@mui/x-charts-vendor 8.14.0 → 8.14.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. package/README.md +2 -7
  2. package/package.json +2 -6
  3. package/d3-delaunay.d.ts +0 -5
  4. package/d3-delaunay.js +0 -7
  5. package/delaunator.d.ts +0 -5
  6. package/delaunator.js +0 -7
  7. package/es/d3-delaunay.mjs +0 -6
  8. package/es/delaunator.mjs +0 -6
  9. package/es/robust-predicates.mjs +0 -6
  10. package/lib/d3-delaunay.js +0 -6
  11. package/lib/delaunator.js +0 -6
  12. package/lib/robust-predicates.js +0 -6
  13. package/lib-vendor/d3-delaunay/LICENSE +0 -14
  14. package/lib-vendor/d3-delaunay/dist/d3-delaunay.js +0 -1398
  15. package/lib-vendor/d3-delaunay/dist/d3-delaunay.min.js +0 -853
  16. package/lib-vendor/d3-delaunay/src/delaunay.js +0 -282
  17. package/lib-vendor/d3-delaunay/src/index.js +0 -20
  18. package/lib-vendor/d3-delaunay/src/path.js +0 -43
  19. package/lib-vendor/d3-delaunay/src/polygon.js +0 -24
  20. package/lib-vendor/d3-delaunay/src/voronoi.js +0 -390
  21. package/lib-vendor/delaunator/LICENSE +0 -15
  22. package/lib-vendor/delaunator/delaunator.js +0 -688
  23. package/lib-vendor/delaunator/delaunator.min.js +0 -316
  24. package/lib-vendor/delaunator/index.js +0 -440
  25. package/lib-vendor/robust-predicates/LICENSE +0 -24
  26. package/lib-vendor/robust-predicates/esm/incircle.js +0 -667
  27. package/lib-vendor/robust-predicates/esm/insphere.js +0 -693
  28. package/lib-vendor/robust-predicates/esm/orient2d.js +0 -174
  29. package/lib-vendor/robust-predicates/esm/orient3d.js +0 -422
  30. package/lib-vendor/robust-predicates/esm/util.js +0 -147
  31. package/lib-vendor/robust-predicates/index.js +0 -57
  32. package/lib-vendor/robust-predicates/umd/incircle.js +0 -798
  33. package/lib-vendor/robust-predicates/umd/incircle.min.js +0 -170
  34. package/lib-vendor/robust-predicates/umd/insphere.js +0 -828
  35. package/lib-vendor/robust-predicates/umd/insphere.min.js +0 -223
  36. package/lib-vendor/robust-predicates/umd/orient2d.js +0 -260
  37. package/lib-vendor/robust-predicates/umd/orient2d.min.js +0 -69
  38. package/lib-vendor/robust-predicates/umd/orient3d.js +0 -550
  39. package/lib-vendor/robust-predicates/umd/orient3d.min.js +0 -133
  40. package/lib-vendor/robust-predicates/umd/predicates.js +0 -2073
  41. package/lib-vendor/robust-predicates/umd/predicates.min.js +0 -468
  42. package/robust-predicates.d.ts +0 -5
  43. package/robust-predicates.js +0 -7
@@ -1,170 +0,0 @@
1
- "use strict";
2
-
3
- !function (t, n) {
4
- "object" == typeof exports && "undefined" != typeof module ? n(exports) : "function" == typeof define && define.amd ? define(["exports"], n) : n((t = "undefined" != typeof globalThis ? globalThis : t || self).predicates = {});
5
- }(this, function (t) {
6
- "use strict";
7
-
8
- const n = 11102230246251565e-32,
9
- e = 134217729,
10
- o = (3 + 8 * n) * n;
11
- function f(t, n, e, o, f) {
12
- let i,
13
- r,
14
- c,
15
- s,
16
- u = n[0],
17
- a = o[0],
18
- l = 0,
19
- b = 0;
20
- a > u == a > -u ? (i = u, u = n[++l]) : (i = a, a = o[++b]);
21
- let d = 0;
22
