@lobehub/lobehub 2.0.0-next.50 → 2.0.0-next.51
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/apps/desktop/src/main/controllers/ShellCommandCtr.ts +242 -0
- package/apps/desktop/src/main/controllers/__tests__/ShellCommandCtr.test.ts +499 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/chat.json +20 -0
- package/locales/ar/common.json +1 -0
- package/locales/ar/components.json +6 -0
- package/locales/ar/plugin.json +1 -0
- package/locales/bg-BG/chat.json +20 -0
- package/locales/bg-BG/common.json +1 -0
- package/locales/bg-BG/components.json +6 -0
- package/locales/bg-BG/plugin.json +1 -0
- package/locales/de-DE/chat.json +20 -0
- package/locales/de-DE/common.json +1 -0
- package/locales/de-DE/components.json +6 -0
- package/locales/de-DE/plugin.json +1 -0
- package/locales/en-US/chat.json +20 -0
- package/locales/en-US/common.json +1 -0
- package/locales/en-US/components.json +6 -0
- package/locales/en-US/plugin.json +1 -0
- package/locales/es-ES/chat.json +20 -0
- package/locales/es-ES/common.json +1 -0
- package/locales/es-ES/components.json +6 -0
- package/locales/es-ES/plugin.json +1 -0
- package/locales/fa-IR/chat.json +20 -0
- package/locales/fa-IR/common.json +1 -0
- package/locales/fa-IR/components.json +6 -0
- package/locales/fa-IR/plugin.json +1 -0
- package/locales/fr-FR/chat.json +20 -0
- package/locales/fr-FR/common.json +1 -0
- package/locales/fr-FR/components.json +6 -0
- package/locales/fr-FR/plugin.json +1 -0
- package/locales/it-IT/chat.json +20 -0
- package/locales/it-IT/common.json +1 -0
- package/locales/it-IT/components.json +6 -0
- package/locales/it-IT/plugin.json +1 -0
- package/locales/ja-JP/chat.json +20 -0
- package/locales/ja-JP/common.json +1 -0
- package/locales/ja-JP/components.json +6 -0
- package/locales/ja-JP/plugin.json +1 -0
- package/locales/ko-KR/chat.json +20 -0
- package/locales/ko-KR/common.json +1 -0
- package/locales/ko-KR/components.json +6 -0
- package/locales/ko-KR/plugin.json +1 -0
- package/locales/nl-NL/chat.json +20 -0
- package/locales/nl-NL/common.json +1 -0
- package/locales/nl-NL/components.json +6 -0
- package/locales/nl-NL/plugin.json +1 -0
- package/locales/pl-PL/chat.json +20 -0
- package/locales/pl-PL/common.json +1 -0
- package/locales/pl-PL/components.json +6 -0
- package/locales/pl-PL/plugin.json +1 -0
- package/locales/pt-BR/chat.json +20 -0
- package/locales/pt-BR/common.json +1 -0
- package/locales/pt-BR/components.json +6 -0
- package/locales/pt-BR/plugin.json +1 -0
- package/locales/ru-RU/chat.json +20 -0
- package/locales/ru-RU/common.json +1 -0
- package/locales/ru-RU/components.json +6 -0
- package/locales/ru-RU/plugin.json +1 -0
- package/locales/tr-TR/chat.json +20 -0
- package/locales/tr-TR/common.json +1 -0
- package/locales/tr-TR/components.json +6 -0
- package/locales/tr-TR/plugin.json +1 -0
- package/locales/vi-VN/chat.json +20 -0
- package/locales/vi-VN/common.json +1 -0
- package/locales/vi-VN/components.json +6 -0
- package/locales/vi-VN/plugin.json +1 -0
- package/locales/zh-CN/chat.json +20 -0
- package/locales/zh-CN/common.json +1 -0
- package/locales/zh-CN/components.json +6 -0
- package/locales/zh-CN/plugin.json +1 -0
- package/locales/zh-TW/chat.json +20 -0
- package/locales/zh-TW/common.json +1 -0
- package/locales/zh-TW/components.json +6 -0
- package/locales/zh-TW/plugin.json +1 -0
- package/package.json +1 -1
- package/packages/agent-runtime/src/core/InterventionChecker.ts +1 -1
- package/packages/agent-runtime/src/core/__tests__/InterventionChecker.test.ts +23 -23
- package/packages/agent-runtime/src/types/state.ts +7 -1
- package/packages/const/src/settings/tool.ts +1 -5
- package/packages/file-loaders/src/loaders/docx/index.ts +1 -1
- package/packages/model-bank/src/aiModels/wenxin.ts +1348 -291
- package/packages/model-runtime/src/providers/wenxin/index.ts +22 -1
- package/packages/model-runtime/src/utils/modelParse.ts +6 -0
- package/packages/types/src/tool/builtin.ts +9 -0
- package/packages/types/src/tool/intervention.ts +32 -2
- package/packages/types/src/user/settings/tool.ts +3 -27
- package/src/config/modelProviders/wenxin.ts +2 -3
- package/src/features/Conversation/MarkdownElements/remarkPlugins/__snapshots__/createRemarkSelfClosingTagPlugin.test.ts.snap +133 -0
- package/src/features/Conversation/MarkdownElements/remarkPlugins/createRemarkSelfClosingTagPlugin.test.ts +48 -0
- package/src/features/Conversation/MarkdownElements/remarkPlugins/createRemarkSelfClosingTagPlugin.ts +2 -1
- package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/Fallback.tsx +98 -0
- package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/ModeSelector.tsx +5 -6
- package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/index.tsx +40 -36
- package/src/features/Conversation/Messages/Group/Tool/Render/index.tsx +25 -18
- package/src/features/LocalFile/LocalFile.tsx +55 -5
- package/src/locales/default/components.ts +6 -0
- package/src/locales/default/plugin.ts +1 -0
- package/src/services/electron/localFileService.ts +4 -0
- package/src/store/chat/agents/GeneralChatAgent.ts +26 -1
- package/src/store/chat/agents/__tests__/GeneralChatAgent.test.ts +173 -0
- package/src/store/chat/slices/aiChat/actions/conversationControl.ts +8 -40
- package/src/store/chat/slices/aiChat/actions/streamingExecutor.ts +91 -34
- package/src/store/user/selectors.ts +1 -0
- package/src/store/user/slices/settings/action.ts +12 -0
- package/src/store/user/slices/settings/selectors/__snapshots__/settings.test.ts.snap +0 -7
- package/src/store/user/slices/settings/selectors/index.ts +1 -0
- package/src/store/user/slices/settings/selectors/settings.test.ts +0 -37
- package/src/store/user/slices/settings/selectors/settings.ts +0 -5
- package/src/store/user/slices/settings/selectors/toolIntervention.ts +17 -0
- package/src/tools/interventions.ts +8 -0
- package/src/tools/local-system/Intervention/RunCommand/index.tsx +56 -0
- package/src/tools/local-system/Intervention/index.tsx +17 -0
- package/src/tools/local-system/Render/RunCommand/index.tsx +100 -21
- package/src/tools/local-system/Render/index.tsx +2 -0
- package/src/tools/local-system/index.ts +180 -0
- package/src/tools/local-system/systemRole.ts +61 -7
|
@@ -1,34 +1,804 @@
|
|
|
1
1
|
import { AIChatModelCard, AIImageModelCard } from '../types/aiModel';
|
|
2
2
|
|
|
3
|
+
// https://cloud.baidu.com/doc/qianfan/s/rmh4stp0j
|
|
4
|
+
|
|
3
5
|
const wenxinChatModels: AIChatModelCard[] = [
|
|
4
6
|
{
|
|
5
7
|
abilities: {
|
|
6
|
-
|
|
8
|
+
functionCall: true,
|
|
9
|
+
reasoning: true,
|
|
10
|
+
search: true,
|
|
11
|
+
vision: true,
|
|
12
|
+
},
|
|
13
|
+
contextWindowTokens: 131_072,
|
|
14
|
+
description:
|
|
15
|
+
'文心5.0 Thinking 预览版,原生全模态旗舰模型,支持文本、图像、音频、视频统一建模,综合能力全面升级,适用于复杂问答、创作与智能体场景。',
|
|
16
|
+
displayName: 'ERNIE 5.0 Thinking Preview',
|
|
17
|
+
enabled: true,
|
|
18
|
+
id: 'ernie-5.0-thinking-preview',
|
|
19
|
+
maxOutput: 65_536,
|
|
20
|
+
pricing: {
|
|
21
|
+
currency: 'CNY',
|
|
22
|
+
units: [
|
|
23
|
+
{
|
|
24
|
+
lookup: {
|
|
25
|
+
prices: {
|
|
26
|
+
'[0, 0.032]': 6,
|
|
27
|
+
'[0.032, 0.128]': 10,
|
|
28
|
+
},
|
|
29
|
+
pricingParams: ['textInput'],
|
|
30
|
+
},
|
|
31
|
+
name: 'textInput',
|
|
32
|
+
strategy: 'lookup',
|
|
33
|
+
unit: 'millionTokens',
|
|
34
|
+
},
|
|
35
|
+
{
|
|
36
|
+
lookup: {
|
|
37
|
+
prices: {
|
|
38
|
+
'[0, 0.032]': 24,
|
|
39
|
+
'[0.032, 0.128]': 40,
|
|
40
|
+
},
|
|
41
|
+
pricingParams: ['textInput'],
|
|
42
|
+
},
|
|
43
|
+
name: 'textOutput',
|
|
44
|
+
strategy: 'lookup',
|
|
45
|
+
unit: 'millionTokens',
|
|
46
|
+
},
|
|
47
|
+
],
|
|
48
|
+
},
|
|
49
|
+
releasedAt: '2025-11-12',
|
|
50
|
+
settings: {
|
|
51
|
+
searchImpl: 'params',
|
|
52
|
+
},
|
|
53
|
+
type: 'chat',
|
|
54
|
+
},
|
|
55
|
+
{
|
|
56
|
+
abilities: {
|
|
57
|
+
functionCall: true,
|
|
58
|
+
search: true,
|
|
59
|
+
},
|
|
60
|
+
contextWindowTokens: 131_072,
|
|
61
|
+
description:
|
|
62
|
+
'ERNIE 4.5 Turbo 128K,高性能通用模型,支持搜索增强与工具调用,适用于问答、代码、智能体等多种业务场景。',
|
|
63
|
+
displayName: 'ERNIE 4.5 Turbo 128K',
|
|
64
|
+
enabled: true,
|
|
65
|
+
id: 'ernie-4.5-turbo-128k',
|
|
66
|
+
maxOutput: 12_288,
|
|
67
|
+
pricing: {
|
|
68
|
+
currency: 'CNY',
|
|
69
|
+
units: [
|
|
70
|
+
{ name: 'textInput_cacheRead', rate: 0.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
71
|
+
{ name: 'textInput', rate: 0.8, strategy: 'fixed', unit: 'millionTokens' },
|
|
72
|
+
{ name: 'textOutput', rate: 3.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
73
|
+
],
|
|
74
|
+
},
|
|
75
|
+
settings: {
|
|
76
|
+
searchImpl: 'params',
|
|
77
|
+
},
|
|
78
|
+
type: 'chat',
|
|
79
|
+
},
|
|
80
|
+
{
|
|
81
|
+
abilities: {
|
|
82
|
+
functionCall: true,
|
|
83
|
+
search: true,
|
|
84
|
+
},
|
|
85
|
+
contextWindowTokens: 131_072,
|
|
86
|
+
description: 'ERNIE 4.5 Turbo 128K 预览版,提供与正式版一致的能力体验,适合联调和灰度测试。',
|
|
87
|
+
displayName: 'ERNIE 4.5 Turbo 128K Preview',
|
|
88
|
+
id: 'ernie-4.5-turbo-128k-preview',
|
|
89
|
+
maxOutput: 12_288,
|
|
90
|
+
pricing: {
|
|
91
|
+
currency: 'CNY',
|
|
92
|
+
units: [
|
|
93
|
+
{ name: 'textInput_cacheRead', rate: 0.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
94
|
+
{ name: 'textInput', rate: 0.8, strategy: 'fixed', unit: 'millionTokens' },
|
|
95
|
+
{ name: 'textOutput', rate: 3.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
96
|
+
],
|
|
97
|
+
},
|
|
98
|
+
type: 'chat',
|
|
99
|
+
},
|
|
100
|
+
{
|
|
101
|
+
abilities: {
|
|
102
|
+
functionCall: true,
|
|
103
|
+
search: true,
|
|
104
|
+
},
|
|
105
|
+
