@lobehub/lobehub 2.0.0-next.204 → 2.0.0-next.206
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +14 -0
- package/locales/ar/components.json +4 -0
- package/locales/ar/models.json +25 -126
- package/locales/bg-BG/components.json +4 -0
- package/locales/bg-BG/models.json +2 -2
- package/locales/de-DE/components.json +4 -0
- package/locales/de-DE/models.json +21 -120
- package/locales/en-US/components.json +4 -0
- package/locales/es-ES/components.json +4 -0
- package/locales/es-ES/models.json +24 -180
- package/locales/fa-IR/components.json +4 -0
- package/locales/fa-IR/models.json +2 -2
- package/locales/fr-FR/components.json +4 -0
- package/locales/fr-FR/models.json +2 -108
- package/locales/it-IT/components.json +4 -0
- package/locales/it-IT/models.json +22 -51
- package/locales/ja-JP/components.json +4 -0
- package/locales/ja-JP/models.json +16 -133
- package/locales/ko-KR/components.json +4 -0
- package/locales/ko-KR/models.json +26 -148
- package/locales/nl-NL/components.json +4 -0
- package/locales/nl-NL/models.json +2 -2
- package/locales/pl-PL/components.json +4 -0
- package/locales/pl-PL/models.json +2 -2
- package/locales/pt-BR/components.json +4 -0
- package/locales/pt-BR/models.json +49 -125
- package/locales/ru-RU/components.json +4 -0
- package/locales/ru-RU/models.json +17 -96
- package/locales/tr-TR/components.json +4 -0
- package/locales/tr-TR/models.json +28 -57
- package/locales/vi-VN/components.json +4 -0
- package/locales/vi-VN/models.json +1 -92
- package/locales/zh-CN/components.json +4 -0
- package/locales/zh-CN/models.json +31 -165
- package/locales/zh-TW/components.json +4 -0
- package/locales/zh-TW/models.json +2 -2
- package/package.json +1 -1
- package/packages/builtin-tool-gtd/src/executor/index.ts +7 -4
- package/packages/utils/src/object.test.ts +10 -2
- package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +1 -1
- package/src/features/ModelSwitchPanel/index.tsx +392 -41
- package/src/locales/default/components.ts +4 -0
- package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
- package/src/store/aiInfra/slices/aiProvider/__tests__/selectors.test.ts +34 -11
- package/src/store/aiInfra/slices/aiProvider/action.ts +9 -1
- package/src/store/aiInfra/slices/aiProvider/initialState.ts +6 -1
- package/src/store/aiInfra/slices/aiProvider/selectors.ts +17 -3
|
@@ -104,6 +104,7 @@
|
|
|
104
104
|
"Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 — новейшая и самая мощная версия Kimi K2. Это передовая модель MoE с общим числом параметров 1 трлн и 32 млрд активных. Ключевые особенности включают усиленный агентный интеллект в программировании с заметным улучшением результатов на тестах и в реальных задачах, а также улучшенную эстетику и удобство интерфейсного кода.",
|
|
105
105
|
"Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo — это ускоренный вариант, оптимизированный для скорости рассуждений и пропускной способности, при сохранении многошагового мышления и использования инструментов K2 Thinking. Это модель MoE с ~1 трлн параметров, нативной поддержкой контекста 256K и стабильным вызовом инструментов в масштабных производственных сценариях с жёсткими требованиями к задержке и параллельности.",
|
|
106
106
|
"Pro/zai-org/glm-4.7.description": "GLM-4.7 — это флагманская модель нового поколения от Zhipu AI с общим числом параметров 355 миллиардов и 32 миллиардами активных параметров. Она представляет собой всестороннее обновление в области универсального диалога, рассуждений и возможностей интеллектуальных агентов. GLM-4.7 усиливает Interleaved Thinking (перекрёстное мышление), а также вводит концепции Preserved Thinking (сохранённое мышление) и Turn-level Thinking (пошаговое мышление).",
|
|
107
|
+
"Pro/zai-org/glm-4.7.description": "GLM-4.7 — это флагманская модель нового поколения от Zhipu AI с общим числом параметров 355 миллиардов и 32 миллиардами активных параметров. Она представляет собой всестороннее обновление в области универсального диалога, рассуждений и возможностей интеллектуальных агентов. GLM-4.7 усиливает Interleaved Thinking (перекрёстное мышление), а также вводит концепции Preserved Thinking (сохранённое мышление) и Turn-level Thinking (пошаговое мышление).",
|
|
107
108
|
"QwQ-32B-Preview.description": "Qwen QwQ — это экспериментальная исследовательская модель, направленная на улучшение логического мышления.",
|
|
108
109
|
"Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview — исследовательская модель от Qwen, ориентированная на визуальное мышление, с сильными сторонами в понимании сложных сцен и решении визуальных математических задач.",
|
|
109
110
|
"Qwen/QwQ-32B-Preview.description": "Qwen QwQ — экспериментальная исследовательская модель, сосредоточенная на улучшении логического мышления ИИ.",
|
|
@@ -271,20 +272,20 @@
|
|
|
271
272
|
"chatgpt-4o-latest.description": "ChatGPT-4o — это динамическая модель с обновлением в реальном времени, сочетающая сильное понимание и генерацию для масштабных сценариев, таких как поддержка клиентов, образование и техническая помощь.",
|
|
272
273
|
"claude-2.0.description": "Claude 2 предлагает ключевые улучшения для бизнеса, включая контекст до 200 тысяч токенов, снижение галлюцинаций, системные подсказки и новую функцию тестирования — вызов инструментов.",
|
|
273
274
|
"claude-2.1.description": "Claude 2 предлагает ключевые улучшения для бизнеса, включая контекст до 200 тысяч токенов, снижение галлюцинаций, системные подсказки и новую функцию тестирования — вызов инструментов.",
|
|
274
|
-
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku — самая быстрая модель нового поколения от Anthropic. По сравнению с Claude 3 Haiku, она демонстрирует
|
|
275
|
+
"claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku — самая быстрая модель нового поколения от Anthropic. По сравнению с Claude 3 Haiku, она демонстрирует улучшения во всех навыках и превосходит предыдущую крупнейшую модель Claude 3 Opus по многим интеллектуальным метрикам.",
|
|
275
276
|
"claude-3-5-haiku-latest.description": "Claude 3.5 Haiku обеспечивает быстрые ответы для легких задач.",
|
|
276
|
-
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet — самая интеллектуальная модель от Anthropic и первая на рынке гибридная модель
|
|
277
|
+
"claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet — самая интеллектуальная модель от Anthropic и первая на рынке гибридная модель рассуждений. Она способна выдавать почти мгновенные ответы или пошаговые рассуждения, видимые пользователю. Особенно сильна в программировании, анализе данных, компьютерном зрении и задачах агентов.",
|
|
277
278
|
"claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet — последняя и самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
|
|
278
279
|
"claude-3-haiku-20240307.description": "Claude 3 Haiku — самая быстрая и компактная модель от Anthropic, предназначенная для мгновенных ответов с высокой точностью и скоростью.",
|
|
279
280
|
"claude-3-opus-20240229.description": "Claude 3 Opus — самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
|
|
280
281
|
"claude-3-sonnet-20240229.description": "Claude 3 Sonnet сочетает интеллект и скорость для корпоративных задач, обеспечивая высокую полезность при низкой стоимости и надежное масштабируемое развертывание.",
|
|
281
|
-
"claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 — самая быстрая и умная модель Haiku от Anthropic, сочетающая молниеносную скорость и расширенные возможности рассуждения.",
|
|
282
|
+
"claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 — самая быстрая и умная модель серии Haiku от Anthropic, сочетающая молниеносную скорость и расширенные возможности рассуждения.",
|
|
282
283
|
"claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking — продвинутая версия, способная демонстрировать процесс рассуждения.",
|
|
283
284
|
"claude-opus-4-1-20250805.description": "Claude Opus 4.1 — последняя и самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
|
|
284
|
-
"claude-opus-4-20250514.description": "Claude Opus 4 — самая мощная модель от Anthropic для
