@lobehub/lobehub 2.0.0-next.204 → 2.0.0-next.206

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +14 -0
  3. package/locales/ar/components.json +4 -0
  4. package/locales/ar/models.json +25 -126
  5. package/locales/bg-BG/components.json +4 -0
  6. package/locales/bg-BG/models.json +2 -2
  7. package/locales/de-DE/components.json +4 -0
  8. package/locales/de-DE/models.json +21 -120
  9. package/locales/en-US/components.json +4 -0
  10. package/locales/es-ES/components.json +4 -0
  11. package/locales/es-ES/models.json +24 -180
  12. package/locales/fa-IR/components.json +4 -0
  13. package/locales/fa-IR/models.json +2 -2
  14. package/locales/fr-FR/components.json +4 -0
  15. package/locales/fr-FR/models.json +2 -108
  16. package/locales/it-IT/components.json +4 -0
  17. package/locales/it-IT/models.json +22 -51
  18. package/locales/ja-JP/components.json +4 -0
  19. package/locales/ja-JP/models.json +16 -133
  20. package/locales/ko-KR/components.json +4 -0
  21. package/locales/ko-KR/models.json +26 -148
  22. package/locales/nl-NL/components.json +4 -0
  23. package/locales/nl-NL/models.json +2 -2
  24. package/locales/pl-PL/components.json +4 -0
  25. package/locales/pl-PL/models.json +2 -2
  26. package/locales/pt-BR/components.json +4 -0
  27. package/locales/pt-BR/models.json +49 -125
  28. package/locales/ru-RU/components.json +4 -0
  29. package/locales/ru-RU/models.json +17 -96
  30. package/locales/tr-TR/components.json +4 -0
  31. package/locales/tr-TR/models.json +28 -57
  32. package/locales/vi-VN/components.json +4 -0
  33. package/locales/vi-VN/models.json +1 -92
  34. package/locales/zh-CN/components.json +4 -0
  35. package/locales/zh-CN/models.json +31 -165
  36. package/locales/zh-TW/components.json +4 -0
  37. package/locales/zh-TW/models.json +2 -2
  38. package/package.json +1 -1
  39. package/packages/builtin-tool-gtd/src/executor/index.ts +7 -4
  40. package/packages/utils/src/object.test.ts +10 -2
  41. package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +1 -1
  42. package/src/features/ModelSwitchPanel/index.tsx +392 -41
  43. package/src/locales/default/components.ts +4 -0
  44. package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
  45. package/src/store/aiInfra/slices/aiProvider/__tests__/selectors.test.ts +34 -11
  46. package/src/store/aiInfra/slices/aiProvider/action.ts +9 -1
  47. package/src/store/aiInfra/slices/aiProvider/initialState.ts +6 -1
  48. package/src/store/aiInfra/slices/aiProvider/selectors.ts +17 -3
@@ -92,11 +92,15 @@
92
92
  "ModelSelect.featureTag.video": "Ten model obsługuje rozpoznawanie wideo",
93
93
  "ModelSelect.featureTag.vision": "Ten model obsługuje rozpoznawanie wizualne.",
94
94
  "ModelSelect.removed": "Model nie znajduje się na liście. Zostanie automatycznie usunięty po odznaczeniu.",
95
+ "ModelSwitchPanel.byModel": "Według modelu",
96
+ "ModelSwitchPanel.byProvider": "Według dostawcy",
95
97
  "ModelSwitchPanel.emptyModel": "Brak włączonych modeli. Przejdź do ustawień, aby je włączyć.",
96
98
  "ModelSwitchPanel.emptyProvider": "Brak włączonych dostawców. Przejdź do ustawień, aby włączyć jednego.",
97
99
  "ModelSwitchPanel.goToSettings": "Przejdź do ustawień",
100
+ "ModelSwitchPanel.manageProvider": "Zarządzaj dostawcą",
98
101
  "ModelSwitchPanel.provider": "Dostawca",
99
102
  "ModelSwitchPanel.title": "Model",
103
+ "ModelSwitchPanel.useModelFrom": "Użyj tego modelu od:",
100
104
  "MultiImagesUpload.actions.uploadMore": "Kliknij lub przeciągnij, aby przesłać więcej",
101
105
  "MultiImagesUpload.modal.complete": "Gotowe",
102
106
  "MultiImagesUpload.modal.newFileIndicator": "Nowy",
@@ -103,7 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 to model MoE z 671 mld parametrów, wykorzystujący MLA i DeepSeekMoE z równoważeniem obciążenia bez strat, zapewniający efektywne wnioskowanie i trening. Wstępnie wytrenowany na 14,8 bln wysokiej jakości tokenów i dalej dostrojony za pomocą SFT i RL, przewyższa inne modele otwarte i zbliża się do czołowych modeli zamkniętych.",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 to najnowsza i najpotężniejsza wersja Kimi K2. Jest to model MoE najwyższej klasy z 1T łącznych i 32B aktywnych parametrów. Kluczowe cechy to silniejsza inteligencja kodowania agentowego z istotnymi poprawami w testach porównawczych i zadaniach agentowych w rzeczywistych warunkach, a także ulepszona estetyka i użyteczność kodowania frontendowego.",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo to wariant Turbo zoptymalizowany pod kątem szybkości rozumowania i przepustowości, zachowując jednocześnie wieloetapowe rozumowanie i obsługę narzędzi znane z K2 Thinking. Jest to model MoE z około 1T łącznych parametrów, natywnym kontekstem 256K i stabilnym wywoływaniem narzędzi na dużą skalę, przeznaczony do zastosowań produkcyjnych z rygorystycznymi wymaganiami dotyczącymi opóźnień i współbieżności.",
106
- "Pro/zai-org/glm-4.7.description": "GLM-4.7 to najnowszy flagowy model Zhipu, zaprojektowany z myślą o scenariuszach Agentic Coding. Wzmacnia zdolności kodowania, planowania zadań długoterminowych i współpracy z narzędziami, osiągając czołowe wyniki wśród modeli open-source w wielu aktualnych rankingach. Ulepszono ogólne możliwości modelu — odpowiedzi są bardziej zwięzłe i naturalne, a teksty pisane bardziej immersyjne. W realizacji złożonych zadań agentowych model lepiej przestrzega instrukcji podczas wywoływania narzędzi, a estetyka interfejsu Artifacts i efektywność realizacji długich zadań w Agentic Coding zostały znacznie poprawione.",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 to najnowszy flagowy model Zhipu, zaprojektowany z myślą o scenariuszach Agentic Coding. Wzmacnia zdolności kodowania, planowania długoterminowego oraz współpracy z narzędziami, osiągając czołowe wyniki wśród modeli open-source na wielu publicznych benchmarkach. Ulepszono ogólne możliwości modelu — odpowiedzi są bardziej zwięzłe i naturalne, a teksty pisane bardziej immersyjne. W realizacji złożonych zadań agentowych i przy wywoływaniu narzędzi model wykazuje lepsze przestrzeganie instrukcji, a estetyka interfejsu Artifacts i efektywność realizacji długich zadań w Agentic Coding zostały znacznie poprawione.",
107
107
  "QwQ-32B-Preview.description": "Qwen QwQ to eksperymentalny model badawczy skoncentrowany na ulepszaniu zdolności rozumowania.",
108
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview to model badawczy od Qwen, skoncentrowany na rozumowaniu wizualnym, wyróżniający się w złożonym rozumieniu scen i problemach matematycznych opartych na obrazie.",
109
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ to eksperymentalny model badawczy skoncentrowany na ulepszonym rozumowaniu sztucznej inteligencji.",
@@ -570,4 +570,4 @@
570
570
  "zai/glm-4.5.description": "Seria GLM-4.5 została zaprojektowana z myślą o agentach. Flagowy model GLM-4.5 łączy rozumowanie, kodowanie i umiejętności agentowe, posiada 355B parametrów ogółem (32B aktywnych) i oferuje dwa tryby działania jako system hybrydowego rozumowania.",
571
571
  "zai/glm-4.5v.description": "GLM-4.5V bazuje na GLM-4.5-Air, dziedzicząc sprawdzone techniki GLM-4.1V-Thinking i skalując się dzięki silnej architekturze MoE z 106 miliardami parametrów.",
572
572
  "zenmux/auto.description": "Automatyczne trasowanie ZenMux wybiera najlepiej wyceniony i najbardziej wydajny model spośród obsługiwanych opcji na podstawie Twojego zapytania."
