@lobehub/lobehub 2.0.0-next.158 → 2.0.0-next.159

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. package/.nvmrc +1 -1
  2. package/CHANGELOG.md +25 -0
  3. package/changelog/v1.json +9 -0
  4. package/docs/development/database-schema.dbml +6 -0
  5. package/locales/ar/auth.json +11 -2
  6. package/locales/ar/models.json +25 -13
  7. package/locales/bg-BG/auth.json +11 -2
  8. package/locales/bg-BG/models.json +25 -13
  9. package/locales/de-DE/auth.json +11 -2
  10. package/locales/de-DE/models.json +25 -13
  11. package/locales/en-US/auth.json +18 -9
  12. package/locales/en-US/models.json +25 -13
  13. package/locales/es-ES/auth.json +11 -2
  14. package/locales/es-ES/models.json +25 -13
  15. package/locales/fa-IR/auth.json +11 -2
  16. package/locales/fa-IR/models.json +25 -13
  17. package/locales/fr-FR/auth.json +11 -2
  18. package/locales/fr-FR/models.json +25 -13
  19. package/locales/it-IT/auth.json +11 -2
  20. package/locales/it-IT/models.json +25 -13
  21. package/locales/ja-JP/auth.json +11 -2
  22. package/locales/ja-JP/models.json +25 -13
  23. package/locales/ko-KR/auth.json +11 -2
  24. package/locales/ko-KR/models.json +25 -13
  25. package/locales/nl-NL/auth.json +11 -2
  26. package/locales/nl-NL/models.json +25 -13
  27. package/locales/pl-PL/auth.json +11 -2
  28. package/locales/pl-PL/models.json +25 -13
  29. package/locales/pt-BR/auth.json +11 -2
  30. package/locales/pt-BR/models.json +25 -13
  31. package/locales/ru-RU/auth.json +11 -2
  32. package/locales/ru-RU/models.json +25 -13
  33. package/locales/tr-TR/auth.json +11 -2
  34. package/locales/tr-TR/models.json +25 -13
  35. package/locales/vi-VN/auth.json +11 -2
  36. package/locales/vi-VN/models.json +25 -13
  37. package/locales/zh-CN/auth.json +18 -9
  38. package/locales/zh-CN/models.json +25 -13
  39. package/locales/zh-TW/auth.json +11 -2
  40. package/locales/zh-TW/models.json +25 -13
  41. package/next.config.ts +1 -1
  42. package/package.json +2 -1
  43. package/packages/database/migrations/0059_add_normalized_email_indexes.sql +4 -0
  44. package/packages/database/migrations/meta/0059_snapshot.json +8474 -0
  45. package/packages/database/migrations/meta/_journal.json +7 -0
  46. package/packages/database/src/core/migrations.json +12 -0
  47. package/packages/database/src/models/user.ts +13 -1
  48. package/packages/database/src/schemas/user.ts +37 -29
  49. package/src/app/(backend)/api/auth/resolve-username/route.ts +52 -0
  50. package/src/app/[variants]/(auth)/signin/page.tsx +102 -14
  51. package/src/app/[variants]/(auth)/signup/[[...signup]]/BetterAuthSignUpForm.tsx +15 -0
  52. package/src/app/[variants]/(main)/profile/(home)/Client.tsx +152 -12
  53. package/src/app/[variants]/(main)/profile/(home)/features/SSOProvidersList/index.tsx +4 -9
  54. package/src/app/[variants]/desktopRouter.config.tsx +7 -1
  55. package/src/app/[variants]/mobileRouter.config.tsx +7 -1
  56. package/src/auth.ts +2 -0
  57. package/src/locales/default/auth.ts +17 -9
  58. package/src/server/routers/lambda/user.ts +18 -0
  59. package/src/services/user/index.ts +4 -0
  60. package/src/store/user/slices/auth/action.test.ts +2 -2
  61. package/src/store/user/slices/auth/action.ts +8 -8
  62. package/src/store/user/slices/auth/initialState.ts +1 -1
  63. package/src/store/user/slices/auth/selectors.ts +1 -1
  64. package/src/store/user/slices/common/action.ts +6 -0
@@ -221,6 +221,9 @@
221
221
  "MiniMax-M2": {
222
222
  "description": "طراحی‌شده برای کدنویسی کارآمد و جریان کاری عامل‌ها (Agents)"
223
223
  },
224
+ "MiniMax-M2-Stable": {
225
+ "description": "طراحی‌شده برای کدنویسی کارآمد و جریان‌های کاری Agent، با توانایی هم‌زمانی بالا و مناسب برای استفاده تجاری."
226
+ },
224
227
  "MiniMax-Text-01": {
225
228
  "description": "در سری مدل‌های MiniMax-01، ما نوآوری‌های جسورانه‌ای انجام داده‌ایم: برای اولین بار مکانیزم توجه خطی را به طور وسیع پیاده‌سازی کرده‌ایم و معماری سنتی Transformer دیگر تنها گزینه نیست. این مدل دارای 456 میلیارد پارامتر است که در یک بار فعال‌سازی 45.9 میلیارد است. عملکرد کلی این مدل با بهترین مدل‌های خارجی برابری می‌کند و در عین حال می‌تواند به طور مؤثر به متن‌های طولانی جهانی با 4 میلیون توکن رسیدگی کند، که 32 برابر GPT-4o و 20 برابر Claude-3.5-Sonnet است."
226
229
  },
@@ -299,6 +302,9 @@
299
302
  "Pro/moonshotai/Kimi-K2-Instruct-0905": {
300
303
  "description": "Kimi K2-Instruct-0905 جدیدترین و قدرتمندترین نسخه Kimi K2 است. این مدل یک مدل زبان برتر با معماری متخصص ترکیبی (MoE) است که دارای ۱ تریلیون پارامتر کل و ۳۲ میلیارد پارامتر فعال می‌باشد. ویژگی‌های اصلی این مدل شامل: هوش کدگذاری عامل بهبود یافته که در آزمون‌های معیار عمومی و وظایف واقعی کدگذاری عامل عملکرد قابل توجهی نشان می‌دهد؛ تجربه کدگذاری فرانت‌اند بهبود یافته که از نظر زیبایی و کاربردی بودن برنامه‌نویسی فرانت‌اند پیشرفت داشته است."
301
304
  },
305
+ "Pro/moonshotai/Kimi-K2-Thinking": {
306
+ "description": "Kimi K2 Thinking Turbo نسخه توربوی سری Kimi K2 است که برای سرعت استنتاج و توان عملیاتی بهینه‌سازی شده و در عین حال توانایی استنتاج چندمرحله‌ای و استفاده از ابزارهای K2 Thinking را حفظ می‌کند. این مدل بر پایه معماری متخصصان ترکیبی (MoE) ساخته شده، دارای حدود ۱ تریلیون پارامتر است، به‌صورت بومی از زمینه ۲۵۶ هزار توکن پشتیبانی می‌کند و می‌تواند به‌طور پایدار فراخوانی ابزارهای بزرگ‌مقیاس را انجام دهد. مناسب برای محیط‌های تولیدی با نیاز بالا به تأخیر کم و هم‌زمانی بالا."
307
+ },
302
308
  "QwQ-32B-Preview": {
303
309
  "description": "QwQ-32B-Preview یک مدل پردازش زبان طبیعی نوآورانه است که قادر به پردازش کارآمد مکالمات پیچیده و درک زمینه است."
304
310
  },
@@ -1052,6 +1058,9 @@
1052
1058
  "deepseek-coder-v2:236b": {
1053
1059
  "description": "DeepSeek Coder V2 یک مدل کد نویسی ترکیبی و متن‌باز است که در وظایف کدنویسی عملکرد بسیار خوبی دارد و با GPT4-Turbo قابل مقایسه است."
