@mui/x-charts-vendor 8.14.0 → 8.14.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. package/README.md +2 -7
  2. package/package.json +2 -6
  3. package/d3-delaunay.d.ts +0 -5
  4. package/d3-delaunay.js +0 -7
  5. package/delaunator.d.ts +0 -5
  6. package/delaunator.js +0 -7
  7. package/es/d3-delaunay.mjs +0 -6
  8. package/es/delaunator.mjs +0 -6
  9. package/es/robust-predicates.mjs +0 -6
  10. package/lib/d3-delaunay.js +0 -6
  11. package/lib/delaunator.js +0 -6
  12. package/lib/robust-predicates.js +0 -6
  13. package/lib-vendor/d3-delaunay/LICENSE +0 -14
  14. package/lib-vendor/d3-delaunay/dist/d3-delaunay.js +0 -1398
  15. package/lib-vendor/d3-delaunay/dist/d3-delaunay.min.js +0 -853
  16. package/lib-vendor/d3-delaunay/src/delaunay.js +0 -282
  17. package/lib-vendor/d3-delaunay/src/index.js +0 -20
  18. package/lib-vendor/d3-delaunay/src/path.js +0 -43
  19. package/lib-vendor/d3-delaunay/src/polygon.js +0 -24
  20. package/lib-vendor/d3-delaunay/src/voronoi.js +0 -390
  21. package/lib-vendor/delaunator/LICENSE +0 -15
  22. package/lib-vendor/delaunator/delaunator.js +0 -688
  23. package/lib-vendor/delaunator/delaunator.min.js +0 -316
  24. package/lib-vendor/delaunator/index.js +0 -440
  25. package/lib-vendor/robust-predicates/LICENSE +0 -24
  26. package/lib-vendor/robust-predicates/esm/incircle.js +0 -667
  27. package/lib-vendor/robust-predicates/esm/insphere.js +0 -693
  28. package/lib-vendor/robust-predicates/esm/orient2d.js +0 -174
  29. package/lib-vendor/robust-predicates/esm/orient3d.js +0 -422
  30. package/lib-vendor/robust-predicates/esm/util.js +0 -147
  31. package/lib-vendor/robust-predicates/index.js +0 -57
  32. package/lib-vendor/robust-predicates/umd/incircle.js +0 -798
  33. package/lib-vendor/robust-predicates/umd/incircle.min.js +0 -170
  34. package/lib-vendor/robust-predicates/umd/insphere.js +0 -828
  35. package/lib-vendor/robust-predicates/umd/insphere.min.js +0 -223
  36. package/lib-vendor/robust-predicates/umd/orient2d.js +0 -260
  37. package/lib-vendor/robust-predicates/umd/orient2d.min.js +0 -69
  38. package/lib-vendor/robust-predicates/umd/orient3d.js +0 -550
  39. package/lib-vendor/robust-predicates/umd/orient3d.min.js +0 -133
  40. package/lib-vendor/robust-predicates/umd/predicates.js +0 -2073
  41. package/lib-vendor/robust-predicates/umd/predicates.min.js +0 -468
  42. package/robust-predicates.d.ts +0 -5
  43. package/robust-predicates.js +0 -7
@@ -1,223 +0,0 @@
1
- "use strict";
2
-
3
- !function (t, n) {
4
- "object" == typeof exports && "undefined" != typeof module ? n(exports) : "function" == typeof define && define.amd ? define(["exports"], n) : n((t = "undefined" != typeof globalThis ? globalThis : t || self).predicates = {});
5
- }(this, function (t) {
6
- "use strict";
7
-
8
- const n = 11102230246251565e-32,
9
- e = 134217729,
10
- r = (3 + 8 * n) * n;
11
- function o(t, n, e, r, o) {
12
- let a,
13
- s,
14
- f,
15
- u,
16
- i = n[0],
17
- c = r[0],
18
- h = 0,
19
- b = 0;
20
- c > i == c > -i ? (a = i, i = n[++h]) : (a = c, c = r[++b]);
21
- let l = 0;
22
- if (h < t && b < e) for (c > i == c > -i ? (s = i + a, f = a - (s - i), i = n[++h]) : (s = c + a, f = a - (s - c), c = r[++b]), a = s, 0 !== f && (o[l++] = f); h < t && b < e;) c > i == c > -i ? (s = a + i, u = s - a, f = a - (s - u) + (i - u), i = n[++h]) : (s = a + c, u = s - a, f = a - (s - u) + (c - u), c = r[++b]), a = s, 0 !== f && (o[l++] = f);
23
- for (; h < t;) s = a + i, u = s - a, f = a - (s - u) + (i - u), i = n[++h], a = s, 0 !== f && (o[l++] = f);
24
- for (; b < e;) s = a + c, u = s - a, f = a - (s - u) + (c - u), c = r[++b], a = s, 0 !== f && (o[l++] = f);
25
- return 0 === a && 0 !== l || (o[l++] = a), l;
26
- }
27
- function a(t, n, e, r, a, s, f, u) {
28
- return o(o(t, n, e, r, f), f, a, s, u);
29
- }
30
- function s(t, n, r, o) {
31
- let a, s, f, u, i, c, h, b, l, M, d;
32