573
- }
573
+ }
@@ -92,11 +92,15 @@
92
92
  "ModelSelect.featureTag.video": "Este modelo suporta reconhecimento de vídeo",
93
93
  "ModelSelect.featureTag.vision": "Este modelo suporta reconhecimento visual.",
94
94
  "ModelSelect.removed": "O modelo não está na lista. Será removido automaticamente se desmarcado.",
95
+ "ModelSwitchPanel.byModel": "Por Modelo",
96
+ "ModelSwitchPanel.byProvider": "Por Provedor",
95
97
  "ModelSwitchPanel.emptyModel": "Nenhum modelo ativado. Vá para as configurações para ativar.",
96
98
  "ModelSwitchPanel.emptyProvider": "Nenhum provedor ativado. Vá para as configurações para ativar um.",
97
99
  "ModelSwitchPanel.goToSettings": "Ir para configurações",
100
+ "ModelSwitchPanel.manageProvider": "Gerenciar Provedor",
98
101
  "ModelSwitchPanel.provider": "Provedor",
99
102
  "ModelSwitchPanel.title": "Modelo",
103
+ "ModelSwitchPanel.useModelFrom": "Usar este modelo de:",
100
104
  "MultiImagesUpload.actions.uploadMore": "Clique ou arraste para enviar mais",
101
105
  "MultiImagesUpload.modal.complete": "Concluído",
102
106
  "MultiImagesUpload.modal.newFileIndicator": "Novo",
@@ -321,143 +321,67 @@
321
321
  "comfyui/stable-diffusion-refiner.description": "Modelo SDXL de imagem para imagem que realiza transformações de alta qualidade a partir de imagens de entrada, com suporte a transferência de estilo, restauração e variações criativas.",
322
322
  "comfyui/stable-diffusion-xl.description": "SDXL é um modelo de texto para imagem que suporta geração em alta resolução 1024x1024 com melhor qualidade de imagem e detalhes.",
323
323
  "command-a-03-2025.description": "O Command A é o nosso modelo mais avançado até o momento, com excelente desempenho no uso de ferramentas, agentes, RAG e cenários multilíngues. Possui uma janela de contexto de 256K, opera com apenas duas GPUs e oferece 150% mais rendimento do que o Command R+ 08-2024.",
324
- "command-light-nightly.description": "Para reduzir o intervalo entre grandes lançamentos, oferecemos versões noturnas do Command. Na série command-light, isso é chamado de command-light-nightly. É a versão mais recente e experimental (e potencialmente instável), atualizada regularmente sem aviso prévio, portanto não é recomendada para produção.",
324
+ "command-light-nightly.description": "Para reduzir o intervalo entre grandes lançamentos, oferecemos versões noturnas do Command. Na série command-light, essa versão é chamada de command-light-nightly. É a versão mais recente e experimental (e potencialmente instável), atualizada regularmente sem aviso prévio, portanto não é recomendada para ambientes de produção.",
325
325
  "command-light.description": "Uma variante menor e mais rápida do Command, quase tão capaz quanto, mas com maior velocidade.",
326
- "command-nightly.description": "Para reduzir o intervalo entre grandes lançamentos, oferecemos versões noturnas do Command. Na série Command, isso é chamado de command-nightly. É a versão mais recente e experimental (e potencialmente instável), atualizada regularmente sem aviso prévio, portanto não é recomendada para produção.",
326
+ "command-nightly.description": "Para reduzir o intervalo entre grandes lançamentos, oferecemos versões noturnas do Command. Na série Command, essa versão é chamada de command-nightly. É a versão mais recente e experimental (e potencialmente instável), atualizada regularmente sem aviso prévio, portanto não é recomendada para ambientes de produção.",
327
327
  "command-r-03-2024.description": "O Command R é um modelo de chat que segue instruções, com maior qualidade, confiabilidade e uma janela de contexto mais longa do que os modelos anteriores. Suporta fluxos de trabalho complexos como geração de código, RAG, uso de ferramentas e agentes.",
328
328
  "command-r-08-2024.description": "command-r-08-2024 é uma versão atualizada do modelo Command R, lançada em agosto de 2024.",
329
- "command-r-plus-04-2024.description": "command-r-plus é um alias de command-r-plus-04-2024, portanto, usar command-r-plus na API aponta para esse modelo.",
329
+ "command-r-plus-04-2024.description": "command-r-plus é um alias de command-r-plus-04-2024, portanto, ao usar command-r-plus na API, você estará acessando esse modelo.",
330
330
  "command-r-plus-08-2024.description": "O Command R+ é um modelo de chat que segue instruções, com maior qualidade, confiabilidade e uma janela de contexto mais longa do que os modelos anteriores. É ideal para fluxos de trabalho RAG complexos e uso de ferramentas em múltiplas etapas.",
331
331
  "command-r-plus.description": "O Command R+ é um LLM de alto desempenho projetado para cenários empresariais reais e aplicativos complexos.",
332
332
  "command-r.description": "O Command R é um LLM otimizado para chat e tarefas com contexto longo, ideal para interações dinâmicas e gestão de conhecimento.",
333
- "command-r7b-12-2024.description": "command-r7b-12-2024 é uma atualização pequena e eficiente lançada em dezembro de 2024. Destaca-se em RAG, uso de ferramentas e tarefas com agentes que exigem raciocínio complexo em múltiplas etapas.",
334
- "command.description": "Um modelo de chat que segue instruções, oferecendo maior qualidade e confiabilidade em tarefas de linguagem, com uma janela de contexto mais longa do que nossos modelos generativos base.",
333
+ "command-r7b-12-2024.description": "command-r7b-12-2024 é uma atualização pequena e eficiente lançada em dezembro de 2024. Destaca-se em tarefas de RAG, uso de ferramentas e agentes que exigem raciocínio complexo em múltiplas etapas.",
334
+ "command.description": "Um modelo de chat que segue instruções, oferecendo maior qualidade e confiabilidade em tarefas de linguagem, com uma janela de contexto mais longa do que nossos modelos generativos básicos.",
335
335
  "computer-use-preview.description": "computer-use-preview é um modelo especializado para a ferramenta \"uso de computador\", treinado para compreender e executar tarefas relacionadas ao uso de computadores.",
336
336
  "dall-e-2.description": "Modelo DALL·E de segunda geração com geração de imagens mais realista e precisa, e resolução 4× maior que a da primeira geração.",
337
337
  "dall-e-3.description": "O modelo DALL·E mais recente, lançado em novembro de 2023, oferece geração de imagens mais realista e precisa, com maior riqueza de detalhes.",
338
- "databricks/dbrx-instruct.description": "DBRX Instruct oferece manipulação de instruções altamente confiável em diversos setores.",
339
- "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR é um modelo de visão e linguagem da DeepSeek AI focado em OCR e \"compressão óptica contextual\". Ele explora a compressão de contexto a partir de imagens, processa documentos de forma eficiente e os converte em texto estruturado (por exemplo, Markdown). Reconhece texto em imagens com precisão, sendo ideal para digitalização de documentos, extração de texto e processamento estruturado.",
