@mui/x-charts-vendor 8.12.0 → 8.14.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. package/README.md +2 -7
  2. package/package.json +5 -8
  3. package/d3-delaunay.d.ts +0 -5
  4. package/d3-delaunay.js +0 -7
  5. package/delaunator.d.ts +0 -5
  6. package/delaunator.js +0 -7
  7. package/es/d3-delaunay.mjs +0 -6
  8. package/es/delaunator.mjs +0 -6
  9. package/es/robust-predicates.mjs +0 -6
  10. package/lib/d3-delaunay.js +0 -6
  11. package/lib/delaunator.js +0 -6
  12. package/lib/robust-predicates.js +0 -6
  13. package/lib-vendor/d3-delaunay/LICENSE +0 -14
  14. package/lib-vendor/d3-delaunay/dist/d3-delaunay.js +0 -1398
  15. package/lib-vendor/d3-delaunay/dist/d3-delaunay.min.js +0 -853
  16. package/lib-vendor/d3-delaunay/src/delaunay.js +0 -282
  17. package/lib-vendor/d3-delaunay/src/index.js +0 -20
  18. package/lib-vendor/d3-delaunay/src/path.js +0 -43
  19. package/lib-vendor/d3-delaunay/src/polygon.js +0 -24
  20. package/lib-vendor/d3-delaunay/src/voronoi.js +0 -390
  21. package/lib-vendor/delaunator/LICENSE +0 -15
  22. package/lib-vendor/delaunator/delaunator.js +0 -688
  23. package/lib-vendor/delaunator/delaunator.min.js +0 -316
  24. package/lib-vendor/delaunator/index.js +0 -440
  25. package/lib-vendor/robust-predicates/LICENSE +0 -24
  26. package/lib-vendor/robust-predicates/esm/incircle.js +0 -667
  27. package/lib-vendor/robust-predicates/esm/insphere.js +0 -693
  28. package/lib-vendor/robust-predicates/esm/orient2d.js +0 -174
  29. package/lib-vendor/robust-predicates/esm/orient3d.js +0 -422
  30. package/lib-vendor/robust-predicates/esm/util.js +0 -147
  31. package/lib-vendor/robust-predicates/index.js +0 -57
  32. package/lib-vendor/robust-predicates/umd/incircle.js +0 -798
  33. package/lib-vendor/robust-predicates/umd/incircle.min.js +0 -170
  34. package/lib-vendor/robust-predicates/umd/insphere.js +0 -828
  35. package/lib-vendor/robust-predicates/umd/insphere.min.js +0 -223
  36. package/lib-vendor/robust-predicates/umd/orient2d.js +0 -260
  37. package/lib-vendor/robust-predicates/umd/orient2d.min.js +0 -69
  38. package/lib-vendor/robust-predicates/umd/orient3d.js +0 -550
  39. package/lib-vendor/robust-predicates/umd/orient3d.min.js +0 -133
  40. package/lib-vendor/robust-predicates/umd/predicates.js +0 -2073
  41. package/lib-vendor/robust-predicates/umd/predicates.min.js +0 -468
  42. package/robust-predicates.d.ts +0 -5
  43. package/robust-predicates.js +0 -7
@@ -1,798 +0,0 @@
1
- "use strict";
2
-
3
- (function (global, factory) {
4
- typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.predicates = {}));
5
- })(this, function (exports) {
6
- 'use strict';
7
-
8
- const epsilon = 1.1102230246251565e-16;
9
- const splitter = 134217729;
10
- const resulterrbound = (3 + 8 * epsilon) * epsilon;
11
-
12
- // fast_expansion_sum_zeroelim routine from oritinal code
13
- function sum(elen, e, flen, f, h) {
14
- let Q, Qnew, hh, bvirt;
15
- let enow = e[0];
16
- let fnow = f[0];
17
- let eindex = 0;
18
- let findex = 0;
19
- if (fnow > enow === fnow > -enow) {
20
- Q = enow;
21
- enow = e[++eindex];
22
- } else {
23
- Q = fnow;
24
- fnow = f[++findex];
25
- }
26
- let hindex = 0;
27
- if (eindex < elen && findex < flen) {
28
- if (fnow > enow === fnow > -enow) {
29
- Qnew = enow + Q;
30
- hh = Q - (Qnew - enow);
31
- enow = e[++eindex];
32
- } else {
33
- Qnew = fnow + Q;
34
- hh = Q - (Qnew - fnow);
35
- fnow = f[++findex];
36
- }
37
- Q = Qnew;
38
- if (hh !== 0) {
39
- h[hindex++] = hh;
40
- }
41
- while (eindex < elen && findex < flen) {
42
- if (fnow > enow === fnow > -enow) {
43
- Qnew = Q + enow;
44
- bvirt = Qnew - Q;
45
- hh = Q - (Qnew - bvirt) + (enow - bvirt);
46
- enow = e[++eindex];
47
- } else {
48
- Qnew = Q + fnow;
49
- bvirt = Qnew - Q;
50