- h = e * r, M = h - (h - r), d = r - M;
33
- let p = n[0];
34
- a = p * r, h = e * p, b = h - (h - p), l = p - b, f = l * d - (a - b * M - l * M - b * d);
35
- let y = 0;
36
- 0 !== f && (o[y++] = f);
37
- for (let x = 1; x < t; x++) p = n[x], u = p * r, h = e * p, b = h - (h - p), l = p - b, i = l * d - (u - b * M - l * M - b * d), s = a + i, c = s - a, f = a - (s - c) + (i - c), 0 !== f && (o[y++] = f), a = u + s, f = s - (a - u), 0 !== f && (o[y++] = f);
38
- return 0 === a && 0 !== y || (o[y++] = a), y;
39
- }
40
- function f(t, n) {
41
- for (let e = 0; e < t; e++) n[e] = -n[e];
42
- return t;
43
- }
44
- function u(t) {
45
- return new Float64Array(t);
46
- }
47
- const i = 5551115123125792e-31,
48
- c = 8751425667295619e-46,
49
- h = u(4),
50
- b = u(4),
51
- l = u(4),
52
- M = u(4),
53
- d = u(4),
54
- p = u(4),
55
- y = u(4),
56
- x = u(4),
57
- g = u(4),
58
- m = u(4),
59
- T = u(24),
60
- j = u(24),
61
- w = u(24),
62
- A = u(24),
63
- F = u(24),
64
- k = u(24),
65
- q = u(24),
66
- v = u(24),
67
- z = u(24),
68
- B = u(24),
69
- C = u(1152),
70
- D = u(1152),
71
- E = u(1152),
72
- G = u(1152),
73
- H = u(1152),
74
- I = u(2304),
75
- J = u(2304),
76
- K = u(3456),
77
- L = u(5760),
78
- N = u(8),
79
- O = u(8),
80
- P = u(8),
81
- Q = u(16),
82
- R = u(24),
83
- S = u(48),
84
- U = u(48),
85
- V = u(96),
86
- W = u(192),
87
- X = u(384),
88
- Y = u(384),
89
- Z = u(384),
90
- $ = u(768);
91
- function _(t, n, e, r, o, f, u) {
92
- return a(s(4, t, r, N), N, s(4, n, o, O), O, s(4, e, f, P), P, Q, u);
93
- }
94
- function tt(t, n, e, r, u, i, c, h, b, l, M, d) {
95
- const p = o(o(t, n, e, r, S), S, f(o(u, i, c, h, U), U), U, V);
96
- return a(s(s(p, V, b, W), W, b, X), X, s(s(p, V, l, W), W, l, Y), Y, s(s(p, V, M, W), W, M, Z), Z, $, d);
97
- }
98
- const nt = u(96),
99
- et = u(96),
100
- rt = u(96),
101
- ot = u(1152);
102
- function at(t, n, e, r, o, f, u, i, c, h) {
103
- const b = _(t, n, e, r, o, f, R);
104
- return a(s(s(b, R, u, S), S, u, nt), nt, s(s(b, R, i, S), S, i, et), et, s(s(b, R, c, S), S, c, rt), rt, W, h);
105
- }
106
- function st(t, n, s, u, N, O, P, Q, R, S, U, V, W, X, Y, Z) {
107
- let $, nt, et, rt, st, ft, ut, it, ct, ht, bt, lt, Mt, dt, pt, yt, xt, gt, mt, Tt, jt, wt, At, Ft, kt, qt, vt, zt, Bt, Ct, Dt;
108
- const Et = t - W,
109
- Gt = u - W,
110
- Ht = P - W,
111
- It = S - W,
112
- Jt = n - X,
113
- Kt = N - X,
114
- Lt = Q - X,
115
- Nt = U - X,
116
- Ot = s - Y,
117
- Pt = O - Y,
118
- Qt = R - Y,
119
- Rt = V - Y;
120
- zt = Et * Kt, Tt = e * Et, jt = Tt - (Tt - Et), wt = Et - jt, Tt = e * Kt, At = Tt - (Tt - Kt), Ft = Kt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = Gt * Jt, Tt = e * Gt, jt = Tt - (Tt - Gt), wt = Gt - jt, Tt = e * Jt, At = Tt - (Tt - Jt), Ft = Jt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, h[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, h[1] = vt - (kt + mt) + (mt - Ct), $ = qt + kt, mt = $ - qt, h[2] = qt - ($ - mt) + (kt - mt), h[3] = $, zt = Gt * Lt, Tt = e * Gt, jt = Tt - (Tt - Gt), wt = Gt - jt, Tt = e * Lt, At = Tt - (Tt - Lt), Ft = Lt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = Ht * Kt, Tt = e * Ht, jt = Tt - (Tt - Ht), wt = Ht - jt, Tt = e * Kt, At = Tt - (Tt - Kt), Ft = Kt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, b[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, b[1] = vt - (kt + mt) + (mt - Ct), nt = qt + kt, mt = nt - qt, b[2] = qt - (nt - mt) + (kt - mt), b[3] = nt, zt = Ht * Nt, Tt = e * Ht, jt = Tt - (Tt - Ht), wt = Ht - jt, Tt = e * Nt, At = Tt - (Tt - Nt), Ft = Nt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = It * Lt, Tt = e * It, jt = Tt - (Tt - It), wt = It - jt, Tt = e * Lt, At = Tt - (Tt - Lt), Ft = Lt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, l[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, l[1] = vt - (kt + mt) + (mt - Ct), et = qt + kt, mt = et - qt, l[2] = qt - (et - mt) + (kt - mt), l[3] = et, zt = It * Jt, Tt = e * It, jt = Tt - (Tt - It), wt = It - jt, Tt = e * Jt, At = Tt - (Tt - Jt), Ft = Jt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = Et * Nt, Tt = e * Et, jt = Tt - (Tt - Et), wt = Et - jt, Tt = e * Nt, At = Tt - (Tt - Nt), Ft = Nt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, g[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, g[1] = vt - (kt + mt) + (mt - Ct), rt = qt + kt, mt = rt - qt, g[2] = qt - (rt - mt) + (kt - mt), g[3] = rt, zt = Et * Lt, Tt = e * Et, jt = Tt - (Tt - Et), wt = Et - jt, Tt = e * Lt, At = Tt - (Tt - Lt), Ft = Lt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = Ht * Jt, Tt = e * Ht, jt = Tt - (Tt - Ht), wt = Ht - jt, Tt = e * Jt, At = Tt - (Tt - Jt), Ft = Jt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, p[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, p[1] = vt - (kt + mt) + (mt - Ct), st = qt + kt, mt = st - qt, p[2] = qt - (st - mt) + (kt - mt), p[3] = st, zt = Gt * Nt, Tt = e * Gt, jt = Tt - (Tt - Gt), wt = Gt - jt, Tt = e * Nt, At = Tt - (Tt - Nt), Ft = Nt - At, Bt = wt * Ft - (zt - jt * At - wt * At - jt * Ft), Ct = It * Kt, Tt = e * It, jt = Tt - (Tt - It), wt = It - jt, Tt = e * Kt, At = Tt - (Tt - Kt), Ft = Kt - At, Dt = wt * Ft - (Ct - jt * At - wt * At - jt * Ft), kt = Bt - Dt, mt = Bt - kt, y[0] = Bt - (kt + mt) + (mt - Dt), qt = zt + kt, mt = qt - zt, vt = zt - (qt - mt) + (kt - mt), kt = vt - Ct, mt = vt - kt, y[1] = vt - (kt + mt) + (mt - Ct), ft = qt + kt, mt = ft - qt, y[2] = qt - (ft - mt) + (kt - mt), y[3] = ft;
121
- let St = function (t, n) {
122
- let e = n[0];
123
- for (let r = 1; r < t; r++) e += n[r];
124
- return e;
125
- }(o(o(f(at(b, l, y, Rt, Pt, -Qt, Et, Jt, Ot, C), C), C, at(l, g, p, Ot, Qt, Rt, Gt, Kt, Pt, D), D, I), I, o(f(at(g, h, y, Pt, Rt, Ot, Ht, Lt, Qt, E), E), E, at(h, b, p, Qt, Ot, -Pt, It, Nt, Rt, G), G, J), J, ot), ot),
126
- Ut = i * Z;
127
- if (St >= Ut || -St >= Ut) return St;
128
- if (mt = t - Et, ut = t - (Et + mt) + (mt - W), mt = n - Jt, bt = n - (Jt + mt) + (mt - X), mt = s - Ot, pt = s - (Ot + mt) + (mt - Y), mt = u - Gt, it = u - (Gt + mt) + (mt - W), mt = N - Kt, lt = N - (Kt + mt) + (mt - X), mt = O - Pt, yt = O - (Pt + mt) + (mt - Y), mt = P - Ht, ct = P - (Ht + mt) + (mt - W), mt = Q - Lt, Mt = Q - (Lt + mt) + (mt - X), mt = R - Qt, xt = R - (Qt + mt) + (mt - Y), mt = S - It, ht = S - (It + mt) + (mt - W), mt = U - Nt, dt = U - (Nt + mt) + (mt - X), mt = V - Rt, gt = V - (Rt + mt) + (mt - Y), 0 === ut && 0 === bt && 0 === pt && 0 === it && 0 === lt && 0 === yt && 0 === ct && 0 === Mt && 0 === xt && 0 === ht && 0 === dt && 0 === gt) return St;
129
- Ut = c * Z + r * Math.abs(St);
130
- const Vt = Et * lt + Kt * ut - (Jt * it + Gt * bt),
131
- Wt = Gt * Mt + Lt * it - (Kt * ct + Ht * lt),
132
- Xt = Ht * dt + Nt * ct - (Lt * ht + It * Mt),
133
- Yt = It * bt + Jt * ht - (Nt * ut + Et * dt),
134
- Zt = Et * Mt + Lt * ut - (Jt * ct + Ht * bt),
135
- $t = Gt * dt + Nt * it - (Kt * ht + It * lt);
136
- return St += (Gt * Gt + Kt * Kt + Pt * Pt) * (Qt * Yt + Rt * Zt + Ot * Xt + (xt * rt + gt * st + pt * et)) + (It * It + Nt * Nt + Rt * Rt) * (Ot * Wt - Pt * Zt + Qt * Vt + (pt * nt - yt * st + xt * $)) - ((Et * Et + Jt * Jt + Ot * Ot) * (Pt * Xt - Qt * $t + Rt * Wt + (yt * et - xt * ft + gt * nt)) + (Ht * Ht + Lt * Lt + Qt * Qt) * (Rt * Vt + Ot * $t + Pt * Yt + (gt * $ + pt * ft + yt * rt))) + 2 * ((Gt * it + Kt * lt + Pt * yt) * (Qt * rt + Rt * st + Ot * et) + (It * ht + Nt * dt + Rt * gt) * (Ot * nt - Pt * st + Qt * $) - ((Et * ut + Jt * bt + Ot * pt) * (Pt * et - Qt * ft + Rt * nt) + (Ht * ct + Lt * Mt + Qt * xt) * (Rt * $ + Ot * ft + Pt * rt))), St >= Ut || -St >= Ut ? St : function (t, n, r, o, s, f, u, i, c, N, O, P, Q, R, S) {
137
- let U, V, W, X, Y, Z, $, nt, et, rt, ot, at, st, ft;
138
