@lobehub/lobehub 2.0.0-next.158 → 2.0.0-next.159
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.nvmrc +1 -1
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/docs/development/database-schema.dbml +6 -0
- package/locales/ar/auth.json +11 -2
- package/locales/ar/models.json +25 -13
- package/locales/bg-BG/auth.json +11 -2
- package/locales/bg-BG/models.json +25 -13
- package/locales/de-DE/auth.json +11 -2
- package/locales/de-DE/models.json +25 -13
- package/locales/en-US/auth.json +18 -9
- package/locales/en-US/models.json +25 -13
- package/locales/es-ES/auth.json +11 -2
- package/locales/es-ES/models.json +25 -13
- package/locales/fa-IR/auth.json +11 -2
- package/locales/fa-IR/models.json +25 -13
- package/locales/fr-FR/auth.json +11 -2
- package/locales/fr-FR/models.json +25 -13
- package/locales/it-IT/auth.json +11 -2
- package/locales/it-IT/models.json +25 -13
- package/locales/ja-JP/auth.json +11 -2
- package/locales/ja-JP/models.json +25 -13
- package/locales/ko-KR/auth.json +11 -2
- package/locales/ko-KR/models.json +25 -13
- package/locales/nl-NL/auth.json +11 -2
- package/locales/nl-NL/models.json +25 -13
- package/locales/pl-PL/auth.json +11 -2
- package/locales/pl-PL/models.json +25 -13
- package/locales/pt-BR/auth.json +11 -2
- package/locales/pt-BR/models.json +25 -13
- package/locales/ru-RU/auth.json +11 -2
- package/locales/ru-RU/models.json +25 -13
- package/locales/tr-TR/auth.json +11 -2
- package/locales/tr-TR/models.json +25 -13
- package/locales/vi-VN/auth.json +11 -2
- package/locales/vi-VN/models.json +25 -13
- package/locales/zh-CN/auth.json +18 -9
- package/locales/zh-CN/models.json +25 -13
- package/locales/zh-TW/auth.json +11 -2
- package/locales/zh-TW/models.json +25 -13
- package/next.config.ts +1 -1
- package/package.json +2 -1
- package/packages/database/migrations/0059_add_normalized_email_indexes.sql +4 -0
- package/packages/database/migrations/meta/0059_snapshot.json +8474 -0
- package/packages/database/migrations/meta/_journal.json +7 -0
- package/packages/database/src/core/migrations.json +12 -0
- package/packages/database/src/models/user.ts +13 -1
- package/packages/database/src/schemas/user.ts +37 -29
- package/src/app/(backend)/api/auth/resolve-username/route.ts +52 -0
- package/src/app/[variants]/(auth)/signin/page.tsx +102 -14
- package/src/app/[variants]/(auth)/signup/[[...signup]]/BetterAuthSignUpForm.tsx +15 -0
- package/src/app/[variants]/(main)/profile/(home)/Client.tsx +152 -12
- package/src/app/[variants]/(main)/profile/(home)/features/SSOProvidersList/index.tsx +4 -9
- package/src/app/[variants]/desktopRouter.config.tsx +7 -1
- package/src/app/[variants]/mobileRouter.config.tsx +7 -1
- package/src/auth.ts +2 -0
- package/src/locales/default/auth.ts +17 -9
- package/src/server/routers/lambda/user.ts +18 -0
- package/src/services/user/index.ts +4 -0
- package/src/store/user/slices/auth/action.test.ts +2 -2
- package/src/store/user/slices/auth/action.ts +8 -8
- package/src/store/user/slices/auth/initialState.ts +1 -1
- package/src/store/user/slices/auth/selectors.ts +1 -1
- package/src/store/user/slices/common/action.ts +6 -0
|
@@ -221,6 +221,9 @@
|
|
|
221
221
|
"MiniMax-M2": {
|
|
222
222
|
"description": "効率的なコーディングとエージェントワークフローのために設計されたモデル"
|
|
223
223
|
},
|
|
224
|
+
"MiniMax-M2-Stable": {
|
|
225
|
+
"description": "効率的なコーディングとエージェントワークフローのために設計され、高い同時実行性と商用利用に対応しています。"
|
|
226
|
+
},
|
|
224
227
|
"MiniMax-Text-01": {
|
|
225
228
|
"description": "MiniMax-01シリーズモデルでは、大胆な革新を行いました:初めて大規模に線形注意メカニズムを実現し、従来のTransformerアーキテクチャが唯一の選択肢ではなくなりました。このモデルのパラメータ数は4560億に達し、単回のアクティベーションは459億です。モデルの総合性能は海外のトップモデルに匹敵し、世界最長の400万トークンのコンテキストを効率的に処理でき、GPT-4oの32倍、Claude-3.5-Sonnetの20倍です。"
|
|
226
229
|
},
|
|
@@ -299,6 +302,9 @@
|
|
|
299
302
|
"Pro/moonshotai/Kimi-K2-Instruct-0905": {
|
|
300
303
|
"description": "Kimi K2-Instruct-0905 は Kimi K2 の最新かつ最強のバージョンです。これはトップクラスの混合専門家(MoE)言語モデルであり、総パラメータ数は1兆、活性化パラメータ数は320億を誇ります。このモデルの主な特徴は、強化されたエージェントのコーディング知能であり、公開ベンチマークテストおよび実世界のエージェントコーディングタスクで顕著な性能向上を示しています。また、フロントエンドのコーディング体験も改善され、フロントエンドプログラミングの美観と実用性の両面で進歩しています。"
|
|
301
304
|
},
|
|
305
|
+
"Pro/moonshotai/Kimi-K2-Thinking": {
|
|
306
|
+
"description": "Kimi K2 Thinking Turbo は、Kimi K2 シリーズの Turbo バージョンであり、推論速度とスループットを最適化しつつ、K2 Thinking の多段階推論とツール呼び出し機能を保持しています。本モデルは混合エキスパート(MoE)アーキテクチャに基づき、総パラメータ数は約1兆、ネイティブで256Kのコンテキストをサポートし、大規模なツール呼び出しを安定して実行可能です。低遅延・高並列性が求められるプロダクション環境に最適です。"
|
|
307
|
+
},
|
|
302
308
|
"QwQ-32B-Preview": {
|
|
303
309
|
"description": "QwQ-32B-Previewは、複雑な対話生成と文脈理解タスクを効率的に処理できる革新的な自然言語処理モデルです。"
|
|
304
310
|
},
|
|
@@ -1052,6 +1058,9 @@
|
|
|
1052
1058
|
"deepseek-coder-v2:236b": {
|
|
1053
1059
|