- if (l < t && b < e) for (a > u == a > -u ? (r = u + i, c = i - (r - u), u = n[++l]) : (r = a + i, c = i - (r - a), a = o[++b]), i = r, 0 !== c && (f[d++] = c); l < t && b < e;) a > u == a > -u ? (r = i + u, s = r - i, c = i - (r - s) + (u - s), u = n[++l]) : (r = i + a, s = r - i, c = i - (r - s) + (a - s), a = o[++b]), i = r, 0 !== c && (f[d++] = c);
23
- for (; l < t;) r = i + u, s = r - i, c = i - (r - s) + (u - s), u = n[++l], i = r, 0 !== c && (f[d++] = c);
24
- for (; b < e;) r = i + a, s = r - i, c = i - (r - s) + (a - s), a = o[++b], i = r, 0 !== c && (f[d++] = c);
25
- return 0 === i && 0 !== d || (f[d++] = i), d;
26
- }
27
- function i(t, n, e, o, i, r, c, s) {
28
- return f(f(t, n, e, o, c), c, i, r, s);
29
- }
30
- function r(t, n, o, f) {
31
- let i, r, c, s, u, a, l, b, d, h, p;
32
- l = e * o, h = l - (l - o), p = o - h;
33
- let M = n[0];
34
- i = M * o, l = e * M, b = l - (l - M), d = M - b, c = d * p - (i - b * h - d * h - b * p);
35
- let y = 0;
36
- 0 !== c && (f[y++] = c);
37
- for (let x = 1; x < t; x++) M = n[x], s = M * o, l = e * M, b = l - (l - M), d = M - b, u = d * p - (s - b * h - d * h - b * p), r = i + u, a = r - i, c = i - (r - a) + (u - a), 0 !== c && (f[y++] = c), i = s + r, c = r - (i - s), 0 !== c && (f[y++] = c);
38
- return 0 === i && 0 !== y || (f[y++] = i), y;
39
- }
40
- function c(t) {
41
- return new Float64Array(t);
42
- }
43
- const s = 4440892098500632e-31,
44
- u = 5423418723394464e-46,
45
- a = c(4),
46
- l = c(4),
47
- b = c(4),
48
- d = c(4),
49
- h = c(4),
50
- p = c(4),
51
- M = c(4),
52
- y = c(4),
53
- x = c(8),
54
- g = c(8),
55
- m = c(8),
56
- T = c(8),
57
- j = c(8),
58
- w = c(8),
59
- A = c(8),
60
- F = c(8),
61
- k = c(8),
62
- q = c(4),
63
- v = c(4),
64
- z = c(4),
65
- B = c(8),
66
- C = c(16),
67
- D = c(16),
68
- E = c(16),
69
- G = c(32),
70
- H = c(32),
71
- I = c(48),
72
- J = c(64);
73
- let K = c(1152),
74
- L = c(1152);
75
- function N(t, n, e) {
76
- t = f(t, K, n, e, L);
77
- const o = K;
78
- return K = L, L = o, t;
79
- }
80
- t.incircle = function (t, n, c, L, O, P, Q, R) {
81
- const S = t - Q,
82
- U = c - Q,
83
- V = O - Q,
84
- W = n - R,
85
- X = L - R,
86
- Y = P - R,
87
- Z = U * Y,
88
- $ = V * X,
89
- _ = S * S + W * W,
90
- tt = V * W,
91
- nt = S * Y,
92
- et = U * U + X * X,
93
- ot = S * X,
94
- ft = U * W,
95
- it = V * V + Y * Y,
96
- rt = _ * (Z - $) + et * (tt - nt) + it * (ot - ft),
97
- ct = (Math.abs(Z) + Math.abs($)) * _ + (Math.abs(tt) + Math.abs(nt)) * et + (Math.abs(ot) + Math.abs(ft)) * it,
98
- st = 11102230246251577e-31 * ct;
99
- return rt > st || -rt > st ? rt : function (t, n, c, L, O, P, Q, R, S) {
100
- let U, V, W, X, Y, Z, $, _, tt, nt, et, ot, ft, it, rt, ct, st, ut, at, lt, bt, dt, ht, pt, Mt, yt, xt, gt, mt, Tt, jt, wt, At, Ft, kt;
101
- const qt = t - Q,
102
- vt = c - Q,
103
- zt = O - Q,
104
- Bt = n - R,
105
- Ct = L - R,
106
- Dt = P - R;
107
