@milaboratories/graph-maker 1.1.171 → 1.1.173
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/GraphMaker/components/AesSettings/AesDataMappingContinuous.vue.js +5 -5
- package/dist/GraphMaker/components/AesSettings/AesDataMappingContinuous.vue.js.map +1 -1
- package/dist/GraphMaker/dataBindAes.d.ts.map +1 -1
- package/dist/GraphMaker/dataBindAes.js +90 -92
- package/dist/GraphMaker/dataBindAes.js.map +1 -1
- package/dist/GraphMaker/utils/createChartSettingsForRender/getLayersDataFromForms.d.ts.map +1 -1
- package/dist/GraphMaker/utils/createChartSettingsForRender/getLayersDataFromForms.js +108 -101
- package/dist/GraphMaker/utils/createChartSettingsForRender/getLayersDataFromForms.js.map +1 -1
- package/dist/node_modules/@milaboratories/miplots4/dist/utils/getPointShape.js +83 -74
- package/dist/node_modules/@milaboratories/miplots4/dist/utils/getPointShape.js.map +1 -1
- package/package.json +2 -2
|
@@ -1,129 +1,138 @@
|
|
|
1
|
-
import { j as
|
|
2
|
-
import { BLACK as
|
|
1
|
+
import { j as e } from "../node_modules/react/jsx-runtime.js";
|
|
2
|
+
import { BLACK as o } from "../constants.js";
|
|
3
3
|
import { exhaustive as h } from "./index.js";
|
|
4
|
-
import
|
|
5
|
-
function a
|
|
6
|
-
return
|
|
4
|
+
import p from "../node_modules/d3-scale/src/linear.js";
|
|
5
|
+
function l(a) {
|
|
6
|
+
return p().domain([0, 1]).range([a, o])(0.25);
|
|
7
7
|
}
|
|
8
|
-
const
|
|
9
|
-
function
|
|
10
|
-
switch (
|
|
8
|
+
const M = 1.4;
|
|
9
|
+
function u(a, t = 6, s = o, n = null) {
|
|
10
|
+
switch (a) {
|
|
11
11
|
case null:
|
|
12
12
|
return "";
|
|
13
13
|
case "0":
|
|
14
|
-
return /* @__PURE__ */
|
|
14
|
+
return /* @__PURE__ */ e.jsx(
|
|
15
15
|
"path",
|
|
16
16
|
{
|
|
17
17
|
d: `M -${t},-${t} l ${t * 2},0 l 0,${t * 2} l -${t * 2},0 l 0,-${t * 2}z`,
|
|
18
|
-
fill: "
|
|
18
|
+
fill: "transparent",
|
|
19
19
|
stroke: s
|
|
20
20
|
}
|
|
21
21
|
);
|
|
22
22
|
case "1":
|
|
23
|
-
return /* @__PURE__ */
|
|
23
|
+
return /* @__PURE__ */ e.jsx(
|
|
24
24
|
"path",
|
|
25
25
|
{
|
|
26
26
|
d: `M -${t},0 a ${t},${t} 0 1,0 ${t * 2},0 a ${t},${t} 0 1,0 -${t * 2},0z`,
|
|
27
|
-
fill: "
|
|
27
|
+
fill: "transparent",
|
|
28
28
|
stroke: s
|
|
29
29
|
}
|
|
30
30
|
);
|
|
31
31
|
case "2":
|
|
32
|
-
return /* @__PURE__ */
|
|
32
|
+
return /* @__PURE__ */ e.jsx(
|
|
33
33
|
"path",
|
|
34
34
|
{
|
|
35
35
|
d: `M0,-${t}L ${2 * t * Math.tan(Math.PI / 6)},${t}L ${-2 * t * Math.tan(Math.PI / 6)},${t}z`,
|
|
36
|
-
fill: "
|
|
36
|
+
fill: "transparent",
|
|
37
37
|
stroke: s
|
|
38
38
|
}
|
|
39
39
|
);
|
|
40
40
|
case "3":
|
|
41
|
-
return /* @__PURE__ */
|
|
41
|
+
return /* @__PURE__ */ e.jsxs("g", { children: [
|
|
42
|
+
/* @__PURE__ */ e.jsx("circle", { r: t, fill: "transparent", stroke: "none" }),
|
|
43
|
+
/* @__PURE__ */ e.jsx("path", { d: `M0,-${t}L 0,${t} M -${t},0 L ${t},0`, fill: "none", stroke: s })
|
|
44
|
+
] });
|
|
42
45
|
case "4":
|
|
43
|
-
return /* @__PURE__ */
|
|
44
|
-
"
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
46
|
+
return /* @__PURE__ */ e.jsxs("g", { children: [
|
|
47
|
+
/* @__PURE__ */ e.jsx("circle", { r: t, fill: "transparent", stroke: "none" }),
|
|
48
|
+
/* @__PURE__ */ e.jsx(
|
|
49
|
+
"path",
|
|
50
|
+
{
|
|
51
|
+
d: `M-${t},-${t}L ${t},${t} M ${t},-${t} L -${t},${t}`,
|
|
52
|
+
fill: "transparent",
|
|
53
|
+
stroke: s
|
|
54
|
+
}
|
|
55
|
+
)
|
|
56
|
+
] });
|
|
51
57
|
case "5": {
|
|
52
|
-
const
|
|
53
|
-
return /* @__PURE__ */
|
|
58
|
+
const r = t * M;
|
|
59
|
+
return /* @__PURE__ */ e.jsx("path", { d: `M0,-${r}L ${r},0 L 0,${r} L -${r},0z`, fill: "transparent", stroke: s });
|
|
54
60
|
}
|
|
55
61
|
case "6":
|
|
56
|
-
return /* @__PURE__ */
|
|
62
|
+
return /* @__PURE__ */ e.jsx(
|
|
57
63
|
"path",
|
|
58
64
|
{
|
|
59
65
|
d: `M${-2 * t * Math.tan(Math.PI / 6)},-${t}L ${2 * t * Math.tan(Math.PI / 6)},-${t}L0,${t}z`,
|
|
60
|
-
fill: "
|
|
66
|
+
fill: "transparent",
|
|
61
67
|
stroke: s
|
|
62
68
|
}
|
|
63
69
|
);
|
|
64
70
|
case "7":
|
|
65
|
-
return /* @__PURE__ */
|
|
71
|
+
return /* @__PURE__ */ e.jsx(
|
|
66
72
|
"path",
|
|
67
73
|
{
|
|
68
74
|
d: `M -${t},-${t} l ${t * 2},0 l 0,${t * 2} l -${t * 2},0 l 0,-${t * 2}z M-${t},-${t}L ${t},${t} M ${t},-${t} L -${t},${t}`,
|
|
69
|
-
fill: "
|
|
75
|
+
fill: "transparent",
|
|
70
76
|
stroke: s
|
|
71
77
|
}
|
|
72
78
|
);
|
|
73
79
|
case "8": {
|
|
74
|
-
const
|
|
75
|
-
return /* @__PURE__ */
|
|
76
|
-
"
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
80
|
+