"description": "DeepSeek Coder V2は、オープンソースの混合エキスパートコードモデルであり、コードタスクにおいて優れた性能を発揮し、GPT4-Turboに匹敵します。"
|
|
1054
1060
|
},
|
|
1061
|
+
"deepseek-ocr": {
|
|
1062
|
+
"description": "DeepSeek-OCR は、DeepSeek AI によって開発された視覚と言語を統合したモデルで、光学文字認識(OCR)と「コンテキスト光学圧縮」に特化しています。本モデルは、画像から文脈情報を圧縮する限界を探求し、ドキュメントを効率的に処理して Markdown などの構造化テキスト形式に変換することが可能です。画像内の文字情報を高精度で認識でき、文書のデジタル化、文字抽出、構造化処理などの用途に適しています。"
|
|
1063
|
+
},
|
|
1055
1064
|
"deepseek-r1": {
|
|
1056
1065
|
"description": "DeepSeek-R1は、強化学習(RL)駆動の推論モデルであり、モデル内の繰り返しと可読性の問題を解決します。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等のパフォーマンスを発揮し、精巧に設計されたトレーニング手法によって全体的な効果を向上させました。"
|
|
1057
1066
|
},
|
|
@@ -1268,6 +1277,9 @@
|
|
|
1268
1277
|
"doubao-seed-1.6-vision": {
|
|
1269
1278
|
"description": "Doubao-Seed-1.6-visionは視覚的深層思考モデルで、教育、画像審査、巡回検査とセキュリティ、AI検索質問応答などのシーンでより強力な汎用マルチモーダル理解と推論能力を発揮します。256kのコンテキストウィンドウをサポートし、最大64kトークンの出力長に対応しています。"
|
|
1270
1279
|
},
|
|
1280
|
+
"doubao-seed-code": {
|
|
1281
|
+
"description": "Doubao-Seed-Code は、エージェント指向のプログラミングタスクに特化して最適化されており、マルチモーダル(テキスト/画像/動画)と256Kの長コンテキストをサポートします。Anthropic API にも互換性があり、プログラミング、視覚理解、エージェントシナリオに適しています。"
|
|
1282
|
+
},
|
|
1271
1283
|
"doubao-seededit-3-0-i2i-250628": {
|
|
1272
1284
|
"description": "Doubao 画像生成モデルはバイトダンスの Seed チームによって開発され、テキストと画像の入力をサポートし、高い制御性と高品質な画像生成体験を提供します。テキスト指示による画像編集が可能で、生成される画像の辺の長さは512~1536の範囲です。"
|
|
1273
1285
|
},
|
|
@@ -1328,6 +1340,9 @@
|
|
|
1328
1340
|
"ernie-4.5-vl-28b-a3b": {
|
|
1329
1341
|
"description": "ERNIE 4.5 VL 28B A3B、オープンソースのマルチモーダルモデルで、画像と言語の理解・推論タスクに対応します。"
|
|
1330
1342
|
},
|
|
1343
|
+
"ernie-5.0-thinking-latest": {
|
|
1344
|
+
"description": "文心5.0 Thinking は、ネイティブな全モーダル対応のフラッグシップモデルであり、テキスト、画像、音声、動画を統一的にモデリング可能です。総合的な能力が大幅に向上しており、複雑な質疑応答、創作、インテリジェントエージェントのシナリオに適しています。"
|
|
1345
|
+
},
|
|
1331
1346
|
"ernie-5.0-thinking-preview": {
|
|
1332
1347
|
"description": "文心5.0 Thinking Preview、ネイティブな全モーダル対応のフラッグシップモデルで、テキスト、画像、音声、動画の統一モデリングを実現し、複雑な質問応答、創作、エージェントシナリオに対応します。"
|
|
1333
1348
|
},
|
|
@@ -2198,9 +2213,6 @@
|
|
|
2198
2213
|
"kimi-latest": {
|
|
2199
2214
|
"description": "Kimi スマートアシスタント製品は最新の Kimi 大モデルを使用しており、まだ安定していない機能が含まれている可能性があります。画像理解をサポートし、リクエストのコンテキストの長さに応じて 8k/32k/128k モデルを請求モデルとして自動的に選択します。"
|
|
2200
2215
|
},
|
|
2201
|
-
"kimi-thinking-preview": {
|
|
2202
|
-
"description": "kimi-thinking-preview モデルは月の裏側が提供するマルチモーダル推論能力と汎用推論能力を備えたマルチモーダル思考モデルで、深い推論に優れ、より多くの難しい課題の解決を支援します。"
|
|
2203
|
-
},
|
|
2204
2216
|
"kuaishou/kat-coder-pro-v1": {
|
|
2205
2217
|
"description": "KAT-Coder-Pro-V1(期間限定無料)は、コード理解と自動プログラミングに特化し、効率的なプログラミングエージェントタスクに使用されます。"
|
|
2206
2218
|
},
|
|
@@ -2246,9 +2258,6 @@
|
|
|
2246
2258
|
"llama-3.3-instruct": {
|
|
2247
2259
|
"description": "Llama 3.3 命令チューニングモデルは対話シナリオ向けに最適化されており、一般的な業界ベンチマークテストにおいて、多くの既存のオープンソースチャットモデルを凌駕しています。"
|
|
2248
2260
|
},
|
|
2249
|
-
"llama-4-scout-17b-16e-instruct": {
|
|
2250
|
-
"description": "Llama 4 Scout:高性能な Llama シリーズモデルで、高スループットかつ低レイテンシーが求められるシナリオに最適です。"
|
|
2251
|
-
},
|
|
2252
2261
|
"llama3-70b-8192": {
|
|
2253
2262
|
"description": "Meta Llama 3 70Bは、比類のない複雑性処理能力を提供し、高要求プロジェクトに特化しています。"
|
|
2254
2263
|
},
|
|
@@ -2681,6 +2690,9 @@
|
|
|
2681
2690
|
"moonshotai/Kimi-K2-Instruct-0905": {
|
|
2682
2691
|
"description": "Kimi K2-Instruct-0905 は Kimi K2 の最新かつ最強のバージョンです。これはトップクラスの混合専門家(MoE)言語モデルであり、総パラメータ数は1兆、活性化パラメータ数は320億を誇ります。このモデルの主な特徴は、強化されたエージェントのコーディング知能であり、公開ベンチマークテストおよび実世界のエージェントコーディングタスクで顕著な性能向上を示しています。また、フロントエンドのコーディング体験も改善され、フロントエンドプログラミングの美観と実用性の両面で進歩しています。"
|
|
2683
2692
|
},
|
|
2693
|
+
"moonshotai/Kimi-K2-Thinking": {
|
|
2694
|
+
"description": "Kimi K2 Thinking は、最新かつ最も強力なオープンソースの思考モデルです。多段階推論の深さを大幅に拡張し、200〜300回の連続ツール呼び出しにおいても安定したツール使用を維持します。Humanity's Last Exam(HLE)、BrowseComp などのベンチマークで新たな基準を打ち立てました。プログラミング、数学、論理推論、エージェントシナリオにおいても卓越した性能を発揮します。本モデルは混合エキスパート(MoE)アーキテクチャに基づき、総パラメータ数は約1兆、256Kのコンテキストウィンドウとツール呼び出しをサポートします。"
|
|
2695
|
+
},
|
|
2684
2696
|
"moonshotai/kimi-k2": {
|
|
2685
2697
|
"description": "Kimi K2 は Moonshot AI による大規模混合エキスパート(MoE)言語モデルで、総パラメータ数1兆、1回のフォワードパスあたり320億の活性化パラメータを持ちます。高度なツール使用、推論、コード合成などのエージェント能力に最適化されています。"
|
|
2686
2698
|
},
|
|
@@ -2721,7 +2733,7 @@
|
|
|
2721
2733
|
"description": "高度な推論と複雑な問題の解決に焦点を当てており、数学や科学のタスクを含みます。深いコンテキスト理解とエージェントワークフローを必要とするアプリケーションに非常に適しています。"
|
|
2722
2734
|
},
|
|
2723
2735
|
"o1-mini": {
|
|
2724
|
-
"description": "o1-
|
|
2736
|
+
"description": "o1-preview よりも小型で高速、コストは80%削減されており、コード生成や小規模なコンテキスト操作において優れた性能を発揮します。"
|
|
2725
2737
|
},
|
|
2726
2738
|
"o1-preview": {
|
|
2727
2739
|
"description": "高度な推論と複雑な問題の解決に注力しており、数学や科学の課題にも対応します。深い文脈理解と自律的なワークフローを必要とするアプリケーションに非常に適しています。"
|
|
@@ -2960,9 +2972,6 @@
|
|
|
2960
2972
|
"qwen-3-32b": {
|
|
2961
2973
|
"description": "Qwen 3 32B:Qwen シリーズは多言語対応とコーディングタスクに優れており、中規模なプロダクション用途に適しています。"