|
|
285
|
+
"claude-opus-4-20250514.description": "Claude Opus 4 — самая мощная модель от Anthropic для высокосложных задач, превосходящая по производительности, интеллекту, беглости и пониманию.",
|
|
285
286
|
"claude-opus-4-5-20251101.description": "Claude Opus 4.5 — флагманская модель от Anthropic, сочетающая выдающийся интеллект с масштабируемой производительностью, идеально подходящая для сложных задач, требующих высококачественных ответов и рассуждений.",
|
|
286
287
|
"claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking может выдавать как мгновенные ответы, так и пошаговое рассуждение с видимым процессом.",
|
|
287
|
-
"claude-sonnet-4-20250514.description": "Claude Sonnet 4
|
|
288
|
+
"claude-sonnet-4-20250514.description": "Claude Sonnet 4 способен выдавать почти мгновенные ответы или пошаговое мышление с видимым процессом рассуждения.",
|
|
288
289
|
"claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 — самая интеллектуальная модель от Anthropic на сегодняшний день.",
|
|
289
290
|
"codegeex-4.description": "CodeGeeX-4 — мощный AI-помощник для программирования, поддерживающий многоязычные вопросы и автодополнение кода для повышения продуктивности разработчиков.",
|
|
290
291
|
"codegeex4-all-9b.description": "CodeGeeX4-ALL-9B — многоязычная модель генерации кода, поддерживающая автодополнение, генерацию кода, интерпретацию, веб-поиск, вызов функций и вопросы по репозиториям. Охватывает широкий спектр сценариев разработки ПО и является одной из лучших моделей кода с параметрами до 10B.",
|
|
@@ -335,13 +336,13 @@
|
|
|
335
336
|
"computer-use-preview.description": "computer-use-preview — специализированная модель для инструмента \"использование компьютера\", обученная понимать и выполнять задачи, связанные с компьютером.",
|
|
336
337
|
"dall-e-2.description": "Модель DALL·E второго поколения с более реалистичной и точной генерацией изображений и разрешением в 4 раза выше, чем у первого поколения.",
|
|
337
338
|
"dall-e-3.description": "Последняя модель DALL·E, выпущенная в ноябре 2023 года, обеспечивает более реалистичную и точную генерацию изображений с улучшенной детализацией.",
|
|
338
|
-
"databricks/dbrx-instruct.description": "DBRX Instruct обеспечивает
|
|
339
|
-
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR — это модель визуально-языкового типа от DeepSeek AI, ориентированная на оптическое распознавание текста (OCR) и «контекстное оптическое сжатие». Она исследует методы сжатия контекста из изображений, эффективно обрабатывает документы и преобразует их в структурированный текст (например, Markdown). Точно распознаёт текст на изображениях,
|
|
339
|
+
"databricks/dbrx-instruct.description": "DBRX Instruct обеспечивает надёжную обработку инструкций в различных отраслях.",
|
|
340
|
+
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR — это модель визуально-языкового типа от DeepSeek AI, ориентированная на оптическое распознавание текста (OCR) и «контекстное оптическое сжатие». Она исследует методы сжатия контекста из изображений, эффективно обрабатывает документы и преобразует их в структурированный текст (например, Markdown). Точно распознаёт текст на изображениях, подходит для оцифровки документов, извлечения текста и структурированной обработки.",
|
|
340
341
|
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B — это дистиллят модели DeepSeek-R1-0528 на базе Qwen3 8B. Она достигает уровня SOTA среди открытых моделей, превосходя Qwen3 8B на 10% в AIME 2024 и сопоставима с производительностью Qwen3-235B-thinking. Отличается выдающимися результатами в математике, программировании и логике. Использует архитектуру Qwen3-8B и токенизатор DeepSeek-R1-0528.",
|
|
341
342
|
"deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 использует дополнительные вычислительные ресурсы и алгоритмические оптимизации постобучения для углубления рассуждений. Демонстрирует высокие результаты в математике, программировании и логике, приближаясь к лидерам, таким как o3 и Gemini 2.5 Pro.",
|
|
342
|
-
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей
|
|
343
|
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей
|
|
344
|
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей
|
|
343
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей для многозадачных сценариев.",
|
|
344
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей для многозадачных сценариев.",
|
|
345
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Дистиллированные модели DeepSeek-R1 используют обучение с подкреплением и cold-start данные для улучшения рассуждений и установления новых стандартов среди открытых моделей для многозадачных сценариев.",
|
|
345
346
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B — дистиллят модели Qwen2.5-32B, дообученный на 800 тысячах отобранных выборок DeepSeek-R1. Отличается выдающимися результатами в математике, программировании и логике, достигая высоких показателей на AIME 2024, MATH-500 (94.3% точности) и GPQA Diamond.",
|
|
346
347
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B — дистиллят модели Qwen2.5-Math-7B, дообученный на 800 тысячах отобранных выборок DeepSeek-R1. Демонстрирует высокие результаты: 92.8% на MATH-500, 55.5% на AIME 2024 и рейтинг 1189 на CodeForces для модели 7B.",
|
|
347
348
|
"deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 улучшает рассуждения с помощью обучения с подкреплением и cold-start данных, устанавливая новые стандарты среди открытых моделей и превосходя OpenAI-o1-mini.",
|
|
@@ -352,94 +353,14 @@
|
|
|
352
353
|
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 — модель MoE с 671 миллиардами параметров, использующая MLA и DeepSeekMoE с балансировкой нагрузки без потерь для эффективного обучения и вывода. Предобучена на 14.8 триллионах высококачественных токенов с использованием SFT и RL, превосходит другие открытые модели и приближается к ведущим закрытым решениям.",
|
|
353
354
|
"deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) — инновационная модель с глубоким пониманием языка и возможностью взаимодействия.",
|
|
354
355
|
"deepseek-ai/deepseek-r1.description": "Современная эффективная LLM, сильная в рассуждениях, математике и программировании.",
|
|
355
|
-
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 — модель нового поколения для рассуждений, обладающая улучшенными возможностями
|
|
356
|
-
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 — модель нового поколения для рассуждений, обладающая улучшенными возможностями
|
|
357
|
-
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 — модель визуально-языкового типа MoE на базе DeepSeekMoE-27B с разреженной активацией, достигающая высокой производительности при использовании всего 4.5B активных параметров. Отличается
|
|
356
|
+
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 — модель нового поколения для рассуждений, обладающая улучшенными возможностями для сложных рассуждений и цепочек размышлений, подходящая для задач глубокого анализа.",
|
|
357
|
+
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 — модель нового поколения для рассуждений, обладающая улучшенными возможностями для сложных рассуждений и цепочек размышлений, подходящая для задач глубокого анализа.",
|
|
358
|
+
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 — модель визуально-языкового типа MoE на базе DeepSeekMoE-27B с разреженной активацией, достигающая высокой производительности при использовании всего 4.5B активных параметров. Отличается в задачах визуального QA, OCR, понимания документов/таблиц/диаграмм и визуального связывания.",
|
|
359
|
+
"deepseek-chat.description": "Новая модель с открытым исходным кодом, объединяющая общие и программные способности. Сохраняет универсальность диалоговой модели и сильные стороны модели-кодера, с улучшенным соответствием предпочтениям. DeepSeek-V2.5 также улучшает написание текстов и следование инструкциям.",
|
|
358
360
|