340
- "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B destila o raciocínio em cadeia do DeepSeek-R1-0528 no Qwen3 8B Base. Alcança o estado da arte entre os modelos abertos, superando o Qwen3 8B em 10% no AIME 2024 e igualando o desempenho do Qwen3-235B-thinking. Destaca-se em raciocínio matemático, programação e benchmarks de lógica geral. Compartilha a arquitetura do Qwen3-8B, mas utiliza o tokenizador do DeepSeek-R1-0528.",
341
- "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 aproveita maior capacidade computacional e otimizações algorítmicas pós-treinamento para aprofundar o raciocínio. Apresenta desempenho sólido em benchmarks de matemática, programação e lógica geral, aproximando-se de líderes como o o3 e o Gemini 2.5 Pro.",
342
- "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Os modelos destilados DeepSeek-R1 utilizam aprendizado por reforço (RL) e dados de início a frio para melhorar o raciocínio e estabelecer novos benchmarks multitarefa entre modelos abertos.",
343
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Os modelos destilados DeepSeek-R1 utilizam aprendizado por reforço (RL) e dados de início a frio para melhorar o raciocínio e estabelecer novos benchmarks multitarefa entre modelos abertos.",
344
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Os modelos destilados DeepSeek-R1 utilizam aprendizado por reforço (RL) e dados de início a frio para melhorar o raciocínio e estabelecer novos benchmarks multitarefa entre modelos abertos.",
345
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B é destilado do Qwen2.5-32B e ajustado com 800 mil amostras selecionadas do DeepSeek-R1. Destaca-se em matemática, programação e raciocínio, alcançando resultados expressivos no AIME 2024, MATH-500 (94,3% de acerto) e GPQA Diamond.",
346
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B é destilado do Qwen2.5-Math-7B e ajustado com 800 mil amostras selecionadas do DeepSeek-R1. Apresenta desempenho sólido, com 92,8% no MATH-500, 55,5% no AIME 2024 e uma pontuação de 1189 no CodeForces para um modelo de 7B.",
347
- "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 melhora o raciocínio com aprendizado por reforço e dados de início a frio, estabelecendo novos benchmarks multitarefa entre modelos abertos e superando o OpenAI-o1-mini.",
348
- "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 atualiza os modelos DeepSeek-V2-Chat e DeepSeek-Coder-V2-Instruct, combinando habilidades gerais e de programação. Melhora a escrita e o seguimento de instruções para melhor alinhamento com preferências, com ganhos significativos no AlpacaEval 2.0, ArenaHard, AlignBench e MT-Bench.",
349
- "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus é uma versão atualizada do modelo V3.1, posicionado como um agente híbrido LLM. Corrige problemas relatados por usuários e melhora a estabilidade, consistência linguística e reduz caracteres anormais e mistura de chinês/inglês. Integra modos de pensamento e não-pensamento com templates de chat para alternância flexível. Também aprimora o desempenho dos agentes de código e busca para uso mais confiável de ferramentas e tarefas em múltiplas etapas.",
350
- "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 utiliza uma arquitetura híbrida de raciocínio e suporta modos de pensamento e não-pensamento.",
351
- "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp é uma versão experimental da arquitetura V3.2 que faz a ponte para a próxima geração. Adiciona DeepSeek Sparse Attention (DSA) sobre o V3.1-Terminus para melhorar o treinamento e inferência em contextos longos, com otimizações para uso de ferramentas, compreensão de documentos extensos e raciocínio em múltiplas etapas. Ideal para explorar maior eficiência de raciocínio com orçamentos de contexto amplos.",
352
- "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 é um modelo MoE com 671 bilhões de parâmetros que utiliza MLA e DeepSeekMoE com balanceamento de carga sem perdas para treinamento e inferência eficientes. Pré-treinado com 14,8 trilhões de tokens de alta qualidade, com SFT e RL, supera outros modelos abertos e se aproxima dos modelos fechados líderes.",
353
- "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) é um modelo inovador que oferece compreensão profunda da linguagem e interação.",
354
- "deepseek-ai/deepseek-r1.description": "Um modelo de linguagem eficiente de última geração com forte desempenho em raciocínio, matemática e programação.",
355
- "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 é um modelo de raciocínio de nova geração com raciocínio complexo aprimorado e cadeia de pensamento para tarefas de análise profunda.",
356
- "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 é um modelo de raciocínio de nova geração com raciocínio complexo aprimorado e cadeia de pensamento para tarefas de análise profunda.",
357
- "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 é um modelo de visão e linguagem MoE baseado no DeepSeekMoE-27B com ativação esparsa, alcançando alto desempenho com apenas 4,5B de parâmetros ativos. Destaca-se em QA visual, OCR, compreensão de documentos/tabelas/gráficos e ancoragem visual.",
358
- "deepseek-chat.description": "Um novo modelo de código aberto que combina habilidades gerais e de programação. Ele mantém o diálogo geral do modelo de chat e a forte capacidade de codificação do modelo de programador, com melhor alinhamento de preferências. O DeepSeek-V2.5 também melhora a escrita e o seguimento de instruções.",
359
- "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B é um modelo de linguagem para código treinado com 2 trilhões de tokens (87% código, 13% texto em chinês/inglês). Introduz uma janela de contexto de 16K e tarefas de preenchimento no meio, oferecendo preenchimento de código em nível de projeto e inserção de trechos.",
360
- "deepseek-coder-v2.description": "DeepSeek Coder V2 é um modelo de código MoE de código aberto com desempenho forte em tarefas de programação, comparável ao GPT-4 Turbo.",
361
- "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 é um modelo de código MoE de código aberto com desempenho forte em tarefas de programação, comparável ao GPT-4 Turbo.",
362
- "deepseek-ocr.description": "DeepSeek-OCR é um modelo de visão e linguagem da DeepSeek AI focado em OCR e \"compressão óptica contextual\". Ele explora a compressão de informações contextuais a partir de imagens, processa documentos de forma eficiente e os converte em formatos de texto estruturado como Markdown. Reconhece texto em imagens com precisão, sendo ideal para digitalização de documentos, extração de texto e processamento estruturado.",
363
- "deepseek-r1-0528.description": "Modelo completo de 685B lançado em 28/05/2025. DeepSeek-R1 utiliza aprendizado por reforço em larga escala no pós-treinamento, melhorando significativamente o raciocínio com dados rotulados mínimos, com desempenho forte em matemática, programação e raciocínio em linguagem natural.",
