = o - W, V = e * i, Y = V - (V - i), Z = i - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = u * s, V = e * u, W = V - (V - u), X = u - W, V = e * s, Y = V - (V - s), Z = s - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, b[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, b[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, b[2] = nt - (ft - U) + ($ - U), b[3] = ft, rt = u * O, V = e * u, W = V - (V - u), X = u - W, V = e * O, Y = V - (V - O), Z = O - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = N * i, V = e * N, W = V - (V - N), X = N - W, V = e * i, Y = V - (V - i), Z = i - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, l[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, l[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, l[2] = nt - (ft - U) + ($ - U), l[3] = ft, rt = N * R, V = e * N, W = V - (V - N), X = N - W, V = e * R, Y = V - (V - R), Z = R - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = Q * O, V = e * Q, W = V - (V - Q), X = Q - W, V = e * O, Y = V - (V - O), Z = O - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, M[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, M[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, M[2] = nt - (ft - U) + ($ - U), M[3] = ft, rt = Q * n, V = e * Q, W = V - (V - Q), X = Q - W, V = e * n, Y = V - (V - n), Z = n - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = t * R, V = e * t, W = V - (V - t), X = t - W, V = e * R, Y = V - (V - R), Z = R - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, d[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, d[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, d[2] = nt - (ft - U) + ($ - U), d[3] = ft, rt = t * i, V = e * t, W = V - (V - t), X = t - W, V = e * i, Y = V - (V - i), Z = i - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = u * n, V = e * u, W = V - (V - u), X = u - W, V = e * n, Y = V - (V - n), Z = n - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, p[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, p[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, p[2] = nt - (ft - U) + ($ - U), p[3] = ft, rt = o * O, V = e * o, W = V - (V - o), X = o - W, V = e * O, Y = V - (V - O), Z = O - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = N * s, V = e * N, W = V - (V - N), X = N - W, V = e * s, Y = V - (V - s), Z = s - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, y[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, y[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, y[2] = nt - (ft - U) + ($ - U), y[3] = ft, rt = u * R, V = e * u, W = V - (V - u), X = u - W, V = e * R, Y = V - (V - R), Z = R - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = Q * i, V = e * Q, W = V - (V - Q), X = Q - W, V = e * i, Y = V - (V - i), Z = i - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, x[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, x[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, x[2] = nt - (ft - U) + ($ - U), x[3] = ft, rt = N * n, V = e * N, W = V - (V - N), X = N - W, V = e * n, Y = V - (V - n), Z = n - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = t * O, V = e * t, W = V - (V - t), X = t - W, V = e * O, Y = V - (V - O), Z = O - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, g[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, g[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, g[2] = nt - (ft - U) + ($ - U), g[3] = ft, rt = Q * s, V = e * Q, W = V - (V - Q), X = Q - W, V = e * s, Y = V - (V - s), Z = s - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = o * R, V = e * o, W = V - (V - o), X = o - W, V = e * R, Y = V - (V - R), Z = R - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, m[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, m[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, m[2] = nt - (ft - U) + ($ - U), m[3] = ft;
|
|
139
|
-
const ut = _(h, b, p, c, r, -f, T),
|
|
140
|
-
it = _(b, l, y, P, f, -c, j),
|
|
141
|
-
ct = _(l, M, x, S, c, -P, w),
|
|
142
|
-
ht = _(M, d, g, r, P, -S, A),
|
|
143
|
-
bt = _(d, h, m, f, S, -r, F),
|
|
144
|
-
lt = _(h, y, g, P, r, f, k),
|
|
145
|
-
Mt = _(b, x, m, S, f, c, q),
|
|
146
|
-
dt = _(l, g, p, r, c, P, v),
|
|
147
|
-
pt = _(M, m, y, f, P, S, z),
|
|
148
|
-
yt = _(d, p, x, c, S, r, B),
|
|
149
|
-
xt = a(tt(ct, w, Mt, q, pt, z, it, j, t, n, r, C), C, tt(ht, A, dt, v, yt, B, ct, w, o, s, f, D), D, a(tt(bt, F, pt, z, lt, k, ht, A, u, i, c, E), E, tt(ut, T, yt, B, Mt, q, bt, F, N, O, P, G), G, tt(it, j, lt, k, dt, v, ut, T, Q, R, S, H), H, J, K), K, I, L);
|
|
150
|
-
return L[xt - 1];
|
|
151
|
-
}(t, n, s, u, N, O, P, Q, R, S, U, V, W, X, Y);
|
|
152
|
-
}
|
|
153
|
-
t.insphere = function (t, n, e, r, o, a, s, f, u, i, c, h, b, l, M) {
|
|
154
|
-
const d = t - b,
|
|
155
|
-
p = r - b,
|
|
156
|
-
y = s - b,
|
|
157
|
-
x = i - b,
|
|
158
|
-
g = n - l,
|
|
159
|
-
m = o - l,
|
|
160
|
-
T = f - l,
|
|
161
|
-
j = c - l,
|
|
162
|
-
w = e - M,
|
|
163
|
-
A = a - M,
|
|
164
|
-
F = u - M,
|
|
165
|
-
k = h - M,
|
|
166
|
-
q = d * m,
|
|
167
|
-
v = p * g,
|
|
168
|
-
z = q - v,
|
|
169
|
-
B = p * T,
|
|
170
|
-
C = y * m,
|
|
171
|
-
D = B - C,
|
|
172
|
-
E = y * j,
|
|
173
|
-
G = x * T,
|
|
174
|
-
H = E - G,
|
|
175
|
-
I = x * g,
|
|
176
|
-
J = d * j,
|
|
177
|
-
K = I - J,
|
|
178
|
-
L = d * T,
|
|
179
|
-
N = y * g,
|
|
180
|
-
O = L - N,
|
|
181
|
-
P = p * j,
|
|
182
|
-
Q = x * m,
|
|
183
|
-
R = P - Q,
|
|
184
|
-
S = d * d + g * g + w * w,
|
|
185
|
-
U = p * p + m * m + A * A,
|
|
186
|
-
V = y * y + T * T + F * F,
|
|
187
|
-
W = x * x + j * j + k * k,
|
|
188
|
-
X = V * (k * z + w * R + A * K) - W * (w * D - A * O + F * z) + (S * (A * H - F * R + k * D) - U * (F * K + k * O + w * H)),
|
|
189
|
-
Y = Math.abs(w),
|
|
190
|
-
Z = Math.abs(A),
|
|
191
|
-
$ = Math.abs(F),
|
|
192
|
-
_ = Math.abs(k),
|
|
193
|
-
tt = Math.abs(q) + Math.abs(v),
|
|
194
|
-
nt = Math.abs(B) + Math.abs(C),
|
|
195
|
-
et = Math.abs(E) + Math.abs(G),
|
|
196
|
-
rt = Math.abs(I) + Math.abs(J),
|
|
197
|
-
ot = Math.abs(L) + Math.abs(N),
|
|
198
|
-
at = Math.abs(P) + Math.abs(Q),
|
|
199
|
-
ft = (et * Z + at * $ + nt * _) * S + (rt * $ + ot * _ + et * Y) * U + (tt * _ + at * Y + rt * Z) * V + (nt * Y + ot * Z + tt * $) * W,