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B — языковая модель для программирования, обученная на 2 триллионах токенов (87% кода, 13% китайского/английского текста). Поддерживает контекстное окно 16K и задачи заполнения в середине, обеспечивая автодополнение на уровне проекта и вставку фрагментов кода.",
|
|
359
361
|
"deepseek-coder-v2.description": "DeepSeek Coder V2 — модель кода с открытым исходным кодом, демонстрирующая высокую производительность в задачах программирования, сопоставимую с GPT-4 Turbo.",
|
|
360
362
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 — модель кода с открытым исходным кодом, демонстрирующая высокую производительность в задачах программирования, сопоставимую с GPT-4 Turbo.",
|
|
361
|
-
"deepseek-ocr.description": "DeepSeek-OCR —
|
|
362
|
-
"deepseek-r1-0528.description": "Полная модель 685B, выпущенная 28 мая 2025 года. DeepSeek-R1 использует масштабное обучение с подкреплением на этапе постобучения, значительно улучшая рассуждения при минимуме размеченных данных. Демонстрирует высокие результаты в математике, программировании и естественно-языковом рассуждении.",
|
|
363
|
-
"deepseek-r1-250528.description": "DeepSeek R1 250528 — полная модель рассуждений DeepSeek-R1 для сложных математических и логических задач.",
|
|
364
|
-
"deepseek-r1-70b-fast-online.description": "Быстрая версия DeepSeek R1 70B с поддержкой веб-поиска в реальном времени, обеспечивающая более быстрые ответы при сохранении производительности.",
|
|
365
|
-
"deepseek-r1-70b-online.description": "Стандартная версия DeepSeek R1 70B с поддержкой веб-поиска в реальном времени, подходящая для актуальных диалогов и текстовых задач.",
|
|
366
|
-
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B сочетает в себе возможности R1 рассуждений с экосистемой Llama.",
|
|
367
|
-
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B — это дистиллированная модель на основе Llama-3.1-8B, обученная с использованием выходных данных DeepSeek R1.",
|
|
368
|
-
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama — дистиллированная модель DeepSeek-R1 на базе Llama.",
|
|
369
|
-
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B — это дистиллированная модель R1 на основе Qianfan-70B с высокой ценностью.",
|
|
370
|
-
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B — дистиллированная модель R1 на базе Qianfan-8B, предназначенная для малых и средних приложений.",
|
|
371
|
-
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B — дистиллированная модель R1 на основе Llama-70B.",
|
|
372
|
-
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B — сверхлёгкая дистиллированная модель для сред с очень ограниченными ресурсами.",
|
|
373
|
-
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B — дистиллированная модель среднего размера для многосценарного развертывания.",
|
|
374
|
-
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B — дистиллированная модель R1 на базе Qwen-32B, обеспечивающая баланс между производительностью и стоимостью.",
|
|
375
|
-
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B — лёгкая дистиллированная модель для периферийных и корпоративных сред с повышенной конфиденциальностью.",
|
|
376
|
-
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen — дистиллированная модель DeepSeek-R1 на базе Qwen.",
|
|
377
|
-
"deepseek-r1-fast-online.description": "Полная версия DeepSeek R1 с быстрым откликом и поиском в реальном времени, сочетающая возможности масштаба 671B и высокую скорость.",
|
|
378
|
-
"deepseek-r1-online.description": "Полная версия DeepSeek R1 с 671 миллиардами параметров и поиском в реальном времени, обеспечивающая улучшенное понимание и генерацию.",
|
|
379
|
-
"deepseek-r1.description": "DeepSeek-R1 использует данные холодного старта до этапа обучения с подкреплением и демонстрирует сопоставимую с OpenAI-o1 производительность в задачах математики, программирования и логического вывода.",
|
|
380
|
-
"deepseek-v2.description": "DeepSeek V2 — это эффективная модель MoE для экономичной обработки данных.",
|
|
381
|
-
"deepseek-v2:236b.description": "DeepSeek V2 236B — модель, ориентированная на программирование, с высокой способностью к генерации кода.",
|
|
382
|
-
"deepseek-v3-0324.description": "DeepSeek-V3-0324 — модель MoE с 671 миллиардами параметров, обладающая выдающимися возможностями в программировании, техническом анализе, понимании контекста и работе с длинными текстами.",
|
|
383
|
-
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus — оптимизированная для терминальных устройств LLM-модель от DeepSeek.",
|
|
384
|
-
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 — модель глубокого мышления, соответствующая версии Terminus, предназначенная для высокоэффективного логического вывода.",
|
|
385
|
-
"deepseek-v3.1.description": "DeepSeek-V3.1 — гибридная модель рассуждений нового поколения от DeepSeek, поддерживающая режимы с мышлением и без, обеспечивая более высокую эффективность мышления по сравнению с DeepSeek-R1-0528. Оптимизации после обучения значительно улучшают использование инструментов агентами и выполнение задач. Поддерживает окно контекста до 128k и до 64k выходных токенов.",
|
|
386
|
-
"deepseek-v3.1:671b.description": "DeepSeek V3.1 — модель следующего поколения для сложных рассуждений и цепочек логических выводов, подходящая для задач, требующих глубокого анализа.",
|
|
387
|
-
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp внедряет разреженное внимание для повышения эффективности обучения и вывода на длинных текстах, предлагая более низкую цену по сравнению с deepseek-v3.1.",
|
|
388
|
-
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think — полноценная модель глубокого мышления с усиленными возможностями длинных логических цепочек.",
|
|
389
|
-
"deepseek-v3.2.description": "DeepSeek-V3.2 — первая гибридная модель рассуждений от DeepSeek, объединяющая мышление с использованием инструментов. Эффективная архитектура снижает потребление ресурсов, масштабное обучение с подкреплением повышает способности, а синтетические данные задач обеспечивают сильную обобщаемость. В совокупности модель демонстрирует производительность, сопоставимую с GPT-5-High, при этом значительно снижая вычислительные затраты и время ожидания пользователя.",
|
|
390
|
-
"deepseek-v3.description": "DeepSeek-V3 — мощная модель MoE с общим числом параметров 671B и 37B активных параметров на токен.",
|
|
391
|
-
"deepseek-vl2-small.description": "DeepSeek VL2 Small — лёгкая мультимодальная модель для использования в условиях ограниченных ресурсов и высокой нагрузки.",
|
|
392
|
-
"deepseek-vl2.description": "DeepSeek VL2 — мультимодальная модель для понимания изображений и текста, а также точного визуального вопросно-ответного взаимодействия.",
|
|
393
|
-
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 — модель MoE с 685 миллиардами параметров и последняя итерация флагманской серии чатов DeepSeek.\n\nОснована на [DeepSeek V3](/deepseek/deepseek-chat-v3) и демонстрирует высокую производительность в различных задачах.",
|
|
394
|
-
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 — модель MoE с 685 миллиардами параметров и последняя итерация флагманской серии чатов DeepSeek.\n\nОснована на [DeepSeek V3](/deepseek/deepseek-chat-v3) и демонстрирует высокую производительность в различных задачах.",
|
|
395
|
-
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 — гибридная модель рассуждений с длинным контекстом от DeepSeek, поддерживающая смешанные режимы мышления и интеграцию инструментов.",
|
|
396
|
-
"deepseek/deepseek-chat.description": "DeepSeek-V3 — высокопроизводительная гибридная модель рассуждений от DeepSeek для сложных задач и интеграции инструментов.",
|
|
397
|
-
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 — обновлённый вариант, ориентированный на открытую доступность и более глубокие рассуждения.",
|
|
398
|
-
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 значительно улучшает логический вывод при минимальном количестве размеченных данных и выводит цепочку рассуждений перед финальным ответом для повышения точности.",
|
|
399
|
-