1054
1060
  },
1061
+ "deepseek-ocr": {
1062
+ "description": "DeepSeek-OCR یک مدل زبان تصویری از DeepSeek AI است که بر شناسایی نویسه نوری (OCR) و «فشرده‌سازی نوری متنی» تمرکز دارد. این مدل با هدف بررسی مرزهای فشرده‌سازی اطلاعات متنی از تصاویر طراحی شده و می‌تواند اسناد را به‌طور مؤثر پردازش کرده و به فرمت‌های متنی ساختاریافته مانند Markdown تبدیل کند. این مدل توانایی بالایی در شناسایی دقیق محتوای متنی در تصاویر دارد و برای کاربردهایی مانند دیجیتالی‌سازی اسناد، استخراج متن و پردازش ساختاریافته بسیار مناسب است."
1063
+ },
1055
1064
  "deepseek-r1": {
1056
1065
  "description": "DeepSeek-R1 یک مدل استنتاجی مبتنی بر یادگیری تقویتی (RL) است که به مشکلات تکرار و خوانایی در مدل پرداخته است. قبل از RL، DeepSeek-R1 داده‌های شروع سرد را معرفی کرد و عملکرد استنتاج را بهینه‌تر کرد. این مدل در وظایف ریاضی، کدنویسی و استنتاج با OpenAI-o1 عملکرد مشابهی دارد و با استفاده از روش‌های آموزشی به دقت طراحی شده، کیفیت کلی را بهبود بخشیده است."
1057
1066
  },
@@ -1268,6 +1277,9 @@
1268
1277
  "doubao-seed-1.6-vision": {
1269
1278
  "description": "مدل تفکر عمیق بصری Doubao-Seed-1.6-vision در زمینه‌هایی مانند آموزش، بازبینی تصاویر، بازرسی و امنیت و پرسش و پاسخ جستجوی هوش مصنوعی، توانایی درک و استدلال چندرسانه‌ای عمومی قوی‌تری را نشان می‌دهد. از پنجره متنی ۲۵۶ هزار توکنی پشتیبانی می‌کند و طول خروجی تا ۶۴ هزار توکن قابل افزایش است."
1270
1279
  },
1280
+ "doubao-seed-code": {
1281
+ "description": "Doubao-Seed-Code برای وظایف برنامه‌نویسی Agentic به‌طور عمیق بهینه‌سازی شده است. از چندرسانه‌ای (متن/تصویر/ویدیو) و زمینه طولانی ۲۵۶ هزار توکن پشتیبانی می‌کند، با API شرکت Anthropic سازگار است و برای برنامه‌نویسی، درک بصری و سناریوهای Agent مناسب است."
1282
+ },
1271
1283
  "doubao-seededit-3-0-i2i-250628": {
1272
1284
  "description": "مدل تولید تصویر Doubao توسط تیم Seed شرکت ByteDance توسعه یافته است، از ورودی متن و تصویر پشتیبانی می‌کند و تجربه‌ای با کنترل بالا و کیفیت عالی در تولید تصویر ارائه می‌دهد. امکان ویرایش تصویر با دستور متنی وجود دارد و طول ضلع تصویر تولید شده بین 512 تا 1536 پیکسل است."
1273
1285
  },
@@ -1328,6 +1340,9 @@
1328
1340
  "ernie-4.5-vl-28b-a3b": {
1329
1341
  "description": "ERNIE 4.5 VL 28B A3B، مدل چندوجهی متن‌باز، پشتیبانی از وظایف درک و استنتاج تصویر و متن."
1330
1342
  },
1343
+ "ernie-5.0-thinking-latest": {
1344
+ "description": "Ernie 5.0 Thinking، مدل پرچم‌دار چندرسانه‌ای بومی، از مدل‌سازی یکپارچه متن، تصویر، صوت و ویدیو پشتیبانی می‌کند. توانایی‌های جامع آن به‌روزرسانی شده و برای پرسش‌وپاسخ‌های پیچیده، تولید محتوا و سناریوهای هوشمند بسیار مناسب است."
1345
+ },
1331
1346
  "ernie-5.0-thinking-preview": {
1332
1347
  "description": "پیش‌نمایش ERNIE 5.0 Thinking، مدل پرچم‌دار چندوجهی بومی، پشتیبانی از مدل‌سازی یکپارچه متن، تصویر، صدا و ویدیو، با ارتقاء جامع توانایی‌ها، مناسب برای پرسش و پاسخ پیچیده، تولید محتوا و عامل‌های هوشمند."
1333
1348
  },
@@ -2198,9 +2213,6 @@
2198
2213
  "kimi-latest": {
2199
2214
  "description": "محصول دستیار هوشمند کیمی از جدیدترین مدل بزرگ کیمی استفاده می‌کند و ممکن است شامل ویژگی‌های ناپایدار باشد. از درک تصویر پشتیبانی می‌کند و به‌طور خودکار بر اساس طول متن درخواست، مدل‌های 8k/32k/128k را به‌عنوان مدل محاسبه انتخاب می‌کند."
2200
2215
  },
2201
- "kimi-thinking-preview": {
2202
- "description": "مدل kimi-thinking-preview که توسط Moon’s Dark Side ارائه شده است، مدلی چندرسانه‌ای با توانایی استدلال چندوجهی و استدلال عمومی است که در استدلال عمیق مهارت دارد و به حل مسائل پیچیده‌تر کمک می‌کند."
2203
- },
2204
2216
  "kuaishou/kat-coder-pro-v1": {
2205
2217
  "description": "KAT-Coder-Pro-V1 (رایگان برای مدت محدود) بر درک کد و برنامه‌نویسی خودکار تمرکز دارد و برای وظایف نمایندگی برنامه‌نویسی کارآمد طراحی شده است."
2206
2218
  },
@@ -2246,9 +2258,6 @@
2246
2258
  "llama-3.3-instruct": {
2247
2259
  "description": "مدل آموزشی لاما ۳.۳ برای صحنه‌های گفت‌وگو بهینه‌سازی شده است و در معیارهای صنعتی معمول، بسیاری از مدل‌های چت منبع باز موجود را در برمی‌آید."
2248
2260
  },
2249
- "llama-4-scout-17b-16e-instruct": {
2250
- "description": "Llama 4 Scout: مدلی قدرتمند از سری Llama، مناسب برای سناریوهایی با نیاز به بازدهی بالا و تأخیر پایین."
2251
- },
2252
2261
  "llama3-70b-8192": {
2253
2262
  "description": "متا لاما ۳ ۷۰B توانایی پردازش پیچیدگی بی‌نظیری را ارائه می‌دهد و برای پروژه‌های با نیازهای بالا طراحی شده است."
2254
2263
  },
@@ -2681,6 +2690,9 @@
2681
2690
  "moonshotai/Kimi-K2-Instruct-0905": {
2682
2691
  "description": "Kimi K2-Instruct-0905 جدیدترین و قدرتمندترین نسخه Kimi K2 است. این مدل یک مدل زبان برتر با معماری متخصص ترکیبی (MoE) است که دارای ۱ تریلیون پارامتر کل و ۳۲ میلیارد پارامتر فعال می‌باشد. ویژگی‌های اصلی این مدل شامل: هوش کدگذاری عامل بهبود یافته که در آزمون‌های معیار عمومی و وظایف واقعی کدگذاری عامل عملکرد قابل توجهی نشان می‌دهد؛ تجربه کدگذاری فرانت‌اند بهبود یافته که از نظر زیبایی و کاربردی بودن برنامه‌نویسی فرانت‌اند پیشرفت داشته است."