const r = t * 2 * Math.cos(Math.PI / 4);
|
|
81
|
+
return /* @__PURE__ */ e.jsxs("g", { children: [
|
|
82
|
+
/* @__PURE__ */ e.jsx("circle", { r: t, fill: "transparent", stroke: "none" }),
|
|
83
|
+
/* @__PURE__ */ e.jsx(
|
|
84
|
+
"path",
|
|
85
|
+
{
|
|
86
|
+
d: `M0,-${r}L 0,${r} M -${r},0 L ${r},0 M-${t},-${t}L ${t},${t} M ${t},-${t} L -${t},${t}`,
|
|
87
|
+
fill: "transparent",
|
|
88
|
+
stroke: s
|
|
89
|
+
}
|
|
90
|
+
)
|
|
91
|
+
] });
|
|
83
92
|
}
|
|
84
93
|
case "9": {
|
|
85
|
-
const
|
|
86
|
-
return /* @__PURE__ */
|
|
94
|
+
const r = t * M;
|
|
95
|
+
return /* @__PURE__ */ e.jsx(
|
|
87
96
|
"path",
|
|
88
97
|
{
|
|
89
|
-
d: `M0,-${
|
|
90
|
-
fill: "
|
|
98
|
+
d: `M0,-${r}L ${r},0 L 0,${r} L -${r},0z M0,-${r}L 0,${r} M -${r},0 L ${r},0`,
|
|
99
|
+
fill: "transparent",
|
|
91
100
|
stroke: s
|
|
92
101
|
}
|
|
93
102
|
);
|
|
94
103
|
}
|
|
95
104
|
case "10":
|
|
96
|
-
return /* @__PURE__ */
|
|
105
|
+
return /* @__PURE__ */ e.jsx(
|
|
97
106
|
"path",
|
|
98
107
|
{
|
|
99
108
|
d: `M -${t},0 a ${t},${t} 0 1,0 ${t * 2},0 a ${t},${t} 0 1,0 -${t * 2},0z M0,-${t}L 0,${t} M -${t},0 L ${t},0`,
|
|
100
|
-
fill: "
|
|
109
|
+
fill: "transparent",
|
|
101
110
|
stroke: s
|
|
102
111
|
}
|
|
103
112
|
);
|
|
104
113
|
case "11": {
|
|
105
|
-
const
|
|
106
|
-
return /* @__PURE__ */
|
|
114
|
+
const r = 2 * t * Math.tan(Math.PI / 6);
|
|
115
|
+
return /* @__PURE__ */ e.jsx(
|
|
107
116
|
"path",
|
|
108
117
|
{
|
|
109
|
-
d: `M-${
|
|
110
|
-
M-${
|
|
111
|
-
fill: "
|
|
118
|
+
d: `M-${r},-${t}L${r},-${t}L0,${-t + 2 * r}z
|
|
119
|
+
M-${r},${t}L0,${t - 2 * r}L${r},${t}z`,
|
|
120
|
+
fill: "transparent",
|
|
112
121
|
stroke: s
|
|
113
122
|
}
|
|
114
123
|
);
|
|
115
124
|
}
|
|
116
125
|
case "12":
|
|
117
|
-
return /* @__PURE__ */
|
|
126
|
+
return /* @__PURE__ */ e.jsx(
|
|
118
127
|
"path",
|
|
119
128
|
{
|
|
120
129
|
d: `M -${t},-${t} l ${t * 2},0 l 0,${t * 2} l -${t * 2},0 l 0,-${t * 2}z M0,-${t}L 0,${t} M -${t},0 L ${t},0`,
|
|
121
|
-
fill: "
|
|
130
|
+
fill: "transparent",
|
|
122
131
|
stroke: s
|
|
123
132
|
}
|
|
124
133
|
);
|
|
125
134
|
case "13":
|
|
126
|
-
return /* @__PURE__ */
|
|
135
|
+
return /* @__PURE__ */ e.jsx(
|
|
127
136
|
"path",
|
|
128
137
|
{
|
|
129
138
|
d: `M -${t},0 a ${t},${t} 0 1,0 ${t * 2},0 a ${t},${t} 0 1,0 -${t * 2},0z M-${t},-${t}L ${t},${t} M ${t},-${t} L -${t},${t}`,
|
|
@@ -132,16 +141,16 @@ function f(n, t = 6, s = M, l = null) {
|
|
|
132
141
|
}
|
|
133
142
|
);
|
|
134
143
|
case "14":
|
|
135
|
-
return /* @__PURE__ */
|
|
144
|
+
return /* @__PURE__ */ e.jsx(
|
|
136
145
|
"path",
|
|
137
146
|
{
|
|
138
147
|
d: `M -${t},-${t} l ${t * 2},0 l 0,${t * 2} l -${t * 2},0 l 0,-${t * 2}z M-${t},${t}L0,${-t}L${t},${t}`,
|
|
139
|
-
fill: "
|
|
148
|
+
fill: "transparent",
|
|
140
149
|
stroke: s
|
|
141
150
|
}
|
|
142
151
|
);
|
|
143
152
|
case "15":
|
|
144
|
-
return /* @__PURE__ */
|
|
153
|
+
return /* @__PURE__ */ e.jsx(
|
|
145
154
|
"path",
|
|
146
155
|
{
|
|
147
156
|
d: `M -${t},-${t} l ${t * 2},0 l 0,${t * 2} l -${t * 2},0 l 0,-${t * 2}z`,
|
|
@@ -150,7 +159,7 @@ function f(n, t = 6, s = M, l = null) {
|
|
|
150
159
|
}
|
|
151
160
|
);
|
|
152
161
|
case "16":
|
|
153
|
-
return /* @__PURE__ */
|
|
162
|
+
return /* @__PURE__ */ e.jsx(
|
|
154
163
|
"path",
|
|
155
164
|
{
|
|
156
165
|
d: `M -${t},0 a ${t},${t} 0 1,0 ${t * 2},0 a ${t},${t} 0 1,0 -${t * 2},0z`,
|
|
@@ -159,7 +168,7 @@ function f(n, t = 6, s = M, l = null) {
|
|
|
159
168
|
}
|
|
160
169
|
);
|
|
161
170
|
case "17":
|
|
162
|
-
return /* @__PURE__ */
|
|
171
|
+
return /* @__PURE__ */ e.jsx(
|
|
163
172
|
"path",
|
|
164
173
|
{
|
|
165
174
|
d: `M0,-${t}L ${2 * t * Math.tan(Math.PI / 6)},${t}L ${-2 * t * Math.tan(Math.PI / 6)},${t}z`,
|
|
@@ -168,65 +177,65 @@ function f(n, t = 6, s = M, l = null) {
|
|
|
168
177
|
}
|
|
169
178
|
);
|
|
170
179
|
case "18": {
|
|
171
|
-
const
|
|
172
|
-
return /* @__PURE__ */
|
|
180
|
+
const r = t * M;
|
|
181
|
+
return /* @__PURE__ */ e.jsx("path", { d: `M0,-${r}L ${r},0 L 0,${r} L -${r},0z`, fill: s, stroke: s });
|
|
173
182
|
}
|
|
174
183
|
case "20": {
|
|
175
|
-
const
|
|
176
|
-
return /* @__PURE__ */
|
|
184
|
+
const r = t * 2 / 3;
|
|
185
|
+
return /* @__PURE__ */ e.jsx(
|
|
177
186
|
"path",
|
|
178
187
|
{
|
|
179
|
-
d: `M -${
|
|
188
|
+
d: `M -${r},0 a ${r},${r} 0 1,0 ${r * 2},0 a ${r},${r} 0 1,0 -${r * 2},0z`,
|
|
180
189
|
fill: s,
|
|
181
190
|
stroke: s
|
|
182
191
|
}
|
|
183
192
|
);
|
|
184
193
|
}
|
|
185
194
|
case "22":