364
- "deepseek-r1-250528.description": "DeepSeek R1 250528 é o modelo completo de raciocínio DeepSeek-R1 para tarefas complexas de matemática e lógica.",
338
+ "databricks/dbrx-instruct.description": "O DBRX Instruct oferece manuseio de instruções altamente confiável em diversos setores.",
339
+ "deepseek-ai/DeepSeek-OCR.description": "O DeepSeek-OCR é um modelo de visão e linguagem da DeepSeek AI focado em OCR e \"compressão óptica contextual\". Explora a compressão de contexto a partir de imagens, processa documentos de forma eficiente e os converte em texto estruturado (por exemplo, Markdown). Reconhece texto em imagens com precisão, sendo ideal para digitalização de documentos, extração de texto e processamento estruturado.",
340
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "O DeepSeek-R1-0528-Qwen3-8B destila o raciocínio em cadeia do DeepSeek-R1-0528 no Qwen3 8B Base. Alcança SOTA entre modelos abertos, superando o Qwen3 8B em 10% no AIME 2024 e igualando o desempenho do Qwen3-235B-thinking. Destaca-se em raciocínio matemático, programação e benchmarks de lógica geral. Compartilha a arquitetura do Qwen3-8B, mas usa o tokenizador do DeepSeek-R1-0528.",
341
+ "deepseek-ai/DeepSeek-R1-0528.description": "O DeepSeek R1 aproveita maior capacidade computacional e otimizações algorítmicas pós-treinamento para aprofundar o raciocínio. Apresenta desempenho sólido em benchmarks de matemática, programação e lógica geral, aproximando-se de líderes como o o3 e o Gemini 2.5 Pro.",
342
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Os modelos destilados DeepSeek-R1 utilizam aprendizado por reforço (RL) e dados de inicialização a frio para melhorar o raciocínio e estabelecer novos benchmarks multitarefa entre modelos abertos.",
343
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Os modelos destilados DeepSeek-R1 utilizam aprendizado por reforço (RL) e dados de inicialização a frio para melhorar o raciocínio e estabelecer novos benchmarks multitarefa entre modelos abertos.",
344
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Os modelos destilados DeepSeek-R1 utilizam aprendizado por reforço (RL) e dados de inicialização a frio para melhorar o raciocínio e estabelecer novos benchmarks multitarefa entre modelos abertos.",
345
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "O DeepSeek-R1-Distill-Qwen-32B é destilado do Qwen2.5-32B e ajustado com 800 mil amostras curadas do DeepSeek-R1. Destaca-se em matemática, programação e raciocínio, com resultados expressivos no AIME 2024, MATH-500 (94,3% de acurácia) e GPQA Diamond.",
346
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "O DeepSeek-R1-Distill-Qwen-7B é destilado do Qwen2.5-Math-7B e ajustado com 800 mil amostras curadas do DeepSeek-R1. Apresenta desempenho sólido, com 92,8% no MATH-500, 55,5% no AIME 2024 e pontuação 1189 no CodeForces para um modelo de 7B.",
347
+ "deepseek-ai/DeepSeek-R1.description": "O DeepSeek-R1 melhora o raciocínio com dados de inicialização a frio e aprendizado por reforço, estabelecendo novos benchmarks multitarefa entre modelos abertos e superando o OpenAI-o1-mini.",
348
+ "deepseek-ai/DeepSeek-V2.5.description": "O DeepSeek-V2.5 aprimora os modelos DeepSeek-V2-Chat e DeepSeek-Coder-V2-Instruct, combinando habilidades gerais e de programação. Melhora a escrita e o seguimento de instruções para melhor alinhamento de preferências, com ganhos significativos no AlpacaEval 2.0, ArenaHard, AlignBench e MT-Bench.",
349
+ "deepseek-ai/DeepSeek-V3.1-Terminus.description": "O DeepSeek-V3.1-Terminus é uma versão atualizada do modelo V3.1, posicionado como um LLM híbrido com foco em agentes. Corrige problemas relatados por usuários e melhora a estabilidade, consistência linguística e reduz caracteres anômalos e mistura de idiomas. Integra modos de pensamento e não-pensamento com templates de chat para alternância flexível. Também aprimora o desempenho dos agentes de código e busca para uso mais confiável de ferramentas e tarefas em múltiplas etapas.",
350
+ "deepseek-ai/DeepSeek-V3.1.description": "O DeepSeek V3.1 utiliza uma arquitetura de raciocínio híbrida e suporta modos de pensamento e não-pensamento.",
351
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "O DeepSeek-V3.2-Exp é uma versão experimental do V3.2 que faz a ponte para a próxima arquitetura. Adiciona DeepSeek Sparse Attention (DSA) sobre o V3.1-Terminus para melhorar o treinamento e inferência em contextos longos, com otimizações para uso de ferramentas, compreensão de documentos longos e raciocínio em múltiplas etapas. Ideal para explorar maior eficiência de raciocínio com grandes orçamentos de contexto.",
352
+ "deepseek-ai/DeepSeek-V3.description": "O DeepSeek-V3 é um modelo MoE com 671 bilhões de parâmetros, utilizando MLA e DeepSeekMoE com balanceamento de carga sem perdas para treinamento e inferência eficientes. Pré-treinado com 14,8 trilhões de tokens de alta qualidade, com SFT e RL, supera outros modelos abertos e se aproxima dos modelos fechados líderes.",
353
+ "deepseek-ai/deepseek-llm-67b-chat.description": "O DeepSeek LLM Chat (67B) é um modelo inovador que oferece compreensão profunda da linguagem e interação.",
354
+ "deepseek-ai/deepseek-r1.description": "Um LLM eficiente de última geração com forte desempenho em raciocínio, matemática e programação.",
355
+ "deepseek-ai/deepseek-v3.1-terminus.description": "O DeepSeek V3.1 é um modelo de raciocínio de nova geração com raciocínio complexo mais forte e cadeia de pensamento para tarefas de análise profunda.",
356
+ "deepseek-ai/deepseek-v3.1.description": "O DeepSeek V3.1 é um modelo de raciocínio de nova geração com raciocínio complexo mais forte e cadeia de pensamento para tarefas de análise profunda.",
357
+ "deepseek-ai/deepseek-vl2.description": "O DeepSeek-VL2 é um modelo de visão e linguagem MoE baseado no DeepSeekMoE-27B com ativação esparsa, alcançando alto desempenho com apenas 4,5B de parâmetros ativos. Destaca-se em QA visual, OCR, compreensão de documentos/tabelas/gráficos e ancoragem visual.",
358
+ "deepseek-chat.description": "Um novo modelo open-source que combina habilidades gerais e de programação. Preserva o diálogo geral do modelo de chat e a forte capacidade de codificação do modelo de programação, com melhor alinhamento de preferências. O DeepSeek-V2.5 também melhora a escrita e o seguimento de instruções.",
359
+ "deepseek-coder-33B-instruct.description": "O DeepSeek Coder 33B é um modelo de linguagem para código treinado com 2 trilhões de tokens (87% código, 13% texto em chinês/inglês). Introduz uma janela de contexto de 16K e tarefas de preenchimento intermediário, oferecendo preenchimento de código em nível de projeto e inserção de trechos.",
360
+ "deepseek-coder-v2.description": "O DeepSeek Coder V2 é um modelo de código MoE open-source com forte desempenho em tarefas de programação, comparável ao GPT-4 Turbo.",