2683
2692
  },
2693
+ "moonshotai/Kimi-K2-Thinking": {
2694
+ "description": "Kimi K2 Thinking جدیدترین و قدرتمندترین مدل تفکر متن‌باز است. این مدل با افزایش چشمگیر عمق استنتاج چندمرحله‌ای و حفظ پایداری در بیش از ۲۰۰ تا ۳۰۰ بار استفاده متوالی از ابزارها، استانداردهای جدیدی را در آزمون Humanity's Last Exam (HLE)، BrowseComp و سایر معیارها تعیین کرده است. همچنین، K2 Thinking در برنامه‌نویسی، ریاضیات، استدلال منطقی و سناریوهای Agent عملکردی برجسته دارد. این مدل بر پایه معماری متخصصان ترکیبی (MoE) ساخته شده، دارای حدود ۱ تریلیون پارامتر است، از پنجره زمینه ۲۵۶ هزار توکن پشتیبانی می‌کند و قابلیت استفاده از ابزارها را دارد."
2695
+ },
2684
2696
  "moonshotai/kimi-k2": {
2685
2697
  "description": "Kimi K2 مدل زبان بزرگ متخصص ترکیبی (MoE) با مقیاس بزرگ توسعه یافته توسط Moonshot AI است که دارای 1 تریلیون پارامتر کل و 32 میلیارد پارامتر فعال در هر عبور جلو است. این مدل برای توانایی نمایندگی بهینه شده است، از جمله استفاده پیشرفته از ابزارها، استدلال و ترکیب کد."
2686
2698
  },
@@ -2721,7 +2733,7 @@
2721
2733
  "description": "متمرکز بر استدلال پیشرفته و حل مسائل پیچیده، از جمله وظایف ریاضی و علمی. بسیار مناسب برای برنامه‌هایی که به درک عمیق زمینه و مدیریت جریان‌های کاری نیاز دارند."
2722
2734
  },
2723
2735
  "o1-mini": {
2724
- "description": "کوچکتر و سریعتر از o1-preview، با ۸۰٪ هزینه کمتر، و عملکرد خوب در تولید کد و عملیات با زمینه‌های کوچک."
2736
+ "description": "کوچک‌تر و سریع‌تر از o1-preview، با ۸۰٪ هزینه کمتر، عملکرد خوب در تولید کد و عملیات با زمینه‌های کوچک."
2725
2737
  },
2726
2738
  "o1-preview": {
2727
2739
  "description": "متمرکز بر استدلال پیشرفته و حل مسائل پیچیده، از جمله مسائل ریاضی و علمی. بسیار مناسب برای برنامه‌هایی که نیاز به درک عمیقِ زمینه و جریان‌های کاری خودگردان دارند."
@@ -2960,9 +2972,6 @@
2960
2972
  "qwen-3-32b": {
2961
2973
  "description": "Qwen 3 32B: مدل سری Qwen با عملکرد عالی در وظایف چندزبانه و برنامه‌نویسی، مناسب برای استفاده در مقیاس متوسط تولیدی."
2962
2974
  },
2963
- "qwen-3-coder-480b": {
2964
- "description": "Qwen 3 Coder 480B: مدلی با زمینه طولانی برای تولید کد و انجام وظایف پیچیده برنامه‌نویسی."
2965
- },
2966
2975
  "qwen-coder-plus": {
2967
2976
  "description": "مدل کد نویسی Tongyi Qianwen."
2968
2977
  },
@@ -3323,6 +3332,9 @@
3323
3332
  "sonar-reasoning-pro": {
3324
3333
  "description": "محصول جدید API که توسط مدل استدلال DeepSeek پشتیبانی می‌شود."
3325
3334
  },
3335
+ "spark-x": {
3336
+ "description": "معرفی قابلیت‌های X1.5: (۱) افزودن تنظیم پویا برای حالت تفکر، قابل کنترل از طریق فیلد thinking؛ (۲) افزایش طول زمینه: ورودی و خروجی هرکدام ۶۴ هزار توکن؛ (۳) پشتیبانی از قابلیت FunctionCall."
3337
+ },
3326
3338
  "stable-diffusion-3-medium": {
3327
3339
  "description": "جدیدترین مدل بزرگ تولید تصویر از متن که توسط Stability AI ارائه شده است. این نسخه با حفظ مزایای نسل‌های قبلی، بهبودهای قابل توجهی در کیفیت تصویر، درک متن و تنوع سبک‌ها دارد و قادر است دستورات پیچیده زبان طبیعی را دقیق‌تر تفسیر کرده و تصاویر دقیق‌تر و متنوع‌تری تولید کند."
3328
3340
  },
@@ -3524,9 +3536,6 @@
3524
3536
  "x-ai/grok-code-fast-1": {
3525
3537
  "description": "Grok Code Fast 1 مدل سریع کدنویسی از xAI است که خروجی‌هایی با خوانایی بالا و سازگار با مهندسی ارائه می‌دهد."
3526
3538
  },
3527
- "x1": {
3528
- "description": "مدل Spark X1 به‌زودی ارتقا خواهد یافت و در زمینه وظایف ریاضی که در کشور پیشرو است، عملکردهای استدلال، تولید متن و درک زبان را با OpenAI o1 و DeepSeek R1 مقایسه خواهد کرد."
3529
- },
3530
3539
  "xai/grok-2": {
3531
3540
  "description": "Grok 2 مدل زبان پیشرفته با توان استدلال پیشرفته است. این مدل در مکالمه، کدنویسی و استدلال توانایی‌های پیشرفته دارد و در رتبه‌بندی LMSYS بالاتر از Claude 3.5 Sonnet و GPT-4-Turbo قرار دارد."
3532
3541
  },
@@ -3593,6 +3602,9 @@
3593
3602
  "z-ai/glm-4.6": {
3594
3603
  "description": "GLM 4.6 مدل پرچم‌دار Z.AI است که طول زمینه و توانایی‌های کدنویسی را گسترش داده است."
3595
3604
  },
3605
+ "zai-glm-4.6": {
3606
+ "description": "عملکرد عالی در وظایف برنامه‌نویسی و استدلال، پشتیبانی از حالت جریانی و فراخوانی ابزار، مناسب برای کدنویسی Agentic و سناریوهای استدلال پیچیده."
3607
+ },
3596
3608
  "zai-org/GLM-4.5": {
3597
3609
  "description": "GLM-4.5 یک مدل پایه طراحی شده برای کاربردهای عامل هوشمند است که از معماری Mixture-of-Experts استفاده می‌کند. این مدل در زمینه‌های فراخوانی ابزار، مرور وب، مهندسی نرم‌افزار و برنامه‌نویسی فرانت‌اند بهینه‌سازی عمیق شده و از ادغام بی‌وقفه با عامل‌های کد مانند Claude Code و Roo Code پشتیبانی می‌کند. GLM-4.5 از حالت استدلال ترکیبی بهره می‌برد و می‌تواند در سناریوهای استدلال پیچیده و استفاده روزمره به خوبی عمل کند."