contextWindowTokens: 32_768,
|
|
106
|
+
description: 'ERNIE 4.5 Turbo 32K,中长上下文版本,适用于问答、知识库检索和多轮对话等场景。',
|
|
107
|
+
displayName: 'ERNIE 4.5 Turbo 32K',
|
|
108
|
+
id: 'ernie-4.5-turbo-32k',
|
|
109
|
+
maxOutput: 12_288,
|
|
110
|
+
pricing: {
|
|
111
|
+
currency: 'CNY',
|
|
112
|
+
units: [
|
|
113
|
+
{ name: 'textInput_cacheRead', rate: 0.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
114
|
+
{ name: 'textInput', rate: 0.8, strategy: 'fixed', unit: 'millionTokens' },
|
|
115
|
+
{ name: 'textOutput', rate: 3.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
116
|
+
],
|
|
117
|
+
},
|
|
118
|
+
settings: {
|
|
119
|
+
searchImpl: 'params',
|
|
120
|
+
},
|
|
121
|
+
type: 'chat',
|
|
122
|
+
},
|
|
123
|
+
{
|
|
124
|
+
abilities: {
|
|
125
|
+
functionCall: true,
|
|
126
|
+
search: true,
|
|
127
|
+
},
|
|
128
|
+
contextWindowTokens: 131_072,
|
|
129
|
+
description: 'ERNIE 4.5 Turbo 最新版,综合性能优化,适合作为生产环境通用主力模型。',
|
|
130
|
+
displayName: 'ERNIE 4.5 Turbo Latest',
|
|
131
|
+
id: 'ernie-4.5-turbo-latest',
|
|
132
|
+
maxOutput: 12_288,
|
|
133
|
+
pricing: {
|
|
134
|
+
currency: 'CNY',
|
|
135
|
+
units: [
|
|
136
|
+
{ name: 'textInput_cacheRead', rate: 0.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
137
|
+
{ name: 'textInput', rate: 0.8, strategy: 'fixed', unit: 'millionTokens' },
|
|
138
|
+
{ name: 'textOutput', rate: 3.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
139
|
+
],
|
|
140
|
+
},
|
|
141
|
+
type: 'chat',
|
|
142
|
+
},
|
|
143
|
+
{
|
|
144
|
+
contextWindowTokens: 131_072,
|
|
145
|
+
description: 'ERNIE Speed 128K,免输入输出费用的大模型,适合长文本理解与大规模试用场景。',
|
|
146
|
+
displayName: 'ERNIE Speed 128K',
|
|
147
|
+
id: 'ernie-speed-128k',
|
|
148
|
+
maxOutput: 4096,
|
|
149
|
+
pricing: {
|
|
150
|
+
currency: 'CNY',
|
|
151
|
+
units: [
|
|
152
|
+
{ name: 'textInput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
153
|
+
{ name: 'textOutput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
154
|
+
],
|
|
155
|
+
},
|
|
156
|
+
type: 'chat',
|
|
157
|
+
},
|
|
158
|
+
{
|
|
159
|
+
contextWindowTokens: 8192,
|
|
160
|
+
description: 'ERNIE Speed 8K,免费快速模型,适合日常对话和轻量文本任务。',
|
|
161
|
+
displayName: 'ERNIE Speed 8K',
|
|
162
|
+
id: 'ernie-speed-8k',
|
|
163
|
+
maxOutput: 2048,
|
|
164
|
+
pricing: {
|
|
165
|
+
currency: 'CNY',
|
|
166
|
+
units: [
|
|
167
|
+
{ name: 'textInput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
168
|
+
{ name: 'textOutput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
169
|
+
],
|
|
170
|
+
},
|
|
171
|
+
type: 'chat',
|
|
172
|
+
},
|
|
173
|
+
{
|
|
174
|
+
contextWindowTokens: 131_072,
|
|
175
|
+
description: 'ERNIE Speed Pro 128K,高并发高性价比模型,适合大规模在线服务与企业应用。',
|
|
176
|
+
displayName: 'ERNIE Speed Pro 128K',
|
|
177
|
+
id: 'ernie-speed-pro-128k',
|
|
178
|
+
maxOutput: 4096,
|
|
179
|
+
pricing: {
|
|
180
|
+
currency: 'CNY',
|
|
181
|
+
units: [
|
|
182
|
+
{ name: 'textInput', rate: 0.3, strategy: 'fixed', unit: 'millionTokens' },
|
|
183
|
+
{ name: 'textOutput', rate: 0.6, strategy: 'fixed', unit: 'millionTokens' },
|
|
184
|
+
],
|
|
185
|
+
},
|
|
186
|
+
type: 'chat',
|
|
187
|
+
},
|
|
188
|
+
{
|
|
189
|
+
contextWindowTokens: 8192,
|
|
190
|
+
description: 'ERNIE Lite 8K,轻量级通用模型,适合对成本敏感的日常问答和内容生成场景。',
|
|
191
|
+
displayName: 'ERNIE Lite 8K',
|
|
192
|
+
id: 'ernie-lite-8k',
|
|
193
|
+
maxOutput: 2048,
|
|
194
|
+
pricing: {
|
|
195
|
+
currency: 'CNY',
|
|
196
|
+
units: [
|
|
197
|
+
{ name: 'textInput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
198
|
+
{ name: 'textOutput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
199
|
+
],
|
|
200
|
+
},
|
|
201
|
+
type: 'chat',
|
|
202
|
+
},
|
|
203
|
+
{
|
|
204
|
+
abilities: {
|
|
205
|
+
functionCall: true,
|
|
206
|
+
},
|
|
207
|
+
contextWindowTokens: 131_072,
|
|
208
|
+
description: 'ERNIE Lite Pro 128K,轻量高性能模型,适合对延迟和成本敏感的业务场景。',
|
|
209
|
+
displayName: 'ERNIE Lite Pro 128K',
|
|
210
|
+
id: 'ernie-lite-pro-128k',
|
|
211
|
+
maxOutput: 4096,
|
|
212
|
+
pricing: {
|
|
213
|
+
currency: 'CNY',
|
|
214
|
+
units: [
|
|
215
|
+
{ name: 'textInput', rate: 0.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
216
|
+
{ name: 'textOutput', rate: 0.4, strategy: 'fixed', unit: 'millionTokens' },
|
|
217
|
+
],
|
|
218
|
+
},
|
|
219
|
+
type: 'chat',
|
|
220
|
+
},
|
|
221
|
+
{
|
|
222
|
+
contextWindowTokens: 8192,
|
|
223
|
+
description: 'ERNIE Tiny 8K,极轻量模型,适合简单问答、分类等低成本推理场景。',
|
|
224
|
+
displayName: 'ERNIE Tiny 8K',
|
|
225
|
+
id: 'ernie-tiny-8k',
|
|
226
|
+
maxOutput: 2048,
|
|
227
|
+
pricing: {
|
|
228
|
+
currency: 'CNY',
|
|
229
|
+
units: [
|
|
230
|
+
{ name: 'textInput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
231
|
+
{ name: 'textOutput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
232
|
+
],
|
|
233
|
+
},
|
|
234
|
+
type: 'chat',
|
|
235
|
+
},
|
|
236
|
+
{
|
|
237
|
+
contextWindowTokens: 8192,
|
|
238
|
+
description: 'ERNIE Character 8K,角色人格对话模型,适合 IP 角色构建与长期陪伴对话。',
|
|
239
|
+
displayName: 'ERNIE Character 8K',
|
|
240
|
+
id: 'ernie-char-8k',
|
|
241
|
+
maxOutput: 2048,
|
|
242
|
+
pricing: {
|
|
243
|
+
currency: 'CNY',
|
|
244
|
+
units: [
|
|
245
|
+
{ name: 'textInput', rate: 0.3, strategy: 'fixed', unit: 'millionTokens' },
|
|
246
|
+
{ name: 'textOutput', rate: 0.6, strategy: 'fixed', unit: 'millionTokens' },
|
|
247
|
+
],
|
|
248
|
+
},
|
|
249
|
+
type: 'chat',
|
|
250
|
+
},
|
|
251
|
+
{
|
|
252
|
+
contextWindowTokens: 8192,
|
|
253
|
+
description: 'ERNIE Character Fiction 8K,面向小说与剧情创作的人格模型,适合长文本故事生成。',
|
|
254
|
+
displayName: 'ERNIE Character Fiction 8K',
|
|
255
|
+
id: 'ernie-char-fiction-8k',
|
|
256
|
+
maxOutput: 2048,
|
|
257
|
+
pricing: {
|
|
258
|
+
currency: 'CNY',
|
|
259
|
+
units: [
|
|
260
|
+
{ name: 'textInput', rate: 0.3, strategy: 'fixed', unit: 'millionTokens' },
|
|
261
|
+
{ name: 'textOutput', rate: 0.6, strategy: 'fixed', unit: 'millionTokens' },
|
|
262
|
+
],
|
|
263
|
+
},
|
|
264
|
+
type: 'chat',
|
|
265
|
+
},
|
|
266
|
+
{
|
|
267
|
+
contextWindowTokens: 8192,
|
|
268
|
+
description:
|
|
269
|
+
'ERNIE Character Fiction 8K Preview,人物与剧情创作模型预览版,用于功能体验与测试。',
|
|
270
|
+
displayName: 'ERNIE Character Fiction 8K Preview',
|
|
271
|
+
id: 'ernie-char-fiction-8k-preview',
|
|
272
|
+
maxOutput: 2048,
|
|
273
|
+
pricing: {
|
|
274
|
+
currency: 'CNY',
|
|
275
|
+
units: [
|
|
276
|
+
{ name: 'textInput', rate: 0.3, strategy: 'fixed', unit: 'millionTokens' },
|
|
277
|
+
{ name: 'textOutput', rate: 0.6, strategy: 'fixed', unit: 'millionTokens' },
|
|
278
|
+
],
|
|
279
|
+
},
|
|
280
|
+
type: 'chat',
|
|
281
|
+
},
|
|
282
|
+
{
|
|
283
|
+
contextWindowTokens: 8192,
|
|
284
|
+
description: 'ERNIE Novel 8K,长篇小说与 IP 剧情创作模型,擅长多角色、多线叙事。',
|
|
285
|
+
displayName: 'ERNIE Novel 8K',
|
|
286
|
+
id: 'ernie-novel-8k',
|
|
287
|
+
maxOutput: 2048,
|
|
288
|
+
pricing: {
|
|
289
|
+
currency: 'CNY',
|
|
290
|
+
units: [
|
|
291
|
+
{ name: 'textInput', rate: 40, strategy: 'fixed', unit: 'millionTokens' },
|
|
292
|
+
{ name: 'textOutput', rate: 120, strategy: 'fixed', unit: 'millionTokens' },
|
|
293
|
+
],
|
|
294
|
+
},
|
|
295
|
+
type: 'chat',
|
|
296
|
+
},
|
|
297
|
+
{
|
|
298
|
+
contextWindowTokens: 131_072,
|
|
299
|
+
description: 'ERNIE 4.5 0.3B,开源轻量版模型,适合作为本地和定制化部署方案。',
|
|
300
|
+
displayName: 'ERNIE 4.5 0.3B',
|
|
301
|
+
id: 'ernie-4.5-0.3b',
|
|
302
|
+
maxOutput: 8192,
|
|
303
|
+
pricing: {
|
|
304
|
+
currency: 'CNY',
|
|
305
|
+
units: [
|
|
306
|
+
{ name: 'textInput', rate: 0.1, strategy: 'fixed', unit: 'millionTokens' },
|
|
307
|
+
{ name: 'textOutput', rate: 0.4, strategy: 'fixed', unit: 'millionTokens' },
|
|
308
|
+
],
|
|
309
|
+
},
|
|
310
|
+
type: 'chat',
|
|
311
|
+
},
|
|
312
|
+
{
|
|
313
|
+
abilities: {
|
|
314
|
+
search: true,
|
|
315
|
+
},
|
|
316
|
+
contextWindowTokens: 131_072,
|
|
317
|
+
description: 'ERNIE 4.5 21B A3B,开源大参数版模型,在理解和生成任务上表现更强。',
|
|
318
|
+
displayName: 'ERNIE 4.5 21B A3B',
|
|
319
|
+
id: 'ernie-4.5-21b-a3b',
|
|
320
|
+
maxOutput: 8192,
|
|
321
|
+
pricing: {
|
|
322
|
+
currency: 'CNY',
|
|
323
|
+
units: [
|
|
324
|
+
{ name: 'textInput', rate: 0.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
325
|
+
{ name: 'textOutput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
326
|
+
],
|
|
327
|
+
},
|
|
328
|
+
settings: {
|
|
329
|
+
searchImpl: 'params',
|
|
330
|
+
},
|
|
331
|
+
type: 'chat',
|
|
332
|
+
},
|
|
333
|
+
{
|
|
334
|
+
abilities: {
|
|
335
|
+
vision: true,
|
|
336
|
+
},
|
|
337
|
+
contextWindowTokens: 32_768,
|
|
338
|
+
description: 'ERNIE 4.5 VL 28B A3B,多模态开源模型,支持图文理解与推理任务。',
|
|
339
|
+
displayName: 'ERNIE 4.5 VL 28B A3B',
|
|
340
|
+
id: 'ernie-4.5-vl-28b-a3b',
|
|
341
|
+
maxOutput: 8192,
|
|
342
|
+
pricing: {
|
|
343
|
+
currency: 'CNY',
|
|
344
|
+
units: [
|
|
345
|
+
{ name: 'textInput', rate: 1, strategy: 'fixed', unit: 'millionTokens' },
|
|
346
|
+
{ name: 'textOutput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
347
|
+
],
|
|
348
|
+
},
|
|
349
|
+
settings: {
|
|
350
|
+
extendParams: ['enableReasoning'],
|
|
351
|
+
},
|
|
352
|
+
type: 'chat',
|
|
353
|
+
},
|
|
354
|
+
{
|
|
355
|
+
contextWindowTokens: 131_072,
|
|
356
|
+
description:
|
|
357
|
+
'Qianfan Lightning 128B A19B,高性能中文通用模型,适用于复杂问答与大规模推理任务。',
|
|
358
|
+
displayName: 'Qianfan Lightning 128B A19B',
|
|
359
|
+
id: 'qianfan-lightning-128b-a19b',
|
|
360
|
+
maxOutput: 16_384,
|
|
361
|
+
pricing: {
|
|
362
|
+
currency: 'CNY',
|
|
363
|
+
units: [
|
|
364
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
365
|
+