|
|
186
|
-
return /* @__PURE__ */
|
|
195
|
+
return /* @__PURE__ */ e.jsx(
|
|
187
196
|
"path",
|
|
188
197
|
{
|
|
189
198
|
d: `M -${t},-${t} l ${t * 2},0 l 0,${t * 2} l -${t * 2},0 l 0,-${t * 2}z`,
|
|
190
199
|
fill: s,
|
|
191
|
-
stroke:
|
|
200
|
+
stroke: n ?? l(s)
|
|
192
201
|
}
|
|
193
202
|
);
|
|
194
203
|
case "21":
|
|
195
|
-
return /* @__PURE__ */
|
|
204
|
+
return /* @__PURE__ */ e.jsx(
|
|
196
205
|
"path",
|
|
197
206
|
{
|
|
198
207
|
d: `M -${t},0 a ${t},${t} 0 1,0 ${t * 2},0 a ${t},${t} 0 1,0 -${t * 2},0z`,
|
|
199
208
|
fill: s,
|
|
200
|
-
stroke:
|
|
209
|
+
stroke: n ?? l(s)
|
|
201
210
|
}
|
|
202
211
|
);
|
|
203
212
|
case "24":
|
|
204
|
-
return /* @__PURE__ */
|
|
213
|
+
return /* @__PURE__ */ e.jsx(
|
|
205
214
|
"path",
|
|
206
215
|
{
|
|
207
216
|
d: `M0,-${t}L ${2 * t * Math.tan(Math.PI / 6)},${t}L ${-2 * t * Math.tan(Math.PI / 6)},${t}z`,
|
|
208
217
|
fill: s,
|
|
209
|
-
stroke:
|
|
218
|
+
stroke: n ?? l(s)
|
|
210
219
|
}
|
|
211
220
|
);
|
|
212
221
|
case "23": {
|
|
213
|
-
const
|
|
214
|
-
return /* @__PURE__ */
|
|
222
|
+
const r = t * M;
|
|
223
|
+
return /* @__PURE__ */ e.jsx("path", { d: `M0,-${r}L ${r},0 L 0,${r} L -${r},0z`, fill: s, stroke: n ?? l(s) });
|
|
215
224
|
}
|
|
216
225
|
case "25":
|
|
217
|
-
return /* @__PURE__ */
|
|
226
|
+
return /* @__PURE__ */ e.jsx(
|
|
218
227
|
"path",
|
|
219
228
|
{
|
|
220
229
|
d: `M${-2 * t * Math.tan(Math.PI / 6)},-${t}L ${2 * t * Math.tan(Math.PI / 6)},-${t}L0,${t}z`,
|
|
221
230
|
fill: s,
|
|
222
|
-
stroke:
|
|
231
|
+
stroke: n ?? l(s)
|
|
223
232
|
}
|
|
224
233
|
);
|
|
225
234
|
default:
|
|
226
|
-
h(
|
|
235
|
+
h(a, `Unknown point shape ${a}`);
|
|
227
236
|
}
|
|
228
237
|
}
|
|
229
238
|
export {
|
|
230
|
-
|
|
239
|
+
u as getPointShape
|
|
231
240
|
};
|
|
232
241
|
//# sourceMappingURL=getPointShape.js.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"getPointShape.js","sources":["../../../../../../node_modules/@milaboratories/miplots4/src/utils/getPointShape.tsx"],"sourcesContent":["import {BLACK} from '../constants';\nimport {exhaustive} from './index';\nimport {scaleLinear} from 'd3-scale';\nimport React from 'react';\nimport type {PointShape} from '../types';\n\nfunction darker (color:string) {\n const scale = scaleLinear<string>().domain([0,1]).range([color, BLACK]);\n return scale(0.25);\n}\n\nconst DIAMOND_COEF = 1.4;\nexport function getPointShape(shape: PointShape | null, size = 6, fillColor = BLACK, strokeColor:string|null = null) {\n switch (shape) {\n case null:\n return '';\n // empty square\n case '0':\n return (\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${size * 2}z`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n // empty circle\n case '1':\n return (\n <path\n d={`M -${size},0 a ${size},${size} 0 1,0 ${size * 2},0 a ${size},${size} 0 1,0 -${size * 2},0z`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n // empty triangle up\n case '2':\n return (\n <path\n d={`M0,-${size}L ${2 * size * Math.tan(Math.PI / 6)},${size}L ${-2 * size * Math.tan((Math.PI) / 6)},${size}z`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n // 'plus' cross\n case '3':\n return <path d={`M0,-${size}L 0,${size} M -${size},0 L ${size},0`} fill=\"none\" stroke={fillColor} />;\n // 'close' cross\n case '4':\n return (\n <path\n d={`M-${size},-${size}L ${size},${size} M ${size},-${size} L -${size},${size}`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n // empty diamond\n case '5': {\n const a = size * DIAMOND_COEF;\n return <path d={`M0,-${a}L ${a},0 L 0,${a} L -${a},0z`} fill=\"none\" stroke={fillColor} />;\n }\n // empty triangle down\n case '6':\n return (\n <path\n d={`M${-2 * size * Math.tan(Math.PI / 6)},-${size}L ${2 * size * Math.tan(Math.PI / 6)},-${size}L0,${size}z`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n // empty square and 'close' cross\n case '7':\n return (\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${\n size * 2\n }z M-${size},-${size}L ${size},${size} M ${size},-${size} L -${size},${size}`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n // snowflake\n case '8': {\n const a = size * 2 * Math.cos(Math.PI / 4);\n return (\n <path\n d={`M0,-${a}L 0,${a} M -${a},0 L ${a},0 M-${size},-${size}L ${size},${size} M ${size},-${size} L -${size},${size}`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n }\n // empty diamond and 'plus' cross\n case '9': {\n const a = size * DIAMOND_COEF;\n return (\n <path\n d={`M0,-${a}L ${a},0 L 0,${a} L -${a},0z M0,-${a}L 