@lobehub/chat 1.88.20 → 1.88.22
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.i18nrc.js +1 -1
- package/CHANGELOG.md +51 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/chat.json +3 -0
- package/locales/ar/models.json +92 -17
- package/locales/ar/setting.json +0 -12
- package/locales/bg-BG/chat.json +3 -0
- package/locales/bg-BG/models.json +92 -17
- package/locales/bg-BG/setting.json +0 -12
- package/locales/de-DE/chat.json +3 -0
- package/locales/de-DE/models.json +92 -17
- package/locales/de-DE/setting.json +0 -12
- package/locales/en-US/chat.json +3 -0
- package/locales/en-US/models.json +92 -17
- package/locales/en-US/setting.json +0 -12
- package/locales/es-ES/chat.json +3 -0
- package/locales/es-ES/models.json +92 -17
- package/locales/es-ES/setting.json +0 -12
- package/locales/fa-IR/chat.json +3 -0
- package/locales/fa-IR/models.json +92 -17
- package/locales/fa-IR/setting.json +0 -12
- package/locales/fr-FR/chat.json +3 -0
- package/locales/fr-FR/models.json +92 -17
- package/locales/fr-FR/setting.json +0 -12
- package/locales/it-IT/chat.json +3 -0
- package/locales/it-IT/models.json +92 -17
- package/locales/it-IT/setting.json +0 -12
- package/locales/ja-JP/chat.json +3 -0
- package/locales/ja-JP/models.json +92 -17
- package/locales/ja-JP/setting.json +0 -12
- package/locales/ko-KR/chat.json +3 -0
- package/locales/ko-KR/models.json +92 -17
- package/locales/ko-KR/setting.json +0 -12
- package/locales/nl-NL/chat.json +3 -0
- package/locales/nl-NL/models.json +92 -17
- package/locales/nl-NL/setting.json +0 -12
- package/locales/pl-PL/chat.json +3 -0
- package/locales/pl-PL/models.json +92 -17
- package/locales/pl-PL/setting.json +0 -12
- package/locales/pt-BR/chat.json +3 -0
- package/locales/pt-BR/models.json +92 -17
- package/locales/pt-BR/setting.json +0 -12
- package/locales/ru-RU/chat.json +3 -0
- package/locales/ru-RU/models.json +92 -17
- package/locales/ru-RU/setting.json +0 -12
- package/locales/tr-TR/chat.json +3 -0
- package/locales/tr-TR/models.json +92 -17
- package/locales/tr-TR/setting.json +0 -12
- package/locales/vi-VN/chat.json +3 -0
- package/locales/vi-VN/models.json +92 -17
- package/locales/vi-VN/setting.json +0 -12
- package/locales/zh-CN/chat.json +3 -0
- package/locales/zh-CN/models.json +89 -14
- package/locales/zh-CN/setting.json +0 -12
- package/locales/zh-TW/chat.json +3 -0
- package/locales/zh-TW/models.json +92 -17
- package/locales/zh-TW/setting.json +0 -12