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B — дистиллированная LLM-модель на основе Llama 3.3 70B, дообученная с использованием выходных данных DeepSeek R1 для достижения конкурентной производительности с передовыми крупными моделями.",
|
|
400
|
-
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B — дистиллированная LLM-модель на основе Llama-3.1-8B-Instruct, обученная с использованием выходных данных DeepSeek R1.",
|
|
401
|
-
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B — дистиллированная LLM-модель на основе Qwen 2.5 14B, обученная на выходных данных DeepSeek R1. Превосходит OpenAI o1-mini по нескольким бенчмаркам, достигая передовых результатов среди плотных моделей. Основные показатели:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nРейтинг CodeForces: 1481\nДообучение на выходных данных DeepSeek R1 обеспечивает конкурентную производительность с более крупными моделями.",
|
|
402
|
-
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B — дистиллированная LLM-модель на основе Qwen 2.5 32B, обученная на выходных данных DeepSeek R1. Превосходит OpenAI o1-mini по нескольким бенчмаркам, достигая передовых результатов среди плотных моделей. Основные показатели:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nРейтинг CodeForces: 1691\nДообучение на выходных данных DeepSeek R1 обеспечивает конкурентную производительность с более крупными моделями.",
|
|
403
|
-
"deepseek/deepseek-r1.description": "DeepSeek R1 обновлён до версии DeepSeek-R1-0528. Благодаря увеличенным вычислительным ресурсам и алгоритмическим оптимизациям после обучения, модель значительно улучшила глубину и качество рассуждений. Демонстрирует высокие результаты в математике, программировании и логике, приближаясь к лидерам, таким как o3 и Gemini 2.5 Pro.",
|
|
404
|
-
"deepseek/deepseek-r1/community.description": "DeepSeek R1 — последняя открытая модель от команды DeepSeek с очень высокой производительностью в логических задачах, особенно в математике, программировании и рассуждениях, сопоставимая с OpenAI o1.",
|
|
405
|
-
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 значительно улучшает логический вывод при минимальном количестве размеченных данных и выводит цепочку рассуждений перед финальным ответом для повышения точности.",
|
|
406
|
-
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) — экспериментальная модель рассуждений от DeepSeek, подходящая для задач высокой сложности.",
|
|
407
|
-
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base — улучшенная версия модели DeepSeek V3.",
|
|
408
|
-
"deepseek/deepseek-v3.description": "Быстрая универсальная LLM-модель с улучшенными возможностями рассуждения.",
|
|
409
|
-
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 обеспечивает значительный прорыв в скорости рассуждений по сравнению с предыдущими моделями. Занимает первое место среди открытых моделей и соперничает с самыми продвинутыми закрытыми решениями. DeepSeek-V3 использует Multi-Head Latent Attention (MLA) и архитектуру DeepSeekMoE, проверенные в DeepSeek-V2. Также внедрена вспомогательная стратегия без потерь для балансировки нагрузки и обучение с предсказанием нескольких токенов для повышения производительности.",
|
|
410
|
-
"deepseek_r1.description": "DeepSeek-R1 — модель рассуждений, основанная на обучении с подкреплением, решающая проблемы повторов и читаемости. До этапа RL использует данные холодного старта для повышения качества рассуждений. Сопоставима с OpenAI-o1 в задачах математики, программирования и логики, с тщательно продуманным обучением для улучшения общих результатов.",
|
|
411
|
-
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B — дистиллированная модель на основе Llama-3.3-70B-Instruct. Является частью серии DeepSeek-R1, дообучена на выборках, сгенерированных DeepSeek-R1, и демонстрирует высокие результаты в математике, программировании и логике.",
|
|
412
|
-
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B — дистиллированная модель на основе Qwen2.5-14B, дообученная на 800 тысячах отобранных выборок, сгенерированных DeepSeek-R1, обеспечивая высокое качество рассуждений.",
|
|
413
|
-
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B — дистиллированная модель на основе Qwen2.5-32B, дообученная на 800 тысячах отобранных выборок, сгенерированных DeepSeek-R1, превосходя в задачах математики, программирования и логики.",
|
|
414
|
-
"devstral-2:123b.description": "Devstral 2 123B превосходно использует инструменты для анализа кодовой базы, редактирования нескольких файлов и поддержки агентов в сфере программной инженерии.",
|
|
415
|
-
"doubao-1.5-lite-32k.description": "Doubao-1.5-lite — новая облегчённая модель с ультрабыстрым откликом, обеспечивающая высокое качество и низкую задержку.",
|
|
416
|
-
"doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k — комплексное обновление модели Doubao-1.5-Pro, повышающее общую производительность на 10%. Поддерживает контекстное окно 256k и до 12k токенов вывода, обеспечивая высокую производительность, расширенное окно и отличную ценность для широкого спектра задач.",
|
|
417
|
-
"doubao-1.5-pro-32k.description": "Doubao-1.5-pro — флагманская модель нового поколения с улучшениями по всем направлениям, превосходящая в знаниях, программировании и рассуждении.",
|
|
418
|
-
"doubao-1.5-thinking-pro-m.description": "Doubao-1.5 — новая модель глубокого рассуждения (версия m включает нативное мультимодальное глубокое мышление), превосходящая в математике, программировании, научном анализе и общих задачах, таких как креативное письмо. Достигает или приближается к топовым результатам на бенчмарках AIME 2024, Codeforces и GPQA. Поддерживает контекстное окно 128k и вывод до 16k токенов.",
|
|
419
|
-
"doubao-1.5-thinking-pro.description": "Doubao-1.5 — новая модель глубокого рассуждения, превосходящая в математике, программировании, научном анализе и общих задачах, таких как креативное письмо. Достигает или приближается к топовым результатам на бенчмарках AIME 2024, Codeforces и GPQA. Поддерживает контекстное окно 128k и вывод до 16k токенов.",
|
|
420
|
-
"doubao-1.5-thinking-vision-pro.description": "Новая визуальная модель глубокого рассуждения с улучшенным мультимодальным пониманием и анализом, достигающая SOTA-результатов на 37 из 59 публичных бенчмарков.",
|
|
421
|
-
"doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS — нативная модель-агент, ориентированная на графический интерфейс, которая взаимодействует с интерфейсами с помощью человекоподобного восприятия, рассуждения и действий.",
|
|
422
|
-
"doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite — обновлённая мультимодальная модель, поддерживающая изображения любого разрешения и экстремальных соотношений сторон, улучшая визуальное рассуждение, распознавание документов, понимание деталей и следование инструкциям. Поддерживает контекстное окно 128k и до 16k токенов вывода.",
|
|
423
|
-
"doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro — обновлённая мультимодальная модель, поддерживающая изображения любого разрешения и экстремальных соотношений сторон, улучшая визуальное рассуждение, распознавание документов, понимание деталей и следование инструкциям.",
|
|
424
|
-
"doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro — обновлённая мультимодальная модель, поддерживающая изображения любого разрешения и экстремальных соотношений сторон, улучшая визуальное рассуждение, распознавание документов, понимание деталей и следование инструкциям.",
|
|
425
|
-
"doubao-lite-128k.description": "Ультрабыстрый отклик с лучшей ценностью, предлагающий более гибкие варианты для различных сценариев. Поддерживает рассуждение и дообучение с контекстным окном 128k.",
|
|
426
|
-
"doubao-lite-32k.description": "Ультрабыстрый отклик с лучшей ценностью, предлагающий более гибкие варианты для различных сценариев. Поддерживает рассуждение и дообучение с контекстным окном 32k.",
|
|
427
|
-
"doubao-lite-4k.description": "Ультрабыстрый отклик с лучшей ценностью, предлагающий более гибкие варианты для различных сценариев. Поддерживает рассуждение и дообучение с контекстным окном 4k.",