|
|
2962
2974
|
},
|
|
2963
|
-
"qwen-3-coder-480b": {
|
|
2964
|
-
"description": "Qwen 3 Coder 480B:コード生成および複雑なプログラミングタスク向けの長文コンテキスト対応モデルです。"
|
|
2965
|
-
},
|
|
2966
2975
|
"qwen-coder-plus": {
|
|
2967
2976
|
"description": "通義千問コードモデルです。"
|
|
2968
2977
|
},
|
|
@@ -3323,6 +3332,9 @@
|
|
|
3323
3332
|
"sonar-reasoning-pro": {
|
|
3324
3333
|
"description": "DeepSeek推論モデルによってサポートされる新しいAPI製品。"
|
|
3325
3334
|
},
|
|
3335
|
+
"spark-x": {
|
|
3336
|
+
"description": "X1.5 の機能紹介:(1)思考モードの動的調整が可能で、thinking フィールドで制御;(2)コンテキスト長が拡大:入力・出力ともに64K;(3)FunctionCall 機能をサポート。"
|
|
3337
|
+
},
|
|
3326
3338
|
"stable-diffusion-3-medium": {
|
|
3327
3339
|
"description": "Stability AIがリリースした最新のテキストから画像生成大規模モデルです。前世代の利点を継承しつつ、画像品質、テキスト理解、スタイル多様性の面で大幅に改善され、複雑な自然言語プロンプトをより正確に解釈し、より精密かつ多様な画像を生成可能です。"
|
|
3328
3340
|
},
|
|
@@ -3524,9 +3536,6 @@
|
|
|
3524
3536
|
"x-ai/grok-code-fast-1": {
|
|
3525
3537
|
"description": "Grok Code Fast 1は、xAIの高速コードモデルで、可読性とエンジニアリング適合性の高い出力を提供します。"
|
|
3526
3538
|
},
|
|
3527
|
-
"x1": {
|
|
3528
|
-
"description": "Spark X1 モデルはさらにアップグレードされ、元の数学タスクで国内のリーダーシップを維持しつつ、推論、テキスト生成、言語理解などの一般的なタスクで OpenAI o1 および DeepSeek R1 に匹敵する効果を実現します。"
|
|
3529
|
-
},
|
|
3530
3539
|
"xai/grok-2": {
|
|
3531
3540
|
"description": "Grok 2 は最先端の推論能力を持つ最前線の言語モデルです。チャット、コーディング、推論において高度な能力を持ち、LMSYSランキングで Claude 3.5 Sonnet や GPT-4-Turbo を上回ります。"
|
|
3532
3541
|
},
|
|
@@ -3593,6 +3602,9 @@
|
|
|
3593
3602
|
"z-ai/glm-4.6": {
|
|
3594
3603
|
"description": "GLM 4.6は、Z.AIのフラッグシップモデルで、文脈長とコーディング能力が拡張されています。"
|
|
3595
3604
|
},
|
|
3605
|
+
"zai-glm-4.6": {
|
|
3606
|
+
"description": "プログラミングおよび推論タスクにおいて優れた性能を発揮し、ストリーミングとツール呼び出しをサポートします。エージェント指向のコーディングや複雑な推論シナリオに適しています。"
|
|
3607
|
+
},
|
|
3596
3608
|
"zai-org/GLM-4.5": {
|
|
3597
3609
|
"description": "GLM-4.5はエージェントアプリケーション向けに設計された基盤モデルで、混合専門家(Mixture-of-Experts)アーキテクチャを採用。ツール呼び出し、ウェブブラウジング、ソフトウェア工学、フロントエンドプログラミング分野で深く最適化され、Claude CodeやRoo Codeなどのコードエージェントへのシームレスな統合をサポートします。混合推論モードを採用し、複雑な推論や日常利用など多様なシナリオに適応可能です。"
|
|
3598
3610
|
},
|
package/locales/ko-KR/auth.json
CHANGED
|
@@ -54,6 +54,7 @@
|
|
|
54
54
|
},
|
|
55
55
|
"betterAuth": {
|
|
56
56
|
"errors": {
|
|
57
|
+
"emailExists": "이 이메일은 이미 등록되어 있습니다. 바로 로그인해 주세요.",
|
|
57
58
|
"emailInvalid": "유효한 이메일 주소를 입력하세요",
|
|
58
59
|
"emailNotRegistered": "이 이메일은 아직 등록되지 않았습니다",
|
|
59
60
|
"emailNotVerified": "이메일이 인증되지 않았습니다. 먼저 이메일을 인증하세요",
|
|
@@ -65,6 +66,7 @@
|
|
|
65
66
|
"passwordMaxLength": "비밀번호는 최대 64자까지 입력할 수 있습니다",
|
|
66
67
|
"passwordMinLength": "비밀번호는 최소 8자 이상이어야 합니다",
|
|
67
68
|
"passwordRequired": "비밀번호를 입력하세요",
|
|
69
|
+
"usernameNotRegistered": "해당 사용자 이름은 등록되어 있지 않습니다",
|
|
68
70
|
"usernameRequired": "사용자 이름을 입력하세요"
|
|
69
71
|
},
|
|
70
72
|
"resetPassword": {
|
|
@@ -101,7 +103,6 @@
|
|
|
101
103
|
"continueWithZitadel": "Zitadel로 로그인",
|
|
102
104
|
"emailPlaceholder": "이메일 주소를 입력하세요",
|
|
103
105
|
"emailStep": {
|
|
104
|
-
"subtitle": "계속하려면 이메일 주소를 입력하세요",
|
|
105
106
|
"title": "로그인"
|
|
106
107
|
},
|
|
107
108
|
"error": "로그인에 실패했습니다. 이메일과 비밀번호를 확인하세요",
|
|
@@ -194,6 +195,7 @@
|
|
|
194
195
|
"resetPasswordError": "비밀번호 재설정 링크 전송에 실패했습니다",
|
|
195
196
|
"resetPasswordSent": "비밀번호 재설정 링크가 전송되었습니다. 이메일을 확인하세요",
|
|
196
197
|
"save": "저장",
|
|
198
|
+
"setPassword": "비밀번호 설정",
|
|
197
199
|
"sso": {
|
|
198
200
|
"link": {
|
|
199
201
|
"button": "계정 연결",
|
|
@@ -210,7 +212,14 @@
|
|
|
210
212
|
"title": "프로필 정보",
|
|
211
213
|
"updateAvatar": "아바타 업데이트",
|
|
212
214
|
"updateFullName": "전체 이름 업데이트",
|
|
213
|
-
"
|
|
215
|
+
"updateUsername": "사용자 이름 업데이트",
|
|
216
|
+
"username": "사용자 이름",
|
|
217
|
+
"usernameDuplicate": "이미 사용 중인 사용자 이름입니다",
|
|
218
|
+
"usernameInputHint": "새 사용자 이름을 입력하세요",
|
|
219
|
+
"usernamePlaceholder": "영문자, 숫자 또는 밑줄(_)로 구성된 사용자 이름을 입력하세요",
|
|
220
|
+
"usernameRequired": "사용자 이름은 필수 항목입니다",
|
|
221
|
+
"usernameRule": "사용자 이름은 영문자, 숫자 또는 밑줄(_)만 사용할 수 있습니다",
|
|
222
|
+
"usernameUpdateFailed": "사용자 이름 업데이트에 실패했습니다. 잠시 후 다시 시도해 주세요"
|
|
214
223
|
},
|
|
215
224
|
"signout": "로그아웃",
|
|
216
225
|
"signup": "회원가입",
|
|
@@ -221,6 +221,9 @@
|
|
|
221
221
|
"MiniMax-M2": {
|
|
222
222
|
"description": "효율적인 코딩 및 에이전트 워크플로우를 위해 설계됨"
|
|
223
223
|
},
|
|
224
|
+
"MiniMax-M2-Stable": {
|
|
225
|
+
"description": "효율적인 코딩 및 에이전트 워크플로우를 위해 설계되었으며, 높은 동시 처리 성능과 상업적 사용에 적합합니다."
|
|
226
|
+
},
|
|
224
227
|
"MiniMax-Text-01": {
|
|
225
228
|
"description": "MiniMax-01 시리즈 모델에서는 대담한 혁신을 이루었습니다: 대규모로 선형 주의 메커니즘을 처음으로 구현하였으며, 전통적인 Transformer 아키텍처가 더 이상 유일한 선택이 아닙니다. 이 모델의 파라미터 수는 4560억에 달하며, 단일 활성화는 45.9억입니다. 모델의 종합 성능은 해외 최고의 모델과 견줄 수 있으며, 전 세계에서 가장 긴 400만 토큰의 문맥을 효율적으로 처리할 수 있습니다. 이는 GPT-4o의 32배, Claude-3.5-Sonnet의 20배에 해당합니다."