|
|
200
|
-
ut = 17763568394002532e-31 * ft;
|
|
201
|
-
return X > ut || -X > ut ? X : -st(t, n, e, r, o, a, s, f, u, i, c, h, b, l, M, ft);
|
|
202
|
-
}, t.inspherefast = function (t, n, e, r, o, a, s, f, u, i, c, h, b, l, M) {
|
|
203
|
-
const d = t - b,
|
|
204
|
-
p = r - b,
|
|
205
|
-
y = s - b,
|
|
206
|
-
x = i - b,
|
|
207
|
-
g = n - l,
|
|
208
|
-
m = o - l,
|
|
209
|
-
T = f - l,
|
|
210
|
-
j = c - l,
|
|
211
|
-
w = e - M,
|
|
212
|
-
A = a - M,
|
|
213
|
-
F = u - M,
|
|
214
|
-
k = h - M,
|
|
215
|
-
q = d * m - p * g,
|
|
216
|
-
v = p * T - y * m,
|
|
217
|
-
z = y * j - x * T,
|
|
218
|
-
B = x * g - d * j,
|
|
219
|
-
C = d * T - y * g,
|
|
220
|
-
D = p * j - x * m;
|
|
221
|
-
return (y * y + T * T + F * F) * (k * q + w * D + A * B) - (x * x + j * j + k * k) * (w * v - A * C + F * q) + ((d * d + g * g + w * w) * (A * z - F * D + k * v) - (p * p + m * m + A * A) * (F * B + k * C + w * z));
|
|
222
|
-
};
|
|
223
|
-
});
|
|
@@ -1,260 +0,0 @@
|
|
|
1
|
-
"use strict";
|
|
2
|
-
|
|
3
|
-
(function (global, factory) {
|
|
4
|
-
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.predicates = {}));
|
|
5
|
-
})(this, function (exports) {
|
|
6
|
-
'use strict';
|
|
7
|
-
|
|
8
|
-
const epsilon = 1.1102230246251565e-16;
|
|
9
|
-
const splitter = 134217729;
|
|
10
|
-
const resulterrbound = (3 + 8 * epsilon) * epsilon;
|
|
11
|
-
|
|
12
|
-
// fast_expansion_sum_zeroelim routine from oritinal code
|
|
13
|
-
function sum(elen, e, flen, f, h) {
|
|
14
|
-
let Q, Qnew, hh, bvirt;
|
|
15
|
-
let enow = e[0];
|
|
16
|
-
let fnow = f[0];
|
|
17
|
-
let eindex = 0;
|
|
18
|
-
let findex = 0;
|
|
19
|
-
if (fnow > enow === fnow > -enow) {
|
|
20
|
-
Q = enow;
|
|
21
|
-
enow = e[++eindex];
|
|
22
|
-
} else {
|
|
23
|
-
Q = fnow;
|
|
24
|
-
fnow = f[++findex];
|
|
25
|
-
}
|
|
26
|
-
let hindex = 0;
|
|
27
|
-
if (eindex < elen && findex < flen) {
|
|
28
|
-
if (fnow > enow === fnow > -enow) {
|
|
29
|
-
Qnew = enow + Q;
|
|
30
|
-
hh = Q - (Qnew - enow);
|
|
31
|
-
enow = e[++eindex];
|
|
32
|
-
} else {
|
|
33
|
-
Qnew = fnow + Q;
|
|
34
|
-
hh = Q - (Qnew - fnow);
|
|
35
|
-
fnow = f[++findex];
|
|
36
|
-
}
|
|
37
|
-
Q = Qnew;
|
|
38
|
-
if (hh !== 0) {
|
|
39
|
-
h[hindex++] = hh;
|
|
40
|
-
}
|
|
41
|
-
while (eindex < elen && findex < flen) {
|
|
42
|
-
if (fnow > enow === fnow > -enow) {
|
|
43
|
-
Qnew = Q + enow;
|
|
44
|
-
bvirt = Qnew - Q;
|
|
45
|
-
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
|
46
|
-
enow = e[++eindex];
|
|
47
|
-
} else {
|
|
48
|
-
Qnew = Q + fnow;
|
|
49
|
-
bvirt = Qnew - Q;
|
|
50
|
-
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
|
51
|
-
fnow = f[++findex];
|
|
52
|
-
}
|
|
53
|
-
Q = Qnew;
|
|
54
|
-
if (hh !== 0) {
|
|
55
|
-
h[hindex++] = hh;
|
|
56
|
-
}
|
|
57
|
-
}
|
|
58
|
-
}
|
|
59
|
-
while (eindex < elen) {
|
|
60
|
-
Qnew = Q + enow;
|
|
61
|
-
bvirt = Qnew - Q;
|
|
62
|
-
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
|
63
|
-
enow = e[++eindex];
|
|
64
|
-
Q = Qnew;
|
|
65
|
-
if (hh !== 0) {
|
|
66