361
+ "deepseek-coder-v2:236b.description": "O DeepSeek Coder V2 é um modelo de código MoE open-source com forte desempenho em tarefas de programação, comparável ao GPT-4 Turbo.",
362
+ "deepseek-ocr.description": "O DeepSeek-OCR é um modelo de visão e linguagem da DeepSeek AI focado em OCR e \"compressão óptica contextual\". Explora a compressão de informações contextuais a partir de imagens, processa documentos de forma eficiente e os converte em formatos de texto estruturado como Markdown. Reconhece texto em imagens com precisão, sendo ideal para digitalização de documentos, extração de texto e processamento estruturado.",
363
+ "deepseek-r1-0528.description": "Modelo completo de 685B lançado em 28/05/2025. O DeepSeek-R1 utiliza RL em larga escala no pós-treinamento, melhorando significativamente o raciocínio com dados rotulados mínimos, com forte desempenho em matemática, programação e raciocínio em linguagem natural.",
364
+ "deepseek-r1-250528.description": "O DeepSeek R1 250528 é o modelo completo de raciocínio DeepSeek-R1 para tarefas difíceis de matemática e lógica.",
365
365
  "deepseek-r1-70b-fast-online.description": "Edição rápida do DeepSeek R1 70B com busca em tempo real na web, oferecendo respostas mais rápidas sem comprometer o desempenho.",
366
- "deepseek-r1-70b-online.description": "Edição padrão do DeepSeek R1 70B com busca em tempo real na web, ideal para tarefas de chat e texto atualizadas.",
367
- "deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B combina o raciocínio do R1 com o ecossistema Llama.",
368
- "deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B é destilado do Llama-3.1-8B usando saídas do DeepSeek R1.",
366
+ "deepseek-r1-70b-online.description": "Edição padrão do DeepSeek R1 70B com busca em tempo real na web, ideal para chat e tarefas de texto atualizadas.",
367
+ "deepseek-r1-distill-llama-70b.description": "O DeepSeek R1 Distill Llama 70B combina o raciocínio do R1 com o ecossistema Llama.",
368
+ "deepseek-r1-distill-llama-8b.description": "O DeepSeek-R1-Distill-Llama-8B é destilado do Llama-3.1-8B usando saídas do DeepSeek R1.",
369
369
  "deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama é destilado do DeepSeek-R1 sobre o Llama.",
370
- "deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B é uma destilação do R1 baseada no Qianfan-70B com alto valor.",
371
- "deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B é uma destilação do R1 baseada no Qianfan-8B para aplicações pequenas e médias.",
372
- "deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B é uma destilação do R1 baseada no Llama-70B.",
373
- "deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B é um modelo de destilação ultraleve para ambientes com recursos muito limitados.",
374
- "deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B é um modelo de destilação de porte médio para implantação em múltiplos cenários.",
375
- "deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B é uma destilação do R1 baseada no Qwen-32B, equilibrando desempenho e custo.",
376
- "deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B é um modelo de destilação leve para ambientes de borda e empresas privadas.",
370
+ "deepseek-r1-distill-qianfan-70b.description": "O DeepSeek R1 Distill Qianfan 70B é uma destilação do R1 baseada no Qianfan-70B com alto valor.",
371
+ "deepseek-r1-distill-qianfan-8b.description": "O DeepSeek R1 Distill Qianfan 8B é uma destilação do R1 baseada no Qianfan-8B para aplicativos de pequeno e médio porte.",
372
+ "deepseek-r1-distill-qianfan-llama-70b.description": "O DeepSeek R1 Distill Qianfan Llama 70B é uma destilação do R1 baseada no Llama-70B.",
373
+ "deepseek-r1-distill-qwen-1.5b.description": "O DeepSeek R1 Distill Qwen 1.5B é um modelo de destilação ultraleve para ambientes com recursos muito limitados.",
374
+ "deepseek-r1-distill-qwen-14b.description": "O DeepSeek R1 Distill Qwen 14B é um modelo de destilação de porte médio para implantação em múltiplos cenários.",
375
+ "deepseek-r1-distill-qwen-32b.description": "O DeepSeek R1 Distill Qwen 32B é uma destilação do R1 baseada no Qwen-32B, equilibrando desempenho e custo.",
376
+ "deepseek-r1-distill-qwen-7b.description": "O DeepSeek R1 Distill Qwen 7B é um modelo de destilação leve para ambientes de borda e empresas privadas.",
377
377
  "deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen é destilado do DeepSeek-R1 sobre o Qwen.",
378
- "deepseek-r1-fast-online.description": "Versão completa rápida do DeepSeek R1 com busca em tempo real na web, combinando capacidade de 671B com respostas mais ágeis.",
378
+ "deepseek-r1-fast-online.description": "Versão completa e rápida do DeepSeek R1 com busca em tempo real na web, combinando capacidade de 671B com respostas mais ágeis.",
379
379
  "deepseek-r1-online.description": "Versão completa do DeepSeek R1 com 671B de parâmetros e busca em tempo real na web, oferecendo compreensão e geração mais robustas.",
380
- "deepseek-r1.description": "DeepSeek-R1 utiliza dados de início a frio antes do RL e apresenta desempenho comparável ao OpenAI-o1 em matemática, programação e raciocínio.",
381
- "deepseek-reasoner.description": "O modo de raciocínio do DeepSeek V3.2 gera uma cadeia de pensamento antes da resposta final para melhorar a precisão.",
382
- "deepseek-v2.description": "DeepSeek V2 é um modelo MoE eficiente para processamento econômico.",
383
- "deepseek-v2:236b.description": "DeepSeek V2 236B é o modelo da DeepSeek focado em código com forte geração de código.",
384
- "deepseek-v3-0324.description": "DeepSeek-V3-0324 é um modelo MoE com 671B de parâmetros, com destaque em programação, capacidade técnica, compreensão de contexto e manipulação de textos longos.",
385
- "deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus é um LLM otimizado para terminais da DeepSeek, projetado para dispositivos de terminal.",
386
- "deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 é o modelo de pensamento profundo correspondente à versão Terminus, desenvolvido para raciocínio de alto desempenho.",
387
- "deepseek-v3.1.description": "DeepSeek-V3.1 é um novo modelo híbrido de raciocínio da DeepSeek, com suporte a modos com e sem pensamento, oferecendo maior eficiência de raciocínio do que o DeepSeek-R1-0528. Otimizações pós-treinamento melhoram significativamente o uso de ferramentas por agentes e o desempenho em tarefas de agentes. Suporta janela de contexto de 128k e até 64k tokens de saída.",
388
- "deepseek-v3.1:671b.description": "DeepSeek V3.1 é um modelo de raciocínio de próxima geração com melhorias em raciocínio complexo e cadeia de pensamento, ideal para tarefas que exigem análise profunda.",
389
- "deepseek-v3.2-exp.description": "deepseek-v3.2-exp introduz atenção esparsa para melhorar a eficiência de treinamento e inferência em textos longos, com custo inferior ao deepseek-v3.1.",
390