3598
3610
  },
@@ -54,6 +54,7 @@
54
54
  },
55
55
  "betterAuth": {
56
56
  "errors": {
57
+ "emailExists": "Cet e-mail est déjà enregistré, veuillez vous connecter directement.",
57
58
  "emailInvalid": "Veuillez saisir une adresse e-mail valide",
58
59
  "emailNotRegistered": "Cette adresse e-mail n'est pas encore enregistrée",
59
60
  "emailNotVerified": "Adresse e-mail non vérifiée, veuillez la vérifier d'abord",
@@ -65,6 +66,7 @@
65
66
  "passwordMaxLength": "Le mot de passe ne doit pas dépasser 64 caractères",
66
67
  "passwordMinLength": "Le mot de passe doit contenir au moins 8 caractères",
67
68
  "passwordRequired": "Veuillez saisir un mot de passe",
69
+ "usernameNotRegistered": "Ce nom d'utilisateur n'est pas encore enregistré",
68
70
  "usernameRequired": "Veuillez saisir un nom d'utilisateur"
69
71
  },
70
72
  "resetPassword": {
@@ -101,7 +103,6 @@
101
103
  "continueWithZitadel": "Se connecter avec Zitadel",
102
104
  "emailPlaceholder": "Veuillez saisir votre adresse e-mail",
103
105
  "emailStep": {
104
- "subtitle": "Veuillez saisir votre adresse e-mail pour continuer",
105
106
  "title": "Connexion"
106
107
  },
107
108
  "error": "Échec de la connexion, veuillez vérifier votre e-mail et votre mot de passe",
@@ -194,6 +195,7 @@
194
195
  "resetPasswordError": "Échec de l'envoi du lien de réinitialisation du mot de passe",
195
196
  "resetPasswordSent": "Lien de réinitialisation du mot de passe envoyé, veuillez vérifier votre boîte mail",
196
197
  "save": "Enregistrer",
198
+ "setPassword": "Définir le mot de passe",
197
199
  "sso": {
198
200
  "link": {
199
201
  "button": "Lier le compte",
@@ -210,7 +212,14 @@
210
212
  "title": "Détails du profil",
211
213
  "updateAvatar": "Mettre à jour l'avatar",
212
214
  "updateFullName": "Mettre à jour le nom complet",
213
- "username": "Nom d'utilisateur"
215
+ "updateUsername": "Mettre à jour le nom d'utilisateur",
216
+ "username": "Nom d'utilisateur",
217
+ "usernameDuplicate": "Ce nom d'utilisateur est déjà pris",
218
+ "usernameInputHint": "Veuillez saisir un nouveau nom d'utilisateur",
219
+ "usernamePlaceholder": "Veuillez entrer un nom d'utilisateur composé de lettres, de chiffres ou de traits de soulignement",
220
+ "usernameRequired": "Le nom d'utilisateur ne peut pas être vide",
221
+ "usernameRule": "Le nom d'utilisateur ne peut contenir que des lettres, des chiffres ou des traits de soulignement",
222
+ "usernameUpdateFailed": "Échec de la mise à jour du nom d'utilisateur, veuillez réessayer plus tard"
214
223
  },
215
224
  "signout": "Se déconnecter",
216
225
  "signup": "S'inscrire",
@@ -221,6 +221,9 @@
221
221
  "MiniMax-M2": {
222
222
  "description": "Conçu spécialement pour un codage efficace et les flux de travail des agents."
223
223
  },
224
+ "MiniMax-M2-Stable": {
225
+ "description": "Conçu pour un codage efficace et les flux de travail des agents, avec une haute concurrence et une utilisation commerciale."
226
+ },
224
227
  "MiniMax-Text-01": {
225
228
  "description": "Dans la série de modèles MiniMax-01, nous avons réalisé une innovation audacieuse : la première mise en œuvre à grande échelle d'un mécanisme d'attention linéaire, rendant l'architecture Transformer traditionnelle non plus le seul choix. Ce modèle possède un nombre de paramètres atteignant 456 milliards, avec 45,9 milliards d'activations par instance. Les performances globales du modèle rivalisent avec celles des meilleurs modèles étrangers, tout en étant capable de traiter efficacement un contexte mondial de 4 millions de tokens, soit 32 fois celui de GPT-4o et 20 fois celui de Claude-3.5-Sonnet."
226
229
  },
@@ -299,6 +302,9 @@
299
302
  "Pro/moonshotai/Kimi-K2-Instruct-0905": {
300
303
  "description": "Kimi K2-Instruct-0905 est la version la plus récente et la plus puissante de Kimi K2. Il s'agit d'un modèle linguistique de pointe à experts mixtes (MoE), avec un total de 1 000 milliards de paramètres et 32 milliards de paramètres activés. Les principales caractéristiques de ce modèle incluent : une intelligence de codage d'agents améliorée, démontrant des performances significatives dans les tests de référence publics et les tâches réelles d'agents de codage ; une expérience de codage frontale améliorée, avec des progrès tant en esthétique qu'en praticité pour la programmation frontale."
301
304
  },
305
+ "Pro/moonshotai/Kimi-K2-Thinking": {
306
+ "description": "Kimi K2 Thinking Turbo est la version Turbo de la série Kimi K2, optimisée pour la vitesse de raisonnement et le débit, tout en conservant les capacités de raisonnement multi-étapes et d'appel d'outils de K2 Thinking. Ce modèle repose sur une architecture à experts mixtes (MoE), avec environ 1T de paramètres, prend en charge nativement un contexte de 256K et exécute de manière stable des appels d'outils à grande échelle. Il est idéal pour les environnements de production exigeant une faible latence et une haute concurrence."
307
+ },
302
308
  "QwQ-32B-Preview": {
303
309
  "description": "QwQ-32B-Preview est un modèle de traitement du langage naturel innovant, capable de gérer efficacement des tâches complexes de génération de dialogues et de compréhension contextuelle."
304
310
  },
@@ -1052,6 +1058,9 @@
1052
1058
  "deepseek-coder-v2:236b": {
1053
1059
  "description": "DeepSeek Coder V2 est un modèle de code open source de type expert mixte, performant dans les tâches de code, rivalisant avec GPT4-Turbo."
1054
1060
  },
1061
+ "deepseek-ocr": {
1062
+ "description": "DeepSeek-OCR est un modèle visuel-linguistique développé par DeepSeek AI, spécialisé dans la reconnaissance optique de caractères (OCR) et la « compression optique contextuelle ». Ce modèle vise à repousser les limites de la compression d'informations contextuelles à partir d'images, capable de traiter efficacement des documents et de les convertir en formats de texte structurés tels que Markdown. Il reconnaît avec précision le contenu textuel des images, ce qui le rend particulièrement adapté à la numérisation de documents, à l'extraction de texte et au traitement structuré."
1063
+ },
1055
1064
  "deepseek-r1": {
1056
1065
  "description": "DeepSeek-R1 est un modèle d'inférence alimenté par l'apprentissage par renforcement (RL), qui résout les problèmes de répétitivité et de lisibilité dans le modèle. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid, optimisant ainsi les performances d'inférence. Il se compare à OpenAI-o1 en matière de tâches mathématiques, de code et d'inférence, et améliore l'efficacité globale grâce à des méthodes d'entraînement soigneusement conçues."
1057
1066
  },
@@ -1268,6 +1277,9 @@
1268
1277
  "doubao-seed-1.6-vision": {
1269
1278
  "description": "Doubao-Seed-1.6-vision est un modèle de réflexion profonde visuelle, démontrant une compréhension multimodale générale et des capacités de raisonnement renforcées dans des scénarios tels que l'éducation, la modération d'images, l'inspection, la sécurité et la recherche de questions-réponses AI. Il supporte une fenêtre contextuelle de 256k et une longueur de sortie maximale de 64k tokens."
1270
1279
  },
1280
+ "doubao-seed-code": {
1281
+ "description": "Doubao-Seed-Code est profondément optimisé pour les tâches de programmation agentique, prenant en charge le multimodal (texte/image/vidéo) et un long contexte de 256K. Compatible avec l'API Anthropic, il est adapté aux scénarios de programmation, de compréhension visuelle et d'agents intelligents."