- package/package.json +1 -1
- package/src/config/aiModels/deepseek.ts +5 -3
- package/src/config/aiModels/groq.ts +16 -29
- package/src/config/aiModels/hunyuan.ts +104 -82
- package/src/config/aiModels/novita.ts +27 -121
- package/src/config/aiModels/openai.ts +19 -2
- package/src/config/aiModels/openrouter.ts +59 -47
- package/src/config/aiModels/siliconcloud.ts +73 -39
- package/src/config/aiModels/volcengine.ts +3 -3
- package/src/config/aiModels/xai.ts +2 -0
- package/src/config/modelProviders/zeroone.ts +3 -0
- package/src/features/AgentSetting/AgentModal/index.tsx +1 -26
- package/src/features/ChatInput/ActionBar/Model/ControlsForm.tsx +12 -0
- package/src/features/ChatInput/ActionBar/Model/ReasoningEffortSlider.tsx +57 -0
- package/src/libs/model-runtime/novita/__snapshots__/index.test.ts.snap +1 -1
- package/src/locales/default/chat.ts +3 -0
- package/src/locales/default/setting.ts +0 -12
- package/src/services/chat.ts +5 -1
- package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +0 -5
- package/src/types/agent/chatConfig.ts +1 -0
- package/src/types/aiModel.ts +5 -1
@@ -341,9 +341,6 @@
|
|
341
341
|
"Qwen2.5-Coder-32B-Instruct": {
|
342
342
|
"description": "高级 LLM,支持代码生成、推理和修复,涵盖主流编程语言。"
|
343
343
|
},
|
344
|
-
"SenseCat-5-1202": {
|
345
|
-
"description": "是基于V5.5的最新版本,较上版本在中英文基础能力,聊天,理科知识, 文科知识,写作,数理逻辑,字数控制 等几个维度的表现有显著提升。"
|
346
|
-
},
|
347
344
|
"SenseChat": {
|
348
345
|
"description": "基础版本模型 (V4),4K上下文长度,通用能力强大"
|
349
346
|
},
|
@@ -356,6 +353,9 @@
|
|
356
353
|
"SenseChat-5": {
|
357
354
|
"description": "最新版本模型 (V5.5),128K上下文长度,在数学推理、英文对话、指令跟随以及长文本理解等领域能力显著提升,比肩GPT-4o。"
|
358
355
|
},
|
356
|
+
"SenseChat-5-1202": {
|
357
|
+
"description": "是基于V5.5的最新版本,较上版本在中英文基础能力,聊天,理科知识, 文科知识,写作,数理逻辑,字数控制 等几个维度的表现有显著提升。"
|
358
|
+
},
|
359
359
|
"SenseChat-5-Cantonese": {
|
360
360
|
"description": "专门为适应香港地区的对话习惯、俚语及本地知识而设计,在粤语的对话理解上超越了GPT-4,在知识、推理、数学及代码编写等多个领域均能与GPT-4 Turbo相媲美。"
|
361
361
|
},
|
@@ -515,6 +515,12 @@
|
|
515
515
|
"ai21-jamba-1.5-mini": {
|
516
516
|
"description": "一个52B参数(12B活跃)的多语言模型,提供256K长上下文窗口、函数调用、结构化输出和基于事实的生成。"
|
517
517
|
},
|
518
|
+
"ai21-labs/AI21-Jamba-1.5-Large": {
|
519
|
+
"description": "一个398B参数(94B活跃)的多语言模型,提供256K长上下文窗口、函数调用、结构化输出和基于事实的生成。"
|
520
|
+
},
|
521
|
+
"ai21-labs/AI21-Jamba-1.5-Mini": {
|
522
|
+
"description": "一个52B参数(12B活跃)的多语言模型,提供256K长上下文窗口、函数调用、结构化输出和基于事实的生成。"
|
523
|
+
},
|
518
524
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
519
525