- rt = t * s, V = e * t, W = V - (V - t), X = t - W, V = e * s, Y = V - (V - s), Z = s - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = o * n, V = e * o, W = V - (V - o), X = o - W, V = e * n, Y = V - (V - n), Z = n - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, h[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, h[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, h[2] = nt - (ft - U) + ($ - U), h[3] = ft, rt = o * i, V = e * o, W = V - (V - o), X = o - W, V = e * i, Y = V - (V - i), Z = i - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = u * s, V = e * u, W = V - (V - u), X = u - W, V = e * s, Y = V - (V - s), Z = s - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, b[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, b[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, b[2] = nt - (ft - U) + ($ - U), b[3] = ft, rt = u * O, V = e * u, W = V - (V - u), X = u - W, V = e * O, Y = V - (V - O), Z = O - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = N * i, V = e * N, W = V - (V - N), X = N - W, V = e * i, Y = V - (V - i), Z = i - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, l[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, l[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, l[2] = nt - (ft - U) + ($ - U), l[3] = ft, rt = N * R, V = e * N, W = V - (V - N), X = N - W, V = e * R, Y = V - (V - R), Z = R - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = Q * O, V = e * Q, W = V - (V - Q), X = Q - W, V = e * O, Y = V - (V - O), Z = O - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, M[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, M[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, M[2] = nt - (ft - U) + ($ - U), M[3] = ft, rt = Q * n, V = e * Q, W = V - (V - Q), X = Q - W, V = e * n, Y = V - (V - n), Z = n - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = t * R, V = e * t, W = V - (V - t), X = t - W, V = e * R, Y = V - (V - R), Z = R - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, d[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, d[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, d[2] = nt - (ft - U) + ($ - U), d[3] = ft, rt = t * i, V = e * t, W = V - (V - t), X = t - W, V = e * i, Y = V - (V - i), Z = i - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = u * n, V = e * u, W = V - (V - u), X = u - W, V = e * n, Y = V - (V - n), Z = n - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, p[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, p[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, p[2] = nt - (ft - U) + ($ - U), p[3] = ft, rt = o * O, V = e * o, W = V - (V - o), X = o - W, V = e * O, Y = V - (V - O), Z = O - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = N * s, V = e * N, W = V - (V - N), X = N - W, V = e * s, Y = V - (V - s), Z = s - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, y[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, y[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, y[2] = nt - (ft - U) + ($ - U), y[3] = ft, rt = u * R, V = e * u, W = V - (V - u), X = u - W, V = e * R, Y = V - (V - R), Z = R - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = Q * i, V = e * Q, W = V - (V - Q), X = Q - W, V = e * i, Y = V - (V - i), Z = i - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, x[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, x[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, x[2] = nt - (ft - U) + ($ - U), x[3] = ft, rt = N * n, V = e * N, W = V - (V - N), X = N - W, V = e * n, Y = V - (V - n), Z = n - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = t * O, V = e * t, W = V - (V - t), X = t - W, V = e * O, Y = V - (V - O), Z = O - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, g[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, g[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, g[2] = nt - (ft - U) + ($ - U), g[3] = ft, rt = Q * s, V = e * Q, W = V - (V - Q), X = Q - W, V = e * s, Y = V - (V - s), Z = s - Y, ot = X * Z - (rt - W * Y - X * Y - W * Z), at = o * R, V = e * o, W = V - (V - o), X = o - W, V = e * R, Y = V - (V - R), Z = R - Y, st = X * Z - (at - W * Y - X * Y - W * Z), $ = ot - st, U = ot - $, m[0] = ot - ($ + U) + (U - st), nt = rt + $, U = nt - rt, et = rt - (nt - U) + ($ - U), $ = et - at, U = et - $, m[1] = et - ($ + U) + (U - at), ft = nt + $, U = ft - nt, m[2] = nt - (ft - U) + ($ - U), m[3] = ft;