0,${a} M -${a},0 L ${a},0`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n }\n // empty circle and 'plus' cross\n case '10':\n return (\n <path\n d={`M -${size},0 a ${size},${size} 0 1,0 ${size * 2},0 a ${size},${size} 0 1,0 -${\n size * 2\n },0z M0,-${size}L 0,${size} M -${size},0 L ${size},0`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n // two empty triangles up and down\n case '11': {\n const a = 2 * size * Math.tan(Math.PI / 6);\n return (\n <path\n d={`M-${a},-${size}L${a},-${size}L0,${-size + 2 * a}z\n M-${a},${size}L0,${size - 2 * a}L${a},${size}z`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n }\n // empty square and 'plus' cross\n case '12':\n return (\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${\n size * 2\n }z M0,-${size}L 0,${size} M -${size},0 L ${size},0`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n // empty circle and 'close' cross\n case '13':\n return (\n <path\n d={`M -${size},0 a ${size},${size} 0 1,0 ${size * 2},0 a ${size},${size} 0 1,0 -${\n size * 2\n },0z M-${size},-${size}L ${size},${size} M ${size},-${size} L -${size},${size}`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n // empty square and empty triangle up\n case '14':\n return (\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${\n size * 2\n }z M-${size},${size}L0,${-size}L${size},${size}`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n // black square\n case '15':\n return (\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${size * 2}z`}\n fill={fillColor}\n stroke={fillColor}\n />\n );\n // black circle\n case '16':\n return (\n <path\n d={`M -${size},0 a ${size},${size} 0 1,0 ${size * 2},0 a ${size},${size} 0 1,0 -${size * 2},0z`}\n fill={fillColor}\n stroke={fillColor}\n />\n );\n // black triangle\n case '17':\n return (\n <path\n d={`M0,-${size}L ${2 * size * Math.tan(Math.PI / 6)},${size}L ${-2 * size * Math.tan((Math.PI) / 6)},${size}z`}\n fill={fillColor}\n stroke={fillColor}\n />\n );\n // black diamond\n case '18': {\n const a = size * DIAMOND_COEF;\n return <path d={`M0,-${a}L ${a},0 L 0,${a} L -${a},0z`} fill={fillColor} stroke={fillColor} />;\n }\n // small black circle\n case '20': {\n const a = (size * 2) / 3;\n return (\n <path\n d={`M -${a},0 a ${a},${a} 0 1,0 ${a * 2},0 a ${a},${a} 0 1,0 -${a * 2},0z`}\n fill={fillColor}\n stroke={fillColor}\n />\n );\n }\n // colored square\n case '22':\n return (\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${size * 2}z`}\n fill={fillColor}\n stroke={strokeColor ?? darker(fillColor)}\n />\n );\n // colored circle\n case '21':\n return (\n <path\n d={`M -${size},0 a ${size},${size} 0 1,0 ${size * 2},0 a ${size},${size} 0 1,0 -${size * 2},0z`}\n fill={fillColor}\n stroke={strokeColor ?? darker(fillColor)}\n />\n );\n // colored triangle up\n case '24':\n return (\n <path\n d={`M0,-${size}L ${2 * size * Math.tan(Math.PI / 6)},${size}L ${-2 * size * Math.tan((Math.PI) / 6)},${size}z`}\n fill={fillColor}\n stroke={strokeColor ?? darker(fillColor)}\n />\n );\n // colored diamond\n case '23': {\n const a = size * DIAMOND_COEF;\n return <path d={`M0,-${a}L ${a},0 L 0,${a} L -${a},0z`} fill={fillColor} stroke={strokeColor ?? darker(fillColor)} />;\n }\n // colored triangle down\n case '25':\n return (\n <path\n d={`M${-2 * size * Math.tan(Math.PI / 6)},-${size}L ${2 * size * Math.tan(Math.PI / 6)},-${size}L0,${size}z`}\n fill={fillColor}\n stroke={strokeColor ?? darker(fillColor)}\n />\n );\n default:\n exhaustive(shape, `Unknown point shape ${shape}`);\n }\n}\n"],"names":["darker","color","scaleLinear","BLACK","DIAMOND_COEF","getPointShape","shape","size","fillColor","strokeColor","jsx","a","n","exhaustive"],"mappings":";;;;AAMA,SAASA,EAAQC,GAAc;AAE3B,SADcC,EAAAA,EAAsB,OAAO,CAAC,GAAE,CAAC,CAAC,EAAE,MAAM,CAACD,GAAOE,CAAK,CAAC,EACzD,IAAI;AACrB;AAEA,MAAMC,IAAe;AACd,SAASC,EAAcC,GAA0BC,IAAO,GAAGC,IAAYL,GAAOM,IAA0B,MAAM;AACjH,UAAQH,GAAAA;AAAAA,IACJ,KAAK;AACD,aAAO;AAAA,IAEX,KAAK;AACD,aACII,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WAAWA,IAAO,CAAC;AAAA,UACxF,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,QAAQA,CAAI,IAAIA,CAAI,UAAUA,IAAO,CAAC,QAAQA,CAAI,IAAIA,CAAI,WAAWA,IAAO,CAAC;AAAA,UAC1F,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,OAAOH,CAAI,KAAK,IAAIA,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,IAAIA,CAAI,KAAK,KAAKA,IAAO,KAAK,IAAK,KAAK,KAAM,CAAC,CAAC,IAAIA,CAAI;AAAA,UAC3G,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aAAOE,gBAAAA,EAAAA,IAAC,QAAA,EAAK,GAAG,OAAOH,CAAI,OAAOA,CAAI,OAAOA,CAAI,QAAQA,CAAI,MAAM,MAAK,