- "deepseek-v3.2-think.description": "DeepSeek V3.2 Think é um modelo completo de pensamento profundo com raciocínio de cadeia longa mais robusto.",
391
- "deepseek-v3.2.description": "DeepSeek-V3.2 é o primeiro modelo híbrido de raciocínio da DeepSeek que integra pensamento ao uso de ferramentas. Com arquitetura eficiente para economia de recursos, aprendizado por reforço em larga escala para aumento de capacidade e dados sintéticos em massa para maior generalização, seu desempenho rivaliza com o GPT-5-High. A saída é significativamente mais curta, reduzindo o custo computacional e o tempo de espera do usuário.",
392
- "deepseek-v3.description": "DeepSeek-V3 é um poderoso modelo MoE com 671 bilhões de parâmetros totais e 37 bilhões ativos por token.",
393
- "deepseek-vl2-small.description": "DeepSeek VL2 Small é uma versão multimodal leve para uso com recursos limitados e alta concorrência.",
394
- "deepseek-vl2.description": "DeepSeek VL2 é um modelo multimodal para compreensão imagem-texto e perguntas visuais detalhadas.",
395
- "deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 é um modelo MoE com 685 bilhões de parâmetros e a mais recente iteração da série de chat principal da DeepSeek.\n\nBaseado no [DeepSeek V3](/deepseek/deepseek-chat-v3), apresenta desempenho sólido em diversas tarefas.",
396
- "deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 é um modelo MoE com 685 bilhões de parâmetros e a mais recente iteração da série de chat principal da DeepSeek.\n\nBaseado no [DeepSeek V3](/deepseek/deepseek-chat-v3), apresenta desempenho sólido em diversas tarefas.",
397
- "deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 é o modelo híbrido de raciocínio de longo contexto da DeepSeek, com suporte a modos mistos de pensamento/não pensamento e integração de ferramentas.",
398
- "deepseek/deepseek-chat.description": "DeepSeek-V3 é o modelo híbrido de raciocínio de alto desempenho da DeepSeek para tarefas complexas e integração de ferramentas.",
399
- "deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 é uma variante atualizada com foco em disponibilidade aberta e raciocínio mais profundo.",
400
- "deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 melhora significativamente o raciocínio com dados rotulados mínimos e gera uma cadeia de pensamento antes da resposta final para maior precisão.",
401
- "deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B é um LLM destilado baseado no Llama 3.3 70B, ajustado com saídas do DeepSeek R1 para alcançar desempenho competitivo com modelos de ponta.",
402
- "deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B é um LLM destilado baseado no Llama-3.1-8B-Instruct, treinado com saídas do DeepSeek R1.",
403
- "deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B é um LLM destilado baseado no Qwen 2.5 14B, treinado com saídas do DeepSeek R1. Supera o OpenAI o1-mini em vários benchmarks, alcançando resultados de ponta entre modelos densos. Destaques de benchmark:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nO ajuste fino com saídas do DeepSeek R1 oferece desempenho competitivo com modelos maiores de ponta.",
404
- "deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B é um LLM destilado baseado no Qwen 2.5 32B, treinado com saídas do DeepSeek R1. Supera o OpenAI o1-mini em vários benchmarks, alcançando resultados de ponta entre modelos densos. Destaques de benchmark:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nO ajuste fino com saídas do DeepSeek R1 oferece desempenho competitivo com modelos maiores de ponta.",
405
- "deepseek/deepseek-r1.description": "DeepSeek R1 foi atualizado para DeepSeek-R1-0528. Com mais capacidade computacional e otimizações algorítmicas pós-treinamento, melhora significativamente a profundidade e capacidade de raciocínio. Apresenta desempenho sólido em benchmarks de matemática, programação e lógica geral, aproximando-se de líderes como o3 e Gemini 2.5 Pro.",
406
- "deepseek/deepseek-r1/community.description": "DeepSeek R1 é o mais recente modelo de código aberto lançado pela equipe DeepSeek, com desempenho de raciocínio muito forte, especialmente em tarefas de matemática, programação e lógica, comparável ao OpenAI o1.",
407
- "deepseek/deepseek-r1:free.description": "DeepSeek-R1 melhora significativamente o raciocínio com dados rotulados mínimos e gera uma cadeia de pensamento antes da resposta final para maior precisão.",
408
- "deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) é o modelo experimental de raciocínio da DeepSeek, adequado para tarefas de alta complexidade.",
409
- "deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base é uma versão aprimorada do modelo DeepSeek V3.",
410
- "deepseek/deepseek-v3.description": "Um LLM rápido de uso geral com raciocínio aprimorado.",
411
- "deepseek/deepseek-v3/community.description": "DeepSeek-V3 representa um grande avanço na velocidade de raciocínio em relação a modelos anteriores. Classifica-se em primeiro lugar entre os modelos de código aberto e rivaliza com os modelos fechados mais avançados. Adota Multi-Head Latent Attention (MLA) e a arquitetura DeepSeekMoE, ambas validadas no DeepSeek-V2. Também introduz uma estratégia auxiliar sem perdas para balanceamento de carga e um objetivo de treinamento de predição multi-token para desempenho mais forte.",
412
- "deepseek_r1.description": "DeepSeek-R1 é um modelo de raciocínio orientado por aprendizado por reforço que resolve problemas de repetição e legibilidade. Antes do RL, utiliza dados de início a frio para melhorar ainda mais o desempenho de raciocínio. Alcança resultados comparáveis ao OpenAI-o1 em tarefas de matemática, programação e lógica, com treinamento cuidadosamente projetado para melhorar os resultados gerais.",
413
- "deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B é destilado do Llama-3.3-70B-Instruct. Como parte da série DeepSeek-R1, é ajustado com amostras geradas pelo DeepSeek-R1 e apresenta desempenho forte em matemática, programação e raciocínio.",
414
- "deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B é destilado do Qwen2.5-14B e ajustado com 800 mil amostras selecionadas geradas pelo DeepSeek-R1, oferecendo raciocínio robusto.",
415
- "deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B é destilado do Qwen2.5-32B e ajustado com 800 mil amostras selecionadas geradas pelo DeepSeek-R1, destacando-se em matemática, programação e raciocínio.",
416
- "devstral-2:123b.description": "Devstral 2 123B se destaca no uso de ferramentas para explorar bases de código, editar múltiplos arquivos e apoiar agentes de engenharia de software.",
417
- "doubao-1.5-lite-32k.description": "Doubao-1.5-lite é um novo modelo leve com resposta ultrarrápida, oferecendo qualidade e latência de alto nível.",
418