|
-
h[hindex++] = hh;
|
|
67
|
-
}
|
|
68
|
-
}
|
|
69
|
-
while (findex < flen) {
|
|
70
|
-
Qnew = Q + fnow;
|
|
71
|
-
bvirt = Qnew - Q;
|
|
72
|
-
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
|
73
|
-
fnow = f[++findex];
|
|
74
|
-
Q = Qnew;
|
|
75
|
-
if (hh !== 0) {
|
|
76
|
-
h[hindex++] = hh;
|
|
77
|
-
}
|
|
78
|
-
}
|
|
79
|
-
if (Q !== 0 || hindex === 0) {
|
|
80
|
-
h[hindex++] = Q;
|
|
81
|
-
}
|
|
82
|
-
return hindex;
|
|
83
|
-
}
|
|
84
|
-
function estimate(elen, e) {
|
|
85
|
-
let Q = e[0];
|
|
86
|
-
for (let i = 1; i < elen; i++) Q += e[i];
|
|
87
|
-
return Q;
|
|
88
|
-
}
|
|
89
|
-
function vec(n) {
|
|
90
|
-
return new Float64Array(n);
|
|
91
|
-
}
|
|
92
|
-
const ccwerrboundA = (3 + 16 * epsilon) * epsilon;
|
|
93
|
-
const ccwerrboundB = (2 + 12 * epsilon) * epsilon;
|
|
94
|
-
const ccwerrboundC = (9 + 64 * epsilon) * epsilon * epsilon;
|
|
95
|
-
const B = vec(4);
|
|
96
|
-
const C1 = vec(8);
|
|
97
|
-
const C2 = vec(12);
|
|
98
|
-
const D = vec(16);
|
|
99
|
-
const u = vec(4);
|
|
100
|
-
function orient2dadapt(ax, ay, bx, by, cx, cy, detsum) {
|
|
101
|
-
let acxtail, acytail, bcxtail, bcytail;
|
|
102
|
-
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
|
|
103
|
-
const acx = ax - cx;
|
|
104
|
-
const bcx = bx - cx;
|
|
105
|
-
const acy = ay - cy;
|
|
106
|
-
const bcy = by - cy;
|
|
107
|
-
s1 = acx * bcy;
|
|
108
|
-
c = splitter * acx;
|
|
109
|
-
ahi = c - (c - acx);
|
|
110
|
-
alo = acx - ahi;
|
|
111
|
-
c = splitter * bcy;
|
|
112
|
-
bhi = c - (c - bcy);
|
|
113
|
-
blo = bcy - bhi;
|
|
114
|
-
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
115
|
-
t1 = acy * bcx;
|
|
116
|
-
c = splitter * acy;
|
|
117
|
-
ahi = c - (c - acy);
|
|
118
|
-
alo = acy - ahi;
|
|
119
|
-
c = splitter * bcx;
|
|
120
|
-
bhi = c - (c - bcx);
|
|
121
|
-
blo = bcx - bhi;
|
|
122
|
-
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
123
|
-
_i = s0 - t0;
|
|
124
|
-
bvirt = s0 - _i;
|
|
125
|
-
B[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
|
126
|
-
_j = s1 + _i;
|
|
127
|
-
bvirt = _j - s1;
|
|
128
|
-
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
|
129
|
-
_i = _0 - t1;
|
|
130
|
-
bvirt = _0 - _i;
|
|
131
|
-
B[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
|
132
|
-
u3 = _j + _i;
|
|
133
|
-
bvirt = u3 - _j;
|
|
134
|
-
B[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
|
135
|
-
B[3] = u3;
|
|
136
|
-
let det = estimate(4, B);
|
|
137
|
-
let errbound = ccwerrboundB * detsum;
|
|
138
|
-
if (det >= errbound || -det >= errbound) {
|
|
139
|
-
return det;
|
|
140
|
-
}
|
|
141
|
-
bvirt = ax - acx;
|
|
142
|
-
acxtail = ax - (acx + bvirt) + (bvirt - cx);
|
|
143
|
-
bvirt = bx - bcx;
|
|
144
|
-
bcxtail = bx - (bcx + bvirt) + (bvirt - cx);
|
|
145
|
-
bvirt = ay - acy;
|
|
146
|
-
acytail = ay - (acy + bvirt) + (bvirt - cy);
|
|
147
|
-
bvirt = by - bcy;
|
|
148
|
-
bcytail = by - (bcy + bvirt) + (bvirt - cy);
|
|
149
|
-
if (acxtail === 0 && acytail === 0 && bcxtail === 0 && bcytail === 0) {
|
|
150
|
-
return det;
|
|
151
|
-
}
|
|
152
|
-