QAAO,QAAQC,GAAW;AAAA,IAEtG,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,KAAKH,CAAI,KAAKA,CAAI,KAAKA,CAAI,IAAIA,CAAI,MAAMA,CAAI,KAAKA,CAAI,OAAOA,CAAI,IAAIA,CAAI;AAAA,UAC5E,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK,KAAK;AACN,YAAMG,IAAIJ,IAAOH;AACjB,aAAOM,gBAAAA,EAAAA,IAAC,QAAA,EAAK,GAAG,OAAOC,CAAC,KAAKA,CAAC,UAAUA,CAAC,OAAOA,CAAC,OAAO,MAAK,QAAO,QAAQH,GAAW;AAAA,IAC3F;AAAA,IAEA,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,IAAI,KAAKH,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,KAAKA,CAAI,KAAK,IAAIA,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,KAAKA,CAAI,MAAMA,CAAI;AAAA,UACzG,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WACjEA,IAAO,CACX,OAAOA,CAAI,KAAKA,CAAI,KAAKA,CAAI,IAAIA,CAAI,MAAMA,CAAI,KAAKA,CAAI,OAAOA,CAAI,IAAIA,CAAI;AAAA,UAC3E,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK,KAAK;AACN,YAAMG,IAAIJ,IAAO,IAAI,KAAK,IAAI,KAAK,KAAK,CAAC;AACzC,aACIG,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,OAAOC,CAAC,OAAOA,CAAC,OAAOA,CAAC,QAAQA,CAAC,QAAQJ,CAAI,KAAKA,CAAI,KAAKA,CAAI,IAAIA,CAAI,MAAMA,CAAI,KAAKA,CAAI,OAAOA,CAAI,IAAIA,CAAI;AAAA,UAChH,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAGpB;AAAA,IAEA,KAAK,KAAK;AACN,YAAMG,IAAIJ,IAAOH;AACjB,aACIM,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,OAAOC,CAAC,KAAKA,CAAC,UAAUA,CAAC,OAAOA,CAAC,WAAWA,CAAC,OAAOA,CAAC,OAAOA,CAAC,QAAQA,CAAC;AAAA,UACzE,MAAK;AAAA,UACL,QAAQH;AAAAA,QAAA;AAAA,MAAA;AAAA,IAGpB;AAAA,IAEA,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,QAAQA,CAAI,IAAIA,CAAI,UAAUA,IAAO,CAAC,QAAQA,CAAI,IAAIA,CAAI,WACnEA,IAAO,CACX,WAAWA,CAAI,OAAOA,CAAI,OAAOA,CAAI,QAAQA,CAAI;AAAA,UACjD,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK,MAAM;AACP,YAAMG,IAAI,IAAIJ,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC;AACzC,aACIG,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,KAAKC,CAAC,KAAKJ,CAAI,IAAII,CAAC,KAAKJ,CAAI,MAAM,CAACA,IAAO,IAAII,CAAC;AAAA,wBAC/CA,CAAC,IAAIJ,CAAI,MAAMA,IAAO,IAAII,CAAC,IAAIA,CAAC,IAAIJ,CAAI;AAAA,UAC5C,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAGpB;AAAA,IAEA,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WACjEA,IAAO,CACX,SAASA,CAAI,OAAOA,CAAI,OAAOA,CAAI,QAAQA,CAAI;AAAA,UAC/C,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,QAAQA,CAAI,IAAIA,CAAI,UAAUA,IAAO,CAAC,QAAQA,CAAI,IAAIA,CAAI,WACnEA,IAAO,CACX,SAASA,CAAI,KAAKA,CAAI,KAAKA,CAAI,IAAIA,CAAI,MAAMA,CAAI,KAAKA,CAAI,OAAOA,CAAI,IAAIA,CAAI;AAAA,UAC7E,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WACjEA,IAAO,CACX,OAAOA,CAAI,IAAIA,CAAI,MAAM,CAACA,CAAI,IAAIA,CAAI,IAAIA,CAAI;AAAA,UAC9C,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WAAWA,IAAO,CAAC;AAAA,UACxF,MAAMC;AAAAA,UACN,QAAQA;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,QAAQA,CAAI,IAAIA,CAAI,UAAUA,IAAO,CAAC,QAAQA,CAAI,IAAIA,CAAI,WAAWA,IAAO,CAAC;AAAA,UAC1F,MAAMC;AAAAA,UACN,QAAQA;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,OAAOH,CAAI,KAAK,IAAIA,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,IAAIA,CAAI,KAAK,KAAKA,IAAO,KAAK,IAAK,KAAK,KAAM,CAAC,CAAC,IAAIA,CAAI;AAAA,UAC3G,MAAMC;AAAAA,UACN,QAAQA;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK,MAAM;AACP,YAAMG,IAAIJ,IAAOH;AACjB,aAAOM,gBAAAA,EAAAA,IAAC,QAAA,EAAK,GAAG,OAAOC,CAAC,KAAKA,CAAC,UAAUA,CAAC,OAAOA,CAAC,OAAO,MAAMH,GAAW,QAAQA,GAAW;AAAA,IAChG;AAAA,IAEA,KAAK,MAAM;AACP,YAAMG,IAAKJ,IAAO,IAAK;AACvB,aACIG,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMC,CAAC,QAAQA,CAAC,IAAIA,CAAC,UAAUA,IAAI,CAAC,QAAQA,CAAC,IAAIA,CAAC,WAAWA,IAAI,CAAC;AAAA,UACrE,MAAMH;AAAAA,UACN,QAAQA;AAAAA,QAAA;AAAA,MAAA;AAAA,IAGpB;AAAA,IAEA,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WAAWA,IAAO,CAAC;AAAA,UACxF,MAAMC;AAAAA,UACN,QAAQC,KAAeT,EAAOQ,CAAS;AAAA,QAAA;AAAA,MAAA;AAAA,IAInD,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,QAAQA,CAAI,IAAIA,CAAI,UAAUA,IAAO,CAAC,QAAQA,CAAI,IAAIA,CAAI,WAAWA,IAAO,CAAC;AAAA,UAC1F,MAAMC;AAAAA,UACN,QAAQC,KAAeT,EAAOQ,CAAS;AAAA,QAAA;AAAA,MAAA;AAAA,IAInD,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,OAAOH,CAAI,KAAK,IAAIA,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,IAAIA,CAAI,KAAK,KAAKA,IAAO,KAAK,IAAK,KAAK,KAAM,CAAC,CAAC,IAAIA,CAAI;AAAA,UAC3G,MAAMC;AAAAA,UACN,QAAQC,KAAeT,EAAOQ,CAAS;AAAA,QAAA;AAAA,MAAA;AAAA,IAInD,KAAK,MAAM;AACP,YAAMG,IAAIJ,IAAOH;AACjB,aAAAQ,gBAAAA,EAAA,IAAQ,QAAA,EAAK,GAAG,OAAOD,CAAC,KAAKA,CAAC,UAAUA,CAAC,OAAOA,CAAC,OAAO,MAAMH,GAAW,QAAQC,KAAeT,EAAOQ,CAAS,GAAG;AAAA,IACvH;AAAA,IAEA,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,IAAI,KAAKH,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,KAAKA,CAAI,KAAK,IAAIA,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,KAAKA,CAAI,MAAMA,CAAI;AAAA,UACzG,MAAMC;AAAAA,UACN,QAAQC,KAAeT,EAAOQ,CAAS;AAAA,QAAA;AAAA,MAAA;AAAA,IAGnD;AACIK,MAAAA,EAAWP,GAAO,uBAAuBA,CAAK,EAAE;AAAA,EAAA;AAE5D;","x_google_ignoreList":[0]}