- hh = Q - (Qnew - bvirt) + (fnow - bvirt);
51
- fnow = f[++findex];
52
- }
53
- Q = Qnew;
54
- if (hh !== 0) {
55
- h[hindex++] = hh;
56
- }
57
- }
58
- }
59
- while (eindex < elen) {
60
- Qnew = Q + enow;
61
- bvirt = Qnew - Q;
62
- hh = Q - (Qnew - bvirt) + (enow - bvirt);
63
- enow = e[++eindex];
64
- Q = Qnew;
65
- if (hh !== 0) {
66
- h[hindex++] = hh;
67
- }
68
- }
69
- while (findex < flen) {
70
- Qnew = Q + fnow;
71
- bvirt = Qnew - Q;
72
- hh = Q - (Qnew - bvirt) + (fnow - bvirt);
73
- fnow = f[++findex];
74
- Q = Qnew;
75
- if (hh !== 0) {
76
- h[hindex++] = hh;
77
- }
78
- }
79
- if (Q !== 0 || hindex === 0) {
80
- h[hindex++] = Q;
81
- }
82
- return hindex;
83
- }
84
- function sum_three(alen, a, blen, b, clen, c, tmp, out) {
85
- return sum(sum(alen, a, blen, b, tmp), tmp, clen, c, out);
86
- }
87
-
88
- // scale_expansion_zeroelim routine from oritinal code
89
- function scale(elen, e, b, h) {
90
- let Q, sum, hh, product1, product0;
91
- let bvirt, c, ahi, alo, bhi, blo;
92
- c = splitter * b;
93
- bhi = c - (c - b);
94
- blo = b - bhi;
95
- let enow = e[0];
96
- Q = enow * b;
97
- c = splitter * enow;
98
- ahi = c - (c - enow);
99
- alo = enow - ahi;
100
- hh = alo * blo - (Q - ahi * bhi - alo * bhi - ahi * blo);
101
- let hindex = 0;
102
- if (hh !== 0) {
103
- h[hindex++] = hh;
104
- }
105
- for (let i = 1; i < elen; i++) {
106
- enow = e[i];
107
- product1 = enow * b;
108
- c = splitter * enow;
109
- ahi = c - (c - enow);
110
- alo = enow - ahi;
111
- product0 = alo * blo - (product1 - ahi * bhi - alo * bhi - ahi * blo);
112
- sum = Q + product0;
113
- bvirt = sum - Q;
114
- hh = Q - (sum - bvirt) + (product0 - bvirt);
115
- if (hh !== 0) {
116
- h[hindex++] = hh;
117
- }
118
- Q = product1 + sum;
119
- hh = sum - (Q - product1);
120
- if (hh !== 0) {
121
- h[hindex++] = hh;
122
- }
123
- }
124
- if (Q !== 0 || hindex === 0) {
125
- h[hindex++] = Q;
126
- }
127
- return hindex;
128
- }
129
- function estimate(elen, e) {
130
- let Q = e[0];
131
- for (let i = 1; i < elen; i++) Q += e[i];
132
- return Q;
133
- }
134
- function vec(n) {
135
- return new Float64Array(n);
136
- }
137
- const iccerrboundA = (10 + 96 * epsilon) * epsilon;
138
- const iccerrboundB = (4 + 48 * epsilon) * epsilon;
139
- const iccerrboundC = (44 + 576 * epsilon) * epsilon * epsilon;
140
- const bc = vec(4);
141
- const ca = vec(4);
142
- const ab = vec(4);
143
- const aa = vec(4);
144
- const bb = vec(4);
145
- const cc = vec(4);
146
- const u = vec(4);
147
- const v = vec(4);
148
- const axtbc = vec(8);
149
- const aytbc = vec(8);
150
- const bxtca = vec(8);
151
- const bytca = vec(8);
152
- const cxtab = vec(8);
153
- const cytab = vec(8);
154
- const abt = vec(8);
155
- const bct = vec(8);
156
- const cat = vec(8);
157
- const abtt = vec(4);
158
- const bctt = vec(4);
159
- const catt = vec(4);
160
- const _8 = vec(8);
161
- const _16 = vec(16);
162
- const _16b = vec(16);
163
- const _16c = vec(16);
164
- const _32 = vec(32);
165
- const _32b = vec(32);
166
- const _48 = vec(48);
167
- const _64 = vec(64);
168
- let fin = vec(1152);
169
- let fin2 = vec(1152);
170
- function finadd(finlen, a, alen) {
171
- finlen = sum(finlen, fin, a, alen, fin2);
172
- const tmp = fin;
173
- fin = fin2;
174
- fin2 = tmp;
175
- return finlen;
176
- }
177
- function incircleadapt(ax, ay, bx, by, cx, cy, dx, dy, permanent) {
178
- let finlen;
179
- let adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
180
- let axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
181
- let abtlen, bctlen, catlen;
182
- let abttlen, bcttlen, cattlen;
183
- let n1, n0;
184
- let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
185
- const adx = ax - dx;
186
- const bdx = bx - dx;
187
- const cdx = cx - dx;
188
- const ady = ay - dy;
189