139
- const ut = _(h, b, p, c, r, -f, T),
140
- it = _(b, l, y, P, f, -c, j),
141
- ct = _(l, M, x, S, c, -P, w),
142
- ht = _(M, d, g, r, P, -S, A),
143
- bt = _(d, h, m, f, S, -r, F),
144
- lt = _(h, y, g, P, r, f, k),
145
- Mt = _(b, x, m, S, f, c, q),
146
- dt = _(l, g, p, r, c, P, v),
147
- pt = _(M, m, y, f, P, S, z),
148
- yt = _(d, p, x, c, S, r, B),
149
- xt = a(tt(ct, w, Mt, q, pt, z, it, j, t, n, r, C), C, tt(ht, A, dt, v, yt, B, ct, w, o, s, f, D), D, a(tt(bt, F, pt, z, lt, k, ht, A, u, i, c, E), E, tt(ut, T, yt, B, Mt, q, bt, F, N, O, P, G), G, tt(it, j, lt, k, dt, v, ut, T, Q, R, S, H), H, J, K), K, I, L);
150
- return L[xt - 1];
151
- }(t, n, s, u, N, O, P, Q, R, S, U, V, W, X, Y);
152
- }
153
- t.insphere = function (t, n, e, r, o, a, s, f, u, i, c, h, b, l, M) {
154
- const d = t - b,
155
- p = r - b,
156
- y = s - b,
157
- x = i - b,
158
- g = n - l,
159
- m = o - l,
160
- T = f - l,
161
- j = c - l,
162
- w = e - M,
163
- A = a - M,
164
- F = u - M,
165
- k = h - M,
166
- q = d * m,
167
- v = p * g,
168
- z = q - v,
169
- B = p * T,
170
- C = y * m,
171
- D = B - C,
172
- E = y * j,
173
- G = x * T,
174
- H = E - G,
175
- I = x * g,
176
- J = d * j,
177
- K = I - J,
178
- L = d * T,
179
- N = y * g,
180
- O = L - N,
181
- P = p * j,
182
- Q = x * m,
183
- R = P - Q,
184
- S = d * d + g * g + w * w,
185
- U = p * p + m * m + A * A,
186
- V = y * y + T * T + F * F,
187
- W = x * x + j * j + k * k,
188
- X = V * (k * z + w * R + A * K) - W * (w * D - A * O + F * z) + (S * (A * H - F * R + k * D) - U * (F * K + k * O + w * H)),
189
- Y = Math.abs(w),
190
- Z = Math.abs(A),
191
- $ = Math.abs(F),
192
- _ = Math.abs(k),
193
- tt = Math.abs(q) + Math.abs(v),
194
- nt = Math.abs(B) + Math.abs(C),
195
- et = Math.abs(E) + Math.abs(G),
196
- rt = Math.abs(I) + Math.abs(J),
197
- ot = Math.abs(L) + Math.abs(N),
198
- at = Math.abs(P) + Math.abs(Q),
199
- ft = (et * Z + at * $ + nt * _) * S + (rt * $ + ot * _ + et * Y) * U + (tt * _ + at * Y + rt * Z) * V + (nt * Y + ot * Z + tt * $) * W,
200
- ut = 17763568394002532e-31 * ft;
201
- return X > ut || -X > ut ? X : -st(t, n, e, r, o, a, s, f, u, i, c, h, b, l, M, ft);
202
- }, t.inspherefast = function (t, n, e, r, o, a, s, f, u, i, c, h, b, l, M) {
203
- const d = t - b,
204
- p = r - b,
205
- y = s - b,
206
- x = i - b,
207
- g = n - l,
208
- m = o - l,
209
- T = f - l,
210
- j = c - l,
211
- w = e - M,
212
- A = a - M,
213
- F = u - M,
214
- k = h - M,
215
- q = d * m - p * g,
216
- v = p * T - y * m,
217
- z = y * j - x * T,
218
- B = x * g - d * j,
219
- C = d * T - y * g,
220
- D = p * j - x * m;
221
- return (y * y + T * T + F * F) * (k * q + w * D + A * B) - (x * x + j * j + k * k) * (w * v - A * C + F * q) + ((d * d + g * g + w * w) * (A * z - F * D + k * v) - (p * p + m * m + A * A) * (F * B + k * C + w * z));
222
- };
223
- });
@@ -1,260 +0,0 @@
1
- "use strict";
2
-
3
- (function (global, factory) {
4
- typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.predicates = {}));
5
- })(this, function (exports) {
6
- 'use strict';
7
-
8
- const epsilon = 1.1102230246251565e-16;
9
- const splitter = 134217729;
10
- const resulterrbound = (3 + 8 * epsilon) * epsilon;
11
-
12
- // fast_expansion_sum_zeroelim routine from oritinal code
13
- function sum(elen, e, flen, f, h) {
14
- let Q, Qnew, hh, bvirt;
15
- let enow = e[0];
16
- let fnow = f[0];
17
- let eindex = 0;
18
- let findex = 0;
19
- if (fnow > enow === fnow > -enow) {
20
- Q = enow;
21