1282
+ },
1271
1283
  "doubao-seededit-3-0-i2i-250628": {
1272
1284
  "description": "Le modèle de génération d'images Doubao, développé par l'équipe Seed de ByteDance, prend en charge les entrées texte et image, offrant une expérience de génération d'images de haute qualité et très contrôlable. Il permet d'éditer des images via des instructions textuelles, avec des dimensions d'image entre 512 et 1536 pixels."
1273
1285
  },
@@ -1328,6 +1340,9 @@
1328
1340
  "ernie-4.5-vl-28b-a3b": {
1329
1341
  "description": "ERNIE 4.5 VL 28B A3B, modèle multimodal open source, prenant en charge les tâches de compréhension et de raisonnement image-texte."
1330
1342
  },
1343
+ "ernie-5.0-thinking-latest": {
1344
+ "description": "Wenxin 5.0 Thinking est un modèle phare natif tout-modale, prenant en charge l’unification du texte, de l’image, de l’audio et de la vidéo. Ses capacités globales ont été considérablement améliorées, le rendant adapté aux questions complexes, à la création de contenu et aux scénarios d’agents intelligents."
1345
+ },
1331
1346
  "ernie-5.0-thinking-preview": {
1332
1347
  "description": "Wenxin 5.0 Thinking Preview, modèle phare natif tout-modale, prenant en charge le texte, l'image, l'audio et la vidéo, avec des capacités globales améliorées, adapté aux questions complexes, à la création et aux agents intelligents."
1333
1348
  },
@@ -2198,9 +2213,6 @@
2198
2213
  "kimi-latest": {
2199
2214
  "description": "Le produit d'assistant intelligent Kimi utilise le dernier modèle Kimi, qui peut inclure des fonctionnalités encore instables. Il prend en charge la compréhension des images et choisit automatiquement le modèle de facturation 8k/32k/128k en fonction de la longueur du contexte de la demande."
2200
2215
  },
2201
- "kimi-thinking-preview": {
2202
- "description": "Le modèle kimi-thinking-preview, fourni par Moon's Dark Side, est un modèle de réflexion multimodal doté de capacités de raisonnement général et multimodal. Il excelle dans le raisonnement approfondi, aidant à résoudre des problèmes plus complexes."
2203
- },
2204
2216
  "kuaishou/kat-coder-pro-v1": {
2205
2217
  "description": "KAT-Coder-Pro-V1 (gratuit pour une durée limitée) se concentre sur la compréhension du code et la programmation automatisée, pour des tâches d’agent de codage efficaces."
2206
2218
  },
@@ -2246,9 +2258,6 @@
2246
2258
  "llama-3.3-instruct": {
2247
2259
  "description": "Le modèle d'instructions affiné Llama 3.3 est optimisé pour les scénarios de dialogue, surpassant de nombreux modèles de chat open source existants dans les tests de référence courants de l'industrie."
2248
2260
  },
2249
- "llama-4-scout-17b-16e-instruct": {
2250
- "description": "Llama 4 Scout : un modèle haute performance de la série Llama, conçu pour les scénarios nécessitant un haut débit et une faible latence."
2251
- },
2252
2261
  "llama3-70b-8192": {
2253
2262
  "description": "Meta Llama 3 70B offre une capacité de traitement de complexité inégalée, sur mesure pour des projets exigeants."
2254
2263
  },
@@ -2681,6 +2690,9 @@
2681
2690
  "moonshotai/Kimi-K2-Instruct-0905": {
2682
2691
  "description": "Kimi K2-Instruct-0905 est la version la plus récente et la plus puissante de Kimi K2. Il s'agit d'un modèle linguistique de pointe à experts mixtes (MoE), avec un total de 1 000 milliards de paramètres et 32 milliards de paramètres activés. Les principales caractéristiques de ce modèle incluent : une intelligence de codage d'agents améliorée, démontrant des performances significatives dans les tests de référence publics et les tâches réelles d'agents de codage ; une expérience de codage frontale améliorée, avec des progrès tant en esthétique qu'en praticité pour la programmation frontale."
2683
2692
  },
2693
+ "moonshotai/Kimi-K2-Thinking": {
2694
+ "description": "Kimi K2 Thinking est le modèle de raisonnement open source le plus récent et le plus puissant. Il repousse les limites du raisonnement multi-étapes tout en maintenant une stabilité remarquable lors de 200 à 300 appels d'outils consécutifs. Il établit de nouvelles références dans des benchmarks tels que Humanity's Last Exam (HLE), BrowseComp, entre autres. K2 Thinking excelle également en programmation, mathématiques, raisonnement logique et scénarios d'agents. Basé sur une architecture à experts mixtes (MoE), il comprend environ 1T de paramètres, prend en charge une fenêtre contextuelle de 256K et les appels d'outils."
2695
+ },
2684
2696
  "moonshotai/kimi-k2": {
2685
2697
  "description": "Kimi K2 est un modèle de langage à experts hybrides (MoE) à grande échelle développé par Moonshot AI, avec un total de 1 000 milliards de paramètres et 32 milliards de paramètres activés par passage avant. Il est optimisé pour les capacités d'agent, incluant l'utilisation avancée d'outils, le raisonnement et la synthèse de code."
2686
2698
  },
@@ -2721,7 +2733,7 @@
2721
2733
  "description": "Axé sur le raisonnement avancé et la résolution de problèmes complexes, y compris les tâches mathématiques et scientifiques. Idéal pour les applications nécessitant une compréhension approfondie du contexte et des flux de travail d'agent."
2722
2734
  },
2723
2735
  "o1-mini": {
2724
- "description": "o1-mini est un modèle de raisonnement rapide et économique conçu pour les applications de programmation, de mathématiques et de sciences. Ce modèle dispose d'un contexte de 128K et d'une date limite de connaissance en octobre 2023."
2736
+ "description": "Plus petit et plus rapide que o1-preview, avec un coût réduit de 80 %, il offre de bonnes performances en génération de code et en traitement de petits contextes."
2725
2737
  },
2726
2738
  "o1-preview": {
2727
2739
  "description": "Axé sur le raisonnement avancé et la résolution de problèmes complexes, y compris des tâches mathématiques et scientifiques. Particulièrement adapté aux applications nécessitant une compréhension approfondie du contexte et des flux de travail autonomes."
@@ -2960,9 +2972,6 @@
2960
2972
  "qwen-3-32b": {
2961
2973
  "description": "Qwen 3 32B : un modèle de la série Qwen performant dans les tâches multilingues et de codage, adapté à une utilisation en production à échelle moyenne."
2962
2974
  },
2963
- "qwen-3-coder-480b": {
2964
- "description": "Qwen 3 Coder 480B : un modèle à long contexte conçu pour la génération de code et les tâches de programmation complexes."
2965
- },
2966
2975
  "qwen-coder-plus": {
2967
2976
  "description": "Modèle de code Tongyi Qianwen."
2968
2977
  },
@@ -3323,6 +3332,9 @@
3323
3332
  "sonar-reasoning-pro": {
3324
3333
  "description": "Nouveau produit API soutenu par le modèle de raisonnement DeepSeek."
3325
3334
  },
3335
+ "spark-x": {
3336
+ "description": "Présentation des capacités de X1.5 : (1) Ajout d’un mode de pensée dynamique contrôlé via le champ thinking ; (2) Longueur de contexte augmentée : 64K en entrée et en sortie ; (3) Prise en charge de la fonctionnalité FunctionCall."