|
|
1
|
+
{"version":3,"file":"getPointShape.js","sources":["../../../../../../node_modules/@milaboratories/miplots4/src/utils/getPointShape.tsx"],"sourcesContent":["import { BLACK } from '../constants';\nimport { exhaustive } from './index';\nimport { scaleLinear } from 'd3-scale';\nimport React from 'react';\nimport type { PointShape } from '../types';\n\nfunction darker(color: string) {\n const scale = scaleLinear<string>().domain([0, 1]).range([color, BLACK]);\n return scale(0.25);\n}\n\nconst DIAMOND_COEF = 1.4;\nexport function getPointShape(shape: PointShape | null, size = 6, fillColor = BLACK, strokeColor: string | null = null) {\n switch (shape) {\n case null:\n return '';\n // empty square\n case '0':\n return (\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${size * 2}z`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n );\n // empty circle\n case '1':\n return (\n <path\n d={`M -${size},0 a ${size},${size} 0 1,0 ${size * 2},0 a ${size},${size} 0 1,0 -${size * 2},0z`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n );\n // empty triangle up\n case '2':\n return (\n <path\n d={`M0,-${size}L ${2 * size * Math.tan(Math.PI / 6)},${size}L ${-2 * size * Math.tan((Math.PI) / 6)},${size}z`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n );\n // 'plus' cross\n case '3':\n return (\n <g>\n <circle r={size} fill=\"transparent\" stroke=\"none\" />\n <path d={`M0,-${size}L 0,${size} M -${size},0 L ${size},0`} fill=\"none\" stroke={fillColor} />\n </g>);\n // 'close' cross\n case '4':\n return (\n <g>\n <circle r={size} fill=\"transparent\" stroke=\"none\" />\n <path\n d={`M-${size},-${size}L ${size},${size} M ${size},-${size} L -${size},${size}`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n </g>\n );\n // empty diamond\n case '5': {\n const a = size * DIAMOND_COEF;\n return <path d={`M0,-${a}L ${a},0 L 0,${a} L -${a},0z`} fill=\"transparent\" stroke={fillColor} />;\n }\n // empty triangle down\n case '6':\n return (\n <path\n d={`M${-2 * size * Math.tan(Math.PI / 6)},-${size}L ${2 * size * Math.tan(Math.PI / 6)},-${size}L0,${size}z`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n );\n // empty square and 'close' cross\n case '7':\n return (\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${size * 2\n }z M-${size},-${size}L ${size},${size} M ${size},-${size} L -${size},${size}`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n );\n // snowflake\n case '8': {\n const a = size * 2 * Math.cos(Math.PI / 4);\n return (\n <g>\n <circle r={size} fill=\"transparent\" stroke=\"none\" />\n <path\n d={`M0,-${a}L 0,${a} M -${a},0 L ${a},0 M-${size},-${size}L ${size},${size} M ${size},-${size} L -${size},${size}`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n </g>\n );\n }\n // empty diamond and 'plus' cross\n case '9': {\n const a = size * DIAMOND_COEF;\n return (\n <path\n d={`M0,-${a}L ${a},0 L 0,${a} L -${a},0z M0,-${a}L 0,${a} M -${a},0 L ${a},0`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n );\n }\n // empty circle and 'plus' cross\n case '10':\n return (\n <path\n d={`M -${size},0 a ${size},${size} 0 1,0 ${size * 2},0 a ${size},${size} 0 1,0 -${size * 2\n },0z M0,-${size}L 0,${size} M -${size},0 L ${size},0`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n );\n // two empty triangles up and down\n case '11': {\n const a = 2 * size * Math.tan(Math.PI / 6);\n return (\n <path\n d={`M-${a},-${size}L${a},-${size}L0,${-size + 2 * a}z\n M-${a},${size}L0,${size - 2 * a}L${a},${size}z`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n );\n }\n // empty square and 'plus' cross\n case '12':\n return (\n\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${size * 2\n }z M0,-${size}L 0,${size} M -${size},0 L ${size},0`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n );\n // empty circle and 'close' cross\n case '13':\n return (\n <path\n d={`M -${size},0 a ${size},${size} 0 1,0 ${size * 2},0 a ${size},${size} 0 1,0 -${size * 2\n },0z M-${size},-${size}L ${size},${size} M ${size},-${size} L -${size},${size}`}\n fill=\"none\"\n stroke={fillColor}\n />\n );\n // empty square and empty triangle up\n case '14':\n return (\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${size * 2\n }z M-${size},${size}L0,${-size}L${size},${size}`}\n fill=\"transparent\"\n stroke={fillColor}\n />\n );\n // black square\n case '15':\n return (\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${size * 2}z`}\n fill={fillColor}\n stroke={fillColor}\n />\n );\n // black circle\n case '16':\n return (\n <path\n d={`M -${size},0 a ${size},${size} 0 1,0 ${size * 2},0 a ${size},${size} 0 1,0 -${size * 2},0z`}\n fill={fillColor}\n stroke={fillColor}\n />\n );\n // black triangle\n case '17':\n return (\n <path\n d={`M0,-${size}L ${2 * size * Math.tan(Math.PI / 6)},${size}L ${-2 * size * Math.tan((Math.PI) / 6)},${size}z`}\n fill={fillColor}\n stroke={fillColor}\n />\n );\n // black diamond\n case '18': {\n const a = size * DIAMOND_COEF;\n return <path d={`M0,-${a}L ${a},0 L 0,${a} L -${a},0z`} fill={fillColor} stroke={fillColor} />;\n }\n // small black circle\n case '20': {\n const a = (size * 2) / 3;\n return (\n <path\n d={`M -${a},0 a ${a},${a} 0 1,0 ${a * 2},0 a ${a},${a} 0 1,0 -${a * 2},0z`}\n fill={fillColor}\n stroke={fillColor}\n />\n );\n }\n // colored square\n case '22':\n return (\n <path\n d={`M -${size},-${size} l ${size * 2},0 l 0,${size * 2} l -${size * 2},0 l 0,-${size * 2}z`}\n fill={fillColor}\n stroke={strokeColor ?? darker(fillColor)}\n />\n );\n // colored circle\n case '21':\n return (\n <path\n d={`M -${size},0 a ${size},${size} 0 1,0 ${size * 2},0 a ${size},${size} 0 1,0 -${size * 2},0z`}\n fill={fillColor}\n stroke={strokeColor ?? darker(fillColor)}\n />\n );\n // colored triangle up\n case '24':\n return (\n <path\n d={`M0,-${size}L ${2 * size * Math.tan(Math.PI / 6)},${size}L ${-2 * size * Math.tan((Math.PI) / 6)},${size}z`}\n fill={fillColor}\n stroke={strokeColor ?? darker(fillColor)}\n />\n );\n // colored diamond\n case '23': {\n const a = size * DIAMOND_COEF;\n return <path d={`M0,-${a}L ${a},0 L 0,${a} L -${a},0z`} fill={fillColor} stroke={strokeColor ?? darker(fillColor)} />;\n }\n // colored triangle down\n case '25':\n return (\n <path\n d={`M${-2 * size * Math.tan(Math.PI / 6)},-${size}L ${2 * size * Math.tan(Math.PI / 6)},-${size}L0,${size}z`}\n fill={fillColor}\n stroke={strokeColor ?? darker(fillColor)}\n />\n );\n default:\n exhaustive(shape, `Unknown point shape ${shape}`);\n }\n}\n"],"names":["darker","color","scaleLinear","BLACK","DIAMOND_COEF","getPointShape","shape","size","fillColor","strokeColor","jsx","n","a","exhaustive"],"mappings":";;;;AAMA,SAASA,EAAOC,GAAe;AAE3B,SADcC,EAAAA,EAAsB,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,MAAM,CAACD,GAAOE,CAAK,CAAC,EAC1D,IAAI;AACrB;AAEA,MAAMC,IAAe;AACd,SAASC,EAAcC,GAA0BC,IAAO,GAAGC,IAAYL,GAAOM,IAA6B,MAAM;AACpH,UAAQH,GAAAA;AAAAA,IACJ,KAAK;AACD,aAAO;AAAA,IAEX,KAAK;AACD,aACII,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WAAWA,IAAO,CAAC;AAAA,UACxF,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,QAAQA,CAAI,IAAIA,CAAI,UAAUA,IAAO,CAAC,QAAQA,CAAI,IAAIA,CAAI,WAAWA,IAAO,CAAC;AAAA,UAC1F,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,OAAOH,CAAI,KAAK,IAAIA,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,IAAIA,CAAI,KAAK,KAAKA,IAAO,KAAK,IAAK,KAAK,KAAM,CAAC,CAAC,IAAIA,CAAI;AAAA,UAC3G,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aAAAG,gBAAAA,EAAA,KACK,KAAA,EACG,UAAA;AAAA,QAAAD,gBAAAA,MAAC,UAAA,EAAO,GAAGH,GAAM,MAAK,eAAc,QAAO,QAAO;AAAA,QAClDG,gBAAAA,EAAAA,IAAC,QAAA,EAAK,GAAG,OAAOH,CAAI,OAAOA,CAAI,OAAOA,CAAI,QAAQA,CAAI,MAAM,MAAK,QAAO,QAAQC,GAAW;AAAA,MAAA,GAC/F;AAAA,IAER,KAAK;AACD,aAAAG,gBAAAA,EAAA,KACK,KAAA,EACG,UAAA;AAAA,QAAAD,gBAAAA,MAAC,UAAA,EAAO,GAAGH,GAAM,MAAK,eAAc,QAAO,QAAO;AAAA,QAClDG,gBAAAA,EAAAA;AAAAA,UAAC;AAAA,UAAA;AAAA,YACG,GAAG,KAAKH,CAAI,KAAKA,CAAI,KAAKA,CAAI,IAAIA,CAAI,MAAMA,CAAI,KAAKA,CAAI,OAAOA,CAAI,IAAIA,CAAI;AAAA,YAC5E,MAAK;AAAA,YACL,QAAQC;AAAAA,UAAA;AAAA,QAAA;AAAA,MAAA,GAEhB;AAAA,IAGR,KAAK,KAAK;AACN,YAAMI,IAAIL,IAAOH;AACjB,aAAOM,gBAAAA,EAAAA,IAAC,QAAA,EAAK,GAAG,OAAOE,CAAC,KAAKA,CAAC,UAAUA,CAAC,OAAOA,CAAC,OAAO,MAAK,eAAc,QAAQJ,GAAW;AAAA,IAClG;AAAA,IAEA,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,IAAI,KAAKH,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,KAAKA,CAAI,KAAK,IAAIA,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,KAAKA,CAAI,MAAMA,CAAI;AAAA,UACzG,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WAAWA,IAAO,CACnF,OAAOA,CAAI,KAAKA,CAAI,KAAKA,CAAI,IAAIA,CAAI,MAAMA,CAAI,KAAKA,CAAI,OAAOA,CAAI,IAAIA,CAAI;AAAA,UAC/E,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK,KAAK;AACN,YAAMI,IAAIL,IAAO,IAAI,KAAK,IAAI,KAAK,KAAK,CAAC;AACzC,aAAAI,gBAAAA,EAAA,KACK,KAAA,EACG,UAAA;AAAA,QAAAD,gBAAAA,MAAC,UAAA,EAAO,GAAGH,GAAM,MAAK,eAAc,QAAO,QAAO;AAAA,QAClDG,gBAAAA,EAAAA;AAAAA,UAAC;AAAA,