errbound = ccwerrboundC * detsum + resulterrbound * Math.abs(det);
|
|
153
|
-
det += acx * bcytail + bcy * acxtail - (acy * bcxtail + bcx * acytail);
|
|
154
|
-
if (det >= errbound || -det >= errbound) return det;
|
|
155
|
-
s1 = acxtail * bcy;
|
|
156
|
-
c = splitter * acxtail;
|
|
157
|
-
ahi = c - (c - acxtail);
|
|
158
|
-
alo = acxtail - ahi;
|
|
159
|
-
c = splitter * bcy;
|
|
160
|
-
bhi = c - (c - bcy);
|
|
161
|
-
blo = bcy - bhi;
|
|
162
|
-
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
163
|
-
t1 = acytail * bcx;
|
|
164
|
-
c = splitter * acytail;
|
|
165
|
-
ahi = c - (c - acytail);
|
|
166
|
-
alo = acytail - ahi;
|
|
167
|
-
c = splitter * bcx;
|
|
168
|
-
bhi = c - (c - bcx);
|
|
169
|
-
blo = bcx - bhi;
|
|
170
|
-
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
171
|
-
_i = s0 - t0;
|
|
172
|
-
bvirt = s0 - _i;
|
|
173
|
-
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
|
174
|
-
_j = s1 + _i;
|
|
175
|
-
bvirt = _j - s1;
|
|
176
|
-
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
|
177
|
-
_i = _0 - t1;
|
|
178
|
-
bvirt = _0 - _i;
|
|
179
|
-
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
|
180
|
-
u3 = _j + _i;
|
|
181
|
-
bvirt = u3 - _j;
|
|
182
|
-
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
|
183
|
-
u[3] = u3;
|
|
184
|
-
const C1len = sum(4, B, 4, u, C1);
|
|
185
|
-
s1 = acx * bcytail;
|
|
186
|
-
c = splitter * acx;
|
|
187
|
-
ahi = c - (c - acx);
|
|
188
|
-
alo = acx - ahi;
|
|
189
|
-
c = splitter * bcytail;
|
|
190
|
-
bhi = c - (c - bcytail);
|
|
191
|
-
blo = bcytail - bhi;
|
|
192
|
-
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
193
|
-
t1 = acy * bcxtail;
|
|
194
|
-
c = splitter * acy;
|
|
195
|
-
ahi = c - (c - acy);
|
|
196
|
-
alo = acy - ahi;
|
|
197
|
-
c = splitter * bcxtail;
|
|
198
|
-
bhi = c - (c - bcxtail);
|
|
199
|
-
blo = bcxtail - bhi;
|
|
200
|
-
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
201
|
-
_i = s0 - t0;
|
|
202
|
-
bvirt = s0 - _i;
|
|
203
|
-
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
|
204
|
-
_j = s1 + _i;
|
|
205
|
-
bvirt = _j - s1;
|
|
206
|
-
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
|
207
|
-
_i = _0 - t1;
|
|
208
|
-
bvirt = _0 - _i;
|
|
209
|
-
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
|
210
|
-
u3 = _j + _i;
|
|
211
|
-
bvirt = u3 - _j;
|
|
212
|
-
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
|
213
|
-
u[3] = u3;
|
|
214
|
-
const C2len = sum(C1len, C1, 4, u, C2);
|
|
215
|
-
s1 = acxtail * bcytail;
|
|
216
|
-
c = splitter * acxtail;
|
|
217
|
-
ahi = c - (c - acxtail);
|
|
218
|
-
alo = acxtail - ahi;
|
|
219
|
-
c = splitter * bcytail;
|
|
220
|
-
bhi = c - (c - bcytail);
|
|
221
|
-
blo = bcytail - bhi;
|
|
222
|
-
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
223
|
-
t1 = acytail * bcxtail;
|
|
224
|
-
c = splitter * acytail;
|
|
225
|
-
ahi = c - (c - acytail);
|
|
226
|
-
alo = acytail - ahi;
|
|
227
|
-
c = splitter * bcxtail;
|
|
228
|
-
bhi = c - (c - bcxtail);
|
|
229
|
-
blo = bcxtail - bhi;
|
|
230
|
-
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
|
231
|
-