|
|
226
229
|
},
|
|
@@ -299,6 +302,9 @@
|
|
|
299
302
|
"Pro/moonshotai/Kimi-K2-Instruct-0905": {
|
|
300
303
|
"description": "Kimi K2-Instruct-0905는 Kimi K2의 최신이자 가장 강력한 버전입니다. 이 모델은 총 1조 개의 파라미터와 320억 개의 활성화 파라미터를 가진 최첨단 혼합 전문가(MoE) 언어 모델입니다. 주요 특징으로는 향상된 에이전트 코딩 지능으로, 공개 벤치마크 테스트와 실제 코딩 에이전트 작업에서 뛰어난 성능 향상을 보였으며, 프론트엔드 코딩 경험이 개선되어 프론트엔드 프로그래밍의 미적 측면과 실용성 모두에서 진전을 이루었습니다."
|
|
301
304
|
},
|
|
305
|
+
"Pro/moonshotai/Kimi-K2-Thinking": {
|
|
306
|
+
"description": "Kimi K2 Thinking Turbo는 Kimi K2 시리즈의 터보 버전으로, 추론 속도와 처리량을 최적화하면서도 K2 Thinking의 다단계 추론 및 도구 호출 기능을 유지합니다. 이 모델은 혼합 전문가(MoE) 아키텍처를 기반으로 하며, 총 파라미터 수는 약 1조에 달하고, 256K 컨텍스트를 기본적으로 지원하며 대규모 도구 호출을 안정적으로 수행할 수 있어 지연 시간과 동시성에 대한 요구가 높은 생산 환경에 적합합니다."
|
|
307
|
+
},
|
|
302
308
|
"QwQ-32B-Preview": {
|
|
303
309
|
"description": "QwQ-32B-Preview는 복잡한 대화 생성 및 맥락 이해 작업을 효율적으로 처리할 수 있는 혁신적인 자연어 처리 모델입니다."
|
|
304
310
|
},
|
|
@@ -1052,6 +1058,9 @@
|
|
|
1052
1058
|
"deepseek-coder-v2:236b": {
|
|
1053
1059
|
"description": "DeepSeek Coder V2는 오픈 소스 혼합 전문가 코드 모델로, 코드 작업에서 뛰어난 성능을 발휘하며, GPT4-Turbo와 경쟁할 수 있습니다."
|
|
1054
1060
|
},
|
|
1061
|
+
"deepseek-ocr": {
|
|
1062
|
+
"description": "DeepSeek-OCR은 DeepSeek AI에서 개발한 비전-언어 모델로, 광학 문자 인식(OCR)과 '컨텍스트 광학 압축'에 중점을 둡니다. 이 모델은 이미지에서 컨텍스트 정보를 압축하는 한계를 탐구하며, 문서를 효율적으로 처리하고 Markdown과 같은 구조화된 텍스트 형식으로 변환할 수 있습니다. 이미지 내 텍스트를 정확하게 인식할 수 있어 문서 디지털화, 텍스트 추출 및 구조화 처리 등의 응용 분야에 적합합니다."
|
|
1063
|
+
},
|
|
1055
1064
|
"deepseek-r1": {
|
|
1056
1065
|
"description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
|
|
1057
1066
|
},
|
|
@@ -1268,6 +1277,9 @@
|
|
|
1268
1277
|
"doubao-seed-1.6-vision": {
|
|
1269
1278
|
"description": "Doubao-Seed-1.6-vision 시각 심층 사고 모델로, 교육, 이미지 검토, 점검 및 보안, AI 검색 질의응답 등 다양한 시나리오에서 더욱 강력한 범용 다중 모달 이해 및 추론 능력을 보여줍니다. 256k 문맥 창을 지원하며, 출력 길이는 최대 64k 토큰까지 지원합니다."
|
|
1270
1279
|
},
|
|
1280
|
+
"doubao-seed-code": {
|
|
1281
|
+
"description": "Doubao-Seed-Code는 에이전트 기반 프로그래밍 작업에 최적화되어 있으며, 멀티모달(텍스트/이미지/비디오) 및 256K 길이의 컨텍스트를 지원하고, Anthropic API와 호환됩니다. 프로그래밍, 시각적 이해 및 에이전트 시나리오에 적합합니다."
|
|
1282
|
+
},
|
|
1271
1283
|
"doubao-seededit-3-0-i2i-250628": {
|
|
1272
1284
|
"description": "Doubao 이미지 생성 모델은 ByteDance Seed 팀이 개발했으며, 텍스트와 이미지 입력을 지원하여 높은 제어력과 고품질 이미지 생성 경험을 제공합니다. 텍스트 명령어를 통해 이미지를 편집할 수 있으며, 생성되는 이미지의 크기는 512~1536 픽셀 사이입니다."
|
|
1273
1285
|
},
|
|
@@ -1328,6 +1340,9 @@
|
|
|
1328
1340
|
"ernie-4.5-vl-28b-a3b": {
|
|
1329
1341
|
"description": "ERNIE 4.5 VL 28B A3B, 멀티모달 오픈소스 모델로, 이미지-텍스트 이해 및 추론 작업을 지원합니다."
|
|
1330
1342
|
},
|
|
1343
|
+
"ernie-5.0-thinking-latest": {
|
|
1344
|
+
"description": "Wenxin 5.0 Thinking은 텍스트, 이미지, 오디오, 비디오를 통합적으로 모델링하는 플래그십 멀티모달 모델로, 전반적인 능력이 대폭 향상되어 복잡한 질의응답, 창작 및 지능형 에이전트 시나리오에 적합합니다."
|
|
1345
|
+
},
|
|
1331
1346
|
"ernie-5.0-thinking-preview": {
|
|
1332
1347
|
"description": "Wenxin 5.0 Thinking 프리뷰 버전, 텍스트, 이미지, 오디오, 비디오를 통합 모델링하는 네이티브 풀모달 플래그십 모델로, 복잡한 질의응답, 창작 및 에이전트 시나리오에 적합합니다."
|
|
1333
1348
|
},
|
|
@@ -2198,9 +2213,6 @@
|
|
|
2198
2213
|
"kimi-latest": {
|
|
2199
2214
|
"description": "Kimi 스마트 어시스턴트 제품은 최신 Kimi 대형 모델을 사용하며, 아직 안정되지 않은 기능이 포함될 수 있습니다. 이미지 이해를 지원하며, 요청의 맥락 길이에 따라 8k/32k/128k 모델을 청구 모델로 자동 선택합니다."
|
|
2200
2215
|
},
|
|
2201
|
-
"kimi-thinking-preview": {
|
|
2202
|
-
"description": "kimi-thinking-preview 모델은 월면의 어두운 면에서 제공하는 다중 모달 추론 능력과 범용 추론 능력을 갖춘 다중 모달 사고 모델로, 심층 추론에 능하며 더 어렵고 복잡한 문제 해결을 돕습니다."
|
|
2203
|
-
},
|
|
2204
2216
|
"kuaishou/kat-coder-pro-v1": {
|
|
2205
2217
|
"description": "KAT-Coder-Pro-V1(한시적 무료)은 코드 이해 및 자동화 프로그래밍에 특화되어 있으며, 효율적인 프로그래밍 에이전트 작업에 사용됩니다."
|
|
2206
2218
|
},
|
|
@@ -2246,9 +2258,6 @@
|
|
|
2246
2258
|
"llama-3.3-instruct": {
|
|
2247
2259
|
"description": "Llama 3.3 지침 미세 조정 모델은 대화 시나리오에 최적화되어 있으며, 일반적인 업계 벤치마크 테스트에서 기존의 많은 오픈소스 채팅 모델을 능가합니다."
|
|
2248
2260
|
},
|
|
2249
|
-
"llama-4-scout-17b-16e-instruct": {
|
|
2250
|
-
"description": "Llama 4 Scout: 고성능 Llama 시리즈 모델로, 높은 처리량과 낮은 지연이 요구되는 환경에 적합합니다."