|
"description": "Claude 3.5 Sonnet 提升了行业标准,性能超过竞争对手模型和 Claude 3 Opus,在广泛的评估中表现出色,同时具有我们中等层级模型的速度和成本。"
|
520
526
|
},
|
@@ -621,7 +627,7 @@
|
|
621
627
|
"description": "Claude Opus 4 是 Anthropic 用于处理高度复杂任务的最强大模型。它在性能、智能、流畅性和理解力方面表现卓越。"
|
622
628
|
},
|
623
629
|
"claude-sonnet-4-20250514": {
|
624
|
-
"description": "Claude 4
|
630
|
+
"description": "Claude Sonnet 4 可以产生近乎即时的响应或延长的逐步思考,用户可以清晰地看到这些过程。API 用户还可以对模型思考的时间进行细致的控制"
|
625
631
|
},
|
626
632
|
"codegeex-4": {
|
627
633
|
"description": "CodeGeeX-4 是强大的AI编程助手,支持多种编程语言的智能问答与代码补全,提升开发效率。"
|
@@ -668,6 +674,12 @@
|
|
668
674
|
"cohere-command-r-plus": {
|
669
675
|
"description": "Command R+是一个最先进的RAG优化模型,旨在应对企业级工作负载。"
|
670
676
|
},
|
677
|
+
"cohere/Cohere-command-r": {
|
678
|
+
"description": "Command R是一个可扩展的生成模型,旨在针对RAG和工具使用,使企业能够实现生产级AI。"
|
679
|
+
},
|
680
|
+
"cohere/Cohere-command-r-plus": {
|
681
|
+
"description": "Command R+是一个最先进的RAG优化模型,旨在应对企业级工作负载。"
|
682
|
+
},
|
671
683
|
"command": {
|
672
684
|
"description": "一个遵循指令的对话模型,在语言任务中表现出高质量、更可靠,并且相比我们的基础生成模型具有更长的上下文长度。"
|
673
685
|
},
|
@@ -1028,6 +1040,12 @@
|
|
1028
1040
|
"gemini-2.5-flash-preview-04-17": {
|
1029
1041
|
"description": "Gemini 2.5 Flash Preview 是 Google 性价比最高的模型,提供全面的功能。"
|
1030
1042
|
},
|
1043
|
+
"gemini-2.5-flash-preview-04-17-thinking": {
|
1044
|
+
"description": "Gemini 2.5 Flash Preview 是 Google 性价比最高的模型,提供全面的功能。"
|
1045
|
+
},
|
1046
|
+
"gemini-2.5-flash-preview-05-20": {
|
1047
|
+
"description": "Gemini 2.5 Flash Preview 是 Google 性价比最高的模型,提供全面的功能。"
|
1048
|
+
},
|
1031
1049
|
"gemini-2.5-pro-exp-03-25": {
|
1032
1050
|
"description": "Gemini 2.5 Pro Experimental 是 Google 最先进的思维模型,能够对代码、数学和STEM领域的复杂问题进行推理,以及使用长上下文分析大型数据集、代码库和文档。"
|
1033
1051
|
},
|
@@ -1262,24 +1280,18 @@
|
|
1262
1280
|
"grok-2-vision-1212": {
|
1263
1281
|
"description": "该模型在准确性、指令遵循和多语言能力方面有所改进。"
|
1264
1282
|
},
|
1265
|
-
"grok-3
|
1283
|
+
"grok-3": {
|
1266
1284
|
"description": "旗舰级模型,擅长数据提取、编程和文本摘要等企业级应用,拥有金融、医疗、法律和科学等领域的深厚知识。"
|
1267
1285
|
},
|
1268
|
-
"grok-3-fast
|
1286
|
+
"grok-3-fast": {
|
1269
1287
|
"description": "旗舰级模型,擅长数据提取、编程和文本摘要等企业级应用,拥有金融、医疗、法律和科学等领域的深厚知识。"
|
1270
1288
|
},
|
1271
|
-
"grok-3-mini
|
1289
|
+
"grok-3-mini": {
|
1272
1290
|
"description": "轻量级模型,回话前会先思考。运行快速、智能,适用于不需要深层领域知识的逻辑任务,并能获取原始的思维轨迹。"
|
1273
1291
|
},
|
1274
|
-
"grok-3-mini-fast
|
1292
|
+
"grok-3-mini-fast": {
|
1275
1293
|
"description": "轻量级模型,回话前会先思考。运行快速、智能,适用于不需要深层领域知识的逻辑任务,并能获取原始的思维轨迹。"
|