|
|
428
|
-
"doubao-pro-256k.description": "Флагманская модель с наилучшей производительностью для сложных задач, демонстрирующая отличные результаты в вопросах с ссылками, суммировании, создании контента, классификации текста и ролевых играх. Поддерживает рассуждение и дообучение с контекстным окном 256k.",
|
|
429
|
-
"doubao-pro-32k.description": "Флагманская модель с наилучшей производительностью для сложных задач, демонстрирующая отличные результаты в вопросах с ссылками, суммировании, создании контента, классификации текста и ролевых играх. Поддерживает рассуждение и дообучение с контекстным окном 32k.",
|
|
430
|
-
"doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash — ультрабыстрая мультимодальная модель глубокого рассуждения с TPOT до 10 мс. Поддерживает текст и изображения, превосходит предыдущую lite-модель в понимании текста и сопоставима с pro-моделями в области зрения. Поддерживает контекстное окно 256k и до 16k токенов вывода.",
|
|
431
|
-
"doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite — новая мультимодальная модель глубокого рассуждения с регулируемой степенью мышления (минимальная, низкая, средняя, высокая), обеспечивающая лучшую ценность и отличный выбор для повседневных задач. Поддерживает контекст до 256k.",
|
|
432
|
-
"doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6 значительно усиливает рассуждение, улучшая ключевые способности в программировании, математике и логике по сравнению с Doubao-1.5-thinking-pro, а также добавляет понимание изображений. Поддерживает контекстное окно 256k и до 16k токенов вывода.",
|
|
433
|
-
"doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision — визуальная модель глубокого рассуждения с улучшенным мультимодальным пониманием и анализом для образования, проверки изображений, безопасности и визуального поиска. Поддерживает контекст до 256k и до 64k токенов вывода.",
|
|
434
|
-
"doubao-seed-1.6.description": "Doubao-Seed-1.6 — новая мультимодальная модель глубокого рассуждения с режимами авто, мышления и без мышления. В режиме без мышления значительно превосходит Doubao-1.5-pro/250115. Поддерживает контекст до 256k и до 16k токенов вывода.",
|
|
435
|
-
"doubao-seed-1.8.description": "Doubao-Seed-1.8 обладает улучшенными возможностями мультимодального понимания и работы агентов, поддерживает ввод текста/изображений/видео и кэширование контекста, обеспечивая выдающуюся производительность в сложных задачах.",
|
|
436
|
-
"doubao-seed-code.description": "Doubao-Seed-Code глубоко оптимизирован для агентного программирования, поддерживает мультимодальный ввод (текст/изображение/видео) и контекст 256k, совместим с API Anthropic и подходит для программирования, визуального анализа и агентных рабочих процессов.",
|
|
437
|
-
"doubao-seededit-3-0-i2i-250628.description": "Модель изображений Doubao от ByteDance Seed поддерживает ввод текста и изображений с высококачественной, управляемой генерацией изображений. Поддерживает редактирование изображений по тексту с размерами вывода от 512 до 1536 по длинной стороне.",
|
|
438
|
-
"doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0 — модель генерации изображений от ByteDance Seed, поддерживающая ввод текста и изображений с высококачественной, управляемой генерацией. Генерирует изображения по текстовым подсказкам.",
|
|
439
|
-
"doubao-seedream-4-0-250828.description": "Seedream 4.0 — модель генерации изображений от ByteDance Seed, поддерживающая ввод текста и изображений с высококачественной, управляемой генерацией. Генерирует изображения по текстовым подсказкам.",
|
|
440
|
-
"doubao-vision-lite-32k.description": "Doubao-vision — мультимодальная модель от Doubao с сильным пониманием изображений и рассуждением, а также точным следованием инструкциям. Отлично справляется с извлечением информации из изображений и задачами визуального анализа, расширяя возможности визуального Q&A.",
|
|
441
|
-
"doubao-vision-pro-32k.description": "Doubao-vision — мультимодальная модель от Doubao с сильным пониманием изображений и рассуждением, а также точным следованием инструкциям. Отлично справляется с извлечением информации из изображений и задачами визуального анализа, расширяя возможности визуального Q&A.",
|
|
442
|
-
"emohaa.description": "Emohaa — это модель психического здоровья с профессиональными консультационными возможностями, помогающая пользователям разобраться в эмоциональных проблемах.",
|
|
363
|
+
"deepseek-ocr.description": "DeepSeek-OCR — визуально-языковая модель от DeepSeek AI, ориентированная на OCR и «контекстное оптическое сжатие». Она исследует методы сжатия контекста из изображений, эффективно обрабатывает документы и преобразует их в структурированные текстовые форматы, такие как Markdown. Точно распознаёт текст на изображениях, идеально подходит для оцифровки документов, извлечения текста и структурированной обработки.",
|
|
443
364
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 — это открытая LLM для разработчиков, исследователей и предприятий, созданная для поддержки создания, экспериментов и ответственного масштабирования идей генеративного ИИ. Являясь частью основы для глобальных инноваций сообщества, она хорошо подходит для ограниченных вычислительных ресурсов, устройств на периферии и ускоренного обучения.",
|
|
444
365
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Модель с высокой способностью к визуальному рассуждению на изображениях высокого разрешения, подходящая для приложений визуального понимания.",
|
|
445
366
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Продвинутая модель визуального рассуждения для агентов, ориентированных на визуальное понимание.",
|
|
@@ -675,4 +596,4 @@
|
|
|
675
596
|
"zai/glm-4.5.description": "Серия GLM-4.5 разработана для агентов. Флагманская модель GLM-4.5 сочетает рассуждение, программирование и агентные навыки с 355B параметров (32B активно) и предлагает два режима работы как гибридная система рассуждения.",
|
|
676
597
|
"zai/glm-4.5v.description": "GLM-4.5V построена на базе GLM-4.5-Air, унаследовав проверенные техники GLM-4.1V-Thinking и масштабируясь с мощной архитектурой MoE на 106B параметров.",
|
|
677
598
|
"zenmux/auto.description": "ZenMux auto-routing автоматически выбирает наиболее выгодную и производительную модель из поддерживаемых вариантов на основе вашего запроса."
|
|
678
|
-
}
|
|
599
|
+
}
|
|
@@ -92,11 +92,15 @@
|
|
|
92
92
|
"ModelSelect.featureTag.video": "Bu model video tanımayı destekler",
|
|
93
93
|
"ModelSelect.featureTag.vision": "Bu model görsel tanımayı destekler.",
|
|
94
94
|
"ModelSelect.removed": "Model listede değil. Seçimi kaldırırsanız otomatik olarak silinecek.",
|
|
95
|
+
"ModelSwitchPanel.byModel": "Modele Göre",
|
|
96
|
+
"ModelSwitchPanel.byProvider": "Sağlayıcıya Göre",
|
|
95
97
|
"ModelSwitchPanel.emptyModel": "Etkinleştirilmiş model yok. Lütfen ayarlardan etkinleştirin.",
|
|
96
98
|
"ModelSwitchPanel.emptyProvider": "Etkinleştirilmiş sağlayıcı yok. Lütfen ayarlardan birini etkinleştirin.",
|
|
97
99
|
"ModelSwitchPanel.goToSettings": "Ayarlar'a git",
|
|
100
|
+
"ModelSwitchPanel.manageProvider": "Sağlayıcıyı Yönet",
|
|
98
101
|
"ModelSwitchPanel.provider": "Sağlayıcı",
|
|
99
102
|
"ModelSwitchPanel.title": "Model",
|
|
103
|
+
"ModelSwitchPanel.useModelFrom": "Bu modelin kullanıldığı yer:",
|
|
100
104
|
"MultiImagesUpload.actions.uploadMore": "Daha fazla yüklemek için tıklayın veya sürükleyin",
|
|
101
105
|
"MultiImagesUpload.modal.complete": "Tamamlandı",
|
|
102
106
|
"MultiImagesUpload.modal.newFileIndicator": "Yeni",
|
|
@@ -336,81 +336,52 @@
|
|
|
336
336
|
"dall-e-2.description": "İkinci nesil DALL·E modeli, daha gerçekçi ve doğru görüntü üretimi sunar. İlk nesle göre 4 kat daha yüksek çözünürlük sağlar.",
|
|
337
337
|
"dall-e-3.description": "Kasım 2023’te yayınlanan en yeni DALL·E modeli, daha gerçekçi ve doğru görüntü üretimi sunar. Detaylarda daha güçlüdür.",
|
|
338
338
|
"databricks/dbrx-instruct.description": "DBRX Instruct, sektörler arası güvenilir talimat işleme sunar.",