- const bdy = by - dy;
190
- const cdy = cy - dy;
191
- s1 = bdx * cdy;
192
- c = splitter * bdx;
193
- ahi = c - (c - bdx);
194
- alo = bdx - ahi;
195
- c = splitter * cdy;
196
- bhi = c - (c - cdy);
197
- blo = cdy - bhi;
198
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
199
- t1 = cdx * bdy;
200
- c = splitter * cdx;
201
- ahi = c - (c - cdx);
202
- alo = cdx - ahi;
203
- c = splitter * bdy;
204
- bhi = c - (c - bdy);
205
- blo = bdy - bhi;
206
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
207
- _i = s0 - t0;
208
- bvirt = s0 - _i;
209
- bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
210
- _j = s1 + _i;
211
- bvirt = _j - s1;
212
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
213
- _i = _0 - t1;
214
- bvirt = _0 - _i;
215
- bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
216
- u3 = _j + _i;
217
- bvirt = u3 - _j;
218
- bc[2] = _j - (u3 - bvirt) + (_i - bvirt);
219
- bc[3] = u3;
220
- s1 = cdx * ady;
221
- c = splitter * cdx;
222
- ahi = c - (c - cdx);
223
- alo = cdx - ahi;
224
- c = splitter * ady;
225
- bhi = c - (c - ady);
226
- blo = ady - bhi;
227
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
228
- t1 = adx * cdy;
229
- c = splitter * adx;
230
- ahi = c - (c - adx);
231
- alo = adx - ahi;
232
- c = splitter * cdy;
233
- bhi = c - (c - cdy);
234
- blo = cdy - bhi;
235
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
236
- _i = s0 - t0;
237
- bvirt = s0 - _i;
238
- ca[0] = s0 - (_i + bvirt) + (bvirt - t0);
239
- _j = s1 + _i;
240
- bvirt = _j - s1;
241
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
242
- _i = _0 - t1;
243
- bvirt = _0 - _i;
244
- ca[1] = _0 - (_i + bvirt) + (bvirt - t1);
245
- u3 = _j + _i;
246
- bvirt = u3 - _j;
247
- ca[2] = _j - (u3 - bvirt) + (_i - bvirt);
248
- ca[3] = u3;
249
- s1 = adx * bdy;
250
- c = splitter * adx;
251
- ahi = c - (c - adx);
252
- alo = adx - ahi;
253
- c = splitter * bdy;
254
- bhi = c - (c - bdy);
255
- blo = bdy - bhi;
256
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
257
- t1 = bdx * ady;
258
- c = splitter * bdx;
259
- ahi = c - (c - bdx);
260
- alo = bdx - ahi;
261
- c = splitter * ady;
262
- bhi = c - (c - ady);
263
- blo = ady - bhi;
264
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
265
- _i = s0 - t0;
266
- bvirt = s0 - _i;
267
- ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
268
- _j = s1 + _i;
269
- bvirt = _j - s1;
270
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
271
- _i = _0 - t1;
272
- bvirt = _0 - _i;
273
- ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
274
- u3 = _j + _i;
275
- bvirt = u3 - _j;
276
- ab[2] = _j - (u3 - bvirt) + (_i - bvirt);
277
- ab[3] = u3;
278
- finlen = sum(sum(sum(scale(scale(4, bc, adx, _8), _8, adx, _16), _16, scale(scale(4, bc, ady, _8), _8, ady, _16b), _16b, _32), _32, sum(scale(scale(4, ca, bdx, _8), _8, bdx, _16), _16, scale(scale(4, ca, bdy, _8), _8, bdy, _16b), _16b, _32b), _32b, _64), _64, sum(scale(scale(4, ab, cdx, _8), _8, cdx, _16), _16, scale(scale(4, ab, cdy, _8), _8, cdy, _16b), _16b, _32), _32, fin);
279
- let det = estimate(finlen, fin);
280
- let errbound = iccerrboundB * permanent;
281
- if (det >= errbound || -det >= errbound) {
282
- return det;
283
- }
284
- bvirt = ax - adx;
285
- adxtail = ax - (adx + bvirt) + (bvirt - dx);
286
- bvirt = ay - ady;
287
- adytail = ay - (ady + bvirt) + (bvirt - dy);
288
- bvirt = bx - bdx;
289
- bdxtail = bx - (bdx + bvirt) + (bvirt - dx);
290
- bvirt = by - bdy;
291
- bdytail = by - (bdy + bvirt) + (bvirt - dy);
292
- bvirt = cx - cdx;
293
- cdxtail = cx - (cdx + bvirt) + (bvirt - dx);
294
- bvirt = cy - cdy;
295
- cdytail = cy - (cdy + bvirt) + (bvirt - dy);
296
- if (adxtail === 0 && bdxtail === 0 && cdxtail === 0 && adytail === 0 && bdytail === 0 && cdytail === 0) {
297