|
|
2251
|
-
},
|
|
2252
2261
|
"llama3-70b-8192": {
|
|
2253
2262
|
"description": "Meta Llama 3 70B는 비할 데 없는 복잡성 처리 능력을 제공하며, 높은 요구 사항을 가진 프로젝트에 맞춤형으로 설계되었습니다."
|
|
2254
2263
|
},
|
|
@@ -2681,6 +2690,9 @@
|
|
|
2681
2690
|
"moonshotai/Kimi-K2-Instruct-0905": {
|
|
2682
2691
|
"description": "Kimi K2-Instruct-0905는 Kimi K2의 최신이자 가장 강력한 버전입니다. 이 모델은 총 1조 개의 파라미터와 320억 개의 활성화 파라미터를 가진 최첨단 혼합 전문가(MoE) 언어 모델입니다. 주요 특징으로는 향상된 에이전트 코딩 지능으로, 공개 벤치마크 테스트와 실제 코딩 에이전트 작업에서 뛰어난 성능 향상을 보였으며, 프론트엔드 코딩 경험이 개선되어 프론트엔드 프로그래밍의 미적 측면과 실용성 모두에서 진전을 이루었습니다."
|
|
2683
2692
|
},
|
|
2693
|
+
"moonshotai/Kimi-K2-Thinking": {
|
|
2694
|
+
"description": "Kimi K2 Thinking은 최신이자 가장 강력한 오픈소스 사고 모델입니다. 다단계 추론 깊이를 크게 확장하고, 200~300회 연속 도구 호출에서도 안정적인 도구 사용을 유지하며, Humanity's Last Exam (HLE), BrowseComp 등 다양한 벤치마크에서 새로운 기준을 세웠습니다. 또한 프로그래밍, 수학, 논리 추론 및 에이전트 시나리오에서 뛰어난 성능을 보입니다. 이 모델은 혼합 전문가(MoE) 아키텍처를 기반으로 하며, 총 파라미터 수는 약 1조이고, 256K 컨텍스트 윈도우 및 도구 호출을 지원합니다."
|
|
2695
|
+
},
|
|
2684
2696
|
"moonshotai/kimi-k2": {
|
|
2685
2697
|
"description": "Kimi K2는 Moonshot AI가 개발한 대규모 혼합 전문가(MoE) 언어 모델로, 총 1조 매개변수와 한 번의 순전파당 320억 활성 매개변수를 갖추고 있습니다. 고급 도구 사용, 추론 및 코드 합성을 포함한 에이전트 능력에 최적화되어 있습니다."
|
|
2686
2698
|
},
|
|
@@ -2721,7 +2733,7 @@
|
|
|
2721
2733
|
"description": "고급 추론 및 복잡한 문제 해결에 중점을 두며, 수학 및 과학 작업을 포함합니다. 깊이 있는 컨텍스트 이해와 에이전트 작업 흐름이 필요한 애플리케이션에 매우 적합합니다."
|
|
2722
2734
|
},
|
|
2723
2735
|
"o1-mini": {
|
|
2724
|
-
"description": "o1-
|
|
2736
|
+
"description": "o1-preview보다 더 작고 빠르며, 비용이 80% 절감됩니다. 코드 생성 및 짧은 컨텍스트 작업에서 우수한 성능을 보입니다."
|
|
2725
2737
|
},
|
|
2726
2738
|
"o1-preview": {
|
|
2727
2739
|
"description": "고급 추론과 복잡한 문제 해결(수학 및 과학 과제 포함)에 중점을 둡니다. 깊은 맥락 이해와 자율적 워크플로를 필요로 하는 애플리케이션에 매우 적합합니다."
|
|
@@ -2960,9 +2972,6 @@
|
|
|
2960
2972
|
"qwen-3-32b": {
|
|
2961
2973
|
"description": "Qwen 3 32B: Qwen 시리즈는 다국어 및 코딩 작업에서 우수한 성능을 보이며, 중간 규모의 생산 환경에 적합합니다."
|
|
2962
2974
|
},
|
|
2963
|
-
"qwen-3-coder-480b": {
|
|
2964
|
-
"description": "Qwen 3 Coder 480B: 코드 생성 및 복잡한 프로그래밍 작업을 위한 장문맥 모델입니다."
|
|
2965
|
-
},
|
|
2966
2975
|
"qwen-coder-plus": {
|
|
2967
2976
|
"description": "통의천문 코드 모델입니다."
|
|
2968
2977
|
},
|
|
@@ -3323,6 +3332,9 @@
|
|
|
3323
3332
|
"sonar-reasoning-pro": {
|
|
3324
3333
|
"description": "DeepSeek 추론 모델이 지원하는 새로운 API 제품입니다."
|
|
3325
3334
|
},
|
|
3335
|
+
"spark-x": {
|
|
3336
|
+
"description": "X1.5 기능 소개: (1) thinking 필드를 통해 사고 모드 동적 조정 가능; (2) 컨텍스트 길이 확장: 입력 및 출력 각각 64K 지원; (3) FunctionCall 기능 지원."
|
|
3337
|
+
},
|
|
3326
3338
|
"stable-diffusion-3-medium": {
|
|
3327
3339
|
"description": "Stability AI가 출시한 최신 텍스트-이미지 대형 모델입니다. 이전 버전의 장점을 계승하면서 이미지 품질, 텍스트 이해 및 스타일 다양성 측면에서 크게 개선되어 복잡한 자연어 프롬프트를 더 정확히 해석하고 더욱 정밀하고 다양한 이미지를 생성할 수 있습니다."
|
|
3328
3340
|
},
|
|
@@ -3524,9 +3536,6 @@
|
|
|
3524
3536
|
"x-ai/grok-code-fast-1": {
|
|
3525
3537
|
"description": "Grok Code Fast 1은 xAI의 고속 코드 모델로, 가독성과 엔지니어링 적합성이 뛰어난 출력을 제공합니다."
|
|
3526
3538
|
},
|
|
3527
|
-
"x1": {
|
|
3528
|
-
"description": "Spark X1 모델은 추가 업그레이드를 통해 기존의 수학 과제에서 국내 선두를 유지하며, 추론, 텍스트 생성, 언어 이해 등 일반 과제에서 OpenAI o1 및 DeepSeek R1과 동등한 성과를 달성합니다."
|
|
3529
|
-
},
|
|
3530
3539
|
"xai/grok-2": {
|
|
3531
3540
|
"description": "Grok 2는 최첨단 추론 능력을 갖춘 최전선 언어 모델로, 채팅, 코딩 및 추론에서 뛰어난 능력을 보이며 LMSYS 순위에서 Claude 3.5 Sonnet 및 GPT-4-Turbo를 능가합니다."
|
|
3532
3541
|
},
|
|
@@ -3593,6 +3602,9 @@
|
|
|
3593
3602
|
"z-ai/glm-4.6": {
|
|
3594
3603
|
"description": "GLM 4.6은 Z.AI의 플래그십 모델로, 문맥 길이와 코딩 능력을 확장하였습니다."
|
|
3595
3604
|
},
|
|
3605
|
+
"zai-glm-4.6": {
|
|
3606
|
+
"description": "프로그래밍 및 추론 작업에서 우수한 성능을 보이며, 스트리밍 및 도구 호출을 지원합니다. 에이전트 기반 코딩 및 복잡한 추론 시나리오에 적합합니다."
|
|
3607
|
+
},
|
|
3596
3608
|
"zai-org/GLM-4.5": {
|
|
3597
3609
|
"description": "GLM-4.5는 에이전트 애플리케이션을 위해 설계된 기본 모델로, 혼합 전문가(Mixture-of-Experts) 아키텍처를 사용합니다. 도구 호출, 웹 브라우징, 소프트웨어 엔지니어링, 프론트엔드 프로그래밍 분야에서 깊이 최적화되었으며, Claude Code, Roo Code 등 코드 에이전트에 원활히 통합될 수 있습니다. GLM-4.5는 혼합 추론 모드를 채택하여 복잡한 추론과 일상 사용 등 다양한 응용 시나리오에 적응할 수 있습니다."