- enow = e[++eindex];
22
- } else {
23
- Q = fnow;
24
- fnow = f[++findex];
25
- }
26
- let hindex = 0;
27
- if (eindex < elen && findex < flen) {
28
- if (fnow > enow === fnow > -enow) {
29
- Qnew = enow + Q;
30
- hh = Q - (Qnew - enow);
31
- enow = e[++eindex];
32
- } else {
33
- Qnew = fnow + Q;
34
- hh = Q - (Qnew - fnow);
35
- fnow = f[++findex];
36
- }
37
- Q = Qnew;
38
- if (hh !== 0) {
39
- h[hindex++] = hh;
40
- }
41
- while (eindex < elen && findex < flen) {
42
- if (fnow > enow === fnow > -enow) {
43
- Qnew = Q + enow;
44
- bvirt = Qnew - Q;
45
- hh = Q - (Qnew - bvirt) + (enow - bvirt);
46
- enow = e[++eindex];
47
- } else {
48
- Qnew = Q + fnow;
49
- bvirt = Qnew - Q;
50
- hh = Q - (Qnew - bvirt) + (fnow - bvirt);
51
- fnow = f[++findex];
52
- }
53
- Q = Qnew;
54
- if (hh !== 0) {
55
- h[hindex++] = hh;
56
- }
57
- }
58
- }
59
- while (eindex < elen) {
60
- Qnew = Q + enow;
61
- bvirt = Qnew - Q;
62
- hh = Q - (Qnew - bvirt) + (enow - bvirt);
63
- enow = e[++eindex];
64
- Q = Qnew;
65
- if (hh !== 0) {
66
- h[hindex++] = hh;
67
- }
68
- }
69
- while (findex < flen) {
70
- Qnew = Q + fnow;
71
- bvirt = Qnew - Q;
72
- hh = Q - (Qnew - bvirt) + (fnow - bvirt);
73
- fnow = f[++findex];
74
- Q = Qnew;
75
- if (hh !== 0) {
76
- h[hindex++] = hh;
77
- }
78
- }
79
- if (Q !== 0 || hindex === 0) {
80
- h[hindex++] = Q;
81
- }
82
- return hindex;
83
- }
84
- function estimate(elen, e) {
85
- let Q = e[0];
86
- for (let i = 1; i < elen; i++) Q += e[i];
87
- return Q;
88
- }
89
- function vec(n) {
90
- return new Float64Array(n);
91
- }
92
- const ccwerrboundA = (3 + 16 * epsilon) * epsilon;
93
- const ccwerrboundB = (2 + 12 * epsilon) * epsilon;
94
- const ccwerrboundC = (9 + 64 * epsilon) * epsilon * epsilon;
95
- const B = vec(4);
96
- const C1 = vec(8);
97
- const C2 = vec(12);
98
- const D = vec(16);
99
- const u = vec(4);
100
- function orient2dadapt(ax, ay, bx, by, cx, cy, detsum) {
101
- let acxtail, acytail, bcxtail, bcytail;
102
- let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
103
- const acx = ax - cx;
104
- const bcx = bx - cx;
105
- const acy = ay - cy;
106
- const bcy = by - cy;
107
- s1 = acx * bcy;
108
- c = splitter * acx;
109
- ahi = c - (c - acx);
110
- alo = acx - ahi;
111
- c = splitter * bcy;
112
- bhi = c - (c - bcy);
113
- blo = bcy - bhi;
114
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
115
- t1 = acy * bcx;
116
- c = splitter * acy;
117
- ahi = c - (c - acy);
118
- alo = acy - ahi;
119
- c = splitter * bcx;
120
- bhi = c - (c - bcx);
121
- blo = bcx - bhi;
122
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
123
- _i = s0 - t0;
124
- bvirt = s0 - _i;
125
- B[0] = s0 - (_i + bvirt) + (bvirt - t0);
126
- _j = s1 + _i;
127
- bvirt = _j - s1;
128
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
129
- _i = _0 - t1;
130
- bvirt = _0 - _i;
131
- B[1] = _0 - (_i + bvirt) + (bvirt - t1);
132
- u3 = _j + _i;
133
- bvirt = u3 - _j;
134
- B[2] = _j - (u3 - bvirt) + (_i - bvirt);
135
- B[3] = u3;
136
- let det = estimate(4, B);
137
- let errbound = ccwerrboundB * detsum;
138
- if (det >= errbound || -det >= errbound) {
139
- return det;
140
- }
141
- bvirt = ax - acx;
142
- acxtail = ax - (acx + bvirt) + (bvirt - cx);
143
- bvirt = bx - bcx;
144
- bcxtail = bx - (bcx + bvirt) + (bvirt - cx);
145
- bvirt = ay - acy;
146
- acytail = ay - (acy + bvirt) + (bvirt - cy);
147
- bvirt = by - bcy;
148
- bcytail = by - (bcy + bvirt) + (bvirt - cy);
149
- if (acxtail === 0 && acytail === 0 && bcxtail === 0 && bcytail === 0) {
150
- return det;
151
- }
152
- errbound = ccwerrboundC * detsum + resulterrbound * Math.abs(det);
153
- det += acx * bcytail + bcy * acxtail - (acy * bcxtail + bcx * acytail);
154
- if (det >= errbound || -det >= errbound) return det;
155
- s1 = acxtail * bcy;
156
- c = splitter * acxtail;
157
- ahi = c - (c - acxtail);
158
- alo = acxtail - ahi;
159
- c = splitter * bcy;
160