|
|
339
|
-
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR, DeepSeek AI tarafından geliştirilen bir görsel-dil modelidir ve OCR ile \"bağlam optik sıkıştırma\"ya odaklanır. Görsellerden bağlamı sıkıştırmayı araştırır, belgeleri verimli şekilde işler ve bunları yapılandırılmış metne (örneğin Markdown) dönüştürür. Görsellerdeki metni yüksek doğrulukla tanır; belge dijitalleştirme, metin çıkarımı ve yapılandırılmış
|
|
340
|
-
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B, DeepSeek-R1-0528'den çıkarılan düşünce zincirini Qwen3 8B Base
|
|
339
|
+
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR, DeepSeek AI tarafından geliştirilen bir görsel-dil modelidir ve OCR ile \"bağlam optik sıkıştırma\"ya odaklanır. Görsellerden bağlamı sıkıştırmayı araştırır, belgeleri verimli şekilde işler ve bunları yapılandırılmış metne (örneğin Markdown) dönüştürür. Görsellerdeki metni yüksek doğrulukla tanır; belge dijitalleştirme, metin çıkarımı ve yapılandırılmış işlem için idealdir.",
|
|
340
|
+
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B, DeepSeek-R1-0528'den çıkarılan düşünce zincirini Qwen3 8B Base modeline aktarır. Açık modeller arasında SOTA seviyesine ulaşır, AIME 2024'te Qwen3 8B'yi %10 oranında geçer ve Qwen3-235B-thinking performansına eşdeğerdir. Matematiksel akıl yürütme, programlama ve genel mantık testlerinde üstün performans gösterir. Qwen3-8B mimarisini paylaşır ancak DeepSeek-R1-0528 tokenleştiricisini kullanır.",
|
|
341
341
|
"deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1, ek hesaplama gücü ve son eğitim algoritma iyileştirmeleriyle akıl yürütmeyi derinleştirir. Matematik, programlama ve genel mantık testlerinde güçlü performans sergiler; o3 ve Gemini 2.5 Pro gibi lider modellere yaklaşır.",
|
|
342
342
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "DeepSeek-R1 distil modelleri, akıl yürütmeyi geliştirmek ve yeni açık model çoklu görev kıyaslamaları belirlemek için RL ve soğuk başlangıç verileri kullanır.",
|
|
343
343
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "DeepSeek-R1 distil modelleri, akıl yürütmeyi geliştirmek ve yeni açık model çoklu görev kıyaslamaları belirlemek için RL ve soğuk başlangıç verileri kullanır.",
|
|
344
344
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "DeepSeek-R1 distil modelleri, akıl yürütmeyi geliştirmek ve yeni açık model çoklu görev kıyaslamaları belirlemek için RL ve soğuk başlangıç verileri kullanır.",
|
|
345
345
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B, Qwen2.5-32B'den distil edilmiştir ve 800K seçilmiş DeepSeek-R1 örneğiyle ince ayar yapılmıştır. Matematik, programlama ve akıl yürütmede üstün performans gösterir; AIME 2024, MATH-500 (%94,3 doğruluk) ve GPQA Diamond testlerinde güçlü sonuçlar elde eder.",
|
|
346
346
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B, Qwen2.5-Math-7B'den distil edilmiştir ve 800K seçilmiş DeepSeek-R1 örneğiyle ince ayar yapılmıştır. MATH-500'de %92,8, AIME 2024'te %55,5 ve 7B model için 1189 CodeForces puanı ile güçlü performans sergiler.",
|
|
347
|
-
"deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1, RL ve soğuk başlangıç
|
|
347
|
+
"deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1, akıl yürütmeyi geliştirmek için RL ve soğuk başlangıç verileri kullanır; yeni açık model çoklu görev kıyaslamaları belirler ve OpenAI-o1-mini'yi geride bırakır.",
|
|
348
348
|
"deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5, DeepSeek-V2-Chat ve DeepSeek-Coder-V2-Instruct modellerini geliştirerek genel ve kodlama yeteneklerini birleştirir. Yazma ve talimat takibini geliştirerek tercih uyumunu artırır; AlpacaEval 2.0, ArenaHard, AlignBench ve MT-Bench testlerinde önemli kazanımlar sağlar.",
|
|
349
|
-
"deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus, hibrit ajan LLM olarak konumlandırılmış güncellenmiş V3.1 modelidir. Kullanıcı geri bildirimleriyle tespit edilen sorunları düzeltir, kararlılığı ve dil tutarlılığını artırır, karışık Çince/İngilizce ve anormal karakterleri azaltır. Düşünen ve düşünmeyen modları sohbet şablonlarıyla entegre eder, esnek geçiş sağlar. Ayrıca Code Agent ve Search Agent performansını
|
|
349
|
+
"deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus, hibrit ajan LLM olarak konumlandırılmış güncellenmiş V3.1 modelidir. Kullanıcı geri bildirimleriyle tespit edilen sorunları düzeltir, kararlılığı ve dil tutarlılığını artırır, karışık Çince/İngilizce ve anormal karakterleri azaltır. Düşünen ve düşünmeyen modları sohbet şablonlarıyla entegre eder, esnek geçiş sağlar. Ayrıca Code Agent ve Search Agent performansını geliştirerek daha güvenilir araç kullanımı ve çok adımlı görevler sunar.",
|
|
350
350
|
"deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1, hibrit akıl yürütme mimarisi kullanır ve hem düşünen hem de düşünmeyen modları destekler.",
|
|
351
351
|
"deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp, bir sonraki mimariye geçişi sağlayan deneysel V3.2 sürümüdür. V3.1-Terminus üzerine DeepSeek Sparse Attention (DSA) ekleyerek uzun bağlamlı eğitim ve çıkarım verimliliğini artırır. Araç kullanımı, uzun belge anlama ve çok adımlı akıl yürütme için optimize edilmiştir. Geniş bağlam bütçeleriyle daha yüksek akıl yürütme verimliliğini keşfetmek için idealdir.",
|
|
352
|
-
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3, MLA ve DeepSeekMoE kullanan
|
|
352
|
+
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3, MLA ve DeepSeekMoE kullanan 671B parametreli bir MoE modelidir. Kayıpsız yük dengelemesiyle verimli eğitim ve çıkarım sağlar. 14.8T yüksek kaliteli token ile önceden eğitilmiş, SFT ve RL ile güçlendirilmiştir; diğer açık modelleri geride bırakır ve önde gelen kapalı modellere yaklaşır.",
|
|
353
353
|
"deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B), derin dil anlama ve etkileşim sunan yenilikçi bir modeldir.",
|
|
354
354
|
"deepseek-ai/deepseek-r1.description": "Akıl yürütme, matematik ve programlamada güçlü, son teknoloji verimli bir LLM.",
|
|
355
|
-
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1, karmaşık akıl yürütme ve düşünce zinciriyle derin analiz görevleri için geliştirilmiş yeni nesil bir
|
|
356
|
-
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1, karmaşık akıl yürütme ve düşünce zinciriyle derin analiz görevleri için geliştirilmiş yeni nesil bir
|
|
357
|
-
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2,
|
|
358
|
-
"deepseek-
|
|
355
|
+
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1, karmaşık akıl yürütme ve düşünce zinciriyle derin analiz görevleri için geliştirilmiş yeni nesil bir modeldir.",
|
|
356
|
+
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1, karmaşık akıl yürütme ve düşünce zinciriyle derin analiz görevleri için geliştirilmiş yeni nesil bir modeldir.",
|
|
357
|
+
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2, DeepSeekMoE-27B tabanlı, seyrek etkinleştirme kullanan bir MoE görsel-dil modelidir. Sadece 4.5B aktif parametreyle güçlü performans sunar. Görsel Soru-Cevap, OCR, belge/tablo/grafik anlama ve görsel eşleme konularında öne çıkar.",
|
|
358
|
+
"deepseek-chat.description": "Genel ve kodlama yeteneklerini birleştiren yeni açık kaynaklı model. Sohbet modelinin genel diyalog yeteneğini ve kodlayıcı modelin güçlü kodlama becerilerini korur, tercih uyumunu geliştirir. DeepSeek-V2.5 ayrıca yazma ve talimat takibini iyileştirir.",
|
|
359
|
+
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B, 2T token (%%87 kod, %%13 Çince/İngilizce metin) ile eğitilmiş bir kodlama dil modelidir. 16K bağlam penceresi ve ortadan doldurma görevleri sunar; proje düzeyinde kod tamamlama ve kod parçacığı doldurma sağlar.",
|
|
359
360
|
"deepseek-coder-v2.description": "DeepSeek Coder V2, GPT-4 Turbo ile karşılaştırılabilir güçlü performansa sahip açık kaynaklı bir MoE kod modeli.",
|
|
360
361
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2, GPT-4 Turbo ile karşılaştırılabilir güçlü performansa sahip açık kaynaklı bir MoE kod modeli.",