|
|
3598
3610
|
},
|
package/locales/nl-NL/auth.json
CHANGED
|
@@ -54,6 +54,7 @@
|
|
|
54
54
|
},
|
|
55
55
|
"betterAuth": {
|
|
56
56
|
"errors": {
|
|
57
|
+
"emailExists": "Dit e-mailadres is al geregistreerd. Log direct in.",
|
|
57
58
|
"emailInvalid": "Voer een geldig e-mailadres in",
|
|
58
59
|
"emailNotRegistered": "Dit e-mailadres is nog niet geregistreerd",
|
|
59
60
|
"emailNotVerified": "E-mailadres is niet geverifieerd, verifieer eerst je e-mailadres",
|
|
@@ -65,6 +66,7 @@
|
|
|
65
66
|
"passwordMaxLength": "Het wachtwoord mag maximaal 64 tekens bevatten",
|
|
66
67
|
"passwordMinLength": "Het wachtwoord moet minimaal 8 tekens bevatten",
|
|
67
68
|
"passwordRequired": "Voer een wachtwoord in",
|
|
69
|
+
"usernameNotRegistered": "Deze gebruikersnaam is nog niet geregistreerd",
|
|
68
70
|
"usernameRequired": "Voer een gebruikersnaam in"
|
|
69
71
|
},
|
|
70
72
|
"resetPassword": {
|
|
@@ -101,7 +103,6 @@
|
|
|
101
103
|
"continueWithZitadel": "Inloggen met Zitadel",
|
|
102
104
|
"emailPlaceholder": "Voer je e-mailadres in",
|
|
103
105
|
"emailStep": {
|
|
104
|
-
"subtitle": "Voer je e-mailadres in om door te gaan",
|
|
105
106
|
"title": "Inloggen"
|
|
106
107
|
},
|
|
107
108
|
"error": "Inloggen mislukt, controleer je e-mailadres en wachtwoord",
|
|
@@ -194,6 +195,7 @@
|
|
|
194
195
|
"resetPasswordError": "Verzenden van resetlink mislukt",
|
|
195
196
|
"resetPasswordSent": "Resetlink verzonden, controleer je e-mail",
|
|
196
197
|
"save": "Opslaan",
|
|
198
|
+
"setPassword": "Wachtwoord instellen",
|
|
197
199
|
"sso": {
|
|
198
200
|
"link": {
|
|
199
201
|
"button": "Account koppelen",
|
|
@@ -210,7 +212,14 @@
|
|
|
210
212
|
"title": "Profielgegevens",
|
|
211
213
|
"updateAvatar": "Profielfoto bijwerken",
|
|
212
214
|
"updateFullName": "Volledige naam bijwerken",
|
|
213
|
-
"
|
|
215
|
+
"updateUsername": "Gebruikersnaam bijwerken",
|
|
216
|
+
"username": "Gebruikersnaam",
|
|
217
|
+
"usernameDuplicate": "Gebruikersnaam is al in gebruik",
|
|
218
|
+
"usernameInputHint": "Voer een nieuwe gebruikersnaam in",
|
|
219
|
+
"usernamePlaceholder": "Voer een gebruikersnaam in bestaande uit letters, cijfers of underscores",
|
|
220
|
+
"usernameRequired": "Gebruikersnaam mag niet leeg zijn",
|
|
221
|
+
"usernameRule": "Gebruikersnaam mag alleen letters, cijfers of underscores bevatten",
|
|
222
|
+
"usernameUpdateFailed": "Bijwerken van gebruikersnaam mislukt, probeer het later opnieuw"
|
|
214
223
|
},
|
|
215
224
|
"signout": "Uitloggen",
|
|
216
225
|
"signup": "Aanmelden",
|
|
@@ -221,6 +221,9 @@
|
|
|
221
221
|
"MiniMax-M2": {
|
|
222
222
|
"description": "Speciaal ontworpen voor efficiënte codering en agent-workflows."
|
|
223
223
|
},
|
|
224
|
+
"MiniMax-M2-Stable": {
|
|
225
|
+
"description": "Speciaal ontworpen voor efficiënte codering en agent-workflows, met hogere gelijktijdigheid en geschikt voor commercieel gebruik."
|
|
226
|
+
},
|
|
224
227
|
"MiniMax-Text-01": {
|
|
225
228
|
"description": "In de MiniMax-01-serie modellen hebben we gedurfde innovaties doorgevoerd: voor het eerst op grote schaal een lineaire aandachtmechanisme geïmplementeerd, waardoor de traditionele Transformer-architectuur niet langer de enige keuze is. Dit model heeft een parameterhoeveelheid van maar liefst 456 miljard, met een enkele activatie van 45,9 miljard. De algehele prestaties van het model zijn vergelijkbaar met die van de beste modellen in het buitenland, terwijl het efficiënt de wereldwijd langste context van 4 miljoen tokens kan verwerken, wat 32 keer de capaciteit van GPT-4o en 20 keer die van Claude-3.5-Sonnet is."
|
|
226
229
|
},
|
|
@@ -299,6 +302,9 @@
|
|
|
299
302
|
"Pro/moonshotai/Kimi-K2-Instruct-0905": {
|
|
300
303
|
"description": "Kimi K2-Instruct-0905 is de nieuwste en krachtigste versie van Kimi K2. Het is een toonaangevend hybride expert (MoE) taalmodel met in totaal 1 biljoen parameters en 32 miljard geactiveerde parameters. De belangrijkste kenmerken van dit model zijn: verbeterde agent-coderingsintelligentie, met aanzienlijke prestatieverbeteringen in openbare benchmarktests en echte agent-coderingsopdrachten; verbeterde front-end coderingservaring, met vooruitgang in zowel esthetiek als bruikbaarheid van front-end programmeren."
|
|
301
304
|
},
|
|
305
|
+
"Pro/moonshotai/Kimi-K2-Thinking": {
|
|
306
|
+
"description": "Kimi K2 Thinking Turbo is de Turbo-versie van de Kimi K2-serie, geoptimaliseerd voor redeneersnelheid en verwerkingssnelheid, terwijl het de mogelijkheden voor meerstapsredenering en toolgebruik van K2 Thinking behoudt. Dit model is gebaseerd op een Mixture of Experts (MoE)-architectuur met ongeveer 1 biljoen parameters, ondersteunt native 256K context en kan stabiel grootschalige toolaanroepen uitvoeren. Ideaal voor productieomgevingen met hoge eisen aan latency en gelijktijdigheid."
|
|
307
|
+
},
|
|
302
308
|
"QwQ-32B-Preview": {
|
|
303
309
|
"description": "QwQ-32B-Preview is een innovatief natuurlijk taalverwerkingsmodel dat efficiënt complexe dialooggeneratie en contextbegripstaken kan verwerken."
|
|
304
310
|
},
|
|
@@ -1052,6 +1058,9 @@
|
|
|
1052
1058
|
"deepseek-coder-v2:236b": {
|
|
1053
1059
|
"description": "DeepSeek Coder V2 is een open-source hybride expertcode-model, presteert uitstekend in code-taken en is vergelijkbaar met GPT4-Turbo."
|
|
1054
1060
|
},
|
|
1061
|
+
"deepseek-ocr": {
|
|
1062
|
+
"description": "DeepSeek-OCR is een visueel-taalkundig model ontwikkeld door DeepSeek AI, gericht op optische tekenherkenning (OCR) en 'contextuele optische compressie'. Het model is ontworpen om de grenzen van contextcompressie vanuit afbeeldingen te verkennen, en verwerkt efficiënt documenten door ze om te zetten in gestructureerde tekstformaten zoals Markdown. Het herkent nauwkeurig tekst in afbeeldingen en is bijzonder geschikt voor toepassingen zoals documentdigitalisering, teksterkenning en gestructureerde verwerking."