_i = s0 - t0;
|
|
232
|
-
bvirt = s0 - _i;
|
|
233
|
-
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
|
234
|
-
_j = s1 + _i;
|
|
235
|
-
bvirt = _j - s1;
|
|
236
|
-
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
|
237
|
-
_i = _0 - t1;
|
|
238
|
-
bvirt = _0 - _i;
|
|
239
|
-
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
|
240
|
-
u3 = _j + _i;
|
|
241
|
-
bvirt = u3 - _j;
|
|
242
|
-
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
|
243
|
-
u[3] = u3;
|
|
244
|
-
const Dlen = sum(C2len, C2, 4, u, D);
|
|
245
|
-
return D[Dlen - 1];
|
|
246
|
-
}
|
|
247
|
-
function orient2d(ax, ay, bx, by, cx, cy) {
|
|
248
|
-
const detleft = (ay - cy) * (bx - cx);
|
|
249
|
-
const detright = (ax - cx) * (by - cy);
|
|
250
|
-
const det = detleft - detright;
|
|
251
|
-
const detsum = Math.abs(detleft + detright);
|
|
252
|
-
if (Math.abs(det) >= ccwerrboundA * detsum) return det;
|
|
253
|
-
return -orient2dadapt(ax, ay, bx, by, cx, cy, detsum);
|
|
254
|
-
}
|
|
255
|
-
function orient2dfast(ax, ay, bx, by, cx, cy) {
|
|
256
|
-
return (ay - cy) * (bx - cx) - (ax - cx) * (by - cy);
|
|
257
|
-
}
|
|
258
|
-
exports.orient2d = orient2d;
|
|
259
|
-
exports.orient2dfast = orient2dfast;
|
|
260
|
-
});
|
|
@@ -1,69 +0,0 @@
|
|
|
1
|
-
"use strict";
|
|
2
|
-
|
|
3
|
-
!function (t, e) {
|
|
4
|
-
"object" == typeof exports && "undefined" != typeof module ? e(exports) : "function" == typeof define && define.amd ? define(["exports"], e) : e((t = "undefined" != typeof globalThis ? globalThis : t || self).predicates = {});
|
|
5
|
-
}(this, function (t) {
|
|
6
|
-
"use strict";
|
|
7
|
-
|
|
8
|
-
const e = 11102230246251565e-32,
|
|
9
|
-
n = 134217729,
|
|
10
|
-
o = (3 + 8 * e) * e;
|
|
11
|
-
function r(t, e, n, o, r) {
|
|
12
|
-
let f,
|
|
13
|
-
i,
|
|
14
|
-
u,
|
|
15
|
-
s,
|
|
16
|
-
c = e[0],
|
|
17
|
-
a = o[0],
|
|
18
|
-
l = 0,
|
|
19
|
-
d = 0;
|
|
20
|
-
a > c == a > -c ? (f = c, c = e[++l]) : (f = a, a = o[++d]);
|
|
21
|
-
let p = 0;
|
|
22
|
-
if (l < t && d < n) for (a > c == a > -c ? (i = c + f, u = f - (i - c), c = e[++l]) : (i = a + f, u = f - (i - a), a = o[++d]), f = i, 0 !== u && (r[p++] = u); l < t && d < n;) a > c == a > -c ? (i = f + c, s = i - f, u = f - (i - s) + (c - s), c = e[++l]) : (i = f + a, s = i - f, u = f - (i - s) + (a - s), a = o[++d]), f = i, 0 !== u && (r[p++] = u);
|
|
23
|
-
for (; l < t;) i = f + c, s = i - f, u = f - (i - s) + (c - s), c = e[++l], f = i, 0 !== u && (r[p++] = u);
|
|
24
|
-
for (; d < n;) i = f + a, s = i - f, u = f - (i - s) + (a - s), a = o[++d], f = i, 0 !== u && (r[p++] = u);
|
|
25
|
-
return 0 === f && 0 !== p || (r[p++] = f), p;
|
|
26
|
-
}
|
|
27
|
-
function f(t) {
|
|
28
|
-
return new Float64Array(t);
|
|
29
|
-
}
|
|
30
|
-
const i = 22204460492503146e-32,
|
|
31
|
-
u = 11093356479670487e-47,
|
|
32
|
-
s = f(4),
|
|
33
|
-
c = f(8),
|
|
34
|
-
a = f(12),
|
|
35
|
-
l = f(16),
|
|
36
|
-
d = f(4);
|
|
37
|
-
t.orient2d = function (t, e, f, p, b, h) {
|
|
38
|
-
const y = (e - h) * (f - b),
|
|
39
|
-
x = (t - b) * (p - h),
|
|
40
|
-
M = y - x,
|
|
41
|
-