3337
+ },
3326
3338
  "stable-diffusion-3-medium": {
3327
3339
  "description": "Le dernier grand modèle de génération d'images à partir de texte lancé par Stability AI. Cette version améliore significativement la qualité d'image, la compréhension du texte et la diversité des styles, tout en héritant des avantages des versions précédentes. Il interprète plus précisément les invites en langage naturel complexes et génère des images plus précises et variées."
3328
3340
  },
@@ -3524,9 +3536,6 @@
3524
3536
  "x-ai/grok-code-fast-1": {
3525
3537
  "description": "Grok Code Fast 1 est le modèle de code rapide de xAI, produisant des sorties lisibles et adaptées à l’ingénierie."
3526
3538
  },
3527
- "x1": {
3528
- "description": "Le modèle Spark X1 sera mis à niveau, et sur la base de ses performances déjà leaders dans les tâches mathématiques, il atteindra des résultats comparables dans des tâches générales telles que le raisonnement, la génération de texte et la compréhension du langage, en se mesurant à OpenAI o1 et DeepSeek R1."
3529
- },
3530
3539
  "xai/grok-2": {
3531
3540
  "description": "Grok 2 est un modèle de langage de pointe avec des capacités de raisonnement avancées. Il excelle en chat, codage et raisonnement, surpassant Claude 3.5 Sonnet et GPT-4-Turbo dans le classement LMSYS."
3532
3541
  },
@@ -3593,6 +3602,9 @@
3593
3602
  "z-ai/glm-4.6": {
3594
3603
  "description": "GLM 4.6 est le modèle phare de Z.AI, avec des capacités étendues de longueur de contexte et de codage."
3595
3604
  },
3605
+ "zai-glm-4.6": {
3606
+ "description": "Excellente performance en programmation et en tâches de raisonnement, avec prise en charge du streaming et des appels d'outils. Idéal pour le codage agentique et les scénarios de raisonnement complexe."
3607
+ },
3596
3608
  "zai-org/GLM-4.5": {
3597
3609
  "description": "GLM-4.5 est un modèle de base conçu pour les applications d'agents intelligents, utilisant une architecture Mixture-of-Experts (MoE). Il est profondément optimisé pour l'appel d'outils, la navigation web, l'ingénierie logicielle et la programmation front-end, supportant une intégration transparente avec des agents de code tels que Claude Code et Roo Code. GLM-4.5 utilise un mode d'inférence hybride, adapté à des scénarios variés allant du raisonnement complexe à l'usage quotidien."
3598
3610
  },
@@ -54,6 +54,7 @@
54
54
  },
55
55
  "betterAuth": {
56
56
  "errors": {
57
+ "emailExists": "Questo indirizzo email è già registrato, effettua direttamente l'accesso",
57
58
  "emailInvalid": "Inserisci un indirizzo email valido",
58
59
  "emailNotRegistered": "Questo indirizzo email non è registrato",
59
60
  "emailNotVerified": "Email non verificata, verifica prima l'indirizzo email",
@@ -65,6 +66,7 @@
65
66
  "passwordMaxLength": "La password non può superare i 64 caratteri",
66
67
  "passwordMinLength": "La password deve contenere almeno 8 caratteri",
67
68
  "passwordRequired": "Inserisci la password",
69
+ "usernameNotRegistered": "Questo nome utente non è ancora registrato",
68
70
  "usernameRequired": "Inserisci il nome utente"
69
71
  },
70
72
  "resetPassword": {
@@ -101,7 +103,6 @@
101
103
  "continueWithZitadel": "Accedi con Zitadel",
102
104
  "emailPlaceholder": "Inserisci l'indirizzo email",
103
105
  "emailStep": {
104
- "subtitle": "Inserisci il tuo indirizzo email per continuare",
105
106
  "title": "Accedi"
106
107
  },
107
108
  "error": "Accesso fallito, controlla email e password",
@@ -194,6 +195,7 @@
194
195
  "resetPasswordError": "Invio del link per reimpostare la password fallito",
195
196
  "resetPasswordSent": "Link per reimpostare la password inviato, controlla la tua email",
196
197
  "save": "Salva",
198
+ "setPassword": "Imposta password",
197
199
  "sso": {
198
200
  "link": {
199
201
  "button": "Collega account",
@@ -210,7 +212,14 @@
210
212
  "title": "Dettagli del profilo",
211
213
  "updateAvatar": "Aggiorna avatar",
212
214
  "updateFullName": "Aggiorna nome completo",
213
- "username": "Nome Utente"
215
+ "updateUsername": "Aggiorna nome utente",
216
+ "username": "Nome Utente",
217
+ "usernameDuplicate": "Nome utente già in uso",
218
+ "usernameInputHint": "Inserisci un nuovo nome utente",
219
+ "usernamePlaceholder": "Inserisci un nome utente composto da lettere, numeri o underscore",
220
+ "usernameRequired": "Il nome utente non può essere vuoto",
221
+ "usernameRule": "Il nome utente può contenere solo lettere, numeri o underscore",
222
+ "usernameUpdateFailed": "Aggiornamento del nome utente non riuscito, riprova più tardi"
214
223
  },
215
224
  "signout": "Disconnetti",
216
225
  "signup": "Registrati",
@@ -221,6 +221,9 @@
221
221
  "MiniMax-M2": {
222
222
  "description": "Progettato per una codifica efficiente e flussi di lavoro con agenti."
223
223
  },
224
+ "MiniMax-M2-Stable": {
225
+ "description": "Progettato per una codifica efficiente e flussi di lavoro agentici, con alta concorrenza e uso commerciale."
226
+ },
224
227
  "MiniMax-Text-01": {
225
228
  "description": "Nella serie di modelli MiniMax-01, abbiamo fatto un'innovazione audace: per la prima volta abbiamo implementato su larga scala un meccanismo di attenzione lineare, rendendo l'architettura Transformer tradizionale non più l'unica opzione. Questo modello ha un numero di parametri che raggiunge i 456 miliardi, con un'attivazione singola di 45,9 miliardi. Le prestazioni complessive del modello sono paragonabili a quelle dei migliori modelli internazionali, mentre è in grado di gestire in modo efficiente contesti globali lunghi fino a 4 milioni di token, 32 volte rispetto a GPT-4o e 20 volte rispetto a Claude-3.5-Sonnet."
226
229
  },
@@ -299,6 +302,9 @@
299
302
  "Pro/moonshotai/Kimi-K2-Instruct-0905": {
300
303
  "description": "Kimi K2-Instruct-0905 è l'ultima e più potente versione di Kimi K2. Si tratta di un modello linguistico di esperti misti (MoE) all'avanguardia, con un totale di 1 trilione di parametri e 32 miliardi di parametri attivi. Le caratteristiche principali del modello includono: intelligenza potenziata per la codifica degli agenti, con miglioramenti significativi nelle prestazioni sia nei test di riferimento pubblici sia nelle attività di codifica degli agenti nel mondo reale; esperienza di codifica frontend migliorata, con progressi sia nell'estetica che nella praticità della programmazione frontend."
301
304
  },
305
+ "Pro/moonshotai/Kimi-K2-Thinking": {
306
+ "description": "Kimi K2 Thinking Turbo è la versione Turbo della serie Kimi K2, ottimizzata per velocità di inferenza e throughput, mantenendo le capacità di ragionamento multi-step e utilizzo di strumenti di K2 Thinking. Basato su un'architettura a esperti misti (MoE), il modello ha circa 1 trilione di parametri, supporta nativamente un contesto di 256K token ed esegue in modo stabile chiamate a strumenti su larga scala. Ideale per scenari produttivi con elevate esigenze di latenza e concorrenza."