{ name: 'textOutput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
366
|
+
],
|
|
367
|
+
},
|
|
368
|
+
type: 'chat',
|
|
369
|
+
},
|
|
370
|
+
{
|
|
371
|
+
contextWindowTokens: 32_768,
|
|
372
|
+
description: 'Qianfan 8B,中型通用模型,适合成本与效果平衡的文本生成和问答场景。',
|
|
373
|
+
displayName: 'Qianfan 8B',
|
|
374
|
+
id: 'qianfan-8b',
|
|
375
|
+
maxOutput: 16_384,
|
|
376
|
+
pricing: {
|
|
377
|
+
currency: 'CNY',
|
|
378
|
+
units: [
|
|
379
|
+
{ name: 'textInput', rate: 0.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
380
|
+
{ name: 'textOutput', rate: 1, strategy: 'fixed', unit: 'millionTokens' },
|
|
381
|
+
],
|
|
382
|
+
},
|
|
383
|
+
type: 'chat',
|
|
384
|
+
},
|
|
385
|
+
{
|
|
386
|
+
contextWindowTokens: 32_768,
|
|
387
|
+
description: 'Qianfan 70B,大参数中文模型,适合高质量内容生成与复杂推理任务。',
|
|
388
|
+
displayName: 'Qianfan 70B',
|
|
389
|
+
id: 'qianfan-70b',
|
|
390
|
+
maxOutput: 16_384,
|
|
391
|
+
pricing: {
|
|
392
|
+
currency: 'CNY',
|
|
393
|
+
units: [
|
|
394
|
+
{ name: 'textInput', rate: 0.8, strategy: 'fixed', unit: 'millionTokens' },
|
|
395
|
+
{ name: 'textOutput', rate: 3.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
396
|
+
],
|
|
397
|
+
},
|
|
398
|
+
type: 'chat',
|
|
399
|
+
},
|
|
400
|
+
{
|
|
401
|
+
contextWindowTokens: 32_768,
|
|
402
|
+
description: 'Qianfan Agent Intent 32K,面向意图识别与智能体编排的模型,支持长上下文场景。',
|
|
403
|
+
displayName: 'Qianfan Agent Intent 32K',
|
|
404
|
+
id: 'qianfan-agent-intent-32k',
|
|
405
|
+
maxOutput: 4096,
|
|
406
|
+
pricing: {
|
|
407
|
+
currency: 'CNY',
|
|
408
|
+
units: [
|
|
409
|
+
{ name: 'textInput', rate: 0.4, strategy: 'fixed', unit: 'millionTokens' },
|
|
410
|
+
{ name: 'textOutput', rate: 1.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
411
|
+
],
|
|
412
|
+
},
|
|
413
|
+
type: 'chat',
|
|
414
|
+
},
|
|
415
|
+
{
|
|
416
|
+
contextWindowTokens: 8192,
|
|
417
|
+
description: 'Qianfan Agent Lite 8K,轻量智能体模型,适合低成本多轮对话与业务编排。',
|
|
418
|
+
displayName: 'Qianfan Agent Lite 8K',
|
|
419
|
+
id: 'qianfan-agent-lite-8k',
|
|
420
|
+
maxOutput: 2048,
|
|
421
|
+
type: 'chat',
|
|
422
|
+
},
|
|
423
|
+
{
|
|
424
|
+
contextWindowTokens: 32_768,
|
|
425
|
+
description: 'Qianfan Agent Speed 32K,高流控智能体模型,适合大规模、多任务 Agent 应用。',
|
|
426
|
+
displayName: 'Qianfan Agent Speed 32K',
|
|
427
|
+
id: 'qianfan-agent-speed-32k',
|
|
428
|
+
maxOutput: 4096,
|
|
429
|
+
type: 'chat',
|
|
430
|
+
},
|
|
431
|
+
{
|
|
432
|
+
contextWindowTokens: 8192,
|
|
433
|
+
description: 'Qianfan Agent Speed 8K,面向中短对话与快速响应的高并发智能体模型。',
|
|
434
|
+
displayName: 'Qianfan Agent Speed 8K',
|
|
435
|
+
id: 'qianfan-agent-speed-8k',
|
|
436
|
+
maxOutput: 2048,
|
|
437
|
+
type: 'chat',
|
|
438
|
+
},
|
|
439
|
+
{
|
|
440
|
+
abilities: {
|
|
441
|
+
vision: true,
|
|
442
|
+
},
|
|
443
|
+
contextWindowTokens: 131_072,
|
|
444
|
+
description:
|
|
445
|
+
'ERNIE 4.5 Turbo VL Preview,多模态预览模型,支持图文理解与生成,适合视觉问答与内容理解体验。',
|
|
446
|
+
displayName: 'ERNIE 4.5 Turbo VL Preview',
|
|
447
|
+
id: 'ernie-4.5-turbo-vl-preview',
|
|
448
|
+
maxOutput: 16_384,
|
|
449
|
+
pricing: {
|
|
450
|
+
currency: 'CNY',
|
|
451
|
+
units: [
|
|
452
|
+
{ name: 'textInput_cacheRead', rate: 0.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
453
|
+
{ name: 'textInput', rate: 3, strategy: 'fixed', unit: 'millionTokens' },
|
|
454
|
+
{ name: 'textOutput', rate: 9, strategy: 'fixed', unit: 'millionTokens' },
|
|
455
|
+
],
|
|
456
|
+
},
|
|
457
|
+
settings: {
|
|
458
|
+
extendParams: ['enableReasoning'],
|
|
459
|
+
},
|
|
460
|
+
type: 'chat',
|
|
461
|
+
},
|
|
462
|
+
{
|
|
463
|
+
abilities: {
|
|
464
|
+
vision: true,
|
|
465
|
+
},
|
|
466
|
+
contextWindowTokens: 131_072,
|
|
467
|
+
description: 'ERNIE 4.5 Turbo VL,成熟多模态模型,适合生产环境中的图文理解与识别任务。',
|
|
468
|
+
displayName: 'ERNIE 4.5 Turbo VL',
|
|
469
|
+
id: 'ernie-4.5-turbo-vl',
|
|
470
|
+
maxOutput: 16_384,
|
|
471
|
+
pricing: {
|
|
472
|
+
currency: 'CNY',
|
|
473
|
+
units: [
|
|
474
|
+
{ name: 'textInput_cacheRead', rate: 0.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
475
|
+
{ name: 'textInput', rate: 3, strategy: 'fixed', unit: 'millionTokens' },
|
|
476
|
+
{ name: 'textOutput', rate: 9, strategy: 'fixed', unit: 'millionTokens' },
|
|
477
|
+
],
|
|
478
|
+
},
|
|
479
|
+
type: 'chat',
|
|
480
|
+
},
|
|
481
|
+
{
|
|
482
|
+
abilities: {
|
|
483
|
+
vision: true,
|
|
484
|
+
},
|
|
485
|
+
contextWindowTokens: 32_768,
|
|
486
|
+
description: 'ERNIE 4.5 Turbo VL 32K,中长文本多模态版本,适用于长文档+图片联合理解。',
|
|
487
|
+
displayName: 'ERNIE 4.5 Turbo VL 32K',
|
|
488
|
+
id: 'ernie-4.5-turbo-vl-32k',
|
|
489
|
+
maxOutput: 12_288,
|
|
490
|
+
pricing: {
|
|
491
|
+
currency: 'CNY',
|
|
492
|
+
units: [
|
|
493
|
+
{ name: 'textInput_cacheRead', rate: 0.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
494
|
+
{ name: 'textInput', rate: 3, strategy: 'fixed', unit: 'millionTokens' },
|
|
495
|
+
{ name: 'textOutput', rate: 9, strategy: 'fixed', unit: 'millionTokens' },
|
|
496
|
+
],
|
|
497
|
+
},
|
|
498
|
+
type: 'chat',
|
|
499
|
+
},
|
|
500
|
+
{
|
|
501
|
+
abilities: {
|
|
502
|
+
vision: true,
|
|
503
|
+
},
|
|
504
|
+
contextWindowTokens: 32_768,
|
|
505
|
+
description: 'ERNIE 4.5 Turbo VL 32K Preview,多模态 32K 预览版,便于评估长上下文视觉能力。',
|
|
506
|
+
displayName: 'ERNIE 4.5 Turbo VL 32K Preview',
|
|
507
|
+
id: 'ernie-4.5-turbo-vl-32k-preview',
|
|
508
|
+
maxOutput: 16_384,
|
|
509
|
+
pricing: {
|
|
510
|
+
currency: 'CNY',
|
|
511
|
+
units: [
|
|
512
|
+
{ name: 'textInput_cacheRead', rate: 0.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
513
|
+
{ name: 'textInput', rate: 3, strategy: 'fixed', unit: 'millionTokens' },
|
|
514
|
+
{ name: 'textOutput', rate: 9, strategy: 'fixed', unit: 'millionTokens' },
|
|
515
|
+
],
|
|
516
|
+
},
|
|
517
|
+
settings: {
|
|
518
|
+
extendParams: ['enableReasoning'],
|
|
519
|
+
},
|
|
520
|
+
type: 'chat',
|
|
521
|
+
},
|
|
522
|
+
{
|
|
523
|
+
abilities: {
|
|
524
|
+
vision: true,
|
|
525
|
+
},
|
|
526
|
+
contextWindowTokens: 131_072,
|
|
527
|
+
description: 'ERNIE 4.5 Turbo VL Latest,多模态最新版本,提供更优图文理解与推理效果。',
|
|
528
|
+
displayName: 'ERNIE 4.5 Turbo VL Latest',
|
|
529
|
+
id: 'ernie-4.5-turbo-vl-latest',
|
|
530
|
+
maxOutput: 16_384,
|
|
531
|
+
pricing: {
|
|
532
|
+
currency: 'CNY',
|
|
533
|
+
units: [
|
|
534
|
+
{ name: 'textInput_cacheRead', rate: 0.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
535
|
+
{ name: 'textInput', rate: 3, strategy: 'fixed', unit: 'millionTokens' },
|
|
536
|
+
{ name: 'textOutput', rate: 9, strategy: 'fixed', unit: 'millionTokens' },
|
|
537
|
+
],
|
|
538
|
+
},
|
|
539
|
+
type: 'chat',
|
|
540
|
+
},
|
|
541
|
+
{
|
|
542
|
+
abilities: {
|
|
543
|
+
vision: true,
|
|
544
|
+
},
|
|
545
|
+
contextWindowTokens: 8192,
|
|
546
|
+
description: 'ERNIE 4.5 8K Preview,8K 上下文预览模型,用于体验与测试文心 4.5 能力。',
|
|
547
|
+
displayName: 'ERNIE 4.5 8K Preview',
|
|
548
|
+
id: 'ernie-4.5-8k-preview',
|
|
549
|
+
maxOutput: 2048,
|
|
550
|
+
pricing: {
|
|
551
|
+
currency: 'CNY',
|
|
552
|
+
units: [
|
|
553
|
+
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
554
|
+
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
555
|
+
],
|
|
556
|
+
},
|
|
557
|
+
type: 'chat',
|
|
558
|
+
},
|
|
559
|
+
{
|
|
560
|
+
abilities: {
|
|
561
|
+
vision: true,
|
|
562
|
+
},
|
|
563
|
+
contextWindowTokens: 32_768,
|
|
564
|
+
description: 'Qianfan Composition,多模态创作模型,支持图文混合理解与生成。',
|
|
565
|
+
displayName: 'Qianfan Composition',
|
|
566
|
+
id: 'qianfan-composition',
|
|
567
|
+
maxOutput: 8192,
|
|
568
|
+
pricing: {
|
|
569
|
+
currency: 'CNY',
|
|
570
|
+
units: [
|
|
571
|
+
{ name: 'textInput', rate: 2.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
572
|
+
{ name: 'textOutput', rate: 7.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
573
|
+
],
|
|
574
|
+
},
|
|
575
|
+
type: 'chat',
|
|
576
|
+
},
|
|
577
|
+
{
|
|
578
|
+
abilities: {
|
|
579
|
+
vision: true,
|
|
580
|
+
},
|
|
581
|
+
contextWindowTokens: 131_072,
|
|
582
|
+
description: 'Qianfan Check VL,多模态内容审核与检测模型,支持图文合规与识别任务。',
|
|
583
|
+
displayName: 'Qianfan Check VL',
|
|
584
|
+
id: 'qianfan-check-vl',
|
|
585
|
+
maxOutput: 131_072,
|
|
586
|
+
pricing: {
|
|
587
|
+
currency: 'CNY',
|
|
588
|
+
units: [
|
|
589
|
+
{ name: 'textInput', rate: 1.25, strategy: 'fixed', unit: 'millionTokens' },
|
|
590
|
+
{ name: 'textOutput', rate: 3.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
591
|
+
],
|
|
592
|
+
},
|
|
593
|
+
type: 'chat',
|
|
594
|
+
},
|
|
595
|
+
{
|
|
596
|
+
abilities: {
|
|
597
|
+
vision: true,
|
|
598
|
+
},
|
|
599
|
+
contextWindowTokens: 131_072,
|
|
600
|
+
description: 'Qianfan MultiPicOCR,多图 OCR 模型,支持多张图片文字检测与识别。',
|
|
601
|
+
displayName: 'Qianfan MultiPicOCR',
|
|
602
|
+
id: 'qianfan-multipicocr',
|
|
603
|
+
maxOutput: 32_768,
|
|
604
|
+
pricing: {
|
|
605
|
+
currency: 'CNY',
|
|
606
|
+
units: [
|
|
607
|
+
{ name: 'textInput', rate: 2.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
608
|
+
{ name: 'textOutput', rate: 7.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
609
|
+
],
|
|
610
|
+
},
|
|
611
|
+
type: 'chat',
|
|
612
|
+
},
|
|
613
|
+
{
|
|
614
|
+
abilities: {
|
|
615
|
+
vision: true,
|
|
616
|
+
},
|
|
617
|
+
contextWindowTokens: 32_768,
|
|
618
|
+
description: 'Qianfan VL 70B,大参数视觉语言模型,适用于复杂图文理解场景。',
|
|
619
|
+
displayName: 'Qianfan VL 70B',
|
|
620
|
+
id: 'qianfan-vl-70b',
|
|
621
|
+
maxOutput: 28_672,
|
|
622
|
+
pricing: {
|
|
623
|
+
currency: 'CNY',
|
|
624
|
+
units: [
|
|
625
|
+
{ name: 'textInput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
626