g = Math.abs(y + x);
|
|
42
|
-
return Math.abs(M) >= 33306690738754716e-32 * g ? M : -function (t, e, f, p, b, h, y) {
|
|
43
|
-
let x, M, g, m, T, j, w, A, F, k, q, v, z, B, C, D, E, G;
|
|
44
|
-
const H = t - b,
|
|
45
|
-
I = f - b,
|
|
46
|
-
J = e - h,
|
|
47
|
-
K = p - h;
|
|
48
|
-
B = H * K, j = n * H, w = j - (j - H), A = H - w, j = n * K, F = j - (j - K), k = K - F, C = A * k - (B - w * F - A * F - w * k), D = J * I, j = n * J, w = j - (j - J), A = J - w, j = n * I, F = j - (j - I), k = I - F, E = A * k - (D - w * F - A * F - w * k), q = C - E, T = C - q, s[0] = C - (q + T) + (T - E), v = B + q, T = v - B, z = B - (v - T) + (q - T), q = z - D, T = z - q, s[1] = z - (q + T) + (T - D), G = v + q, T = G - v, s[2] = v - (G - T) + (q - T), s[3] = G;
|
|
49
|
-
let L = function (t, e) {
|
|
50
|
-
let n = e[0];
|
|
51
|
-
for (let o = 1; o < t; o++) n += e[o];
|
|
52
|
-
return n;
|
|
53
|
-
}(4, s),
|
|
54
|
-
N = i * y;
|
|
55
|
-
if (L >= N || -L >= N) return L;
|
|
56
|
-
if (T = t - H, x = t - (H + T) + (T - b), T = f - I, g = f - (I + T) + (T - b), T = e - J, M = e - (J + T) + (T - h), T = p - K, m = p - (K + T) + (T - h), 0 === x && 0 === M && 0 === g && 0 === m) return L;
|
|
57
|
-
if (N = u * y + o * Math.abs(L), L += H * m + K * x - (J * g + I * M), L >= N || -L >= N) return L;
|
|
58
|
-
B = x * K, j = n * x, w = j - (j - x), A = x - w, j = n * K, F = j - (j - K), k = K - F, C = A * k - (B - w * F - A * F - w * k), D = M * I, j = n * M, w = j - (j - M), A = M - w, j = n * I, F = j - (j - I), k = I - F, E = A * k - (D - w * F - A * F - w * k), q = C - E, T = C - q, d[0] = C - (q + T) + (T - E), v = B + q, T = v - B, z = B - (v - T) + (q - T), q = z - D, T = z - q, d[1] = z - (q + T) + (T - D), G = v + q, T = G - v, d[2] = v - (G - T) + (q - T), d[3] = G;
|
|
59
|
-
const O = r(4, s, 4, d, c);
|
|
60
|
-
B = H * m, j = n * H, w = j - (j - H), A = H - w, j = n * m, F = j - (j - m), k = m - F, C = A * k - (B - w * F - A * F - w * k), D = J * g, j = n * J, w = j - (j - J), A = J - w, j = n * g, F = j - (j - g), k = g - F, E = A * k - (D - w * F - A * F - w * k), q = C - E, T = C - q, d[0] = C - (q + T) + (T - E), v = B + q, T = v - B, z = B - (v - T) + (q - T), q = z - D, T = z - q, d[1] = z - (q + T) + (T - D), G = v + q, T = G - v, d[2] = v - (G - T) + (q - T), d[3] = G;
|
|
61
|
-
const P = r(O, c, 4, d, a);
|
|
62
|
-
B = x * m, j = n * x, w = j - (j - x), A = x - w, j = n * m, F = j - (j - m), k = m - F, C = A * k - (B - w * F - A * F - w * k), D = M * g, j = n * M, w = j - (j - M), A = M - w, j = n * g, F = j - (j - g), k = g - F, E = A * k - (D - w * F - A * F - w * k), q = C - E, T = C - q, d[0] = C - (q + T) + (T - E), v = B + q, T = v - B, z = B - (v - T) + (q - T), q = z - D, T = z - q, d[1] = z - (q + T) + (T - D), G = v + q, T = G - v, d[2] = v - (G - T) + (q - T), d[3] = G;
|
|
63
|
-
const Q = r(P, a, 4, d, l);
|
|
64
|
-
return l[Q - 1];
|
|
65
|
-
}(t, e, f, p, b, h, g);
|
|
66
|
-
}, t.orient2dfast = function (t, e, n, o, r, f) {
|
|
67
|
-
return (e - f) * (n - r) - (t - r) * (o - f);
|
|
68
|
-
};
|
|
69
|
-
});
|