- return det;
298
- }
299
- errbound = iccerrboundC * permanent + resulterrbound * Math.abs(det);
300
- det += (adx * adx + ady * ady) * (bdx * cdytail + cdy * bdxtail - (bdy * cdxtail + cdx * bdytail)) + 2 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx) + ((bdx * bdx + bdy * bdy) * (cdx * adytail + ady * cdxtail - (cdy * adxtail + adx * cdytail)) + 2 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx)) + ((cdx * cdx + cdy * cdy) * (adx * bdytail + bdy * adxtail - (ady * bdxtail + bdx * adytail)) + 2 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
301
- if (det >= errbound || -det >= errbound) {
302
- return det;
303
- }
304
- if (bdxtail !== 0 || bdytail !== 0 || cdxtail !== 0 || cdytail !== 0) {
305
- s1 = adx * adx;
306
- c = splitter * adx;
307
- ahi = c - (c - adx);
308
- alo = adx - ahi;
309
- s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
310
- t1 = ady * ady;
311
- c = splitter * ady;
312
- ahi = c - (c - ady);
313
- alo = ady - ahi;
314
- t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
315
- _i = s0 + t0;
316
- bvirt = _i - s0;
317
- aa[0] = s0 - (_i - bvirt) + (t0 - bvirt);
318
- _j = s1 + _i;
319
- bvirt = _j - s1;
320
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
321
- _i = _0 + t1;
322
- bvirt = _i - _0;
323
- aa[1] = _0 - (_i - bvirt) + (t1 - bvirt);
324
- u3 = _j + _i;
325
- bvirt = u3 - _j;
326
- aa[2] = _j - (u3 - bvirt) + (_i - bvirt);
327
- aa[3] = u3;
328
- }
329
- if (cdxtail !== 0 || cdytail !== 0 || adxtail !== 0 || adytail !== 0) {
330
- s1 = bdx * bdx;
331
- c = splitter * bdx;
332
- ahi = c - (c - bdx);
333
- alo = bdx - ahi;
334
- s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
335
- t1 = bdy * bdy;
336
- c = splitter * bdy;
337
- ahi = c - (c - bdy);
338
- alo = bdy - ahi;
339
- t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
340
- _i = s0 + t0;
341
- bvirt = _i - s0;
342
- bb[0] = s0 - (_i - bvirt) + (t0 - bvirt);
343
- _j = s1 + _i;
344
- bvirt = _j - s1;
345
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
346
- _i = _0 + t1;
347
- bvirt = _i - _0;
348
- bb[1] = _0 - (_i - bvirt) + (t1 - bvirt);
349
- u3 = _j + _i;
350
- bvirt = u3 - _j;
351
- bb[2] = _j - (u3 - bvirt) + (_i - bvirt);
352
- bb[3] = u3;
353
- }
354
- if (adxtail !== 0 || adytail !== 0 || bdxtail !== 0 || bdytail !== 0) {
355
- s1 = cdx * cdx;
356
- c = splitter * cdx;
357
- ahi = c - (c - cdx);
358
- alo = cdx - ahi;
359
- s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
360
- t1 = cdy * cdy;
361
- c = splitter * cdy;
362
- ahi = c - (c - cdy);
363
- alo = cdy - ahi;
364
- t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
365
- _i = s0 + t0;
366
- bvirt = _i - s0;
367
- cc[0] = s0 - (_i - bvirt) + (t0 - bvirt);
368
- _j = s1 + _i;
369
- bvirt = _j - s1;
370
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
371
- _i = _0 + t1;
372
- bvirt = _i - _0;
373
- cc[1] = _0 - (_i - bvirt) + (t1 - bvirt);
374
- u3 = _j + _i;
375
- bvirt = u3 - _j;
376
- cc[2] = _j - (u3 - bvirt) + (_i - bvirt);
377
- cc[3] = u3;
378
- }
379
- if (adxtail !== 0) {
380
- axtbclen = scale(4, bc, adxtail, axtbc);
381
- finlen = finadd(finlen, sum_three(scale(axtbclen, axtbc, 2 * adx, _16), _16, scale(scale(4, cc, adxtail, _8), _8, bdy, _16b), _16b, scale(scale(4, bb, adxtail, _8), _8, -cdy, _16c), _16c, _32, _48), _48);
382
- }
383
- if (adytail !== 0) {
384
- aytbclen = scale(4, bc, adytail, aytbc);
385
- finlen = finadd(finlen, sum_three(scale(aytbclen, aytbc, 2 * ady, _16), _16, scale(scale(4, bb, adytail, _8), _8, cdx, _16b), _16b, scale(scale(4, cc, adytail, _8), _8, -bdx, _16c), _16c, _32, _48), _48);
386
- }
387
- if (bdxtail !== 0) {
388
- bxtcalen = scale(4, ca, bdxtail, bxtca);
389