|
+
{ name: 'textOutput', rate: 24, strategy: 'fixed', unit: 'millionTokens' },
|
|
627
|
+
],
|
|
628
|
+
},
|
|
629
|
+
type: 'chat',
|
|
630
|
+
},
|
|
631
|
+
{
|
|
632
|
+
abilities: {
|
|
633
|
+
vision: true,
|
|
634
|
+
},
|
|
635
|
+
contextWindowTokens: 32_768,
|
|
636
|
+
description: 'Qianfan VL 8B,轻量视觉语言模型,适合日常图文问答和分析。',
|
|
637
|
+
displayName: 'Qianfan VL 8B',
|
|
638
|
+
id: 'qianfan-vl-8b',
|
|
639
|
+
maxOutput: 28_672,
|
|
640
|
+
pricing: {
|
|
641
|
+
currency: 'CNY',
|
|
642
|
+
units: [
|
|
643
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
644
|
+
{ name: 'textOutput', rate: 6, strategy: 'fixed', unit: 'millionTokens' },
|
|
645
|
+
],
|
|
646
|
+
},
|
|
647
|
+
type: 'chat',
|
|
648
|
+
},
|
|
649
|
+
{
|
|
650
|
+
abilities: {
|
|
651
|
+
vision: true,
|
|
652
|
+
},
|
|
653
|
+
contextWindowTokens: 32_768,
|
|
654
|
+
description: 'Qianfan Llama VL 8B,基于 Llama 的多模态模型,面向通用图文理解任务。',
|
|
655
|
+
displayName: 'Qianfan Llama VL 8B',
|
|
656
|
+
id: 'qianfan-llama-vl-8b',
|
|
657
|
+
maxOutput: 16_384,
|
|
658
|
+
pricing: {
|
|
659
|
+
currency: 'CNY',
|
|
660
|
+
units: [
|
|
661
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
662
|
+
{ name: 'textOutput', rate: 5, strategy: 'fixed', unit: 'millionTokens' },
|
|
663
|
+
],
|
|
664
|
+
},
|
|
665
|
+
type: 'chat',
|
|
666
|
+
},
|
|
667
|
+
{
|
|
668
|
+
abilities: {
|
|
669
|
+
vision: true,
|
|
670
|
+
},
|
|
671
|
+
contextWindowTokens: 131_072,
|
|
672
|
+
description: 'Qianfan QI VL,多模态问答模型,支持复杂图文场景下的精准检索与问答。',
|
|
673
|
+
displayName: 'Qianfan QI VL',
|
|
674
|
+
id: 'qianfan-qi-vl',
|
|
675
|
+
maxOutput: 131_072,
|
|
676
|
+
pricing: {
|
|
677
|
+
currency: 'CNY',
|
|
678
|
+
units: [
|
|
679
|
+
{ name: 'textInput', rate: 1.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
680
|
+
{ name: 'textOutput', rate: 4.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
681
|
+
],
|
|
682
|
+
},
|
|
683
|
+
type: 'chat',
|
|
684
|
+
},
|
|
685
|
+
{
|
|
686
|
+
abilities: {
|
|
687
|
+
vision: true,
|
|
688
|
+
},
|
|
689
|
+
contextWindowTokens: 4096,
|
|
690
|
+
description: 'Qianfan EngCard VL,专注英文场景的多模态识别模型。',
|
|
691
|
+
displayName: 'Qianfan EngCard VL',
|
|
692
|
+
id: 'qianfan-engcard-vl',
|
|
693
|
+
maxOutput: 4000,
|
|
694
|
+
pricing: {
|
|
695
|
+
currency: 'CNY',
|
|
696
|
+
units: [
|
|
697
|
+
{ name: 'textInput', rate: 0.8, strategy: 'fixed', unit: 'millionTokens' },
|
|
698
|
+
{ name: 'textOutput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
699
|
+
],
|
|
700
|
+
},
|
|
701
|
+
type: 'chat',
|
|
702
|
+
},
|
|
703
|
+
{
|
|
704
|
+
abilities: {
|
|
705
|
+
vision: true,
|
|
706
|
+
},
|
|
707
|
+
contextWindowTokens: 4096,
|
|
708
|
+
description: 'Qianfan SinglePicOCR,单图 OCR 模型,支持高精度字符识别。',
|
|
709
|
+
displayName: 'Qianfan SinglePicOCR',
|
|
710
|
+
id: 'qianfan-singlepicocr',
|
|
711
|
+
maxOutput: 4096,
|
|
712
|
+
pricing: {
|
|
713
|
+
currency: 'CNY',
|
|
714
|
+
units: [
|
|
715
|
+
{ name: 'textInput', rate: 0.8, strategy: 'fixed', unit: 'millionTokens' },
|
|
716
|
+
{ name: 'textOutput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
717
|
+
],
|
|
718
|
+
},
|
|
719
|
+
type: 'chat',
|
|
720
|
+
},
|
|
721
|
+
{
|
|
722
|
+
abilities: {
|
|
723
|
+
vision: true,
|
|
724
|
+
},
|
|
725
|
+
contextWindowTokens: 32_768,
|
|
726
|
+
description: 'InternVL3 38B,大规模多模态开源模型,适用于高精度图文理解任务。',
|
|
727
|
+
displayName: 'InternVL3 38B',
|
|
728
|
+
id: 'internvl3-38b',
|
|
729
|
+
maxOutput: 8192,
|
|
730
|
+
pricing: {
|
|
731
|
+
currency: 'CNY',
|
|
732
|
+
units: [
|
|
733
|
+
{ name: 'textInput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
734
|
+
{ name: 'textOutput', rate: 24, strategy: 'fixed', unit: 'millionTokens' },
|
|
735
|
+
],
|
|
736
|
+
},
|
|
737
|
+
type: 'chat',
|
|
738
|
+
},
|
|
739
|
+
{
|
|
740
|
+
abilities: {
|
|
741
|
+
vision: true,
|
|
742
|
+
},
|
|
743
|
+
contextWindowTokens: 32_768,
|
|
744
|
+
description: 'InternVL3 14B,中等规模多模态模型,在性能与成本间取得平衡。',
|
|
745
|
+
displayName: 'InternVL3 14B',
|
|
746
|
+
id: 'internvl3-14b',
|
|
747
|
+
maxOutput: 8192,
|
|
748
|
+
pricing: {
|
|
749
|
+
currency: 'CNY',
|
|
750
|
+
units: [
|
|
751
|
+
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
752
|
+
{ name: 'textOutput', rate: 12, strategy: 'fixed', unit: 'millionTokens' },
|
|
753
|
+
],
|
|
754
|
+
},
|
|
755
|
+
type: 'chat',
|
|
756
|
+
},
|
|
757
|
+
{
|
|
758
|
+
abilities: {
|
|
759
|
+
vision: true,
|
|
760
|
+
},
|
|
761
|
+
contextWindowTokens: 32_768,
|
|
762
|
+
description: 'InternVL3 1B,轻量多模态模型,适合资源受限环境部署。',
|
|
763
|
+
displayName: 'InternVL3 1B',
|
|
764
|
+
id: 'internvl3-1b',
|
|
765
|
+
maxOutput: 8192,
|
|
766
|
+
pricing: {
|
|
767
|
+
currency: 'CNY',
|
|
768
|
+
units: [
|
|
769
|
+
{ name: 'textInput', rate: 0.4, strategy: 'fixed', unit: 'millionTokens' },
|
|
770
|
+
{ name: 'textOutput', rate: 1.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
771
|
+
],
|
|
772
|
+
},
|
|
773
|
+
type: 'chat',
|
|
774
|
+
},
|
|
775
|
+
{
|
|
776
|
+
abilities: {
|
|
777
|
+
vision: true,
|
|
7
778
|
},
|
|
8
779
|
contextWindowTokens: 32_768,
|
|
9
|
-
description: '
|
|
10
|
-
displayName: '
|
|
11
|
-
|
|
12
|
-
|
|
780
|
+
description: 'InternVL2.5 38B MPO,多模态预训练模型,支持复杂图文推理任务。',
|
|
781
|
+
displayName: 'InternVL2.5 38B MPO',
|
|
782
|
+
id: 'internvl2.5-38b-mpo',
|
|
783
|
+
maxOutput: 4096,
|
|
13
784
|
pricing: {
|
|
14
785
|
currency: 'CNY',
|
|
15
786
|
units: [
|
|
16
|
-
{ name: 'textInput', rate:
|
|
17
|
-
{ name: 'textOutput', rate:
|
|
787
|
+
{ name: 'textInput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
788
|
+
{ name: 'textOutput', rate: 24, strategy: 'fixed', unit: 'millionTokens' },
|
|
18
789
|
],
|
|
19
790
|
},
|
|
20
|
-
releasedAt: '2025-04-24',
|
|
21
791
|
type: 'chat',
|
|
22
792
|
},
|
|
23
793
|
{
|
|
24
794
|
abilities: {
|
|
25
|
-
|
|
795
|
+
vision: true,
|
|
26
796
|
},
|
|
27
|
-
contextWindowTokens:
|
|
28
|
-
description:
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
797
|
+
contextWindowTokens: 131_072,
|
|
798
|
+
description: 'Qwen3 VL 32B Instruct,多模态指令微调模型,适用于高质量图文问答与创作。',
|
|
799
|
+
displayName: 'Qwen3 VL 32B Instruct',
|
|
800
|
+
id: 'qwen3-vl-32b-instruct',
|
|
801
|
+
maxOutput: 32_768,
|
|
32
802
|
pricing: {
|
|
33
803
|
currency: 'CNY',
|
|
34
804
|
units: [
|
|
@@ -36,72 +806,131 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
|
36
806
|
{ name: 'textOutput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
37
807
|
],
|
|
38
808
|
},
|
|
39
|
-
releasedAt: '2025-04-15',
|
|
40
809
|
type: 'chat',
|
|
41
810
|
},
|
|
42
811
|
{
|
|
43
812
|
abilities: {
|
|
44
|
-
|
|
813
|
+
vision: true,
|
|
45
814
|
},
|
|
46
|
-
contextWindowTokens:
|
|
47
|
-
description:
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
815
|
+
contextWindowTokens: 131_072,
|
|
816
|
+
description: 'Qwen3 VL 32B Thinking,多模态深度思考版本,强化复杂推理与长链路分析。',
|
|
817
|
+
displayName: 'Qwen3 VL 32B Thinking',
|
|
818
|
+
id: 'qwen3-vl-32b-thinking',
|
|
819
|
+
maxOutput: 32_768,
|
|
51
820
|
pricing: {
|
|
52
821
|
currency: 'CNY',
|
|
53
822
|
units: [
|
|
54
823
|
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
55
|
-
{ name: 'textOutput', rate:
|
|
824
|
+
{ name: 'textOutput', rate: 20, strategy: 'fixed', unit: 'millionTokens' },
|
|
56
825
|
],
|
|
57
826
|
},
|
|
58
|
-
releasedAt: '2025-03-16',
|
|
59
827
|
type: 'chat',
|
|
60
828
|
},
|
|
61
829
|
{
|
|
62
830
|
abilities: {
|
|
63
|
-
|
|
64
|
-
search: true,
|
|
831
|
+
vision: true,
|
|
65
832
|
},
|
|
66
833
|
contextWindowTokens: 131_072,
|
|
67
|
-
description:
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
id: 'ernie-4.5-turbo-128k',
|
|
834
|
+
description: 'Qwen3 VL 8B Instruct,轻量多模态模型,适合日常视觉问答与应用集成。',
|
|
835
|
+
displayName: 'Qwen3 VL 8B Instruct',
|
|
836
|
+
id: 'qwen3-vl-8b-instruct',
|
|
837
|
+
maxOutput: 32_768,
|
|
72
838
|
pricing: {
|
|
73
839
|
currency: 'CNY',
|
|
74
840
|
units: [
|
|
75
|
-
{ name: 'textInput', rate: 0.
|
|
76
|
-
{ name: 'textOutput', rate:
|
|
841
|
+
{ name: 'textInput', rate: 0.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
842
|
+
{ name: 'textOutput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
77
843
|
],
|
|
78
844
|
},
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
845
|
+
type: 'chat',
|
|
846
|
+
},
|
|
847
|
+
{
|
|
848
|
+
abilities: {
|
|
849
|
+
vision: true,
|
|
850
|
+
},
|
|
851
|
+
contextWindowTokens: 131_072,
|
|
852
|
+
description: 'Qwen3 VL 8B Thinking,多模态思维链模型,适合对视觉信息进行细致推理。',
|
|
853
|
+
displayName: 'Qwen3 VL 8B Thinking',
|
|
854
|
+
id: 'qwen3-vl-8b-thinking',
|
|
855
|
+
maxOutput: 32_768,
|
|
856
|
+
pricing: {
|
|
857
|
+
currency: 'CNY',
|
|
858
|
+
units: [
|
|
859
|
+
{ name: 'textInput', rate: 0.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
860
|
+
{ name: 'textOutput', rate: 5, strategy: 'fixed', unit: 'millionTokens' },
|
|
861
|
+
],
|
|
82
862
|
},
|
|
83
863
|
type: 'chat',
|
|
84
864
|
},
|
|
85
865
|
{
|
|
86
866
|
abilities: {
|
|
87
|
-
|
|
88
|
-
search: true,
|
|
867
|
+
vision: true,
|
|
89
868
|
},
|
|
90
|
-
contextWindowTokens:
|
|
91
|
-
description:
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
869
|
+
contextWindowTokens: 131_072,
|
|
870
|
+
description: 'Qwen3 VL 30B A3B Instruct,多模态大模型,兼顾精度与推理性能。',
|
|
871
|
+
displayName: 'Qwen3 VL 30B A3B Instruct',
|
|
872
|
+
id: 'qwen3-vl-30b-a3b-instruct',
|
|
873
|
+
maxOutput: 32_768,
|
|
95
874
|
pricing: {
|
|
96
875
|
currency: 'CNY',
|
|
97
876
|
units: [
|
|
98
|
-
{ name: 'textInput', rate: 0.