|
|
361
|
-
"deepseek-ocr.description": "DeepSeek-OCR, DeepSeek AI tarafından geliştirilen bir görsel-dil modelidir ve OCR ile \"bağlamsal optik sıkıştırma\"ya odaklanır. Görsellerden bağlamsal bilgiyi sıkıştırmayı araştırır, belgeleri verimli şekilde işler ve bunları Markdown gibi yapılandırılmış metin formatlarına dönüştürür. Görsellerdeki metni yüksek doğrulukla tanır; belge dijitalleştirme, metin çıkarımı ve yapılandırılmış
|
|
362
|
-
"deepseek-r1-0528.description": "685B tam model, 2025-05-28'de yayımlandı. DeepSeek-R1, son eğitimde büyük ölçekli RL kullanarak etiketli
|
|
362
|
+
"deepseek-ocr.description": "DeepSeek-OCR, DeepSeek AI tarafından geliştirilen bir görsel-dil modelidir ve OCR ile \"bağlamsal optik sıkıştırma\"ya odaklanır. Görsellerden bağlamsal bilgiyi sıkıştırmayı araştırır, belgeleri verimli şekilde işler ve bunları Markdown gibi yapılandırılmış metin formatlarına dönüştürür. Görsellerdeki metni yüksek doğrulukla tanır; belge dijitalleştirme, metin çıkarımı ve yapılandırılmış işlem için idealdir.",
|
|
363
|
+
"deepseek-r1-0528.description": "685B tam model, 2025-05-28'de yayımlandı. DeepSeek-R1, son eğitimde büyük ölçekli RL kullanarak etiketli veri ihtiyacını en aza indirir ve akıl yürütmeyi büyük ölçüde geliştirir. Matematik, kodlama ve doğal dil akıl yürütmede güçlü performans gösterir.",
|
|
363
364
|
"deepseek-r1-250528.description": "DeepSeek R1 250528, zorlu matematik ve mantık görevleri için tam DeepSeek-R1 akıl yürütme modelidir.",
|
|
364
365
|
"deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B hızlı sürüm, gerçek zamanlı web aramasıyla daha hızlı yanıtlar sunar ve performansı korur.",
|
|
365
366
|
"deepseek-r1-70b-online.description": "DeepSeek R1 70B standart sürüm, gerçek zamanlı web aramasıyla güncel sohbet ve metin görevleri için uygundur.",
|
|
366
367
|
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B, R1 akıl yürütmesini Llama ekosistemiyle birleştirir.",
|
|
367
|
-
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B, DeepSeek R1 çıktıları kullanılarak Llama-3.1-8B'den
|
|
368
|
-
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama, DeepSeek-R1'den Llama
|
|
369
|
-
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B, Qianfan-70B tabanlı güçlü bir R1
|
|
370
|
-
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B, küçük ve orta ölçekli uygulamalar için Qianfan-8B tabanlı bir R1
|
|
371
|
-
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B, Llama-70B tabanlı bir R1
|
|
372
|
-
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B, çok düşük kaynaklı ortamlar için ultra hafif bir
|
|
373
|
-
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B, çok senaryolu dağıtım için orta ölçekli bir
|
|
374
|
-
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B, performans ve maliyet
|
|
375
|
-
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B, uç ve özel kurumsal ortamlar için hafif bir
|
|
376
|
-
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen, DeepSeek-R1'den Qwen
|
|
377
|
-
"deepseek-r1-fast-online.description": "Gerçek zamanlı web aramasıyla 671B ölçekli
|
|
378
|
-
"deepseek-r1-online.description": "671B parametreli ve gerçek zamanlı web
|
|
379
|
-
"deepseek-r1.description": "DeepSeek-R1, RL öncesi soğuk başlangıç
|
|
368
|
+
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B, DeepSeek R1 çıktıları kullanılarak Llama-3.1-8B'den distil edilmiştir.",
|
|
369
|
+
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama, DeepSeek-R1'den Llama üzerine distil edilmiştir.",
|
|
370
|
+
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B, Qianfan-70B tabanlı güçlü bir R1 distil modelidir.",
|
|
371
|
+
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B, küçük ve orta ölçekli uygulamalar için Qianfan-8B tabanlı bir R1 distil modelidir.",
|
|
372
|
+
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B, Llama-70B tabanlı bir R1 distil modelidir.",
|
|
373
|
+
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B, çok düşük kaynaklı ortamlar için ultra hafif bir distil modelidir.",
|
|
374
|
+
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B, çok senaryolu dağıtım için orta ölçekli bir distil modelidir.",
|
|
375
|
+
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B, performans ve maliyet arasında denge kuran Qwen-32B tabanlı bir R1 distil modelidir.",
|
|
376
|
+
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B, uç ve özel kurumsal ortamlar için hafif bir distil modelidir.",
|
|
377
|
+
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen, DeepSeek-R1'den Qwen üzerine distil edilmiştir.",
|
|
378
|
+
"deepseek-r1-fast-online.description": "Gerçek zamanlı web aramasıyla 671B ölçekli yetenek ve hızlı yanıtları birleştiren DeepSeek R1 hızlı tam sürüm.",
|
|
379
|
+
"deepseek-r1-online.description": "671B parametreli ve gerçek zamanlı web aramasına sahip DeepSeek R1 tam sürüm; güçlü anlama ve üretim sunar.",
|
|
380
|
+
"deepseek-r1.description": "DeepSeek-R1, RL öncesi soğuk başlangıç verileri kullanır ve matematik, kodlama ve akıl yürütmede OpenAI-o1 ile karşılaştırılabilir performans sunar.",
|
|
381
|
+
"deepseek-reasoner.description": "DeepSeek V3.2 düşünme modu, doğruluğu artırmak için nihai cevaptan önce düşünce zinciri üretir.",
|
|
380
382
|
"deepseek-v2.description": "DeepSeek V2, maliyet etkin işlem için verimli bir MoE modelidir.",
|
|
381
|
-
"deepseek-v2:236b.description": "DeepSeek V2 236B, güçlü kod üretimi
|
|
383
|
+
"deepseek-v2:236b.description": "DeepSeek V2 236B, güçlü kod üretimi sunan DeepSeek’in kod odaklı modelidir.",
|
|
382
384
|
"deepseek-v3-0324.description": "DeepSeek-V3-0324, programlama ve teknik yetenek, bağlam anlama ve uzun metin işleme konularında öne çıkan 671B parametreli bir MoE modelidir.",
|
|
383
|
-
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus, terminal cihazlar için optimize edilmiş DeepSeek’in terminal odaklı LLM modelidir.",
|
|
384
|
-
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821, Terminus sürümüne karşılık gelen derin düşünme modelidir ve yüksek performanslı akıl yürütme için tasarlanmıştır.",
|
|
385
|
-
"deepseek-v3.1.description": "DeepSeek-V3.1, düşünme ve düşünmeme modlarını destekleyen yeni bir hibrit akıl yürütme modelidir. DeepSeek-R1-0528'e kıyasla daha yüksek düşünme verimliliği sunar. Eğitim sonrası optimizasyonlar, araç kullanımı ve görev performansını büyük ölçüde artırır. 128k bağlam penceresi ve 64k'ya kadar çıktı token'ı destekler.",
|
|
386
|
-
"deepseek-v3.1:671b.description": "DeepSeek V3.1, gelişmiş karmaşık akıl yürütme ve düşünce zinciri ile derin analiz gerektiren görevler için uygun yeni nesil bir akıl yürütme modelidir.",
|
|
387
|
-
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp, uzun metinlerde eğitim ve çıkarım verimliliğini artırmak için seyrek dikkat mekanizması sunar ve deepseek-v3.1'e göre daha düşük maliyetlidir.",
|
|
388
|
-
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think, daha güçlü uzun zincirli akıl yürütme yeteneğine sahip tam kapsamlı bir derin düşünme modelidir.",
|
|
389
|
-
"deepseek-v3.2.description": "DeepSeek-V3.2, DeepSeek tarafından sunulan ilk düşünmeyi araç kullanımına entegre eden hibrit akıl yürütme modelidir. Verimli mimarisiyle hesaplama gücünden tasarruf eder, büyük ölçekli pekiştirmeli öğrenmeyle yeteneklerini artırır ve büyük ölçekli sentetik görev verisiyle genelleme gücünü yükseltir. Bu üç unsurun birleşimiyle GPT-5-High seviyesinde performans sunar, çıktı uzunluğunu önemli ölçüde azaltır ve hesaplama maliyeti ile kullanıcı bekleme süresini düşürür.",
|
|
390
|
-
"deepseek-v3.description": "DeepSeek-V3, 671B toplam parametreli ve token başına 37B aktif parametreli güçlü bir MoE modelidir.",
|
|
391
|
-
"deepseek-vl2-small.description": "DeepSeek VL2 Small, kaynak kısıtlı ve yüksek eşzamanlı kullanım için hafif bir çok modlu modeldir.",
|
|
392
|
-
"deepseek-vl2.description": "DeepSeek VL2, görüntü-metin anlama ve ayrıntılı görsel Soru-Cevap için çok modlu bir modeldir.",
|
|
393
|
-