- bhi = c - (c - bcy);
161
- blo = bcy - bhi;
162
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
163
- t1 = acytail * bcx;
164
- c = splitter * acytail;
165
- ahi = c - (c - acytail);
166
- alo = acytail - ahi;
167
- c = splitter * bcx;
168
- bhi = c - (c - bcx);
169
- blo = bcx - bhi;
170
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
171
- _i = s0 - t0;
172
- bvirt = s0 - _i;
173
- u[0] = s0 - (_i + bvirt) + (bvirt - t0);
174
- _j = s1 + _i;
175
- bvirt = _j - s1;
176
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
177
- _i = _0 - t1;
178
- bvirt = _0 - _i;
179
- u[1] = _0 - (_i + bvirt) + (bvirt - t1);
180
- u3 = _j + _i;
181
- bvirt = u3 - _j;
182
- u[2] = _j - (u3 - bvirt) + (_i - bvirt);
183
- u[3] = u3;
184
- const C1len = sum(4, B, 4, u, C1);
185
- s1 = acx * bcytail;
186
- c = splitter * acx;
187
- ahi = c - (c - acx);
188
- alo = acx - ahi;
189
- c = splitter * bcytail;
190
- bhi = c - (c - bcytail);
191
- blo = bcytail - bhi;
192
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
193
- t1 = acy * bcxtail;
194
- c = splitter * acy;
195
- ahi = c - (c - acy);
196
- alo = acy - ahi;
197
- c = splitter * bcxtail;
198
- bhi = c - (c - bcxtail);
199
- blo = bcxtail - bhi;
200
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
201
- _i = s0 - t0;
202
- bvirt = s0 - _i;
203
- u[0] = s0 - (_i + bvirt) + (bvirt - t0);
204
- _j = s1 + _i;
205
- bvirt = _j - s1;
206
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
207
- _i = _0 - t1;
208
- bvirt = _0 - _i;
209
- u[1] = _0 - (_i + bvirt) + (bvirt - t1);
210
- u3 = _j + _i;
211
- bvirt = u3 - _j;
212
- u[2] = _j - (u3 - bvirt) + (_i - bvirt);
213
- u[3] = u3;
214
- const C2len = sum(C1len, C1, 4, u, C2);
215
- s1 = acxtail * bcytail;
216
- c = splitter * acxtail;
217
- ahi = c - (c - acxtail);
218
- alo = acxtail - ahi;
219
- c = splitter * bcytail;
220
- bhi = c - (c - bcytail);
221
- blo = bcytail - bhi;
222
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
223
- t1 = acytail * bcxtail;
224
- c = splitter * acytail;
225
- ahi = c - (c - acytail);
226
- alo = acytail - ahi;
227
- c = splitter * bcxtail;
228
- bhi = c - (c - bcxtail);
229
- blo = bcxtail - bhi;
230
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
231
- _i = s0 - t0;
232
- bvirt = s0 - _i;
233
- u[0] = s0 - (_i + bvirt) + (bvirt - t0);
234
- _j = s1 + _i;
235
- bvirt = _j - s1;
236
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
237
- _i = _0 - t1;
238
- bvirt = _0 - _i;
239
- u[1] = _0 - (_i + bvirt) + (bvirt - t1);
240
- u3 = _j + _i;
241
- bvirt = u3 - _j;
242
- u[2] = _j - (u3 - bvirt) + (_i - bvirt);
243
- u[3] = u3;
244
- const Dlen = sum(C2len, C2, 4, u, D);
245
- return D[Dlen - 1];
246
- }
247
- function orient2d(ax, ay, bx, by, cx, cy) {
248
- const detleft = (ay - cy) * (bx - cx);
249
- const detright = (ax - cx) * (by - cy);
250
- const det = detleft - detright;
251
- const detsum = Math.abs(detleft + detright);
252
- if (Math.abs(det) >= ccwerrboundA * detsum) return det;
253
- return -orient2dadapt(ax, ay, bx, by, cx, cy, detsum);
254
- }
255
- function orient2dfast(ax, ay, bx, by, cx, cy) {
256
- return (ay - cy) * (bx - cx) - (ax - cx) * (by - cy);
257
- }
258
- exports.orient2d = orient2d;
259
- exports.orient2dfast = orient2dfast;
260
- });
@@ -1,69 +0,0 @@
1
- "use strict";
2
-
3
- !function (t, e) {
4
- "object" == typeof exports && "undefined" != typeof module ? e(exports) : "function" == typeof define && define.amd ? define(["exports"], e) : e((t = "undefined" != typeof globalThis ? globalThis : t || self).predicates = {});
5
- }(this, function (t) {
6
- "use strict";
7
-
8
- const e = 11102230246251565e-32,
9
- n = 134217729,
10
- o = (3 + 8 * e) * e;
11
- function r(t, e, n, o, r) {
12
- let f,
13
- i,
14
- u,
15
- s,
16
- c = e[0],
17
- a = o[0],
18
- l = 0,
19
- d = 0;
20
- a > c == a > -c ? (f = c, c = e[++l]) : (f = a, a = o[++d]);
21
- let p = 0;
22