|
|
99
|
-
{ name: 'textOutput', rate: 3
|
|
877
|
+
{ name: 'textInput', rate: 0.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
878
|
+
{ name: 'textOutput', rate: 3, strategy: 'fixed', unit: 'millionTokens' },
|
|
100
879
|
],
|
|
101
880
|
},
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
881
|
+
type: 'chat',
|
|
882
|
+
},
|
|
883
|
+
{
|
|
884
|
+
abilities: {
|
|
885
|
+
vision: true,
|
|
886
|
+
},
|
|
887
|
+
contextWindowTokens: 131_072,
|
|
888
|
+
description: 'Qwen3 VL 30B A3B Thinking,面向复杂多模态任务的深度思考版本。',
|
|
889
|
+
displayName: 'Qwen3 VL 30B A3B Thinking',
|
|
890
|
+
id: 'qwen3-vl-30b-a3b-thinking',
|
|
891
|
+
maxOutput: 32_768,
|
|
892
|
+
pricing: {
|
|
893
|
+
currency: 'CNY',
|
|
894
|
+
units: [
|
|
895
|
+
{ name: 'textInput', rate: 0.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
896
|
+
{ name: 'textOutput', rate: 7.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
897
|
+
],
|
|
898
|
+
},
|
|
899
|
+
type: 'chat',
|
|
900
|
+
},
|
|
901
|
+
{
|
|
902
|
+
abilities: {
|
|
903
|
+
vision: true,
|
|
904
|
+
},
|
|
905
|
+
contextWindowTokens: 131_072,
|
|
906
|
+
description: 'Qwen3 VL 235B A22B Instruct,旗舰多模态模型,面向高要求理解与创作场景。',
|
|
907
|
+
displayName: 'Qwen3 VL 235B A22B Instruct',
|
|
908
|
+
id: 'qwen3-vl-235b-a22b-instruct',
|
|
909
|
+
maxOutput: 32_768,
|
|
910
|
+
pricing: {
|
|
911
|
+
currency: 'CNY',
|
|
912
|
+
units: [
|
|
913
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
914
|
+
{ name: 'textOutput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
915
|
+
],
|
|
916
|
+
},
|
|
917
|
+
type: 'chat',
|
|
918
|
+
},
|
|
919
|
+
{
|
|
920
|
+
abilities: {
|
|
921
|
+
vision: true,
|
|
922
|
+
},
|
|
923
|
+
contextWindowTokens: 131_072,
|
|
924
|
+
description: 'Qwen3 VL 235B A22B Thinking,旗舰思考版,用于复杂多模态推理与规划任务。',
|
|
925
|
+
displayName: 'Qwen3 VL 235B A22B Thinking',
|
|
926
|
+
id: 'qwen3-vl-235b-a22b-thinking',
|
|
927
|
+
maxOutput: 32_768,
|
|
928
|
+
pricing: {
|
|
929
|
+
currency: 'CNY',
|
|
930
|
+
units: [
|
|
931
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
932
|
+
{ name: 'textOutput', rate: 20, strategy: 'fixed', unit: 'millionTokens' },
|
|
933
|
+
],
|
|
105
934
|
},
|
|
106
935
|
type: 'chat',
|
|
107
936
|
},
|
|
@@ -110,55 +939,130 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
|
110
939
|
vision: true,
|
|
111
940
|
},
|
|
112
941
|
contextWindowTokens: 32_768,
|
|
113
|
-
description:
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
id: 'ernie-4.5-turbo-vl-32k',
|
|
942
|
+
description: 'Qwen2.5 VL 32B Instruct,多模态开源模型,适合私有化部署与多场景应用。',
|
|
943
|
+
displayName: 'Qwen2.5 VL 32B Instruct',
|
|
944
|
+
id: 'qwen2.5-vl-32b-instruct',
|
|
945
|
+
maxOutput: 8192,
|
|
118
946
|
pricing: {
|
|
119
947
|
currency: 'CNY',
|
|
120
948
|
units: [
|
|
121
|
-
{ name: 'textInput', rate:
|
|
122
|
-
{ name: 'textOutput', rate:
|
|
949
|
+
{ name: 'textInput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
950
|
+
{ name: 'textOutput', rate: 24, strategy: 'fixed', unit: 'millionTokens' },
|
|
123
951
|
],
|
|
124
952
|
},
|
|
125
|
-
releasedAt: '2025-04-24',
|
|
126
953
|
type: 'chat',
|
|
127
954
|
},
|
|
128
955
|
{
|
|
129
956
|
abilities: {
|
|
130
957
|
vision: true,
|
|
131
958
|
},
|
|
132
|
-
contextWindowTokens:
|
|
133
|
-
description:
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
959
|
+
contextWindowTokens: 16_384,
|
|
960
|
+
description: 'Qwen2.5 VL 7B Instruct,轻量多模态模型,兼顾部署成本与识别能力。',
|
|
961
|
+
displayName: 'Qwen2.5 VL 7B Instruct',
|
|
962
|
+
id: 'qwen2.5-vl-7b-instruct',
|
|
963
|
+
maxOutput: 4096,
|
|
137
964
|
pricing: {
|
|
138
965
|
currency: 'CNY',
|
|
139
966
|
units: [
|
|
140
|
-
{ name: 'textInput', rate:
|
|
141
|
-
{ name: 'textOutput', rate:
|
|
967
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
968
|
+
{ name: 'textOutput', rate: 5, strategy: 'fixed', unit: 'millionTokens' },
|
|
969
|
+
],
|
|
970
|
+
},
|
|
971
|
+
type: 'chat',
|
|
972
|
+
},
|
|
973
|
+
{
|
|
974
|
+
abilities: {
|
|
975
|
+
vision: true,
|
|
976
|
+
},
|
|
977
|
+
contextWindowTokens: 65_536,
|
|
978
|
+
description: 'GLM-4.5V,多模态视觉语言模型,适用于通用图像理解与问答任务。',
|
|
979
|
+
displayName: 'GLM-4.5V',
|
|
980
|
+
id: 'glm-4.5v',
|
|
981
|
+
maxOutput: 16_384,
|
|
982
|
+
pricing: {
|
|
983
|
+
currency: 'CNY',
|
|
984
|
+
units: [
|
|
985
|
+
{
|
|
986
|
+
lookup: {
|
|
987
|
+
prices: {
|
|
988
|
+
'[0, 0.032]': 2,
|
|
989
|
+
'[0.032, 0.064]': 4,
|
|
990
|
+
},
|
|
991
|
+
pricingParams: ['textInput'],
|
|
992
|
+
},
|
|
993
|
+
name: 'textInput',
|
|
994
|
+
strategy: 'lookup',
|
|
995
|
+
unit: 'millionTokens',
|
|
996
|
+
},
|
|
997
|
+
{
|
|
998
|
+
lookup: {
|
|
999
|
+
prices: {
|
|
1000
|
+
'[0, 0.032]': 6,
|
|
1001
|
+
'[0.032, 0.064]': 12,
|
|
1002
|
+
},
|
|
1003
|
+
pricingParams: ['textInput'],
|
|
1004
|
+
},
|
|
1005
|
+
name: 'textOutput',
|
|
1006
|
+
strategy: 'lookup',
|
|
1007
|
+
unit: 'millionTokens',
|
|
1008
|
+
},
|
|
1009
|
+
],
|
|
1010
|
+
},
|
|
1011
|
+
type: 'chat',
|
|
1012
|
+
},
|
|
1013
|
+
{
|
|
1014
|
+
abilities: {
|
|
1015
|
+
vision: true,
|
|
1016
|
+
},
|
|
1017
|
+
contextWindowTokens: 4096,
|
|
1018
|
+
description: 'DeepSeek VL2,多模态模型,支持图文理解与细粒度视觉问答。',
|
|
1019
|
+
displayName: 'DeepSeek VL2',
|
|
1020
|
+
id: 'deepseek-vl2',
|
|
1021
|
+
maxOutput: 2048,
|
|
1022
|
+
pricing: {
|
|
1023
|
+
currency: 'CNY',
|
|
1024
|
+
units: [
|
|
1025
|
+
{ name: 'textInput', rate: 0.99, strategy: 'fixed', unit: 'millionTokens' },
|
|
1026
|
+
{ name: 'textOutput', rate: 0.99, strategy: 'fixed', unit: 'millionTokens' },
|
|
1027
|
+
],
|
|
1028
|
+
},
|
|
1029
|
+
type: 'chat',
|
|
1030
|
+
},
|
|
1031
|
+
{
|
|
1032
|
+
abilities: {
|
|
1033
|
+
vision: true,
|
|
1034
|
+
},
|
|
1035
|
+
contextWindowTokens: 4096,
|
|
1036
|
+
description: 'DeepSeek VL2 Small,轻量多模态版本,适用于资源受限与高并发场景。',
|
|
1037
|
+
displayName: 'DeepSeek VL2 Small',
|
|
1038
|
+
id: 'deepseek-vl2-small',
|
|
1039
|
+
maxOutput: 2048,
|
|
1040
|
+
pricing: {
|
|
1041
|
+
currency: 'CNY',
|
|
1042
|
+
units: [
|
|
1043
|
+
{ name: 'textInput', rate: 0.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
1044
|
+
{ name: 'textOutput', rate: 0.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
142
1045
|
],
|
|
143
1046
|
},
|
|
144
|
-
releasedAt: '2025-03-16',
|
|
145
1047
|
type: 'chat',
|
|
146
1048
|
},
|
|
147
1049
|
{
|
|
148
1050
|
abilities: {
|
|
149
1051
|
functionCall: true,
|
|
1052
|
+
reasoning: true,
|
|
150
1053
|
search: true,
|
|
151
1054
|
},
|
|
152
|
-
contextWindowTokens:
|
|
153
|
-
description:
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
id: 'ernie-
|
|
1055
|
+
contextWindowTokens: 65_536,
|
|
1056
|
+
description: 'ERNIE X1.1 Preview,ERNIE X1.1 思考模型预览版,适合能力验证与测试。',
|
|
1057
|
+
displayName: 'ERNIE X1.1 Preview',
|
|
1058
|
+
enabled: true,
|
|
1059
|
+
id: 'ernie-x1.1-preview',
|
|
1060
|
+
maxOutput: 65_536,
|
|
157
1061
|
pricing: {
|
|
158
1062
|
currency: 'CNY',
|
|
159
1063
|
units: [
|
|
160
|
-
{ name: 'textInput', rate:
|
|
161
|
-
{ name: 'textOutput', rate:
|
|
1064
|
+
{ name: 'textInput', rate: 1, strategy: 'fixed', unit: 'millionTokens' },
|
|
1065
|
+
{ name: 'textOutput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
162
1066
|
],
|
|
163
1067
|
},
|
|
164
1068
|
settings: {
|
|
@@ -168,19 +1072,19 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
|
168
1072
|
},
|
|
169
1073
|
{
|
|
170
1074
|
abilities: {
|
|
171
|
-
|
|
1075
|
+
reasoning: true,
|
|
172
1076
|
search: true,
|
|
173
1077
|
},
|
|
174
|
-
contextWindowTokens:
|
|
175
|
-
description:
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
1078
|
+
contextWindowTokens: 32_768,
|
|
1079
|
+
description: 'ERNIE X1 Turbo 32K,高速思考模型,32K 长上下文,适合复杂推理与多轮对话。',
|
|
1080
|
+
displayName: 'ERNIE X1 Turbo 32K',
|
|
1081
|
+
id: 'ernie-x1-turbo-32k',
|
|
1082
|
+
maxOutput: 28_160,
|
|
179
1083
|
pricing: {
|
|
180
1084
|
currency: 'CNY',
|
|
181
1085
|
units: [
|
|
182
|
-
{ name: 'textInput', rate:
|
|
183
|
-
{ name: 'textOutput', rate:
|
|
1086
|
+
{ name: 'textInput', rate: 1, strategy: 'fixed', unit: 'millionTokens' },
|
|
1087
|
+
{ name: 'textOutput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
184
1088
|
],
|
|
185
1089
|
},
|
|
186
1090
|