|
|
1063
|
+
},
|
|
1055
1064
|
"deepseek-r1": {
|
|
1056
1065
|
"description": "DeepSeek-R1 is een op versterkend leren (RL) aangedreven inferentiemodel dat de problemen van herhaling en leesbaarheid in het model oplost. Voor RL introduceerde DeepSeek-R1 koude startdata om de inferentieprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
|
1057
1066
|
},
|
|
@@ -1268,6 +1277,9 @@
|
|
|
1268
1277
|
"doubao-seed-1.6-vision": {
|
|
1269
1278
|
"description": "Doubao-Seed-1.6-vision is een visueel diepdenkend model dat sterkere algemene multimodale begrip- en redeneervermogen toont in scenario's zoals onderwijs, beeldcontrole, inspectie en beveiliging, en AI-zoekvragen. Het ondersteunt een contextvenster van 256k en een maximale uitvoerlengte van 64k tokens."
|
|
1270
1279
|
},
|
|
1280
|
+
"doubao-seed-code": {
|
|
1281
|
+
"description": "Doubao-Seed-Code is diep geoptimaliseerd voor agentic programmeertaken, ondersteunt multimodaal (tekst/afbeelding/video) en 256K lange context, compatibel met de Anthropic API. Geschikt voor programmeren, visuele interpretatie en agent-scenario's."
|
|
1282
|
+
},
|
|
1271
1283
|
"doubao-seededit-3-0-i2i-250628": {
|
|
1272
1284
|
"description": "Doubao beeldgeneratiemodel ontwikkeld door het Seed-team van ByteDance, ondersteunt tekst- en beeldinvoer en biedt een hoog controleerbare, hoogwaardige beeldgeneratie-ervaring. Ondersteunt het bewerken van afbeeldingen via tekstinstructies, met afbeeldingsafmetingen tussen 512 en 1536 pixels."
|
|
1273
1285
|
},
|
|
@@ -1328,6 +1340,9 @@
|
|
|
1328
1340
|
"ernie-4.5-vl-28b-a3b": {
|
|
1329
1341
|
"description": "ERNIE 4.5 VL 28B A3B, een open-source multimodaal model dat beeld- en tekstbegrip en redeneertaken ondersteunt."
|
|
1330
1342
|
},
|
|
1343
|
+
"ernie-5.0-thinking-latest": {
|
|
1344
|
+
"description": "Wenxin 5.0 Thinking is een native multimodaal vlaggenschipmodel dat tekst, beeld, audio en video in één model integreert. De algehele capaciteiten zijn aanzienlijk verbeterd, waardoor het geschikt is voor complexe vraag-en-antwoord, creatieve taken en intelligente agent-toepassingen."
|
|
1345
|
+
},
|
|
1331
1346
|
"ernie-5.0-thinking-preview": {
|
|
1332
1347
|
"description": "Wenxin 5.0 Thinking Preview, een native multimodaal vlaggenschipmodel dat tekst, beeld, audio en video integreert, met uitgebreide capaciteitsupgrades voor complexe Q&A, creatie en agenttoepassingen."
|
|
1333
1348
|
},
|
|
@@ -2198,9 +2213,6 @@
|
|
|
2198
2213
|
"kimi-latest": {
|
|
2199
2214
|
"description": "Kimi slimme assistent product maakt gebruik van het nieuwste Kimi grote model, dat mogelijk nog niet stabiele functies bevat. Ondersteunt beeldbegrip en kiest automatisch het 8k/32k/128k model als factureringsmodel op basis van de lengte van de context van het verzoek."
|
|
2200
2215
|
},
|
|
2201
|
-
"kimi-thinking-preview": {
|
|
2202
|
-
"description": "kimi-thinking-preview model is een multimodaal denkmodel met multimodale en algemene redeneervaardigheden, aangeboden door de donkere zijde van de maan. Het blinkt uit in diep redeneren en helpt bij het oplossen van complexere problemen."
|
|
2203
|
-
},
|
|
2204
2216
|
"kuaishou/kat-coder-pro-v1": {
|
|
2205
2217
|
"description": "KAT-Coder-Pro-V1 (tijdelijk gratis) richt zich op codebegrip en geautomatiseerd programmeren, geschikt voor efficiënte programmeeragent-taken."
|
|
2206
2218
|
},
|
|
@@ -2246,9 +2258,6 @@
|
|
|
2246
2258
|
"llama-3.3-instruct": {
|
|
2247
2259
|
"description": "Het Llama 3.3 instructie-fijnafstemmodel is geoptimaliseerd voor gesprekssituaties en overtreft vele bestaande open-source chatmodellen op veelvoorkomende industriebenchmarks."
|
|
2248
2260
|
},
|
|
2249
|
-
"llama-4-scout-17b-16e-instruct": {
|
|
2250
|
-
"description": "Llama 4 Scout: een hoogwaardig model uit de Llama-serie, geoptimaliseerd voor scenario's die hoge verwerkingssnelheid en lage latentie vereisen."
|
|
2251
|
-
},
|
|
2252
2261
|
"llama3-70b-8192": {
|
|
2253
2262
|
"description": "Meta Llama 3 70B biedt ongeëvenaarde complexiteitsverwerkingscapaciteiten, op maat gemaakt voor veeleisende projecten."
|
|
2254
2263
|
},
|
|
@@ -2681,6 +2690,9 @@
|
|
|
2681
2690
|
"moonshotai/Kimi-K2-Instruct-0905": {
|
|
2682
2691
|
"description": "Kimi K2-Instruct-0905 is de nieuwste en krachtigste versie van Kimi K2. Het is een toonaangevend hybride expert (MoE) taalmodel met in totaal 1 biljoen parameters en 32 miljard geactiveerde parameters. De belangrijkste kenmerken van dit model zijn: verbeterde agent-coderingsintelligentie, met aanzienlijke prestatieverbeteringen in openbare benchmarktests en echte agent-coderingsopdrachten; verbeterde front-end coderingservaring, met vooruitgang in zowel esthetiek als bruikbaarheid van front-end programmeren."
|
|
2683
2692
|
},
|
|
2693
|
+
"moonshotai/Kimi-K2-Thinking": {
|
|
2694
|
+
"description": "Kimi K2 Thinking is het nieuwste en krachtigste open-source redeneermodel. Het vergroot de diepte van meerstapsredenering aanzienlijk en behoudt stabiel gebruik van tools bij 200–300 opeenvolgende aanroepen. Het heeft nieuwe standaarden gezet in benchmarks zoals Humanity's Last Exam (HLE), BrowseComp en andere. K2 Thinking blinkt uit in programmeren, wiskunde, logische redenering en agent-scenario's. Het model is gebaseerd op een Mixture of Experts (MoE)-architectuur met ongeveer 1 biljoen parameters, ondersteunt een contextvenster van 256K en toolaanroepen."
|
|
2695
|
+
},
|
|
2684
2696
|
"moonshotai/kimi-k2": {
|
|
2685
2697
|
"description": "Kimi K2 is een grootschalig hybride expert (MoE) taalmodel ontwikkeld door Moonshot AI, met in totaal 1 biljoen parameters en 32 miljard actieve parameters per voorwaartse pass. Het is geoptimaliseerd voor agentcapaciteiten, waaronder geavanceerd toolgebruik, redeneren en code-synthese."
|
|
2686
2698
|
},
|
|
@@ -2721,7 +2733,7 @@
|
|
|
2721
2733
|
"description": "Gefocust op geavanceerd redeneren en het oplossen van complexe problemen, inclusief wiskunde en wetenschappelijke taken. Zeer geschikt voor toepassingen die diepgaand begrip van context en agentwerkstromen vereisen."
|
|
2722
2734
|
},
|
|
2723
2735
|
"o1-mini": {
|
|
2724
|
-
"description": "
|
|
2736
|
+
"description": "Kleiner en sneller dan o1-preview, met 80% lagere kosten. Presteert goed bij codegeneratie en bewerkingen met kleine context."
|
|
2725
2737
|
},
|
|
2726
2738
|
"o1-preview": {
|
|
2727
2739
|
"description": "Gespecialiseerd in geavanceerde redenering en het oplossen van complexe problemen, waaronder wiskundige en wetenschappelijke taken. Zeer geschikt voor toepassingen die een diepgaand begrip van context en autonome workflows vereisen."