- if (l < t && d < n) for (a > c == a > -c ? (i = c + f, u = f - (i - c), c = e[++l]) : (i = a + f, u = f - (i - a), a = o[++d]), f = i, 0 !== u && (r[p++] = u); l < t && d < n;) a > c == a > -c ? (i = f + c, s = i - f, u = f - (i - s) + (c - s), c = e[++l]) : (i = f + a, s = i - f, u = f - (i - s) + (a - s), a = o[++d]), f = i, 0 !== u && (r[p++] = u);
23
- for (; l < t;) i = f + c, s = i - f, u = f - (i - s) + (c - s), c = e[++l], f = i, 0 !== u && (r[p++] = u);
24
- for (; d < n;) i = f + a, s = i - f, u = f - (i - s) + (a - s), a = o[++d], f = i, 0 !== u && (r[p++] = u);
25
- return 0 === f && 0 !== p || (r[p++] = f), p;
26
- }
27
- function f(t) {
28
- return new Float64Array(t);
29
- }
30
- const i = 22204460492503146e-32,
31
- u = 11093356479670487e-47,
32
- s = f(4),
33
- c = f(8),
34
- a = f(12),
35
- l = f(16),
36
- d = f(4);
37
- t.orient2d = function (t, e, f, p, b, h) {
38
- const y = (e - h) * (f - b),
39
- x = (t - b) * (p - h),
40
- M = y - x,
41
- g = Math.abs(y + x);
42
- return Math.abs(M) >= 33306690738754716e-32 * g ? M : -function (t, e, f, p, b, h, y) {
43
- let x, M, g, m, T, j, w, A, F, k, q, v, z, B, C, D, E, G;
44
- const H = t - b,
45
- I = f - b,
46
- J = e - h,
47
- K = p - h;
48
- B = H * K, j = n * H, w = j - (j - H), A = H - w, j = n * K, F = j - (j - K), k = K - F, C = A * k - (B - w * F - A * F - w * k), D = J * I, j = n * J, w = j - (j - J), A = J - w, j = n * I, F = j - (j - I), k = I - F, E = A * k - (D - w * F - A * F - w * k), q = C - E, T = C - q, s[0] = C - (q + T) + (T - E), v = B + q, T = v - B, z = B - (v - T) + (q - T), q = z - D, T = z - q, s[1] = z - (q + T) + (T - D), G = v + q, T = G - v, s[2] = v - (G - T) + (q - T), s[3] = G;
49
- let L = function (t, e) {
50
- let n = e[0];
51
- for (let o = 1; o < t; o++) n += e[o];
52
- return n;
53
- }(4, s),
54
- N = i * y;
55
- if (L >= N || -L >= N) return L;
56
- if (T = t - H, x = t - (H + T) + (T - b), T = f - I, g = f - (I + T) + (T - b), T = e - J, M = e - (J + T) + (T - h), T = p - K, m = p - (K + T) + (T - h), 0 === x && 0 === M && 0 === g && 0 === m) return L;
57
- if (N = u * y + o * Math.abs(L), L += H * m + K * x - (J * g + I * M), L >= N || -L >= N) return L;
58
- B = x * K, j = n * x, w = j - (j - x), A = x - w, j = n * K, F = j - (j - K), k = K - F, C = A * k - (B - w * F - A * F - w * k), D = M * I, j = n * M, w = j - (j - M), A = M - w, j = n * I, F = j - (j - I), k = I - F, E = A * k - (D - w * F - A * F - w * k), q = C - E, T = C - q, d[0] = C - (q + T) + (T - E), v = B + q, T = v - B, z = B - (v - T) + (q - T), q = z - D, T = z - q, d[1] = z - (q + T) + (T - D), G = v + q, T = G - v, d[2] = v - (G - T) + (q - T), d[3] = G;
59
- const O = r(4, s, 4, d, c);
60
- B = H * m, j = n * H, w = j - (j - H), A = H - w, j = n * m, F = j - (j - m), k = m - F, C = A * k - (B - w * F - A * F - w * k), D = J * g, j = n * J, w = j - (j - J), A = J - w, j = n * g, F = j - (j - g), k = g - F, E = A * k - (D - w * F - A * F - w * k), q = C - E, T = C - q, d[0] = C - (q + T) + (T - E), v = B + q, T = v - B, z = B - (v - T) + (q - T), q = z - D, T = z - q, d[1] = z - (q + T) + (T - D), G = v + q, T = G - v, d[2] = v - (G - T) + (q - T), d[3] = G;
61
- const P = r(O, c, 4, d, a);
62
- B = x * m, j = n * x, w = j - (j - x), A = x - w, j = n * m, F = j - (j - m), k = m - F, C = A * k - (B - w * F - A * F - w * k), D = M * g, j = n * M, w = j - (j - M), A = M - w, j = n * g, F = j - (j - g), k = g - F, E = A * k - (D - w * F - A * F - w * k), q = C - E, T = C - q, d[0] = C - (q + T) + (T - E), v = B + q, T = v - B, z = B - (v - T) + (q - T), q = z - D, T = z - q, d[1] = z - (q + T) + (T - D), G = v + q, T = G - v, d[2] = v - (G - T) + (q - T), d[3] = G;
63
- const Q = r(P, a, 4, d, l);
64
- return l[Q - 1];
65
- }(t, e, f, p, b, h, g);
66
- }, t.orient2dfast = function (t, e, n, o, r, f) {
67
- return (e - f) * (n - r) - (t - r) * (o - f);
68
- };
69
- });