- "doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k é uma atualização abrangente do Doubao-1.5-Pro, com melhoria de 10% no desempenho geral. Suporta uma janela de contexto de 256k e até 12k tokens de saída, oferecendo maior desempenho, janela ampliada e excelente custo-benefício para casos de uso mais amplos.",
419
- "doubao-1.5-pro-32k.description": "Doubao-1.5-pro é um modelo carro-chefe de nova geração com melhorias em todas as áreas, destacando-se em conhecimento, programação e raciocínio.",
420
- "doubao-1.5-thinking-pro-m.description": "Doubao-1.5 é um novo modelo de raciocínio profundo (a versão m inclui raciocínio multimodal nativo) que se destaca em matemática, programação, raciocínio científico e tarefas gerais como escrita criativa. Alcança ou se aproxima de resultados de ponta em benchmarks como AIME 2024, Codeforces e GPQA. Suporta uma janela de contexto de 128k e 16k de saída.",
421
- "doubao-1.5-thinking-pro.description": "Doubao-1.5 é um novo modelo de raciocínio profundo que se destaca em matemática, programação, raciocínio científico e tarefas gerais como escrita criativa. Alcança ou se aproxima de resultados de ponta em benchmarks como AIME 2024, Codeforces e GPQA. Suporta uma janela de contexto de 128k e 16k de saída.",
422
- "doubao-1.5-thinking-vision-pro.description": "Um novo modelo visual de raciocínio profundo com compreensão e raciocínio multimodal mais fortes, alcançando resultados SOTA em 37 de 59 benchmarks públicos.",
423
- "doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS é um modelo de agente com foco nativo em interfaces gráficas, interagindo perfeitamente com interfaces por meio de percepção, raciocínio e ação semelhantes aos humanos.",
424
- "doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite é um modelo multimodal aprimorado que suporta imagens em qualquer resolução e proporções extremas, melhorando o raciocínio visual, reconhecimento de documentos, compreensão de detalhes e seguimento de instruções. Suporta uma janela de contexto de 128k e até 16k tokens de saída.",
425
- "doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro é um modelo multimodal aprimorado que suporta imagens em qualquer resolução e proporções extremas, melhorando o raciocínio visual, reconhecimento de documentos, compreensão de detalhes e seguimento de instruções.",
426
- "doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro é um modelo multimodal aprimorado que suporta imagens em qualquer resolução e proporções extremas, melhorando o raciocínio visual, reconhecimento de documentos, compreensão de detalhes e seguimento de instruções.",
427
- "doubao-lite-128k.description": "Resposta ultrarrápida com melhor custo-benefício, oferecendo escolhas mais flexíveis em diversos cenários. Suporta raciocínio e ajuste fino com janela de contexto de 128k.",
428
- "doubao-lite-32k.description": "Resposta ultrarrápida com melhor custo-benefício, oferecendo escolhas mais flexíveis em diversos cenários. Suporta raciocínio e ajuste fino com janela de contexto de 32k.",
429
- "doubao-lite-4k.description": "Resposta ultrarrápida com melhor custo-benefício, oferecendo escolhas mais flexíveis em diversos cenários. Suporta raciocínio e ajuste fino com janela de contexto de 4k.",
430
- "doubao-pro-256k.description": "O modelo carro-chefe com melhor desempenho para tarefas complexas, com resultados fortes em QA com referência, sumarização, criação, classificação de texto e simulação de papéis. Suporta raciocínio e ajuste fino com janela de contexto de 256k.",
431
- "doubao-pro-32k.description": "O modelo carro-chefe com melhor desempenho para tarefas complexas, com resultados fortes em QA com referência, sumarização, criação, classificação de texto e simulação de papéis. Suporta raciocínio e ajuste fino com janela de contexto de 32k.",
432
- "doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash é um modelo multimodal de raciocínio profundo ultrarrápido com TPOT de até 10ms. Suporta entrada de texto e imagem, supera o modelo lite anterior em compreensão de texto e se equipara a modelos pro concorrentes em visão. Suporta janela de contexto de 256k e até 16k tokens de saída.",
433
- "doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite é um novo modelo multimodal de raciocínio profundo com esforço de raciocínio ajustável (Mínimo, Baixo, Médio, Alto), oferecendo melhor custo-benefício e uma escolha sólida para tarefas comuns, com janela de contexto de até 256k.",
434
- "doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6 fortalece significativamente o raciocínio, melhorando ainda mais as habilidades centrais em programação, matemática e raciocínio lógico em relação ao Doubao-1.5-thinking-pro, além de adicionar compreensão visual. Suporta uma janela de contexto de 256k e até 16k tokens de saída.",
435
- "doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision é um modelo visual de raciocínio profundo que oferece compreensão e raciocínio multimodal mais fortes para educação, revisão de imagens, inspeção/segurança e perguntas e respostas com busca por IA. Suporta uma janela de contexto de 256k e até 64k tokens de saída.",
436
- "doubao-seed-1.6.description": "Doubao-Seed-1.6 é um novo modelo multimodal de raciocínio profundo com modos automático, com raciocínio e sem raciocínio. No modo sem raciocínio, supera significativamente o Doubao-1.5-pro/250115. Suporta uma janela de contexto de 256k e até 16k tokens de saída.",
437
- "doubao-seed-1.8.description": "Doubao-Seed-1.8 possui capacidades aprimoradas de compreensão multimodal e de agentes, suportando entrada de texto/imagem/vídeo e cache de contexto, oferecendo desempenho superior em tarefas complexas.",
438
- "doubao-seed-code.description": "Doubao-Seed-Code é otimizado para programação com agentes, suporta entradas multimodais (texto/imagem/vídeo) e janela de contexto de 256k, compatível com a API da Anthropic, ideal para fluxos de trabalho de programação, compreensão visual e agentes.",
439
- "doubao-seededit-3-0-i2i-250628.description": "O modelo de imagem Doubao da ByteDance Seed suporta entradas de texto e imagem com geração de imagem altamente controlável e de alta qualidade. Suporta edição de imagem guiada por texto, com tamanhos de saída entre 512 e 1536 no lado maior.",
440
- "doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0 é um modelo de geração de imagem da ByteDance Seed, que suporta entradas de texto e imagem com geração de imagem altamente controlável e de alta qualidade. Gera imagens a partir de comandos de texto.",
441
- "doubao-seedream-4-0-250828.description": "Seedream 4.0 é um modelo de geração de imagem da ByteDance Seed, que suporta entradas de texto e imagem com geração de imagem altamente controlável e de alta qualidade. Gera imagens a partir de comandos de texto.",
442
- "doubao-vision-lite-32k.description": "Doubao-vision é um modelo multimodal da Doubao com forte compreensão e raciocínio de imagens, além de seguimento preciso de instruções. Apresenta bom desempenho em tarefas de extração imagem-texto e raciocínio baseado em imagem, permitindo cenários de QA visual mais complexos e amplos.",