- jt = vt * Dt, ht = e * vt, pt = ht - (ht - vt), Mt = vt - pt, ht = e * Dt, yt = ht - (ht - Dt), xt = Dt - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = zt * Ct, ht = e * zt, pt = ht - (ht - zt), Mt = zt - pt, ht = e * Ct, yt = ht - (ht - Ct), xt = Ct - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt - Ft, dt = wt - gt, a[0] = wt - (gt + dt) + (dt - Ft), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt - At, dt = Tt - gt, a[1] = Tt - (gt + dt) + (dt - At), kt = mt + gt, dt = kt - mt, a[2] = mt - (kt - dt) + (gt - dt), a[3] = kt, jt = zt * Bt, ht = e * zt, pt = ht - (ht - zt), Mt = zt - pt, ht = e * Bt, yt = ht - (ht - Bt), xt = Bt - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = qt * Dt, ht = e * qt, pt = ht - (ht - qt), Mt = qt - pt, ht = e * Dt, yt = ht - (ht - Dt), xt = Dt - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt - Ft, dt = wt - gt, l[0] = wt - (gt + dt) + (dt - Ft), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt - At, dt = Tt - gt, l[1] = Tt - (gt + dt) + (dt - At), kt = mt + gt, dt = kt - mt, l[2] = mt - (kt - dt) + (gt - dt), l[3] = kt, jt = qt * Ct, ht = e * qt, pt = ht - (ht - qt), Mt = qt - pt, ht = e * Ct, yt = ht - (ht - Ct), xt = Ct - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = vt * Bt, ht = e * vt, pt = ht - (ht - vt), Mt = vt - pt, ht = e * Bt, yt = ht - (ht - Bt), xt = Bt - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt - Ft, dt = wt - gt, b[0] = wt - (gt + dt) + (dt - Ft), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt - At, dt = Tt - gt, b[1] = Tt - (gt + dt) + (dt - At), kt = mt + gt, dt = kt - mt, b[2] = mt - (kt - dt) + (gt - dt), b[3] = kt, U = f(f(f(r(r(4, a, qt, B), B, qt, C), C, r(r(4, a, Bt, B), B, Bt, D), D, G), G, f(r(r(4, l, vt, B), B, vt, C), C, r(r(4, l, Ct, B), B, Ct, D), D, H), H, J), J, f(r(r(4, b, zt, B), B, zt, C), C, r(r(4, b, Dt, B), B, Dt, D), D, G), G, K);
108
- let Et = function (t, n) {
109
- let e = n[0];
110
- for (let o = 1; o < t; o++) e += n[o];
111
- return e;
112
- }(U, K),
113
- Gt = s * S;
114
- if (Et >= Gt || -Et >= Gt) return Et;
115
- if (dt = t - qt, V = t - (qt + dt) + (dt - Q), dt = n - Bt, Y = n - (Bt + dt) + (dt - R), dt = c - vt, W = c - (vt + dt) + (dt - Q), dt = L - Ct, Z = L - (Ct + dt) + (dt - R), dt = O - zt, X = O - (zt + dt) + (dt - Q), dt = P - Dt, $ = P - (Dt + dt) + (dt - R), 0 === V && 0 === W && 0 === X && 0 === Y && 0 === Z && 0 === $) return Et;
116
- if (Gt = u * S + o * Math.abs(Et), Et += (qt * qt + Bt * Bt) * (vt * $ + Dt * W - (Ct * X + zt * Z)) + 2 * (qt * V + Bt * Y) * (vt * Dt - Ct * zt) + ((vt * vt + Ct * Ct) * (zt * Y + Bt * X - (Dt * V + qt * $)) + 2 * (vt * W + Ct * Z) * (zt * Bt - Dt * qt)) + ((zt * zt + Dt * Dt) * (qt * Z + Ct * V - (Bt * W + vt * Y)) + 2 * (zt * X + Dt * $) * (qt * Ct - Bt * vt)), Et >= Gt || -Et >= Gt) return Et;
117
- if (0 === W && 0 === Z && 0 === X && 0 === $ || (jt = qt * qt, ht = e * qt, pt = ht - (ht - qt), Mt = qt - pt, wt = Mt * Mt - (jt - pt * pt - (pt + pt) * Mt), At = Bt * Bt, ht = e * Bt, pt = ht - (ht - Bt), Mt = Bt - pt, Ft = Mt * Mt - (At - pt * pt - (pt + pt) * Mt), gt = wt + Ft, dt = gt - wt, d[0] = wt - (gt - dt) + (Ft - dt), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt + At, dt = gt - Tt, d[1] = Tt - (gt - dt) + (At - dt), kt = mt + gt, dt = kt - mt, d[2] = mt - (kt - dt) + (gt - dt), d[3] = kt), 0 === X && 0 === $ && 0 === V && 0 === Y || (jt = vt * vt, ht = e * vt, pt = ht - (ht - vt), Mt = vt - pt, wt = Mt * Mt - (jt - pt * pt - (pt + pt) * Mt), At = Ct * Ct, ht = e * Ct, pt = ht - (ht - Ct), Mt = Ct - pt, Ft = Mt * Mt - (At - pt * pt - (pt + pt) * Mt), gt = wt + Ft, dt = gt - wt, h[0] = wt - (gt - dt) + (Ft - dt), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt + At, dt = gt - Tt, h[1] = Tt - (gt - dt) + (At - dt), kt = mt + gt, dt = kt - mt, h[2] = mt - (kt - dt) + (gt - dt), h[3] = kt), 0 === V && 0 === Y && 0 === W && 0 === Z || (jt = zt * zt, ht = e * zt, pt = ht - (ht - zt), Mt = zt - pt, wt = Mt * Mt - (jt - pt * pt - (pt + pt) * Mt), At = Dt * Dt, ht = e * Dt, pt = ht - (ht - Dt), Mt = Dt - pt, Ft = Mt * Mt - (At - pt * pt - (pt + pt) * Mt), gt = wt + Ft, dt = gt - wt, p[0] = wt - (gt - dt) + (Ft - dt), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt + At, dt = gt - Tt, p[1] = Tt - (gt - dt) + (At - dt), kt = mt + gt, dt = kt - mt, p[2] = mt - (kt - dt) + (gt - dt), p[3] = kt), 0 !== V && (_ = r(4, a, V, x), U = N(U, i(r(_, x, 2 * qt, C), C, r(r(4, p, V, B), B, Ct, D), D, r(r(4, h, V, B), B, -Dt, E), E, G, I), I)), 0 !== Y && (tt = r(4, a, Y, g), U = N(U, i(r(tt, g, 2 * Bt, C), C, r(r(4, h, Y, B), B, zt, D), D, r(r(4, p, Y, B), B, -vt, E), E, G, I), I)), 0 !== W && (nt = r(4, l, W, m), U = N(U, i(r(nt, m, 2 * vt, C), C, r(r(4, d, W, B), B, Dt, D), D, r(r(4, p, W, B), B, -Bt, E), E, G, I), I)), 0 !== Z && (et = r(4, l, Z, T), U = N(U, i(r(et, T, 2 * Ct, C), C, r(r(4, p, Z, B), B, qt, D), D, r(r(4, d, Z, B), B, -zt, E), E, G, I), I)), 0 !== X && (ot = r(4, b, X, j), U = N(U, i(r(ot, j, 2 * zt, C), C, r(r(4, h, X, B), B, Bt, D), D, r(r(4, d, X, B), B, -Ct, E), E, G, I), I)), 0 !== $ && (ft = r(4, b, $, w), U = N(U, i(r(ft, w, 2 * Dt, C), C, r(r(4, d, $, B), B, vt, D), D, r(r(4, h, $, B), B, -qt, E), E, G, I), I)), 0 !== V || 0 !== Y) {
118
- if (0 !== W || 0 !== Z || 0 !== X || 0 !== $ ? (jt = W * Dt, ht = e * W, pt = ht - (ht - W), Mt = W - pt, ht = e * Dt, yt = ht - (ht - Dt), xt = Dt - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = vt * $, ht = e * vt, pt = ht - (ht - vt), Mt = vt - pt, ht = e * $, yt = ht - (ht - $), xt = $ - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt + Ft, dt = gt - wt, M[0] = wt - (gt - dt) + (Ft - dt), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt + At, dt = gt - Tt, M[1] = Tt - (gt - dt) + (At - dt), kt = mt + gt, dt = kt - mt, M[2] = mt - (kt - dt) + (gt - dt), M[3] = kt, jt = X * -Ct, ht = e * X, pt = ht - (ht - X), Mt = X - pt, ht = e * -Ct, yt = ht - (ht - -Ct), xt = -Ct - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = zt * -Z, ht = e * zt, pt = ht - (ht - zt), Mt = zt - pt, ht = e * -Z, yt = ht - (ht - -Z), xt = -Z - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt + Ft, dt = gt - wt, y[0] = wt - (gt - dt) + (Ft - dt), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt + At, dt = gt - Tt, y[1] = Tt - (gt - dt) + (At - dt), kt = mt + gt, dt = kt - mt, y[2] = mt - (kt - dt) + (gt - dt), y[3] = kt, rt = f(4, M, 4, y, F), jt = W * $, ht = e * W, pt = ht - (ht - W), Mt = W - pt, ht = e * $, yt = ht - (ht - $), xt = $ - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = X * Z, ht = e * X, pt = ht - (ht - X), Mt = X - pt, ht = e * Z, yt = ht - (ht - Z), xt = Z - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt - Ft, dt = wt - gt, v[0] = wt - (gt + dt) + (dt - Ft), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt - At, dt = Tt - gt, v[1] = Tt - (gt + dt) + (dt - At), kt = mt + gt, dt = kt - mt, v[2] = mt - (kt - dt) + (gt - dt), v[3] = kt, ut = 4) : (F[0] = 0, rt = 1, v[0] = 0, ut = 1), 0 !== V) {
119
- const t = r(rt, F, V, E);
120
- U = N(U, f(r(_, x, V, C), C, r(t, E, 2 * qt, G), G, I), I);
121
- const n = r(ut, v, V, B);
122
- U = N(U, i(r(n, B, 2 * qt, C), C, r(n, B, V, D), D, r(t, E, V, G), G, H, J), J), 0 !== Z && (U = N(U, r(r(4, p, V, B), B, Z, C), C)), 0 !== $ && (U = N(U, r(r(4, h, -V, B), B, $, C), C));
123
- }
124
- if (0 !== Y) {
125
- const t = r(rt, F, Y, E);
126
- U = N(U, f(r(tt, g, Y, C), C, r(t, E, 2 * Bt, G), G, I), I);
127
- const n = r(ut, v, Y, B);
128
- U = N(U, i(r(n, B, 2 * Bt, C), C, r(n, B, Y, D), D, r(t, E, Y, G), G, H, J), J);
129
- }
130
- }
131
- if (0 !== W || 0 !== Z) {
132
- if (0 !== X || 0 !== $ || 0 !== V || 0 !== Y ? (jt = X * Bt, ht = e * X, pt = ht - (ht - X), Mt = X - pt, ht = e * Bt, yt = ht - (ht - Bt), xt = Bt - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = zt * Y, ht = e * zt, pt = ht - (ht - zt), Mt = zt - pt, ht = e * Y, yt = ht - (ht - Y), xt = Y - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt + Ft, dt = gt - wt, M[0] = wt - (gt - dt) + (Ft - dt), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt + At, dt = gt - Tt, M[1] = Tt - (gt - dt) + (At - dt), kt = mt + gt, dt = kt - mt, M[2] = mt - (kt - dt) + (gt - dt), M[3] = kt, lt = -Dt, bt = -$, jt = V * lt, ht = e * V, pt = ht - (ht - V), Mt = V - pt, ht = e * lt, yt = ht - (ht - lt), xt = lt - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = qt * bt, ht = e * qt, pt = ht - (ht - qt), Mt = qt - pt, ht = e * bt, yt = ht - (ht - bt), xt = bt - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt + Ft, dt = gt - wt, y[0] = wt - (gt - dt) + (Ft - dt), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt + At, dt = gt - Tt, y[1] = Tt - (gt - dt) + (At - dt), kt = mt + gt, dt = kt - mt, y[2] = mt - (kt - dt) + (gt - dt), y[3] = kt, ct = f(4, M, 4, y, k), jt = X * Y, ht = e * X, pt = ht - (ht - X), Mt = X - pt, ht = e * Y, yt = ht - (ht - Y), xt = Y - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = V * $, ht = e * V, pt = ht - (ht - V), Mt = V - pt, ht = e * $, yt = ht - (ht - $), xt = $ - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt - Ft, dt = wt - gt, z[0] = wt - (gt + dt) + (dt - Ft), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt - At, dt = Tt - gt, z[1] = Tt - (gt + dt) + (dt - At), kt = mt + gt, dt = kt - mt, z[2] = mt - (kt - dt) + (gt - dt), z[3] = kt, at = 4) : (k[0] = 0, ct = 1, z[0] = 0, at = 1), 0 !== W) {
133
- const t = r(ct, k, W, E);
134
- U = N(U, f(r(nt, m, W, C), C, r(t, E, 2 * vt, G), G, I), I);
135
- const n = r(at, z, W, B);
136
- U = N(U, i(r(n, B, 2 * vt, C), C, r(n, B, W, D), D, r(t, E, W, G), G, H, J), J), 0 !== $ && (U = N(U, r(r(4, d, W, B), B, $, C), C)), 0 !== Y && (U = N(U, r(r(4, p, -W, B), B, Y, C), C));