- finlen = finadd(finlen, sum_three(scale(bxtcalen, bxtca, 2 * bdx, _16), _16, scale(scale(4, aa, bdxtail, _8), _8, cdy, _16b), _16b, scale(scale(4, cc, bdxtail, _8), _8, -ady, _16c), _16c, _32, _48), _48);
390
- }
391
- if (bdytail !== 0) {
392
- bytcalen = scale(4, ca, bdytail, bytca);
393
- finlen = finadd(finlen, sum_three(scale(bytcalen, bytca, 2 * bdy, _16), _16, scale(scale(4, cc, bdytail, _8), _8, adx, _16b), _16b, scale(scale(4, aa, bdytail, _8), _8, -cdx, _16c), _16c, _32, _48), _48);
394
- }
395
- if (cdxtail !== 0) {
396
- cxtablen = scale(4, ab, cdxtail, cxtab);
397
- finlen = finadd(finlen, sum_three(scale(cxtablen, cxtab, 2 * cdx, _16), _16, scale(scale(4, bb, cdxtail, _8), _8, ady, _16b), _16b, scale(scale(4, aa, cdxtail, _8), _8, -bdy, _16c), _16c, _32, _48), _48);
398
- }
399
- if (cdytail !== 0) {
400
- cytablen = scale(4, ab, cdytail, cytab);
401
- finlen = finadd(finlen, sum_three(scale(cytablen, cytab, 2 * cdy, _16), _16, scale(scale(4, aa, cdytail, _8), _8, bdx, _16b), _16b, scale(scale(4, bb, cdytail, _8), _8, -adx, _16c), _16c, _32, _48), _48);
402
- }
403
- if (adxtail !== 0 || adytail !== 0) {
404
- if (bdxtail !== 0 || bdytail !== 0 || cdxtail !== 0 || cdytail !== 0) {
405
- s1 = bdxtail * cdy;
406
- c = splitter * bdxtail;
407
- ahi = c - (c - bdxtail);
408
- alo = bdxtail - ahi;
409
- c = splitter * cdy;
410
- bhi = c - (c - cdy);
411
- blo = cdy - bhi;
412
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
413
- t1 = bdx * cdytail;
414
- c = splitter * bdx;
415
- ahi = c - (c - bdx);
416
- alo = bdx - ahi;
417
- c = splitter * cdytail;
418
- bhi = c - (c - cdytail);
419
- blo = cdytail - bhi;
420
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
421
- _i = s0 + t0;
422
- bvirt = _i - s0;
423
- u[0] = s0 - (_i - bvirt) + (t0 - bvirt);
424
- _j = s1 + _i;
425
- bvirt = _j - s1;
426
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
427
- _i = _0 + t1;
428
- bvirt = _i - _0;
429
- u[1] = _0 - (_i - bvirt) + (t1 - bvirt);
430
- u3 = _j + _i;
431
- bvirt = u3 - _j;
432
- u[2] = _j - (u3 - bvirt) + (_i - bvirt);
433
- u[3] = u3;
434
- s1 = cdxtail * -bdy;
435
- c = splitter * cdxtail;
436
- ahi = c - (c - cdxtail);
437
- alo = cdxtail - ahi;
438
- c = splitter * -bdy;
439
- bhi = c - (c - -bdy);
440
- blo = -bdy - bhi;
441
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
442
- t1 = cdx * -bdytail;
443
- c = splitter * cdx;
444
- ahi = c - (c - cdx);
445
- alo = cdx - ahi;
446
- c = splitter * -bdytail;
447
- bhi = c - (c - -bdytail);
448
- blo = -bdytail - bhi;
449
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
450
- _i = s0 + t0;
451
- bvirt = _i - s0;
452
- v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
453
- _j = s1 + _i;
454
- bvirt = _j - s1;
455
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
456
- _i = _0 + t1;
457
- bvirt = _i - _0;
458
- v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
459
- u3 = _j + _i;
460
- bvirt = u3 - _j;
461
- v[2] = _j - (u3 - bvirt) + (_i - bvirt);
462
- v[3] = u3;
463
- bctlen = sum(4, u, 4, v, bct);
464
- s1 = bdxtail * cdytail;
465
- c = splitter * bdxtail;
466
- ahi = c - (c - bdxtail);
467
- alo = bdxtail - ahi;
468
- c = splitter * cdytail;
469
- bhi = c - (c - cdytail);
470
- blo = cdytail - bhi;
471
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
472
- t1 = cdxtail * bdytail;
473
- c = splitter * cdxtail;
474
- ahi = c - (c - cdxtail);
475
- alo = cdxtail - ahi;
476
- c = splitter * bdytail;
477
- bhi = c - (c - bdytail);
478
- blo = bdytail - bhi;
479
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
480
- _i = s0 - t0;
481
- bvirt = s0 - _i;
482
- bctt[0] = s0 - (_i + bvirt) + (bvirt - t0);
483
- _j = s1 + _i;
484
- bvirt = _j - s1;
485
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
486
- _i = _0 - t1;
487
- bvirt = _0 - _i;
488
- bctt[1] = _0 - (_i + bvirt) + (bvirt - t1);