settings: {
|
|
@@ -191,18 +1095,20 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
|
191
1095
|
{
|
|
192
1096
|
abilities: {
|
|
193
1097
|
functionCall: true,
|
|
1098
|
+
reasoning: true,
|
|
194
1099
|
search: true,
|
|
195
1100
|
},
|
|
196
|
-
contextWindowTokens:
|
|
197
|
-
description:
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
id: '
|
|
1101
|
+
contextWindowTokens: 144_000,
|
|
1102
|
+
description: 'DeepSeek V3.2 Think,满血版深度思考模型,强化长链路推理能力。',
|
|
1103
|
+
displayName: 'DeepSeek V3.2 Think',
|
|
1104
|
+
enabled: true,
|
|
1105
|
+
id: 'deepseek-v3.2-think',
|
|
1106
|
+
maxOutput: 32_768,
|
|
201
1107
|
pricing: {
|
|
202
1108
|
currency: 'CNY',
|
|
203
1109
|
units: [
|
|
204
|
-
{ name: 'textInput', rate:
|
|
205
|
-
{ name: 'textOutput', rate:
|
|
1110
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
1111
|
+
{ name: 'textOutput', rate: 3, strategy: 'fixed', unit: 'millionTokens' },
|
|
206
1112
|
],
|
|
207
1113
|
},
|
|
208
1114
|
settings: {
|
|
@@ -213,18 +1119,20 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
|
213
1119
|
{
|
|
214
1120
|
abilities: {
|
|
215
1121
|
functionCall: true,
|
|
1122
|
+
reasoning: true,
|
|
216
1123
|
search: true,
|
|
217
1124
|
},
|
|
218
|
-
contextWindowTokens:
|
|
1125
|
+
contextWindowTokens: 144_000,
|
|
219
1126
|
description:
|
|
220
|
-
'
|
|
221
|
-
displayName: '
|
|
222
|
-
id: '
|
|
1127
|
+
'DeepSeek V3.1 Think 250821,对应 Terminus 版本的深度思考模型,适用于高性能推理场景。',
|
|
1128
|
+
displayName: 'DeepSeek V3.1 Think 250821',
|
|
1129
|
+
id: 'deepseek-v3.1-think-250821',
|
|
1130
|
+
maxOutput: 32_768,
|
|
223
1131
|
pricing: {
|
|
224
1132
|
currency: 'CNY',
|
|
225
1133
|
units: [
|
|
226
|
-
{ name: 'textInput', rate:
|
|
227
|
-
{ name: 'textOutput', rate:
|
|
1134
|
+
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
1135
|
+
{ name: 'textOutput', rate: 12, strategy: 'fixed', unit: 'millionTokens' },
|
|
228
1136
|
],
|
|
229
1137
|
},
|
|
230
1138
|
settings: {
|
|
@@ -235,236 +1143,372 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
|
235
1143
|
{
|
|
236
1144
|
abilities: {
|
|
237
1145
|
functionCall: true,
|
|
1146
|
+
reasoning: true,
|
|
1147
|
+
},
|
|
1148
|
+
contextWindowTokens: 144_000,
|
|
1149
|
+
description: 'DeepSeek R1 250528,满血版 DeepSeek-R1 推理模型,适合高难度数学和逻辑任务。',
|
|
1150
|
+
displayName: 'DeepSeek R1 250528',
|
|
1151
|
+
id: 'deepseek-r1-250528',
|
|
1152
|
+
maxOutput: 32_768,
|
|
1153
|
+
pricing: {
|
|
1154
|
+
currency: 'CNY',
|
|
1155
|
+
units: [
|
|
1156
|
+
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
1157
|
+
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
1158
|
+
],
|
|
1159
|
+
},
|
|
1160
|
+
settings: {
|
|
1161
|
+
extendParams: ['reasoningBudgetToken'],
|
|
1162
|
+
},
|
|
1163
|
+
type: 'chat',
|
|
1164
|
+
},
|
|
1165
|
+
{
|
|
1166
|
+
abilities: {
|
|
1167
|
+
functionCall: true,
|
|
1168
|
+
reasoning: true,
|
|
238
1169
|
search: true,
|
|
239
1170
|
},
|
|
240
|
-
contextWindowTokens:
|
|
241
|
-
description:
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
1171
|
+
contextWindowTokens: 144_000,
|
|
1172
|
+
description: 'DeepSeek R1(当前 250120 版本),开放思维链输出的深度推理模型。',
|
|
1173
|
+
displayName: 'DeepSeek R1 250120',
|
|
1174
|
+
id: 'deepseek-r1',
|
|
1175
|
+
maxOutput: 32_768,
|
|
1176
|
+
pricing: {
|
|
1177
|
+
currency: 'CNY',
|
|
1178
|
+
units: [
|
|
1179
|
+
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
1180
|
+
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
1181
|
+
],
|
|
1182
|
+
},
|
|
1183
|
+
settings: {
|
|
1184
|
+
searchImpl: 'params',
|
|
1185
|
+
},
|
|
1186
|
+
type: 'chat',
|
|
1187
|
+
},
|
|
1188
|
+
{
|
|
1189
|
+
abilities: {
|
|
1190
|
+
functionCall: true,
|
|
1191
|
+
reasoning: true,
|
|
1192
|
+
},
|
|
1193
|
+
contextWindowTokens: 32_768,
|
|
1194
|
+
description: 'DeepSeek R1 Distill Qianfan 70B,基于 Qianfan-70B 的 R1 蒸馏模型,性价比高。',
|
|
1195
|
+
displayName: 'DeepSeek R1 Distill Qianfan 70B',
|
|
1196
|
+
id: 'deepseek-r1-distill-qianfan-70b',
|
|
1197
|
+
maxOutput: 8192,
|
|
1198
|
+
pricing: {
|
|
1199
|
+
currency: 'CNY',
|
|
1200
|
+
units: [
|
|
1201
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
1202
|
+
{ name: 'textOutput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
1203
|
+
],
|
|
1204
|
+
},
|
|
1205
|
+
type: 'chat',
|
|
1206
|
+
},
|
|
1207
|
+
{
|
|
1208
|
+
abilities: {
|
|
1209
|
+
functionCall: true,
|
|
1210
|
+
reasoning: true,
|
|
1211
|
+
},
|
|
1212
|
+
contextWindowTokens: 32_768,
|
|
1213
|
+
description: 'DeepSeek R1 Distill Qianfan 8B,基于 Qianfan-8B 的 R1 蒸馏模型,适合中小型应用。',
|
|
1214
|
+
displayName: 'DeepSeek R1 Distill Qianfan 8B',
|
|
1215
|
+
id: 'deepseek-r1-distill-qianfan-8b',
|
|
1216
|
+
maxOutput: 8192,
|
|
1217
|
+
pricing: {
|
|
1218
|
+
currency: 'CNY',
|
|
1219
|
+
units: [
|
|
1220
|
+
{ name: 'textInput', rate: 1, strategy: 'fixed', unit: 'millionTokens' },
|
|
1221
|
+
{ name: 'textOutput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
1222
|
+
],
|
|
1223
|
+
},
|
|
1224
|
+
type: 'chat',
|
|
1225
|
+
},
|
|
1226
|
+
{
|
|
1227
|
+
abilities: {
|
|
1228
|
+
functionCall: true,
|
|
1229
|
+
reasoning: true,
|
|
1230
|
+
},
|
|
1231
|
+
contextWindowTokens: 32_768,
|
|
1232
|
+
description: 'DeepSeek R1 Distill Qianfan Llama 70B,基于 Llama-70B 的 R1 蒸馏模型。',
|
|
1233
|
+
displayName: 'DeepSeek R1 Distill Qianfan Llama 70B',
|
|
1234
|
+
id: 'deepseek-r1-distill-qianfan-llama-70b',
|
|
1235
|
+
maxOutput: 8192,
|
|
1236
|
+
pricing: {
|
|
1237
|
+
currency: 'CNY',
|
|
1238
|
+
units: [
|
|
1239
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
1240
|
+
{ name: 'textOutput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
1241
|
+
],
|
|
1242
|
+
},
|
|
1243
|
+
type: 'chat',
|
|
1244
|
+
},
|
|
1245
|
+
{
|
|
1246
|
+
abilities: {
|
|
1247
|
+
functionCall: true,
|
|
1248
|
+
reasoning: true,
|
|
1249
|
+
},
|
|
1250
|
+
contextWindowTokens: 32_768,
|
|
1251
|
+
description: 'DeepSeek R1 Distill Llama 70B,通用 R1 推理能力与 Llama 生态结合的蒸馏模型。',
|
|
1252
|
+
displayName: 'DeepSeek R1 Distill Llama 70B',
|
|
1253
|
+
id: 'deepseek-r1-distill-llama-70b',
|
|
1254
|
+
maxOutput: 8192,
|
|
245
1255
|
pricing: {
|
|
246
1256
|
currency: 'CNY',
|
|
247
1257
|
units: [
|
|
248
|
-
{ name: 'textInput', rate:
|
|
249
|
-
{ name: 'textOutput', rate:
|
|
1258
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
1259
|
+
{ name: 'textOutput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
250
1260
|
],
|
|
251
1261
|
},
|
|
252
|
-
settings: {
|
|
253
|
-
searchImpl: 'params',
|
|
254
|
-
},
|
|
255
1262
|
type: 'chat',
|
|
256
1263
|
},
|
|
257
1264
|
{
|
|
258
1265
|
abilities: {
|
|
259
1266
|
functionCall: true,
|
|
260
|
-
|
|
1267
|
+
reasoning: true,
|
|
261
1268
|
},
|
|
262
|
-
contextWindowTokens:
|
|
263
|
-
description:
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
1269
|
+
contextWindowTokens: 32_768,
|
|
1270
|
+
description: 'DeepSeek R1 Distill Qwen 32B,基于 Qwen-32B 的 R1 蒸馏模型,平衡性能与成本。',
|
|
1271
|
+
displayName: 'DeepSeek R1 Distill Qwen 32B',
|
|
1272
|
+
id: 'deepseek-r1-distill-qwen-32b',
|
|
1273
|
+
maxOutput: 8192,
|
|
267
1274
|
pricing: {
|
|
268
1275
|
currency: 'CNY',
|
|
269
1276
|
units: [
|
|
270
|
-
{ name: 'textInput', rate:
|
|
271
|
-
{ name: 'textOutput', rate:
|
|
1277
|
+
{ name: 'textInput', rate: 1.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
1278
|
+
{ name: 'textOutput', rate: 6, strategy: 'fixed', unit: 'millionTokens' },
|
|
272
1279
|
],
|
|
273
1280
|
},
|
|
274
|
-
settings: {
|
|
275
|
-
searchImpl: 'params',
|
|
276
|
-
},
|
|
277
1281
|
type: 'chat',
|
|
278
1282
|
},
|
|
279
1283
|
{
|
|
280
1284
|
abilities: {
|
|
281
1285
|
functionCall: true,
|
|
282
|
-
|
|
1286
|
+
reasoning: true,
|
|
283
1287
|
},
|
|
284
|
-
contextWindowTokens:
|
|
285
|
-
description:
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
1288
|
+
contextWindowTokens: 32_768,
|
|
1289
|
+
description: 'DeepSeek R1 Distill Qwen 14B,中等规模 R1 蒸馏模型,适合多场景部署。',
|
|
1290
|
+
displayName: 'DeepSeek R1 Distill Qwen 14B',
|
|
1291
|
+
id: 'deepseek-r1-distill-qwen-14b',
|
|
1292
|
+
maxOutput: 8192,
|
|
289
1293
|
pricing: {
|
|
290
1294
|
currency: 'CNY',
|
|
291
1295
|
units: [
|
|
292
|
-
{ name: 'textInput', rate: 0.