|
|
@@ -2960,9 +2972,6 @@
|
|
|
2960
2972
|
"qwen-3-32b": {
|
|
2961
2973
|
"description": "Qwen 3 32B: een model uit de Qwen-serie met uitstekende prestaties op meertalige en programmeertaken, geschikt voor productie op middelgrote schaal."
|
|
2962
2974
|
},
|
|
2963
|
-
"qwen-3-coder-480b": {
|
|
2964
|
-
"description": "Qwen 3 Coder 480B: een model met lange context, ontworpen voor codegeneratie en complexe programmeertaken."
|
|
2965
|
-
},
|
|
2966
2975
|
"qwen-coder-plus": {
|
|
2967
2976
|
"description": "Tongyi Qianwen codeermodel."
|
|
2968
2977
|
},
|
|
@@ -3323,6 +3332,9 @@
|
|
|
3323
3332
|
"sonar-reasoning-pro": {
|
|
3324
3333
|
"description": "Een nieuw API-product ondersteund door het DeepSeek redeneringsmodel."
|
|
3325
3334
|
},
|
|
3335
|
+
"spark-x": {
|
|
3336
|
+
"description": "Introductie van X1.5-mogelijkheden: (1) Nieuwe dynamische aanpassing van denkmodi via het veld 'thinking'; (2) Verlengde contextlengte: 64K voor zowel input als output; (3) Ondersteuning voor FunctionCall-functionaliteit."
|
|
3337
|
+
},
|
|
3326
3338
|
"stable-diffusion-3-medium": {
|
|
3327
3339
|
"description": "Het nieuwste tekst-naar-beeld groot model uitgebracht door Stability AI. Deze versie bouwt voort op de voordelen van eerdere generaties en verbetert aanzienlijk de beeldkwaliteit, tekstbegrip en stijlvariëteit. Het kan complexe natuurlijke taal prompts nauwkeuriger interpreteren en genereert preciezere en gevarieerdere beelden."
|
|
3328
3340
|
},
|
|
@@ -3524,9 +3536,6 @@
|
|
|
3524
3536
|
"x-ai/grok-code-fast-1": {
|
|
3525
3537
|
"description": "Grok Code Fast 1 is het snelle codemodel van xAI, met output die goed leesbaar is en geschikt voor engineeringtoepassingen."
|
|
3526
3538
|
},
|
|
3527
|
-
"x1": {
|
|
3528
|
-
"description": "Het Spark X1-model zal verder worden geüpgraded, met verbeterde prestaties in redenering, tekstgeneratie en taalbegrip, ter vergelijking met OpenAI o1 en DeepSeek R1."
|
|
3529
|
-
},
|
|
3530
3539
|
"xai/grok-2": {
|
|
3531
3540
|
"description": "Grok 2 is een geavanceerd taalmodel met state-of-the-art redeneercapaciteiten. Het blinkt uit in chat, codering en redeneren, en presteert beter dan Claude 3.5 Sonnet en GPT-4-Turbo op de LMSYS-ranglijst."
|
|
3532
3541
|
},
|
|
@@ -3593,6 +3602,9 @@
|
|
|
3593
3602
|
"z-ai/glm-4.6": {
|
|
3594
3603
|
"description": "GLM 4.6 is het vlaggenschipmodel van Z.AI, met uitgebreide contextlengte en verbeterde coderingscapaciteiten."
|
|
3595
3604
|
},
|
|
3605
|
+
"zai-glm-4.6": {
|
|
3606
|
+
"description": "Uitstekende prestaties bij programmeer- en redeneertaken, ondersteunt streaming en toolaanroepen. Geschikt voor agentic codering en complexe redeneerscenario's."
|
|
3607
|
+
},
|
|
3596
3608
|
"zai-org/GLM-4.5": {
|
|
3597
3609
|
"description": "GLM-4.5 is een basis model speciaal ontworpen voor agenttoepassingen, gebruikmakend van een Mixture-of-Experts (MoE) architectuur. Het is diep geoptimaliseerd voor toolaanroepen, web browsing, software engineering en frontend programmeren, en ondersteunt naadloze integratie met code-agents zoals Claude Code en Roo Code. GLM-4.5 gebruikt een hybride redeneermodus en is geschikt voor complexe redenering en dagelijks gebruik."
|
|
3598
3610
|
},
|
package/locales/pl-PL/auth.json
CHANGED
|
@@ -54,6 +54,7 @@
|
|
|
54
54
|
},
|
|
55
55
|
"betterAuth": {
|
|
56
56
|
"errors": {
|
|
57
|
+
"emailExists": "Ten adres e-mail jest już zarejestrowany, zaloguj się bezpośrednio.",
|
|
57
58
|
"emailInvalid": "Wprowadź poprawny adres e-mail",
|
|
58
59
|
"emailNotRegistered": "Ten adres e-mail nie jest zarejestrowany",
|
|
59
60
|
"emailNotVerified": "Adres e-mail nie został zweryfikowany, proszę najpierw go zweryfikować",
|
|
@@ -65,6 +66,7 @@
|
|
|
65
66
|
"passwordMaxLength": "Hasło nie może przekraczać 64 znaków",
|
|
66
67
|
"passwordMinLength": "Hasło musi mieć co najmniej 8 znaków",
|
|
67
68
|
"passwordRequired": "Wprowadź hasło",
|
|
69
|
+
"usernameNotRegistered": "Nazwa użytkownika nie została zarejestrowana",
|
|
68
70
|
"usernameRequired": "Wprowadź nazwę użytkownika"
|
|
69
71
|
},
|
|
70
72
|
"resetPassword": {
|
|
@@ -101,7 +103,6 @@
|
|
|
101
103
|
"continueWithZitadel": "Zaloguj się przez Zitadel",
|
|
102
104
|
"emailPlaceholder": "Wprowadź adres e-mail",
|
|
103
105
|
"emailStep": {
|
|
104
|
-
"subtitle": "Wprowadź swój adres e-mail, aby kontynuować",
|
|
105
106
|
"title": "Logowanie"
|
|
106
107
|
},
|
|
107
108
|
"error": "Logowanie nie powiodło się, sprawdź adres e-mail i hasło",
|
|
@@ -194,6 +195,7 @@
|
|
|
194
195
|
"resetPasswordError": "Nie udało się wysłać linku do resetowania hasła",
|
|
195
196
|
"resetPasswordSent": "Link do resetowania hasła został wysłany, sprawdź swoją skrzynkę e-mail",
|
|
196
197
|
"save": "Zapisz",
|
|
198
|
+
"setPassword": "Ustaw hasło",
|
|
197
199
|
"sso": {
|
|
198
200
|
"link": {
|
|
199
201
|
"button": "Połącz konto",
|
|
@@ -210,7 +212,14 @@
|
|
|
210
212
|
"title": "Szczegóły profilu",
|
|
211
213
|
"updateAvatar": "Zaktualizuj awatar",
|
|
212
214
|
"updateFullName": "Zaktualizuj pełne imię i nazwisko",
|
|
213
|
-
"
|
|
215
|
+
"updateUsername": "Zaktualizuj nazwę użytkownika",
|
|
216
|
+
"username": "Nazwa użytkownika",
|
|
217
|
+
"usernameDuplicate": "Nazwa użytkownika jest już zajęta",
|
|
218
|
+
"usernameInputHint": "Wprowadź nową nazwę użytkownika",
|
|
219
|
+
"usernamePlaceholder": "Wprowadź nazwę użytkownika składającą się z liter, cyfr lub podkreśleń",
|
|
220
|
+
"usernameRequired": "Nazwa użytkownika nie może być pusta",
|
|
221
|
+
"usernameRule": "Nazwa użytkownika może zawierać tylko litery, cyfry lub podkreślenia",
|
|
222
|
+
"usernameUpdateFailed": "Nie udało się zaktualizować nazwy użytkownika, spróbuj ponownie później"
|
|
214
223
|
},
|
|
215
224
|
"signout": "Wyloguj się",
|
|
216
225
|
"signup": "Zarejestruj się",
|