489
- u3 = _j + _i;
490
- bvirt = u3 - _j;
491
- bctt[2] = _j - (u3 - bvirt) + (_i - bvirt);
492
- bctt[3] = u3;
493
- bcttlen = 4;
494
- } else {
495
- bct[0] = 0;
496
- bctlen = 1;
497
- bctt[0] = 0;
498
- bcttlen = 1;
499
- }
500
- if (adxtail !== 0) {
501
- const len = scale(bctlen, bct, adxtail, _16c);
502
- finlen = finadd(finlen, sum(scale(axtbclen, axtbc, adxtail, _16), _16, scale(len, _16c, 2 * adx, _32), _32, _48), _48);
503
- const len2 = scale(bcttlen, bctt, adxtail, _8);
504
- finlen = finadd(finlen, sum_three(scale(len2, _8, 2 * adx, _16), _16, scale(len2, _8, adxtail, _16b), _16b, scale(len, _16c, adxtail, _32), _32, _32b, _64), _64);
505
- if (bdytail !== 0) {
506
- finlen = finadd(finlen, scale(scale(4, cc, adxtail, _8), _8, bdytail, _16), _16);
507
- }
508
- if (cdytail !== 0) {
509
- finlen = finadd(finlen, scale(scale(4, bb, -adxtail, _8), _8, cdytail, _16), _16);
510
- }
511
- }
512
- if (adytail !== 0) {
513
- const len = scale(bctlen, bct, adytail, _16c);
514
- finlen = finadd(finlen, sum(scale(aytbclen, aytbc, adytail, _16), _16, scale(len, _16c, 2 * ady, _32), _32, _48), _48);
515
- const len2 = scale(bcttlen, bctt, adytail, _8);
516
- finlen = finadd(finlen, sum_three(scale(len2, _8, 2 * ady, _16), _16, scale(len2, _8, adytail, _16b), _16b, scale(len, _16c, adytail, _32), _32, _32b, _64), _64);
517
- }
518
- }
519
- if (bdxtail !== 0 || bdytail !== 0) {
520
- if (cdxtail !== 0 || cdytail !== 0 || adxtail !== 0 || adytail !== 0) {
521
- s1 = cdxtail * ady;
522
- c = splitter * cdxtail;
523
- ahi = c - (c - cdxtail);
524
- alo = cdxtail - ahi;
525
- c = splitter * ady;
526
- bhi = c - (c - ady);
527
- blo = ady - bhi;
528
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
529
- t1 = cdx * adytail;
530
- c = splitter * cdx;
531
- ahi = c - (c - cdx);
532
- alo = cdx - ahi;
533
- c = splitter * adytail;
534
- bhi = c - (c - adytail);
535
- blo = adytail - bhi;
536
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
537
- _i = s0 + t0;
538
- bvirt = _i - s0;
539
- u[0] = s0 - (_i - bvirt) + (t0 - bvirt);
540
- _j = s1 + _i;
541
- bvirt = _j - s1;
542
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
543
- _i = _0 + t1;
544
- bvirt = _i - _0;
545
- u[1] = _0 - (_i - bvirt) + (t1 - bvirt);
546
- u3 = _j + _i;
547
- bvirt = u3 - _j;
548
- u[2] = _j - (u3 - bvirt) + (_i - bvirt);
549
- u[3] = u3;
550
- n1 = -cdy;
551
- n0 = -cdytail;
552
- s1 = adxtail * n1;
553
- c = splitter * adxtail;
554
- ahi = c - (c - adxtail);
555
- alo = adxtail - ahi;
556
- c = splitter * n1;
557
- bhi = c - (c - n1);
558
- blo = n1 - bhi;
559
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
560
- t1 = adx * n0;
561
- c = splitter * adx;
562
- ahi = c - (c - adx);
563
- alo = adx - ahi;
564
- c = splitter * n0;
565
- bhi = c - (c - n0);
566
- blo = n0 - bhi;
567
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
568
- _i = s0 + t0;
569
- bvirt = _i - s0;
570
- v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
571
- _j = s1 + _i;
572
- bvirt = _j - s1;
573
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
574
- _i = _0 + t1;
575
- bvirt = _i - _0;
576
- v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
577
- u3 = _j + _i;
578
- bvirt = u3 - _j;
579
- v[2] = _j - (u3 - bvirt) + (_i - bvirt);
580
- v[3] = u3;
581
- catlen = sum(4, u, 4, v, cat);
582
- s1 = cdxtail * adytail;
583
- c = splitter * cdxtail;
584
- ahi = c - (c - cdxtail);
585
- alo = cdxtail - ahi;
586
- c = splitter * adytail;
587
- bhi = c - (c - adytail);
588
- blo = adytail - bhi;
589
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
590
- t1 = adxtail * cdytail;
591
- c = splitter * adxtail;
592
- ahi = c - (c - adxtail);
593
- alo = adxtail - ahi;
594
- c = splitter * cdytail;
595
- bhi = c - (c - cdytail);