307
+ },
302
308
  "QwQ-32B-Preview": {
303
309
  "description": "QwQ-32B-Preview è un modello di elaborazione del linguaggio naturale innovativo, in grado di gestire in modo efficiente compiti complessi di generazione di dialoghi e comprensione del contesto."
304
310
  },
@@ -1052,6 +1058,9 @@
1052
1058
  "deepseek-coder-v2:236b": {
1053
1059
  "description": "DeepSeek Coder V2 è un modello di codice open source di esperti misti, eccelle nei compiti di codice, paragonabile a GPT4-Turbo."
1054
1060
  },
1061
+ "deepseek-ocr": {
1062
+ "description": "DeepSeek-OCR è un modello visivo-linguistico sviluppato da DeepSeek AI, focalizzato sul riconoscimento ottico dei caratteri (OCR) e sulla \"compressione ottica contestuale\". Il modello esplora i limiti della compressione delle informazioni contestuali da immagini, elaborando documenti in modo efficiente e convertendoli in formati strutturati come Markdown. È in grado di riconoscere accuratamente il testo nelle immagini, particolarmente adatto per digitalizzazione di documenti, estrazione di testo e processi di strutturazione."
1063
+ },
1055
1064
  "deepseek-r1": {
1056
1065
  "description": "DeepSeek-R1 è un modello di inferenza guidato da apprendimento rinforzato (RL) che affronta i problemi di ripetitività e leggibilità nel modello. Prima dell'RL, DeepSeek-R1 ha introdotto dati di cold start, ottimizzando ulteriormente le prestazioni di inferenza. Si comporta in modo comparabile a OpenAI-o1 in compiti matematici, di codifica e di inferenza, e migliora l'efficacia complessiva attraverso metodi di addestramento accuratamente progettati."
1057
1066
  },
@@ -1268,6 +1277,9 @@
1268
1277
  "doubao-seed-1.6-vision": {
1269
1278
  "description": "Doubao-Seed-1.6-vision è un modello di pensiero profondo visivo che dimostra una più forte capacità di comprensione e ragionamento multimodale generale in scenari come educazione, revisione delle immagini, ispezione e sicurezza, e ricerca e risposta AI. Supporta una finestra di contesto di 256k e una lunghezza di output fino a 64k token."
1270
1279
  },
1280
+ "doubao-seed-code": {
1281
+ "description": "Doubao-Seed-Code è stato profondamente ottimizzato per compiti di programmazione agentica, supporta multimodalità (testo/immagini/video) e contesto lungo fino a 256K token, compatibile con l'API di Anthropic. Ideale per scenari di programmazione, comprensione visiva e agenti intelligenti."
1282
+ },
1271
1283
  "doubao-seededit-3-0-i2i-250628": {
1272
1284
  "description": "Il modello di generazione immagini Doubao è sviluppato dal team Seed di ByteDance, supporta input di testo e immagini, offrendo un'esperienza di generazione immagini altamente controllabile e di alta qualità. Supporta l'editing delle immagini tramite comandi testuali, con dimensioni dell'immagine generate tra 512 e 1536 pixel."
1273
1285
  },
@@ -1328,6 +1340,9 @@
1328
1340
  "ernie-4.5-vl-28b-a3b": {
1329
1341
  "description": "ERNIE 4.5 VL 28B A3B, modello multimodale open source, supporta compiti di comprensione e ragionamento immagine-testo."
1330
1342
  },
1343
+ "ernie-5.0-thinking-latest": {
1344
+ "description": "Wenxin 5.0 Thinking è un modello di punta nativamente multimodale, che supporta testo, immagini, audio e video in un'unica architettura. Le sue capacità complessive sono state notevolmente migliorate, rendendolo adatto a domande complesse, creazione di contenuti e scenari con agenti intelligenti."
1345
+ },
1331
1346
  "ernie-5.0-thinking-preview": {
1332
1347
  "description": "ERNIE 5.0 Thinking Preview, modello flagship nativo multimodale, supporta testo, immagini, audio e video, ideale per Q&A complessi, creazione e agenti intelligenti."
1333
1348
  },
@@ -2198,9 +2213,6 @@
2198
2213
  "kimi-latest": {
2199
2214
  "description": "Il prodotto Kimi Smart Assistant utilizza il più recente modello Kimi, che potrebbe includere funzionalità non ancora stabili. Supporta la comprensione delle immagini e selezionerà automaticamente il modello di fatturazione 8k/32k/128k in base alla lunghezza del contesto della richiesta."
2200
2215
  },
2201
- "kimi-thinking-preview": {
2202
- "description": "Il modello kimi-thinking-preview, fornito da Moon's Dark Side, è un modello multimodale di pensiero con capacità di ragionamento multimodale e generale, eccellente nel ragionamento profondo per aiutare a risolvere problemi più complessi."
2203
- },
2204
2216
  "kuaishou/kat-coder-pro-v1": {
2205
2217
  "description": "KAT-Coder-Pro-V1 (gratuito per un periodo limitato) è focalizzato sulla comprensione del codice e programmazione automatica, ideale per agenti di programmazione efficienti."
2206
2218
  },
@@ -2246,9 +2258,6 @@
2246
2258
  "llama-3.3-instruct": {
2247
2259
  "description": "Il modello Llama 3.3 per l'addestramento di istruzioni è stato ottimizzato per scenari di conversazione, superando molti modelli di chat open source esistenti nelle comuni benchmark settoriali."
2248
2260
  },
2249
- "llama-4-scout-17b-16e-instruct": {
2250
- "description": "Llama 4 Scout: un modello ad alte prestazioni della serie Llama, adatto a scenari che richiedono elevato throughput e bassa latenza."
2251
- },
2252
2261
  "llama3-70b-8192": {
2253
2262
  "description": "Meta Llama 3 70B offre capacità di elaborazione della complessità senza pari, progettato su misura per progetti ad alta richiesta."
2254
2263
  },
@@ -2681,6 +2690,9 @@
2681
2690
  "moonshotai/Kimi-K2-Instruct-0905": {
2682
2691
  "description": "Kimi K2-Instruct-0905 è l'ultima e più potente versione di Kimi K2. Si tratta di un modello linguistico di esperti misti (MoE) all'avanguardia, con un totale di 1 trilione di parametri e 32 miliardi di parametri attivi. Le caratteristiche principali del modello includono: intelligenza potenziata per la codifica degli agenti, con miglioramenti significativi nelle prestazioni sia nei test di riferimento pubblici sia nelle attività di codifica degli agenti nel mondo reale; esperienza di codifica frontend migliorata, con progressi sia nell'estetica che nella praticità della programmazione frontend."
2683
2692
  },
2693
+ "moonshotai/Kimi-K2-Thinking": {
2694
+ "description": "Kimi K2 Thinking è il più recente e potente modello open source per il ragionamento. Estende significativamente la profondità del ragionamento multi-step e mantiene un uso stabile degli strumenti anche in 200–300 chiamate consecutive. Ha stabilito nuovi standard nei benchmark come Humanity's Last Exam (HLE), BrowseComp e altri. Eccelle in programmazione, matematica, ragionamento logico e scenari agentici. Basato su un'architettura a esperti misti (MoE), ha circa 1 trilione di parametri, supporta una finestra di contesto di 256K token e l'utilizzo di strumenti."
2695
+ },
2684
2696
  "moonshotai/kimi-k2": {
2685
2697
  "description": "Kimi K2 è un modello linguistico a esperti misti (MoE) su larga scala sviluppato da Moonshot AI, con un totale di 1 trilione di parametri e 32 miliardi di parametri attivi per ogni passaggio in avanti. Ottimizzato per capacità di agente, inclusi uso avanzato di strumenti, ragionamento e sintesi di codice."