|
|
293
|
-
{ name: 'textOutput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
1296
|
+
{ name: 'textInput', rate: 0.6, strategy: 'fixed', unit: 'millionTokens' },
|
|
1297
|
+
{ name: 'textOutput', rate: 2.4, strategy: 'fixed', unit: 'millionTokens' },
|
|
294
1298
|
],
|
|
295
1299
|
},
|
|
296
|
-
settings: {
|
|
297
|
-
searchImpl: 'params',
|
|
298
|
-
},
|
|
299
1300
|
type: 'chat',
|
|
300
1301
|
},
|
|
301
1302
|
{
|
|
302
1303
|
abilities: {
|
|
303
1304
|
functionCall: true,
|
|
304
|
-
|
|
305
|
-
},
|
|
306
|
-
contextWindowTokens: 128_000,
|
|
307
|
-
description:
|
|
308
|
-
'百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。',
|
|
309
|
-
displayName: 'ERNIE 3.5 128K',
|
|
310
|
-
id: 'ernie-3.5-128k',
|
|
311
|
-
pricing: {
|
|
312
|
-
currency: 'CNY',
|
|
313
|
-
units: [
|
|
314
|
-
{ name: 'textInput', rate: 0.8, strategy: 'fixed', unit: 'millionTokens' },
|
|
315
|
-
{ name: 'textOutput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
316
|
-
],
|
|
317
|
-
},
|
|
318
|
-
settings: {
|
|
319
|
-
searchImpl: 'params',
|
|
1305
|
+
reasoning: true,
|
|
320
1306
|
},
|
|
1307
|
+
contextWindowTokens: 32_768,
|
|
1308
|
+
description: 'DeepSeek R1 Distill Qwen 7B,轻量级 R1 蒸馏模型,适合边缘与企业私有化环境。',
|
|
1309
|
+
displayName: 'DeepSeek R1 Distill Qwen 7B',
|
|
1310
|
+
id: 'deepseek-r1-distill-qwen-7b',
|
|
1311
|
+
maxOutput: 8192,
|
|
321
1312
|
type: 'chat',
|
|
322
1313
|
},
|
|
323
1314
|
{
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
displayName: 'ERNIE Lite 8K',
|
|
328
|
-
id: 'ernie-lite-8k',
|
|
329
|
-
pricing: {
|
|
330
|
-
currency: 'CNY',
|
|
331
|
-
units: [
|
|
332
|
-
{ name: 'textInput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
333
|
-
{ name: 'textOutput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
334
|
-
],
|
|
1315
|
+
abilities: {
|
|
1316
|
+
functionCall: true,
|
|
1317
|
+
reasoning: true,
|
|
335
1318
|
},
|
|
1319
|
+
contextWindowTokens: 32_768,
|
|
1320
|
+
description: 'DeepSeek R1 Distill Qwen 1.5B,超轻量 R1 蒸馏模型,适用于极低资源环境。',
|
|
1321
|
+
displayName: 'DeepSeek R1 Distill Qwen 1.5B',
|
|
1322
|
+
id: 'deepseek-r1-distill-qwen-1.5b',
|
|
1323
|
+
maxOutput: 8192,
|
|
336
1324
|
type: 'chat',
|
|
337
1325
|
},
|
|
338
1326
|
{
|
|
339
1327
|
abilities: {
|
|
340
1328
|
functionCall: true,
|
|
1329
|
+
reasoning: true,
|
|
341
1330
|
},
|
|
342
|
-
contextWindowTokens:
|
|
343
|
-
description:
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
1331
|
+
contextWindowTokens: 131_072,
|
|
1332
|
+
description: 'Qwen3 Next 80B A3B Thinking,面向复杂任务的旗舰推理模型版本。',
|
|
1333
|
+
displayName: 'Qwen3 Next 80B A3B Thinking',
|
|
1334
|
+
id: 'qwen3-next-80b-a3b-thinking',
|
|
1335
|
+
maxOutput: 32_768,
|
|
347
1336
|
pricing: {
|
|
348
1337
|
currency: 'CNY',
|
|
349
1338
|
units: [
|
|
350
|
-
{ name: 'textInput', rate:
|
|
351
|
-
{ name: 'textOutput', rate:
|
|
1339
|
+
{ name: 'textInput', rate: 1, strategy: 'fixed', unit: 'millionTokens' },
|
|
1340
|
+
{ name: 'textOutput', rate: 10, strategy: 'fixed', unit: 'millionTokens' },
|
|
352
1341
|
],
|
|
353
1342
|
},
|
|
354
1343
|
type: 'chat',
|
|
355
1344
|
},
|
|
356
1345
|
{
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
1346
|
+
abilities: {
|
|
1347
|
+
functionCall: true,
|
|
1348
|
+
reasoning: true,
|
|
1349
|
+
},
|
|
1350
|
+
contextWindowTokens: 131_072,
|
|
1351
|
+
description: 'Qwen3 235B A22B Thinking 2507,超大规模思考模型,适用于高难度推理。',
|
|
1352
|
+
displayName: 'Qwen3 235B A22B Thinking 2507',
|
|
1353
|
+
id: 'qwen3-235b-a22b-thinking-2507',
|
|
1354
|
+
maxOutput: 32_768,
|
|
361
1355
|
pricing: {
|
|
362
1356
|
currency: 'CNY',
|
|
363
1357
|
units: [
|
|
364
|
-
{ name: 'textInput', rate:
|
|
365
|
-
{ name: 'textOutput', rate:
|
|
1358
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
1359
|
+
{ name: 'textOutput', rate: 20, strategy: 'fixed', unit: 'millionTokens' },
|
|
366
1360
|
],
|
|
367
1361
|
},
|
|
1362
|
+
settings: {
|
|
1363
|
+
extendParams: ['reasoningBudgetToken'],
|
|
1364
|
+
},
|
|
368
1365
|
type: 'chat',
|
|
369
1366
|
},
|
|
370
1367
|
{
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
1368
|
+
abilities: {
|
|
1369
|
+
functionCall: true,
|
|
1370
|
+
reasoning: true,
|
|
1371
|
+
},
|
|
1372
|
+
contextWindowTokens: 131_072,
|
|
1373
|
+
description: 'Qwen3 30B A3B Thinking 2507,中大型思考模型,兼顾精度与成本。',
|
|
1374
|
+
displayName: 'Qwen3 30B A3B Thinking 2507',
|
|
1375
|
+
id: 'qwen3-30b-a3b-thinking-2507',
|
|
1376
|
+
maxOutput: 32_768,
|
|
376
1377
|
pricing: {
|
|
377
1378
|
currency: 'CNY',
|
|
378
1379
|
units: [
|
|
379
|
-
{ name: 'textInput', rate: 0, strategy: 'fixed', unit: 'millionTokens' },
|
|
380
|
-
{ name: 'textOutput', rate:
|
|
1380
|
+
{ name: 'textInput', rate: 0.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
1381
|
+
{ name: 'textOutput', rate: 7.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
381
1382
|
],
|
|
382
1383
|
},
|
|
1384
|
+
settings: {
|
|
1385
|
+
extendParams: ['reasoningBudgetToken'],
|
|
1386
|
+
},
|
|
383
1387
|
type: 'chat',
|
|
384
1388
|
},
|
|
385
1389
|
{
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
1390
|
+
abilities: {
|
|
1391
|
+
functionCall: true,
|
|
1392
|
+
reasoning: true,
|
|
1393
|
+
},
|
|
1394
|
+
contextWindowTokens: 32_768,
|
|
1395
|
+
description: 'QWQ-32B,大规模开源推理模型,适合作为 Agent 中的推理核心。',
|
|
1396
|
+
displayName: 'QWQ 32B',
|
|
1397
|
+
id: 'qwq-32b',
|
|
1398
|
+
maxOutput: 8192,
|
|
391
1399
|
pricing: {
|
|
392
1400
|
currency: 'CNY',
|
|
393
1401
|
units: [
|
|
394
|
-
{ name: 'textInput', rate:
|
|
395
|
-
{ name: 'textOutput', rate:
|
|
1402
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
1403
|
+
{ name: 'textOutput', rate: 6, strategy: 'fixed', unit: 'millionTokens' },
|
|
396
1404
|
],
|
|
397
1405
|
},
|
|
398
1406
|
type: 'chat',
|
|
399
1407
|
},
|
|
400
1408
|
{
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
1409
|
+
abilities: {
|
|
1410
|
+
functionCall: true,
|
|
1411
|
+
},
|
|
1412
|
+
contextWindowTokens: 131_072,
|
|
1413
|
+
description: 'Kimi K2 Instruct,Kimi 官方推理模型,支持长上下文与代码、问答等多场景。',
|
|
1414
|
+
displayName: 'Kimi K2 Instruct',
|
|
1415
|
+
id: 'kimi-k2-instruct',
|
|
1416
|
+
maxOutput: 32_768,
|
|
406
1417
|
pricing: {
|
|
407
1418
|
currency: 'CNY',
|
|
408
1419
|
units: [
|
|
409
1420
|
{ name: 'textInput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
410
|
-
{ name: 'textOutput', rate:
|
|
1421
|
+
{ name: 'textOutput', rate: 16, strategy: 'fixed', unit: 'millionTokens' },
|
|
411
1422
|
],
|
|
412
1423
|
},
|
|
413
1424
|
type: 'chat',
|
|
414
1425
|
},
|
|
415
1426
|
{
|
|
416
|
-
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
|
|
1427
|
+
abilities: {
|
|
1428
|
+
functionCall: true,
|
|
1429
|
+
},
|
|
1430
|
+
contextWindowTokens: 131_072,
|
|
1431
|
+
description: 'Qwen3 Coder 480B A35B Instruct,旗舰级代码模型,支持多语言编程与复杂代码理解。',
|
|
1432
|
+
displayName: 'Qwen3 Coder 480B A35B Instruct',
|
|
1433
|
+
id: 'qwen3-coder-480b-a35b-instruct',
|
|
1434
|
+
maxOutput: 65_536,
|
|
421
1435
|
pricing: {
|
|
422
1436
|
currency: 'CNY',
|
|
423
1437
|
units: [
|
|
424
|
-
{
|
|
425
|
-
|
|
1438
|
+
{
|
|
1439
|
+
lookup: {
|
|
1440
|
+
prices: {
|
|
1441
|
+
'[0, 0.032]': 6,
|
|
1442
|
+
'[0.032, 0.128]': 9,
|
|
1443
|
+
},
|
|
1444
|
+
pricingParams: ['textInput'],
|
|
1445
|
+
},
|
|
1446
|
+
name: 'textInput',
|
|
1447
|
+
strategy: 'lookup',
|
|
1448
|
+
unit: 'millionTokens',
|
|
1449
|
+
},
|
|
1450
|
+
{
|
|
1451
|
+
lookup: {
|
|
1452
|
+
prices: {
|
|
1453
|
+
'[0, 0.032]': 24,
|
|
1454
|
+
'[0.032, 0.128]': 36,
|
|
1455
|
+
},
|
|
1456
|
+
pricingParams: ['textInput'],
|
|
1457
|
+
},
|
|
1458
|
+
name: 'textOutput',
|
|
1459
|
+
strategy: 'lookup',
|
|
1460
|
+
unit: 'millionTokens',
|
|
1461
|
+
},
|
|
426
1462
|
],
|
|
427
1463
|
},
|
|
428
1464
|
type: 'chat',
|
|
429
1465
|
},
|
|
430
1466
|
{
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
434
|
-
|
|
1467
|
+
abilities: {
|
|
1468
|
+
functionCall: true,
|
|
1469
|
+
},
|
|
1470
|
+
contextWindowTokens: 131_072,
|
|
1471
|
+
description: 'Qwen3 235B A22B Instruct 2507,通用旗舰 Instruct 模型,适合多种生成与推理任务。',
|
|
1472
|
+
displayName: 'Qwen3 235B A22B Instruct 2507',
|
|
1473
|
+
id: 'qwen3-235b-a22b-instruct-2507',
|
|
1474
|
+
maxOutput: 32_768,
|
|
435
1475
|
pricing: {
|
|
436
1476
|
currency: 'CNY',
|
|
437
1477
|
units: [
|
|
438
|
-
{ name: 'textInput', rate:
|
|
439
|
-
{ name: 'textOutput', rate:
|
|
1478
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
1479
|
+
{ name: 'textOutput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
440
1480
|
],
|
|
441
1481
|
},
|
|
442
1482
|
type: 'chat',
|
|
443
1483
|
},
|
|
444
1484
|
{
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
1485
|
+
abilities: {
|
|
1486
|
+
functionCall: true,
|
|
1487
|
+
search: true,
|
|
1488
|
+
},
|
|
1489
|
+
contextWindowTokens: 131_072,
|
|
1490
|
+
description: 'Qwen3 30B A3B Instruct 2507,中大型 Instruct 模型,适合高质量生成与问答。',
|
|
1491
|
+
displayName: 'Qwen3 30B A3B Instruct 2507',
|
|
1492
|
+
id: 'qwen3-30b-a3b-instruct-2507',
|
|
1493
|
+
maxOutput: 32_768,
|
|
450
1494
|
pricing: {
|
|
451
1495
|
currency: 'CNY',
|
|
452
1496
|
units: [
|
|
453
|
-
{ name: 'textInput', rate: 0.