596
- blo = cdytail - bhi;
597
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
598
- _i = s0 - t0;
599
- bvirt = s0 - _i;
600
- catt[0] = s0 - (_i + bvirt) + (bvirt - t0);
601
- _j = s1 + _i;
602
- bvirt = _j - s1;
603
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
604
- _i = _0 - t1;
605
- bvirt = _0 - _i;
606
- catt[1] = _0 - (_i + bvirt) + (bvirt - t1);
607
- u3 = _j + _i;
608
- bvirt = u3 - _j;
609
- catt[2] = _j - (u3 - bvirt) + (_i - bvirt);
610
- catt[3] = u3;
611
- cattlen = 4;
612
- } else {
613
- cat[0] = 0;
614
- catlen = 1;
615
- catt[0] = 0;
616
- cattlen = 1;
617
- }
618
- if (bdxtail !== 0) {
619
- const len = scale(catlen, cat, bdxtail, _16c);
620
- finlen = finadd(finlen, sum(scale(bxtcalen, bxtca, bdxtail, _16), _16, scale(len, _16c, 2 * bdx, _32), _32, _48), _48);
621
- const len2 = scale(cattlen, catt, bdxtail, _8);
622
- finlen = finadd(finlen, sum_three(scale(len2, _8, 2 * bdx, _16), _16, scale(len2, _8, bdxtail, _16b), _16b, scale(len, _16c, bdxtail, _32), _32, _32b, _64), _64);
623
- if (cdytail !== 0) {
624
- finlen = finadd(finlen, scale(scale(4, aa, bdxtail, _8), _8, cdytail, _16), _16);
625
- }
626
- if (adytail !== 0) {
627
- finlen = finadd(finlen, scale(scale(4, cc, -bdxtail, _8), _8, adytail, _16), _16);
628
- }
629
- }
630
- if (bdytail !== 0) {
631
- const len = scale(catlen, cat, bdytail, _16c);
632
- finlen = finadd(finlen, sum(scale(bytcalen, bytca, bdytail, _16), _16, scale(len, _16c, 2 * bdy, _32), _32, _48), _48);
633
- const len2 = scale(cattlen, catt, bdytail, _8);
634
- finlen = finadd(finlen, sum_three(scale(len2, _8, 2 * bdy, _16), _16, scale(len2, _8, bdytail, _16b), _16b, scale(len, _16c, bdytail, _32), _32, _32b, _64), _64);
635
- }
636
- }
637
- if (cdxtail !== 0 || cdytail !== 0) {
638
- if (adxtail !== 0 || adytail !== 0 || bdxtail !== 0 || bdytail !== 0) {
639
- s1 = adxtail * bdy;
640
- c = splitter * adxtail;
641
- ahi = c - (c - adxtail);
642
- alo = adxtail - ahi;
643
- c = splitter * bdy;
644
- bhi = c - (c - bdy);
645
- blo = bdy - bhi;
646
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
647
- t1 = adx * bdytail;
648
- c = splitter * adx;
649
- ahi = c - (c - adx);
650
- alo = adx - ahi;
651
- c = splitter * bdytail;
652
- bhi = c - (c - bdytail);
653
- blo = bdytail - bhi;
654
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
655
- _i = s0 + t0;
656
- bvirt = _i - s0;
657
- u[0] = s0 - (_i - bvirt) + (t0 - bvirt);
658
- _j = s1 + _i;
659
- bvirt = _j - s1;
660
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
661
- _i = _0 + t1;
662
- bvirt = _i - _0;
663
- u[1] = _0 - (_i - bvirt) + (t1 - bvirt);
664
- u3 = _j + _i;
665
- bvirt = u3 - _j;
666
- u[2] = _j - (u3 - bvirt) + (_i - bvirt);
667
- u[3] = u3;
668
- n1 = -ady;
669
- n0 = -adytail;
670
- s1 = bdxtail * n1;
671
- c = splitter * bdxtail;
672
- ahi = c - (c - bdxtail);
673
- alo = bdxtail - ahi;
674
- c = splitter * n1;
675
- bhi = c - (c - n1);
676
- blo = n1 - bhi;
677
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
678
- t1 = bdx * n0;
679
- c = splitter * bdx;
680
- ahi = c - (c - bdx);
681
- alo = bdx - ahi;
682
- c = splitter * n0;
683
- bhi = c - (c - n0);
684
- blo = n0 - bhi;
685
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
686
- _i = s0 + t0;
687
- bvirt = _i - s0;
688
- v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
689
- _j = s1 + _i;
690
- bvirt = _j - s1;
691
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
692
- _i = _0 + t1;
693
- bvirt = _i - _0;
694
- v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
695
- u3 = _j + _i;
696
- bvirt = u3 - _j;
697
- v[2] = _j - (u3 - bvirt) + (_i - bvirt);
698
- v[3] = u3;
699
- abtlen = sum(4, u, 4, v, abt);
700
- s1 = adxtail * bdytail;
701
- c = splitter * adxtail;
702