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3, 685 milyar parametreli bir MoE modelidir ve DeepSeek’in amiral gemisi sohbet serisinin en son sürümüdür.\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3) üzerine inşa edilmiştir ve görevler genelinde güçlü performans sergiler.",
|
|
394
|
-
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3, 685 milyar parametreli bir MoE modelidir ve DeepSeek’in amiral gemisi sohbet serisinin en son sürümüdür.\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3) üzerine inşa edilmiştir ve görevler genelinde güçlü performans sergiler.",
|
|
395
|
-
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1, DeepSeek’in uzun bağlam destekli hibrit akıl yürütme modelidir. Düşünme/düşünmeme modlarını ve araç entegrasyonunu destekler.",
|
|
396
|
-
"deepseek/deepseek-chat.description": "DeepSeek-V3, karmaşık görevler ve araç entegrasyonu için yüksek performanslı hibrit akıl yürütme modelidir.",
|
|
397
|
-
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528, açık erişim ve derin akıl yürütmeye odaklanan güncellenmiş bir varyanttır.",
|
|
398
|
-
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1, minimum etiketli veriyle akıl yürütmeyi büyük ölçüde geliştirir ve nihai cevaptan önce düşünce zinciri üreterek doğruluğu artırır.",
|
|
399
|
-
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B, Llama 3.3 70B tabanlı damıtılmış bir LLM’dir. DeepSeek R1 çıktılarıyla ince ayar yapılarak büyük öncü modellerle rekabetçi performans elde edilmiştir.",
|
|
400
|
-
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B, Llama-3.1-8B-Instruct tabanlı damıtılmış bir LLM’dir. DeepSeek R1 çıktılarıyla eğitilmiştir.",
|
|
401
|
-
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B, Qwen 2.5 14B tabanlı damıtılmış bir LLM’dir. DeepSeek R1 çıktılarıyla eğitilmiştir. OpenAI o1-mini’yi birçok kıyaslamada geride bırakır ve yoğun modeller arasında en iyi sonuçları elde eder. Öne çıkan kıyaslamalar:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Puanı: 1481\nDeepSeek R1 çıktılarıyla yapılan ince ayar, büyük öncü modellerle rekabetçi performans sağlar.",
|
|
402
|
-
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B, Qwen 2.5 32B tabanlı damıtılmış bir LLM’dir. DeepSeek R1 çıktılarıyla eğitilmiştir. OpenAI o1-mini’yi birçok kıyaslamada geride bırakır ve yoğun modeller arasında en iyi sonuçları elde eder. Öne çıkan kıyaslamalar:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Puanı: 1691\nDeepSeek R1 çıktılarıyla yapılan ince ayar, büyük öncü modellerle rekabetçi performans sağlar.",
|
|
403
|
-
"deepseek/deepseek-r1.description": "DeepSeek R1, DeepSeek-R1-0528 olarak güncellenmiştir. Daha fazla hesaplama gücü ve eğitim sonrası algoritmik iyileştirmelerle akıl yürütme derinliği ve yeteneği önemli ölçüde artırılmıştır. Matematik, programlama ve genel mantık kıyaslamalarında güçlü performans sergiler; o3 ve Gemini 2.5 Pro gibi lider modellere yaklaşır.",
|
|
404
|
-
"deepseek/deepseek-r1/community.description": "DeepSeek R1, DeepSeek ekibi tarafından yayımlanan en yeni açık kaynaklı modeldir. Özellikle matematik, kodlama ve akıl yürütme görevlerinde çok güçlü performans gösterir ve OpenAI o1 ile karşılaştırılabilir düzeydedir.",
|
|
405
|
-
"deepseek/deepseek-r1:free.description": "DeepSeek-R1, minimum etiketli veriyle akıl yürütmeyi büyük ölçüde geliştirir ve nihai cevaptan önce düşünce zinciri üreterek doğruluğu artırır.",
|
|
406
|
-
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner), DeepSeek’in deneysel akıl yürütme modelidir ve yüksek karmaşıklıktaki akıl yürütme görevleri için uygundur.",
|
|
407
|
-
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base, DeepSeek V3 modelinin geliştirilmiş bir versiyonudur.",
|
|
408
|
-
"deepseek/deepseek-v3.description": "Geliştirilmiş akıl yürütme yeteneğine sahip hızlı, genel amaçlı bir LLM.",
|
|
409
|
-
"deepseek/deepseek-v3/community.description": "DeepSeek-V3, önceki modellere kıyasla akıl yürütme hızında büyük bir atılım sağlar. Açık kaynaklı modeller arasında birinci sırada yer alır ve en gelişmiş kapalı modellerle rekabet eder. DeepSeek-V3, DeepSeek-V2’de tamamen doğrulanan Multi-Head Latent Attention (MLA) ve DeepSeekMoE mimarisini benimser. Ayrıca yük dengeleme için kayıpsız yardımcı strateji ve daha güçlü performans için çoklu token tahmin eğitim hedefi sunar.",
|
|
410
|
-
"deepseek_r1.description": "DeepSeek-R1, tekrar ve okunabilirlik sorunlarını ele alan pekiştirmeli öğrenme odaklı bir akıl yürütme modelidir. RL öncesinde, soğuk başlangıç verileriyle akıl yürütme performansı daha da artırılır. Matematik, kodlama ve akıl yürütme görevlerinde OpenAI-o1 ile eşleşir; dikkatle tasarlanmış eğitim süreci genel sonuçları iyileştirir.",
|
|
411
|
-
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B, Llama-3.3-70B-Instruct’tan damıtılmıştır. DeepSeek-R1 serisinin bir parçası olarak, DeepSeek-R1 tarafından üretilen örneklerle ince ayar yapılmıştır ve matematik, kodlama ve akıl yürütme alanlarında güçlü performans sergiler.",
|
|
412
|
-
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B, Qwen2.5-14B’den damıtılmıştır ve DeepSeek-R1 tarafından üretilen 800K seçilmiş örnekle ince ayar yapılmıştır. Güçlü akıl yürütme yeteneği sunar.",
|
|
413
|
-
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B, Qwen2.5-32B’den damıtılmıştır ve DeepSeek-R1 tarafından üretilen 800K seçilmiş örnekle ince ayar yapılmıştır. Matematik, kodlama ve akıl yürütme alanlarında üstün performans gösterir.",
|
|
414
385
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3, geliştiriciler, araştırmacılar ve işletmeler için açık bir büyük dil modeli (LLM) olup, üretken yapay zeka fikirlerini oluşturma, deneme ve sorumlu bir şekilde ölçeklendirme süreçlerinde yardımcı olmak üzere tasarlanmıştır. Küresel topluluk inovasyonunun temel taşlarından biri olarak, sınırlı bilgi işlem gücü ve kaynaklara sahip ortamlar, uç cihazlar ve daha hızlı eğitim süreleri için uygundur.",
|
|
415
386
|
"mistral-small-latest.description": "Mistral Small, çeviri, özetleme ve duygu analizi için uygun maliyetli, hızlı ve güvenilir bir seçenektir.",
|
|
416
387
|
"mistral-small.description": "Mistral Small, yüksek verimlilik ve düşük gecikme gerektiren her türlü dil tabanlı görev için uygundur.",
|
|
@@ -615,4 +586,4 @@
|
|
|
615
586
|
"whisper-1.description": "Çok dilli ASR, konuşma çevirisi ve dil tanıma destekleyen genel bir konuşma tanıma modelidir.",
|
|
616
587
|
"wizardlm2.description": "WizardLM 2, Microsoft AI tarafından geliştirilen, karmaşık diyalog, çok dilli görevler, akıl yürütme ve asistanlarda üstün performans gösteren bir dil modelidir.",
|
|
617
588
|
"wizardlm2:8x22b.description": "WizardLM 2, Microsoft AI tarafından geliştirilen, karmaşık diyalog, çok dilli görevler, akıl yürütme ve asistanlarda üstün performans gösteren bir dil modelidir."
|
|
618
|
-
}
|
|
589
|
+
}
|
|
@@ -92,11 +92,15 @@
|
|
|
92
92
|
"ModelSelect.featureTag.video": "Mô hình này hỗ trợ nhận diện video",
|
|
93
93
|
"ModelSelect.featureTag.vision": "Mô hình này hỗ trợ nhận diện hình ảnh.",
|
|
94
94
|
"ModelSelect.removed": "Mô hình không có trong danh sách. Sẽ tự động bị xóa nếu bỏ chọn.",
|
|
95
|
+
"ModelSwitchPanel.byModel": "Theo Mô Hình",
|
|
96
|
+
"ModelSwitchPanel.byProvider": "Theo Nhà Cung Cấp",
|
|
95
97
|
"ModelSwitchPanel.emptyModel": "Không có mô hình nào được bật. Vui lòng vào cài đặt để bật.",
|
|
96
98
|
"ModelSwitchPanel.emptyProvider": "Không có nhà cung cấp nào được bật. Vui lòng vào cài đặt để bật.",
|
|
97
99
|
"ModelSwitchPanel.goToSettings": "Đi tới cài đặt",
|
|
100
|
+
"ModelSwitchPanel.manageProvider": "Quản Lý Nhà Cung Cấp",
|
|
98
101
|
"ModelSwitchPanel.provider": "Nhà cung cấp",
|
|
99
102
|
"ModelSwitchPanel.title": "Mô hình",
|
|
103
|
+
"ModelSwitchPanel.useModelFrom": "Sử dụng mô hình này từ:",
|
|
100
104
|
"MultiImagesUpload.actions.uploadMore": "Nhấn hoặc kéo để tải thêm",
|
|
101
105
|
"MultiImagesUpload.modal.complete": "Hoàn tất",
|
|
102
106
|
"MultiImagesUpload.modal.newFileIndicator": "Mới",
|