|
|
454
|
-
{ name: 'textOutput', rate:
|
|
1497
|
+
{ name: 'textInput', rate: 0.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
1498
|
+
{ name: 'textOutput', rate: 3, strategy: 'fixed', unit: 'millionTokens' },
|
|
455
1499
|
],
|
|
456
1500
|
},
|
|
1501
|
+
settings: {
|
|
1502
|
+
searchImpl: 'params',
|
|
1503
|
+
},
|
|
457
1504
|
type: 'chat',
|
|
458
1505
|
},
|
|
459
1506
|
{
|
|
460
|
-
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
|
|
465
|
-
'DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版。',
|
|
466
|
-
displayName: 'DeepSeek R1',
|
|
467
|
-
id: 'deepseek-r1',
|
|
1507
|
+
contextWindowTokens: 32_768,
|
|
1508
|
+
description: 'Qwen3 235B A22B,通用大模型,面向多种复杂任务。',
|
|
1509
|
+
displayName: 'Qwen3 235B A22B',
|
|
1510
|
+
id: 'qwen3-235b-a22b',
|
|
1511
|
+
maxOutput: 8192,
|
|
468
1512
|
pricing: {
|
|
469
1513
|
currency: 'CNY',
|
|
470
1514
|
units: [
|
|
@@ -472,160 +1516,163 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
|
472
1516
|
{ name: 'textOutput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
473
1517
|
],
|
|
474
1518
|
},
|
|
1519
|
+
settings: {
|
|
1520
|
+
extendParams: ['enableReasoning', 'reasoningBudgetToken'],
|
|
1521
|
+
},
|
|
475
1522
|
type: 'chat',
|
|
476
1523
|
},
|
|
477
1524
|
{
|
|
478
|
-
abilities: {
|
|
479
|
-
reasoning: true,
|
|
480
|
-
},
|
|
481
1525
|
contextWindowTokens: 32_768,
|
|
482
|
-
description: '
|
|
483
|
-
displayName: '
|
|
484
|
-
id: '
|
|
1526
|
+
description: 'Qwen3 30B A3B,中大型通用模型,在成本与效果间平衡。',
|
|
1527
|
+
displayName: 'Qwen3 30B A3B',
|
|
1528
|
+
id: 'qwen3-30b-a3b',
|
|
1529
|
+
maxOutput: 8192,
|
|
485
1530
|
pricing: {
|
|
486
1531
|
currency: 'CNY',
|
|
487
1532
|
units: [
|
|
488
|
-
{ name: 'textInput', rate:
|
|
489
|
-
{ name: 'textOutput', rate:
|
|
1533
|
+
{ name: 'textInput', rate: 0.75, strategy: 'fixed', unit: 'millionTokens' },
|
|
1534
|
+
{ name: 'textOutput', rate: 3, strategy: 'fixed', unit: 'millionTokens' },
|
|
490
1535
|
],
|
|
491
1536
|
},
|
|
1537
|
+
settings: {
|
|
1538
|
+
extendParams: ['enableReasoning', 'reasoningBudgetToken'],
|
|
1539
|
+
},
|
|
492
1540
|
type: 'chat',
|
|
493
1541
|
},
|
|
494
1542
|
{
|
|
495
|
-
abilities: {
|
|
496
|
-
reasoning: true,
|
|
497
|
-
},
|
|
498
1543
|
contextWindowTokens: 32_768,
|
|
499
|
-
description: '
|
|
500
|
-
displayName: '
|
|
501
|
-
id: '
|
|
1544
|
+
description: 'Qwen3 32B,适合需要更强理解能力的通用任务场景。',
|
|
1545
|
+
displayName: 'Qwen3 32B',
|
|
1546
|
+
id: 'qwen3-32b',
|
|
1547
|
+
maxOutput: 8192,
|
|
502
1548
|
pricing: {
|
|
503
1549
|
currency: 'CNY',
|
|
504
1550
|
units: [
|
|
505
|
-
{ name: 'textInput', rate:
|
|
506
|
-
{ name: 'textOutput', rate:
|
|
1551
|
+
{ name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
1552
|
+
{ name: 'textOutput', rate: 8, strategy: 'fixed', unit: 'millionTokens' },
|
|
507
1553
|
],
|
|
508
1554
|
},
|
|
1555
|
+
settings: {
|
|
1556
|
+
extendParams: ['enableReasoning', 'reasoningBudgetToken'],
|
|
1557
|
+
},
|
|
509
1558
|
type: 'chat',
|
|
510
1559
|
},
|
|
511
1560
|
{
|
|
512
|
-
abilities: {
|
|
513
|
-
reasoning: true,
|
|
514
|
-
},
|
|
515
1561
|
contextWindowTokens: 32_768,
|
|
516
|
-
description: '
|
|
517
|
-
displayName: '
|
|
518
|
-
id: '
|
|
1562
|
+
description: 'Qwen3 14B,中型模型,适合多语言问答与文本生成。',
|
|
1563
|
+
displayName: 'Qwen3 14B',
|
|
1564
|
+
id: 'qwen3-14b',
|
|
1565
|
+
maxOutput: 8192,
|
|
519
1566
|
pricing: {
|
|
520
1567
|
currency: 'CNY',
|
|
521
1568
|
units: [
|
|
522
|
-
{ name: 'textInput', rate:
|
|
523
|
-
{ name: 'textOutput', rate:
|
|
1569
|
+
{ name: 'textInput', rate: 1, strategy: 'fixed', unit: 'millionTokens' },
|
|
1570
|
+
{ name: 'textOutput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
524
1571
|
],
|
|
525
1572
|
},
|
|
1573
|
+
settings: {
|
|
1574
|
+
extendParams: ['enableReasoning', 'reasoningBudgetToken'],
|
|
1575
|
+
},
|
|
526
1576
|
type: 'chat',
|
|
527
1577
|
},
|
|
528
1578
|
{
|
|
529
|
-
abilities: {
|
|
530
|
-
reasoning: true,
|
|
531
|
-
},
|
|
532
1579
|
contextWindowTokens: 32_768,
|
|
533
|
-
description: '
|
|
534
|
-
displayName: '
|
|
535
|
-
id: '
|
|
1580
|
+
description: 'Qwen3 8B,轻量模型,部署灵活,适用于高并发业务。',
|
|
1581
|
+
displayName: 'Qwen3 8B',
|
|
1582
|
+
id: 'qwen3-8b',
|
|
1583
|
+
maxOutput: 8192,
|
|
536
1584
|
pricing: {
|
|
537
1585
|
currency: 'CNY',
|
|
538
1586
|
units: [
|
|
539
|
-
{ name: 'textInput', rate:
|
|
540
|
-
{ name: 'textOutput', rate:
|
|
1587
|
+
{ name: 'textInput', rate: 0.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
1588
|
+
{ name: 'textOutput', rate: 2, strategy: 'fixed', unit: 'millionTokens' },
|
|
541
1589
|
],
|
|
542
1590
|
},
|
|
1591
|
+
settings: {
|
|
1592
|
+
extendParams: ['enableReasoning', 'reasoningBudgetToken'],
|
|
1593
|
+
},
|
|
543
1594
|
type: 'chat',
|
|
544
1595
|
},
|
|
545
1596
|
{
|
|
546
|
-
abilities: {
|
|
547
|
-
reasoning: true,
|
|
548
|
-
},
|
|
549
1597
|
contextWindowTokens: 32_768,
|
|
550
|
-
description: '
|
|
551
|
-
displayName: '
|
|
552
|
-
id: '
|
|
1598
|
+
description: 'Qwen3 4B,适合中小型应用和本地推理场景。',
|
|
1599
|
+
displayName: 'Qwen3 4B',
|
|
1600
|
+
id: 'qwen3-4b',
|
|
1601
|
+
maxOutput: 8192,
|
|
553
1602
|
pricing: {
|
|
554
1603
|
currency: 'CNY',
|
|
555
1604
|
units: [
|
|
556
|
-
{ name: 'textInput', rate:
|
|
557
|
-
{ name: 'textOutput', rate:
|
|
1605
|
+
{ name: 'textInput', rate: 0.3, strategy: 'fixed', unit: 'millionTokens' },
|
|
1606
|
+
{ name: 'textOutput', rate: 1.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
558
1607
|
],
|
|
559
1608
|
},
|
|
1609
|
+
settings: {
|
|
1610
|
+
extendParams: ['enableReasoning', 'reasoningBudgetToken'],
|
|
1611
|
+
},
|
|
560
1612
|
type: 'chat',
|
|
561
1613
|
},
|
|
562
1614
|
{
|
|
563
|
-
abilities: {
|
|
564
|
-
reasoning: true,
|
|
565
|
-
},
|
|
566
1615
|
contextWindowTokens: 32_768,
|
|
567
|
-
description: '
|
|
568
|
-
displayName: '
|
|
569
|
-
id: '
|
|
1616
|
+
description: 'Qwen3 1.7B,超轻量模型,便于边缘与终端部署。',
|
|
1617
|
+
displayName: 'Qwen3 1.7B',
|
|
1618
|
+
id: 'qwen3-1.7b',
|
|
1619
|
+
maxOutput: 8192,
|
|
570
1620
|
pricing: {
|
|
571
1621
|
currency: 'CNY',
|
|
572
1622
|
units: [
|
|
573
|
-
{ name: 'textInput', rate:
|
|
574
|
-
{ name: 'textOutput', rate:
|
|
1623
|
+
{ name: 'textInput', rate: 0.3, strategy: 'fixed', unit: 'millionTokens' },
|
|
1624
|
+
{ name: 'textOutput', rate: 1.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
575
1625
|
],
|
|
576
1626
|
},
|
|
1627
|
+
settings: {
|
|
1628
|
+
extendParams: ['enableReasoning', 'reasoningBudgetToken'],
|
|
1629
|
+
},
|
|
577
1630
|
type: 'chat',
|
|
578
1631
|
},
|
|
579
1632
|
{
|
|
580
|
-
abilities: {
|
|
581
|
-
reasoning: true,
|
|
582
|
-
},
|
|
583
1633
|
contextWindowTokens: 32_768,
|
|
584
|
-
description:
|
|
585
|
-
|
|
586
|
-
|
|
587
|
-
|
|
1634
|
+
description: 'Qwen3 0.6B,入门级模型,适用于简单推理和资源极度受限环境。',
|
|
1635
|
+
displayName: 'Qwen3 0.6B',
|
|
1636
|
+
id: 'qwen3-0.6b',
|
|
1637
|
+
maxOutput: 8192,
|
|
588
1638
|
pricing: {
|
|
589
1639
|
currency: 'CNY',
|
|
590
1640
|
units: [
|
|
591
|
-
{ name: 'textInput', rate:
|
|
592
|
-
{ name: 'textOutput', rate:
|
|
1641
|
+
{ name: 'textInput', rate: 0.3, strategy: 'fixed', unit: 'millionTokens' },
|
|
1642
|
+
{ name: 'textOutput', rate: 1.2, strategy: 'fixed', unit: 'millionTokens' },
|
|
593
1643
|
],
|
|
594
1644
|
},
|
|
1645
|
+
settings: {
|
|
1646
|
+
extendParams: ['enableReasoning', 'reasoningBudgetToken'],
|
|
1647
|
+
},
|
|
595
1648
|
type: 'chat',
|
|
596
1649
|
},
|
|
597
1650
|
{
|
|
598
|
-
abilities: {
|
|
599
|
-
reasoning: true,
|
|
600
|
-
},
|
|
601
1651
|
contextWindowTokens: 32_768,
|
|
602
|
-
description:
|
|
603
|
-
|
|
604
|
-
|
|
605
|
-
|
|
1652
|
+
description: 'Qwen2.5 7B Instruct,成熟的开源指令模型,适用于多场景对话与生成。',
|
|
1653
|
+
displayName: 'Qwen2.5 7B Instruct',
|
|
1654
|
+
id: 'qwen2.5-7b-instruct',
|
|
1655
|
+
maxOutput: 8192,
|
|
606
1656
|
pricing: {
|
|
607
1657
|
currency: 'CNY',
|
|
608
1658
|
units: [
|
|
609
|
-
{ name: 'textInput', rate:
|
|
610
|
-
{ name: 'textOutput', rate:
|
|
1659
|
+
{ name: 'textInput', rate: 0.5, strategy: 'fixed', unit: 'millionTokens' },
|
|
1660
|
+
{ name: 'textOutput', rate: 1, strategy: 'fixed', unit: 'millionTokens' },
|
|
611
1661
|
],
|
|
612
1662
|
},
|
|
613
1663
|
type: 'chat',
|
|
614
1664
|
},
|
|
615
1665
|
{
|
|
616
|
-
abilities: {
|
|
617
|
-
reasoning: true,
|
|
618
|
-
},
|
|
619
1666
|
contextWindowTokens: 32_768,
|
|
620
|
-
description:
|
|
621
|
-
|
|
622
|
-
|
|
623
|
-
|
|
1667
|
+
description: 'GLM-4 32B 0414,GLM 系列通用大模型版本,支持多任务文本生成与理解。',
|
|
1668
|
+
displayName: 'GLM-4 32B 0414',
|
|
1669
|
+
id: 'glm-4-32b-0414',
|
|
1670
|
+
maxOutput: 8192,
|
|
624
1671
|
pricing: {
|
|
625
1672
|
currency: 'CNY',
|
|
626
1673
|
units: [
|
|
627
|
-
{ name: 'textInput', rate:
|
|
628
|
-
{ name: 'textOutput', rate:
|
|
1674
|
+
{ name: 'textInput', rate: 1, strategy: 'fixed', unit: 'millionTokens' },
|
|
1675
|
+
{ name: 'textOutput', rate: 4, strategy: 'fixed', unit: 'millionTokens' },
|
|
629
1676
|
],
|
|
630
1677
|
},
|
|
631
1678
|
type: 'chat',
|
|
@@ -634,8 +1681,7 @@ const wenxinChatModels: AIChatModelCard[] = [
|
|
|
634
1681
|
|
|
635
1682
|
const wenxinImageModels: AIImageModelCard[] = [
|
|
636
1683
|
{
|
|
637
|
-
description:
|
|
638
|
-
'百度自研的iRAG(image based RAG),检索增强的文生图技术,将百度搜索的亿级图片资源跟强大的基础模型能力相结合,就可以生成各种超真实的图片,整体效果远远超过文生图原生系统,去掉了AI味儿,而且成本很低。iRAG具备无幻觉、超真实、立等可取等特点。',
|
|
1684
|
+
description: 'ERNIE iRAG,图像检索增强生成模型,支持以图搜图、图文检索与内容生成。',
|
|
639
1685
|
displayName: 'ERNIE iRAG',
|
|
640
1686
|
enabled: true,
|
|
641
1687
|
id: 'irag-1.0',
|
|
@@ -661,12 +1707,15 @@ const wenxinImageModels: AIImageModelCard[] = [
|
|
|
661
1707
|
],
|
|
662
1708
|
},
|
|
663
1709
|
},
|
|
1710
|
+
pricing: {
|
|
1711
|
+
currency: 'CNY',
|
|
1712
|
+
units: [{ name: 'imageGeneration', rate: 0.14, strategy: 'fixed', unit: 'image' }],
|
|
1713
|
+
},
|
|
664
1714
|
releasedAt: '2025-02-05',
|
|
665
1715
|
type: 'image',
|
|
666
1716
|
},
|
|
667
1717
|
{
|
|
668
|
-
description:
|
|
669
|
-
'百度自研的ERNIE iRAG Edit图像编辑模型支持基于图片进行erase(消除对象)、repaint(重绘对象)、variation(生成变体)等操作。',
|
|
1718
|
+
description: 'ERNIE iRAG Edit,支持图片擦除、重绘与变体生成的图像编辑模型。',
|
|
670
1719
|
displayName: 'ERNIE iRAG Edit',
|
|
671
1720
|
enabled: true,
|
|
672
1721
|
id: 'ernie-irag-edit',
|
|
@@ -693,11 +1742,15 @@ const wenxinImageModels: AIImageModelCard[] = [
|
|
|
693
1742
|
],
|
|
694
1743
|
},
|
|
695
1744
|
},
|
|
1745
|
+
pricing: {
|
|
1746
|
+
currency: 'CNY',
|
|
1747
|
+
units: [{ name: 'imageGeneration', rate: 0.14, strategy: 'fixed', unit: 'image' }],
|
|
1748
|
+
},
|
|
696
1749
|
releasedAt: '2025-04-17',
|
|
697
1750
|
type: 'image',
|
|
698
1751
|
},
|
|
699
1752
|
{
|
|
700
|
-
description: '
|
|
1753
|
+
description: 'FLUX.1-schnell,高性能图像生成模型,适合快速生成多风格图片。',
|
|
701
1754
|
displayName: 'FLUX.1-schnell',
|
|
702
1755
|
enabled: true,
|
|
703
1756
|
id: 'flux.1-schnell',
|
|
@@ -725,6 +1778,10 @@ const wenxinImageModels: AIImageModelCard[] = [
|
|
|
725
1778
|
},
|
|
726
1779
|
steps: { default: 25, max: 50, min: 1 },
|
|
727
1780
|
},
|
|
1781
|
+
pricing: {
|
|
1782
|
+
currency: 'CNY',
|
|
1783
|
+
units: [{ name: 'imageGeneration', rate: 0.002, strategy: 'fixed', unit: 'image' }],
|
|
1784
|
+
},
|
|
728
1785
|
releasedAt: '2025-03-27',
|
|
729
1786
|
type: 'image',
|
|
730
1787
|
},
|