- ahi = c - (c - adxtail);
703
- alo = adxtail - ahi;
704
- c = splitter * bdytail;
705
- bhi = c - (c - bdytail);
706
- blo = bdytail - bhi;
707
- s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
708
- t1 = bdxtail * adytail;
709
- c = splitter * bdxtail;
710
- ahi = c - (c - bdxtail);
711
- alo = bdxtail - ahi;
712
- c = splitter * adytail;
713
- bhi = c - (c - adytail);
714
- blo = adytail - bhi;
715
- t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
716
- _i = s0 - t0;
717
- bvirt = s0 - _i;
718
- abtt[0] = s0 - (_i + bvirt) + (bvirt - t0);
719
- _j = s1 + _i;
720
- bvirt = _j - s1;
721
- _0 = s1 - (_j - bvirt) + (_i - bvirt);
722
- _i = _0 - t1;
723
- bvirt = _0 - _i;
724
- abtt[1] = _0 - (_i + bvirt) + (bvirt - t1);
725
- u3 = _j + _i;
726
- bvirt = u3 - _j;
727
- abtt[2] = _j - (u3 - bvirt) + (_i - bvirt);
728
- abtt[3] = u3;
729
- abttlen = 4;
730
- } else {
731
- abt[0] = 0;
732
- abtlen = 1;
733
- abtt[0] = 0;
734
- abttlen = 1;
735
- }
736
- if (cdxtail !== 0) {
737
- const len = scale(abtlen, abt, cdxtail, _16c);
738
- finlen = finadd(finlen, sum(scale(cxtablen, cxtab, cdxtail, _16), _16, scale(len, _16c, 2 * cdx, _32), _32, _48), _48);
739
- const len2 = scale(abttlen, abtt, cdxtail, _8);
740
- finlen = finadd(finlen, sum_three(scale(len2, _8, 2 * cdx, _16), _16, scale(len2, _8, cdxtail, _16b), _16b, scale(len, _16c, cdxtail, _32), _32, _32b, _64), _64);
741
- if (adytail !== 0) {
742
- finlen = finadd(finlen, scale(scale(4, bb, cdxtail, _8), _8, adytail, _16), _16);
743
- }
744
- if (bdytail !== 0) {
745
- finlen = finadd(finlen, scale(scale(4, aa, -cdxtail, _8), _8, bdytail, _16), _16);
746
- }
747
- }
748
- if (cdytail !== 0) {
749
- const len = scale(abtlen, abt, cdytail, _16c);
750
- finlen = finadd(finlen, sum(scale(cytablen, cytab, cdytail, _16), _16, scale(len, _16c, 2 * cdy, _32), _32, _48), _48);
751
- const len2 = scale(abttlen, abtt, cdytail, _8);
752
- finlen = finadd(finlen, sum_three(scale(len2, _8, 2 * cdy, _16), _16, scale(len2, _8, cdytail, _16b), _16b, scale(len, _16c, cdytail, _32), _32, _32b, _64), _64);
753
- }
754
- }
755
- return fin[finlen - 1];
756
- }
757
- function incircle(ax, ay, bx, by, cx, cy, dx, dy) {
758
- const adx = ax - dx;
759
- const bdx = bx - dx;
760
- const cdx = cx - dx;
761
- const ady = ay - dy;
762
- const bdy = by - dy;
763
- const cdy = cy - dy;
764
- const bdxcdy = bdx * cdy;
765
- const cdxbdy = cdx * bdy;
766
- const alift = adx * adx + ady * ady;
767
- const cdxady = cdx * ady;
768
- const adxcdy = adx * cdy;
769
- const blift = bdx * bdx + bdy * bdy;
770
- const adxbdy = adx * bdy;
771
- const bdxady = bdx * ady;
772
- const clift = cdx * cdx + cdy * cdy;
773
- const det = alift * (bdxcdy - cdxbdy) + blift * (cdxady - adxcdy) + clift * (adxbdy - bdxady);
774
- const permanent = (Math.abs(bdxcdy) + Math.abs(cdxbdy)) * alift + (Math.abs(cdxady) + Math.abs(adxcdy)) * blift + (Math.abs(adxbdy) + Math.abs(bdxady)) * clift;
775
- const errbound = iccerrboundA * permanent;
776
- if (det > errbound || -det > errbound) {
777
- return det;
778
- }
779
- return incircleadapt(ax, ay, bx, by, cx, cy, dx, dy, permanent);
780
- }
781
- function incirclefast(ax, ay, bx, by, cx, cy, dx, dy) {
782
- const adx = ax - dx;
783
- const ady = ay - dy;
784
- const bdx = bx - dx;
785
- const bdy = by - dy;
786
- const cdx = cx - dx;
787
- const cdy = cy - dy;
788
- const abdet = adx * bdy - bdx * ady;
789
- const bcdet = bdx * cdy - cdx * bdy;
790
- const cadet = cdx * ady - adx * cdy;
791
- const alift = adx * adx + ady * ady;
792
- const blift = bdx * bdx + bdy * bdy;
793
- const clift = cdx * cdx + cdy * cdy;
794
- return alift * bcdet + blift * cadet + clift * abdet;
795
- }
796
- exports.incircle = incircle;
797
- exports.incirclefast = incirclefast;
798
- });