UAAA;AAAA,YACG,GAAG,OAAOE,CAAC,OAAOA,CAAC,OAAOA,CAAC,QAAQA,CAAC,QAAQL,CAAI,KAAKA,CAAI,KAAKA,CAAI,IAAIA,CAAI,MAAMA,CAAI,KAAKA,CAAI,OAAOA,CAAI,IAAIA,CAAI;AAAA,YAChH,MAAK;AAAA,YACL,QAAQC;AAAAA,UAAA;AAAA,QAAA;AAAA,MAAA,GAEhB;AAAA,IAER;AAAA,IAEA,KAAK,KAAK;AACN,YAAMI,IAAIL,IAAOH;AACjB,aACIM,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,OAAOE,CAAC,KAAKA,CAAC,UAAUA,CAAC,OAAOA,CAAC,WAAWA,CAAC,OAAOA,CAAC,OAAOA,CAAC,QAAQA,CAAC;AAAA,UACzE,MAAK;AAAA,UACL,QAAQJ;AAAAA,QAAA;AAAA,MAAA;AAAA,IAGpB;AAAA,IAEA,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,QAAQA,CAAI,IAAIA,CAAI,UAAUA,IAAO,CAAC,QAAQA,CAAI,IAAIA,CAAI,WAAWA,IAAO,CACrF,WAAWA,CAAI,OAAOA,CAAI,OAAOA,CAAI,QAAQA,CAAI;AAAA,UACrD,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK,MAAM;AACP,YAAMI,IAAI,IAAIL,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC;AACzC,aACIG,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,KAAKE,CAAC,KAAKL,CAAI,IAAIK,CAAC,KAAKL,CAAI,MAAM,CAACA,IAAO,IAAIK,CAAC;AAAA,wBAC/CA,CAAC,IAAIL,CAAI,MAAMA,IAAO,IAAIK,CAAC,IAAIA,CAAC,IAAIL,CAAI;AAAA,UAC5C,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAGpB;AAAA,IAEA,KAAK;AACD,aAEIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WAAWA,IAAO,CACnF,SAASA,CAAI,OAAOA,CAAI,OAAOA,CAAI,QAAQA,CAAI;AAAA,UACnD,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,QAAQA,CAAI,IAAIA,CAAI,UAAUA,IAAO,CAAC,QAAQA,CAAI,IAAIA,CAAI,WAAWA,IAAO,CACrF,SAASA,CAAI,KAAKA,CAAI,KAAKA,CAAI,IAAIA,CAAI,MAAMA,CAAI,KAAKA,CAAI,OAAOA,CAAI,IAAIA,CAAI;AAAA,UACjF,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WAAWA,IAAO,CACnF,OAAOA,CAAI,IAAIA,CAAI,MAAM,CAACA,CAAI,IAAIA,CAAI,IAAIA,CAAI;AAAA,UAClD,MAAK;AAAA,UACL,QAAQC;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WAAWA,IAAO,CAAC;AAAA,UACxF,MAAMC;AAAAA,UACN,QAAQA;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,QAAQA,CAAI,IAAIA,CAAI,UAAUA,IAAO,CAAC,QAAQA,CAAI,IAAIA,CAAI,WAAWA,IAAO,CAAC;AAAA,UAC1F,MAAMC;AAAAA,UACN,QAAQA;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,OAAOH,CAAI,KAAK,IAAIA,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,IAAIA,CAAI,KAAK,KAAKA,IAAO,KAAK,IAAK,KAAK,KAAM,CAAC,CAAC,IAAIA,CAAI;AAAA,UAC3G,MAAMC;AAAAA,UACN,QAAQA;AAAAA,QAAA;AAAA,MAAA;AAAA,IAIpB,KAAK,MAAM;AACP,YAAMI,IAAIL,IAAOH;AACjB,aAAOM,gBAAAA,EAAAA,IAAC,QAAA,EAAK,GAAG,OAAOE,CAAC,KAAKA,CAAC,UAAUA,CAAC,OAAOA,CAAC,OAAO,MAAMJ,GAAW,QAAQA,GAAW;AAAA,IAChG;AAAA,IAEA,KAAK,MAAM;AACP,YAAMI,IAAKL,IAAO,IAAK;AACvB,aACIG,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAME,CAAC,QAAQA,CAAC,IAAIA,CAAC,UAAUA,IAAI,CAAC,QAAQA,CAAC,IAAIA,CAAC,WAAWA,IAAI,CAAC;AAAA,UACrE,MAAMJ;AAAAA,UACN,QAAQA;AAAAA,QAAA;AAAA,MAAA;AAAA,IAGpB;AAAA,IAEA,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,KAAKA,CAAI,MAAMA,IAAO,CAAC,UAAUA,IAAO,CAAC,OAAOA,IAAO,CAAC,WAAWA,IAAO,CAAC;AAAA,UACxF,MAAMC;AAAAA,UACN,QAAQC,KAAeT,EAAOQ,CAAS;AAAA,QAAA;AAAA,MAAA;AAAA,IAInD,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,MAAMH,CAAI,QAAQA,CAAI,IAAIA,CAAI,UAAUA,IAAO,CAAC,QAAQA,CAAI,IAAIA,CAAI,WAAWA,IAAO,CAAC;AAAA,UAC1F,MAAMC;AAAAA,UACN,QAAQC,KAAeT,EAAOQ,CAAS;AAAA,QAAA;AAAA,MAAA;AAAA,IAInD,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,OAAOH,CAAI,KAAK,IAAIA,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,IAAIA,CAAI,KAAK,KAAKA,IAAO,KAAK,IAAK,KAAK,KAAM,CAAC,CAAC,IAAIA,CAAI;AAAA,UAC3G,MAAMC;AAAAA,UACN,QAAQC,KAAeT,EAAOQ,CAAS;AAAA,QAAA;AAAA,MAAA;AAAA,IAInD,KAAK,MAAM;AACP,YAAMI,IAAIL,IAAOH;AACjB,aAAAO,gBAAAA,EAAA,IAAQ,QAAA,EAAK,GAAG,OAAOC,CAAC,KAAKA,CAAC,UAAUA,CAAC,OAAOA,CAAC,OAAO,MAAMJ,GAAW,QAAQC,KAAeT,EAAOQ,CAAS,GAAG;AAAA,IACvH;AAAA,IAEA,KAAK;AACD,aACIE,gBAAAA,EAAAA;AAAAA,QAAC;AAAA,QAAA;AAAA,UACG,GAAG,IAAI,KAAKH,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,KAAKA,CAAI,KAAK,IAAIA,IAAO,KAAK,IAAI,KAAK,KAAK,CAAC,CAAC,KAAKA,CAAI,MAAMA,CAAI;AAAA,UACzG,MAAMC;AAAAA,UACN,QAAQC,KAAeT,EAAOQ,CAAS;AAAA,QAAA;AAAA,MAAA;AAAA,IAGnD;AACIK,MAAAA,EAAWP,GAAO,uBAAuBA,CAAK,EAAE;AAAA,EAAA;AAE5D;","x_google_ignoreList":[0]}
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@milaboratories/graph-maker",
|
|
3
|
-
"version": "1.1.
|
|
3
|
+
"version": "1.1.173",
|
|
4
4
|
"type": "module",
|
|
5
5
|
"main": "dist/lib.js",
|
|
6
6
|
"types": "dist/lib.d.ts",
|
|
@@ -37,7 +37,7 @@
|
|
|
37
37
|
"dependencies": {
|
|
38
38
|
"@ag-grid-community/core": "^32.3.3",
|
|
39
39
|
"@milaboratories/helpers": "^1.6.15",
|
|
40
|
-
"@milaboratories/miplots4": "^1.0.
|
|
40
|
+
"@milaboratories/miplots4": "^1.0.155",
|
|
41
41
|
"@milaboratories/pf-plots": "^1.1.41",
|
|
42
42
|
"@platforma-sdk/model": "^1.43.29",
|
|
43
43
|
"@platforma-sdk/ui-vue": "^1.44.15",
|