2686
2698
  },
@@ -2721,7 +2733,7 @@
2721
2733
  "description": "Focalizzato su inferenze avanzate e risoluzione di problemi complessi, inclusi compiti matematici e scientifici. È particolarmente adatto per applicazioni che richiedono una comprensione profonda del contesto e flussi di lavoro agenti."
2722
2734
  },
2723
2735
  "o1-mini": {
2724
- "description": "o1-mini è un modello di inferenza rapido ed economico progettato per applicazioni di programmazione, matematica e scienza. Questo modello ha un contesto di 128K e una data di cutoff della conoscenza di ottobre 2023."
2736
+ "description": "Più piccolo e veloce rispetto a o1-preview, con un costo ridotto dell'80%. Ottime prestazioni nella generazione di codice e operazioni su contesti ridotti."
2725
2737
  },
2726
2738
  "o1-preview": {
2727
2739
  "description": "Si concentra sul ragionamento avanzato e sulla risoluzione di problemi complessi, inclusi compiti matematici e scientifici. È particolarmente adatto per applicazioni che richiedono una comprensione profonda del contesto e flussi di lavoro autonomi."
@@ -2960,9 +2972,6 @@
2960
2972
  "qwen-3-32b": {
2961
2973
  "description": "Qwen 3 32B: eccellente nelle attività multilingue e di codifica, adatto per applicazioni produttive di media scala."
2962
2974
  },
2963
- "qwen-3-coder-480b": {
2964
- "description": "Qwen 3 Coder 480B: un modello con contesto esteso progettato per la generazione di codice e compiti di programmazione complessi."
2965
- },
2966
2975
  "qwen-coder-plus": {
2967
2976
  "description": "Modello di codice Tongyi Qianwen."
2968
2977
  },
@@ -3323,6 +3332,9 @@
3323
3332
  "sonar-reasoning-pro": {
3324
3333
  "description": "Nuovo prodotto API supportato dal modello di ragionamento DeepSeek."
3325
3334
  },
3335
+ "spark-x": {
3336
+ "description": "Caratteristiche di X1.5: (1) Nuova modalità di pensiero dinamico controllabile tramite il campo 'thinking'; (2) Lunghezza del contesto aumentata: 64K in input e output; (3) Supporto per la funzionalità FunctionCall."
3337
+ },
3326
3338
  "stable-diffusion-3-medium": {
3327
3339
  "description": "Ultimo modello di generazione immagini da testo lanciato da Stability AI. Questa versione migliora significativamente qualità dell'immagine, comprensione testuale e varietà di stili rispetto alle precedenti, interpretando con maggiore precisione prompt linguistici complessi e generando immagini più accurate e diversificate."
3328
3340
  },
@@ -3524,9 +3536,6 @@
3524
3536
  "x-ai/grok-code-fast-1": {
3525
3537
  "description": "Grok Code Fast 1 è il modello di codifica veloce di xAI, con output leggibile e adatto all'ingegneria del software."
3526
3538
  },
3527
- "x1": {
3528
- "description": "Il modello Spark X1 sarà ulteriormente aggiornato, raggiungendo risultati in compiti generali come ragionamento, generazione di testo e comprensione del linguaggio, in linea con OpenAI o1 e DeepSeek R1, partendo da una posizione di leadership nei compiti matematici."
3529
- },
3530
3539
  "xai/grok-2": {
3531
3540
  "description": "Grok 2 è un modello linguistico all'avanguardia con capacità di ragionamento avanzate. Eccelle in chat, codifica e ragionamento, superando Claude 3.5 Sonnet e GPT-4-Turbo nella classifica LMSYS."
3532
3541
  },
@@ -3593,6 +3602,9 @@
3593
3602
  "z-ai/glm-4.6": {
3594
3603
  "description": "GLM 4.6 è il modello di punta di Z.AI, con contesto esteso e capacità di codifica migliorate."
3595
3604
  },
3605
+ "zai-glm-4.6": {
3606
+ "description": "Eccellente nelle attività di programmazione e ragionamento, supporta lo streaming e l'utilizzo di strumenti. Ideale per codifica agentica e scenari di ragionamento complesso."
3607
+ },
3596
3608
  "zai-org/GLM-4.5": {
3597
3609
  "description": "GLM-4.5 è un modello base progettato per applicazioni agenti intelligenti, che utilizza un'architettura Mixture-of-Experts (MoE). Ottimizzato profondamente per chiamate a strumenti, navigazione web, ingegneria del software e programmazione frontend, supporta integrazioni fluide con agenti di codice come Claude Code e Roo Code. Adotta una modalità di inferenza ibrida per adattarsi a scenari di ragionamento complessi e uso quotidiano."
3598
3610
  },
@@ -54,6 +54,7 @@
54
54
  },
55
55
  "betterAuth": {
56
56
  "errors": {
57
+ "emailExists": "このメールアドレスは既に登録されています。ログインしてください。",
57
58
  "emailInvalid": "有効なメールアドレスを入力してください",
58
59
  "emailNotRegistered": "このメールアドレスは未登録です",
59
60
  "emailNotVerified": "メールアドレスが未確認です。まず確認してください",
@@ -65,6 +66,7 @@
65
66
  "passwordMaxLength": "パスワードは64文字以内で入力してください",
66
67
  "passwordMinLength": "パスワードは8文字以上で入力してください",
67
68
  "passwordRequired": "パスワードを入力してください",
69
+ "usernameNotRegistered": "このユーザー名は未登録です",
68
70
  "usernameRequired": "ユーザー名を入力してください"
69
71
  },
70
72
  "resetPassword": {
@@ -101,7 +103,6 @@
101
103
  "continueWithZitadel": "Zitadelでログイン",
102
104
  "emailPlaceholder": "メールアドレスを入力してください",
103
105
  "emailStep": {
104
- "subtitle": "続行するにはメールアドレスを入力してください",
105
106
  "title": "ログイン"
106
107
  },
107
108
  "error": "ログインに失敗しました。メールアドレスとパスワードをご確認ください",
@@ -194,6 +195,7 @@
194
195
  "resetPasswordError": "パスワードリセットリンクの送信に失敗しました",
195
196
  "resetPasswordSent": "パスワードリセットリンクを送信しました。メールをご確認ください",
196
197
  "save": "保存",
198
+ "setPassword": "パスワードを設定",
197
199
  "sso": {
198
200
  "link": {
199
201
  "button": "アカウントを連携",
@@ -210,7 +212,14 @@
210
212
  "title": "プロフィール詳細",
211
213
  "updateAvatar": "アバターを更新",
212
214
  "updateFullName": "氏名を更新",
213
- "username": "ユーザー名"
215
+ "updateUsername": "ユーザー名を更新",
216
+ "username": "ユーザー名",
217
+ "usernameDuplicate": "このユーザー名は既に使用されています",
218
+ "usernameInputHint": "新しいユーザー名を入力してください",
219
+ "usernamePlaceholder": "英字、数字、またはアンダースコアで構成されたユーザー名を入力してください",
220
+ "usernameRequired": "ユーザー名は必須です",
221
+ "usernameRule": "ユーザー名は英字、数字、またはアンダースコアのみ使用できます",
222
+ "usernameUpdateFailed": "ユーザー名の更新に失敗しました。しばらくしてから再試行してください"
214
223
  },
215
224
  "signout": "ログアウト",
216
225
  "signup": "サインアップ",