443
- "doubao-vision-pro-32k.description": "Doubao-vision é um modelo multimodal da Doubao com forte compreensão e raciocínio de imagens, além de seguimento preciso de instruções. Apresenta bom desempenho em tarefas de extração imagem-texto e raciocínio baseado em imagem, permitindo cenários de QA visual mais complexos e amplos.",
444
- "emohaa.description": "Emohaa é um modelo voltado para saúde mental com habilidades profissionais de aconselhamento para ajudar os usuários a compreender questões emocionais.",
445
- "ernie-4.5-0.3b.description": "ERNIE 4.5 0.3B é um modelo leve de código aberto para implantação local e personalizada.",
446
- "ernie-4.5-21b-a3b.description": "ERNIE 4.5 21B A3B é um modelo de código aberto com grande número de parâmetros e melhor capacidade de compreensão e geração.",
447
- "ernie-4.5-300b-a47b.description": "ERNIE 4.5 300B A47B é o modelo MoE ultra-grande da Baidu ERNIE com excelente raciocínio.",
448
- "ernie-4.5-8k-preview.description": "ERNIE 4.5 8K Preview é um modelo de pré-visualização com janela de contexto de 8K para avaliação do ERNIE 4.5.",
449
- "ernie-4.5-turbo-128k-preview.description": "Pré-visualização do ERNIE 4.5 Turbo 128K com capacidades de nível de lançamento, adequado para integração e testes canário.",
450
- "ernie-4.5-turbo-128k.description": "ERNIE 4.5 Turbo 128K é um modelo geral de alto desempenho com aumento de busca e chamada de ferramentas para QA, programação e cenários com agentes.",
451
- "ernie-4.5-turbo-32k.description": "ERNIE 4.5 Turbo 32K é uma versão de contexto médio para QA, recuperação de base de conhecimento e diálogo de múltiplas voltas.",
452
- "ernie-4.5-turbo-latest.description": "Última versão do ERNIE 4.5 Turbo com desempenho geral otimizado, ideal como modelo principal de produção.",
453
- "ernie-4.5-turbo-vl-32k-preview.description": "Pré-visualização multimodal do ERNIE 4.5 Turbo VL 32K para avaliação da capacidade de visão com contexto longo.",
454
- "ernie-4.5-turbo-vl-32k.description": "ERNIE 4.5 Turbo VL 32K é uma versão multimodal de contexto médio-longo para compreensão combinada de documentos longos e imagens.",
455
- "ernie-4.5-turbo-vl-latest.description": "ERNIE 4.5 Turbo VL Latest é a versão multimodal mais recente com melhor compreensão e raciocínio imagem-texto.",
456
- "ernie-4.5-turbo-vl-preview.description": "Pré-visualização multimodal do ERNIE 4.5 Turbo VL para compreensão e geração imagem-texto, adequado para QA visual e compreensão de conteúdo.",
457
- "ernie-4.5-turbo-vl.description": "ERNIE 4.5 Turbo VL é um modelo multimodal maduro para compreensão e reconhecimento imagem-texto em produção.",
458
- "ernie-4.5-vl-28b-a3b.description": "ERNIE 4.5 VL 28B A3B é um modelo multimodal de código aberto para compreensão e raciocínio imagem-texto.",
459
- "ernie-5.0-thinking-latest.description": "Wenxin 5.0 Thinking é um modelo carro-chefe nativo totalmente multimodal com modelagem unificada de texto, imagem, áudio e vídeo. Oferece amplas melhorias de capacidade para QA complexo, criação e cenários com agentes.",
460
- "ernie-5.0-thinking-preview.description": "Pré-visualização do Wenxin 5.0 Thinking, um modelo carro-chefe nativo totalmente multimodal com modelagem unificada de texto, imagem, áudio e vídeo. Oferece amplas melhorias de capacidade para QA complexo, criação e cenários com agentes.",
380
+ "deepseek-r1.description": "O DeepSeek-R1 usa dados de inicialização a frio antes do RL e apresenta desempenho comparável ao OpenAI-o1 em matemática, programação e raciocínio.",
381
+ "deepseek-reasoner.description": "O modo de pensamento do DeepSeek V3.2 gera uma cadeia de raciocínio antes da resposta final para melhorar a precisão.",
382
+ "deepseek-v2.description": "O DeepSeek V2 é um modelo MoE eficiente para processamento econômico.",
383
+ "deepseek-v2:236b.description": "O DeepSeek V2 236B é o modelo da DeepSeek focado em código com forte geração de código.",
384
+ "deepseek-v3-0324.description": "O DeepSeek-V3-0324 é um modelo MoE com 671B de parâmetros, com destaque em programação, capacidade técnica, compreensão de contexto e manipulação de textos longos.",
461
385
  "meta.llama3-8b-instruct-v1:0.description": "O Meta Llama 3 é um modelo de linguagem aberto para desenvolvedores, pesquisadores e empresas, projetado para ajudá-los a construir, experimentar e escalar ideias de IA generativa de forma responsável. Como parte da base para a inovação da comunidade global, é ideal para ambientes com recursos computacionais limitados, dispositivos de borda e tempos de treinamento mais rápidos.",
462
386
  "mistral-large-latest.description": "Mistral Large é o modelo principal, com excelente desempenho em tarefas multilíngues, raciocínio complexo e geração de código — ideal para aplicações de alto nível.",
463
387
  "mistral-large.description": "Mixtral Large é o modelo principal da Mistral, combinando geração de código, matemática e raciocínio com uma janela de contexto de 128K.",
@@ -645,4 +569,4 @@
645
569
  "zai/glm-4.5.description": "A série GLM-4.5 foi projetada para agentes. O modelo principal GLM-4.5 combina raciocínio, codificação e habilidades de agente com 355B de parâmetros totais (32B ativos) e oferece modos de operação duplos como um sistema de raciocínio híbrido.",
646
570
  "zai/glm-4.5v.description": "GLM-4.5V é baseado no GLM-4.5-Air, herdando técnicas comprovadas do GLM-4.1V-Thinking e escalando com uma robusta arquitetura MoE de 106B parâmetros.",
647
571
  "zenmux/auto.description": "O roteamento automático do ZenMux seleciona o modelo com melhor desempenho e custo-benefício entre as opções suportadas, com base na sua solicitação."
648
- }
572
+ }
@@ -92,11 +92,15 @@
92
92
  "ModelSelect.featureTag.video": "Эта модель поддерживает распознавание видео",
93
93
  "ModelSelect.featureTag.vision": "Эта модель поддерживает визуальное распознавание.",
94
94
  "ModelSelect.removed": "Модель отсутствует в списке. Она будет автоматически удалена при снятии выбора.",
95
+ "ModelSwitchPanel.byModel": "По модели",
96
+ "ModelSwitchPanel.byProvider": "По провайдеру",
95
97
  "ModelSwitchPanel.emptyModel": "Нет включённых моделей. Перейдите в настройки, чтобы включить.",
96
98
  "ModelSwitchPanel.emptyProvider": "Нет включённых провайдеров. Перейдите в настройки, чтобы включить одного из них.",
97
99
  "ModelSwitchPanel.goToSettings": "Перейти в настройки",
100
+ "ModelSwitchPanel.manageProvider": "Управление провайдером",
98
101
  "ModelSwitchPanel.provider": "Провайдер",
99
102
  "ModelSwitchPanel.title": "Модель",
103
+ "ModelSwitchPanel.useModelFrom": "Использовать эту модель от:",
100
104
  "MultiImagesUpload.actions.uploadMore": "Нажмите или перетащите для загрузки дополнительных изображений",
101
105
  "MultiImagesUpload.modal.complete": "Готово",
102
106
  "MultiImagesUpload.modal.newFileIndicator": "Новый",