137
- }
138
- if (0 !== Z) {
139
- const t = r(ct, k, Z, E);
140
- U = N(U, f(r(et, T, Z, C), C, r(t, E, 2 * Ct, G), G, I), I);
141
- const n = r(at, z, Z, B);
142
- U = N(U, i(r(n, B, 2 * Ct, C), C, r(n, B, Z, D), D, r(t, E, Z, G), G, H, J), J);
143
- }
144
- }
145
- if (0 !== X || 0 !== $) {
146
- if (0 !== V || 0 !== Y || 0 !== W || 0 !== Z ? (jt = V * Ct, ht = e * V, pt = ht - (ht - V), Mt = V - pt, ht = e * Ct, yt = ht - (ht - Ct), xt = Ct - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = qt * Z, ht = e * qt, pt = ht - (ht - qt), Mt = qt - pt, ht = e * Z, yt = ht - (ht - Z), xt = Z - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt + Ft, dt = gt - wt, M[0] = wt - (gt - dt) + (Ft - dt), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt + At, dt = gt - Tt, M[1] = Tt - (gt - dt) + (At - dt), kt = mt + gt, dt = kt - mt, M[2] = mt - (kt - dt) + (gt - dt), M[3] = kt, lt = -Bt, bt = -Y, jt = W * lt, ht = e * W, pt = ht - (ht - W), Mt = W - pt, ht = e * lt, yt = ht - (ht - lt), xt = lt - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = vt * bt, ht = e * vt, pt = ht - (ht - vt), Mt = vt - pt, ht = e * bt, yt = ht - (ht - bt), xt = bt - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt + Ft, dt = gt - wt, y[0] = wt - (gt - dt) + (Ft - dt), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt + At, dt = gt - Tt, y[1] = Tt - (gt - dt) + (At - dt), kt = mt + gt, dt = kt - mt, y[2] = mt - (kt - dt) + (gt - dt), y[3] = kt, it = f(4, M, 4, y, A), jt = V * Z, ht = e * V, pt = ht - (ht - V), Mt = V - pt, ht = e * Z, yt = ht - (ht - Z), xt = Z - yt, wt = Mt * xt - (jt - pt * yt - Mt * yt - pt * xt), At = W * Y, ht = e * W, pt = ht - (ht - W), Mt = W - pt, ht = e * Y, yt = ht - (ht - Y), xt = Y - yt, Ft = Mt * xt - (At - pt * yt - Mt * yt - pt * xt), gt = wt - Ft, dt = wt - gt, q[0] = wt - (gt + dt) + (dt - Ft), mt = jt + gt, dt = mt - jt, Tt = jt - (mt - dt) + (gt - dt), gt = Tt - At, dt = Tt - gt, q[1] = Tt - (gt + dt) + (dt - At), kt = mt + gt, dt = kt - mt, q[2] = mt - (kt - dt) + (gt - dt), q[3] = kt, st = 4) : (A[0] = 0, it = 1, q[0] = 0, st = 1), 0 !== X) {
147
- const t = r(it, A, X, E);
148
- U = N(U, f(r(ot, j, X, C), C, r(t, E, 2 * zt, G), G, I), I);
149
- const n = r(st, q, X, B);
150
- U = N(U, i(r(n, B, 2 * zt, C), C, r(n, B, X, D), D, r(t, E, X, G), G, H, J), J), 0 !== Y && (U = N(U, r(r(4, h, X, B), B, Y, C), C)), 0 !== Z && (U = N(U, r(r(4, d, -X, B), B, Z, C), C));
151
- }
152
- if (0 !== $) {
153
- const t = r(it, A, $, E);
154
- U = N(U, f(r(ft, w, $, C), C, r(t, E, 2 * Dt, G), G, I), I);
155
- const n = r(st, q, $, B);
156
- U = N(U, i(r(n, B, 2 * Dt, C), C, r(n, B, $, D), D, r(t, E, $, G), G, H, J), J);
157
- }
158
- }
159
- return K[U - 1];
160
- }(t, n, c, L, O, P, Q, R, ct);
161
- }, t.incirclefast = function (t, n, e, o, f, i, r, c) {
162
- const s = t - r,
163
- u = n - c,
164
- a = e - r,
165
- l = o - c,
166
- b = f - r,
167
- d = i - c;
168
- return (s * s + u * u) * (a * d - b * l) + (a * a + l * l) * (b * u - s * d) + (b * b + d * d) * (s * l - a * u);
169
- };
170
- });