1276
1294
|
},
|
1277
|
-
"grok-beta": {
|
1278
|
-
"description": "拥有与 Grok 2 相当的性能,但具有更高的效率、速度和功能。"
|
1279
|
-
},
|
1280
|
-
"grok-vision-beta": {
|
1281
|
-
"description": "最新的图像理解模型,可以处理各种各样的视觉信息,包括文档、图表、截图和照片等。"
|
1282
|
-
},
|
1283
1295
|
"gryphe/mythomax-l2-13b": {
|
1284
1296
|
"description": "MythoMax l2 13B 是一款合并了多个顶尖模型的创意与智能相结合的语言模型。"
|
1285
1297
|
},
|
@@ -1322,6 +1334,9 @@
|
|
1322
1334
|
"hunyuan-t1-latest": {
|
1323
1335
|
"description": "业内首个超大规模 Hybrid-Transformer-Mamba 推理模型,扩展推理能力,超强解码速度,进一步对齐人类偏好。"
|
1324
1336
|
},
|
1337
|
+
"hunyuan-t1-vision": {
|
1338
|
+
"description": "混元多模态理解深度思考模型,支持多模态原生长思维链,擅长处理各种图片推理场景,在理科难题上相比快思考模型全面提升。"
|
1339
|
+
},
|
1325
1340
|
"hunyuan-translation": {
|
1326
1341
|
"description": "支持中文和英语、日语、法语、葡萄牙语、西班牙语、土耳其语、俄语、阿拉伯语、韩语、意大利语、德语、越南语、马来语、印尼语15种语言互译,基于多场景翻译评测集自动化评估COMET评分,在十余种常用语种中外互译能力上整体优于市场同规模模型。"
|
1327
1342
|
},
|
@@ -1586,6 +1601,30 @@
|
|
1586
1601
|
"meta.llama3-8b-instruct-v1:0": {
|
1587
1602
|
"description": "Meta Llama 3 是一款面向开发者、研究人员和企业的开放大型语言模型 (LLM),旨在帮助他们构建、实验并负责任地扩展他们的生成 AI 想法。作为全球社区创新的基础系统的一部分,它非常适合计算能力和资源有限、边缘设备和更快的训练时间。"
|
1588
1603
|
},
|
1604
|
+
"meta/Llama-3.2-11B-Vision-Instruct": {
|
1605
|
+
"description": "在高分辨率图像上表现出色的图像推理能力,适用于视觉理解应用。"
|
1606
|
+
},
|
1607
|
+
"meta/Llama-3.2-90B-Vision-Instruct": {
|
1608
|
+
"description": "适用于视觉理解代理应用的高级图像推理能力。"
|
1609
|
+
},
|
1610
|
+
"meta/Llama-3.3-70B-Instruct": {
|
1611
|
+
"description": "Llama 3.3 是 Llama 系列最先进的多语言开源大型语言模型,以极低成本体验媲美 405B 模型的性能。基于 Transformer 结构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)提升有用性和安全性。其指令调优版本专为多语言对话优化,在多项行业基准上表现优于众多开源和封闭聊天模型。知识截止日期为 2023 年 12 月"
|
1612
|
+
},
|
1613
|
+
"meta/Meta-Llama-3-70B-Instruct": {
|
1614
|
+
"description": "一个强大的700亿参数模型,在推理、编码和广泛的语言应用方面表现出色。"
|
1615
|
+
},
|
1616
|
+
"meta/Meta-Llama-3-8B-Instruct": {
|
1617
|
+
"description": "一个多功能的80亿参数模型,针对对话和文本生成任务进行了优化。"
|
1618
|
+
},
|
1619
|
+
"meta/Meta-Llama-3.1-405B-Instruct": {
|
1620
|
+
"description": "Llama 3.1指令调优的文本模型,针对多语言对话用例进行了优化,在许多可用的开源和封闭聊天模型中,在常见行业基准上表现优异。"
|
1621
|
+
},
|
1622
|
+
"meta/Meta-Llama-3.1-70B-Instruct": {
|
1623
|
+
"description": "Llama 3.1指令调优的文本模型,针对多语言对话用例进行了优化,在许多可用的开源和封闭聊天模型中,在常见行业基准上表现优异。"
|
1624
|
+
},
|
1625
|
+
"meta/Meta-Llama-3.1-8B-Instruct": {
|
1626
|
+
"description": "Llama 3.1指令调优的文本模型,针对多语言对话用例进行了优化,在许多可用的开源和封闭聊天模型中,在常见行业基准上表现优异。"
|
1627
|
+
},
|
1589
1628
|
"meta/llama-3.1-405b-instruct": {
|
1590
1629
|
"description": "高级 LLM,支持合成数据生成、知识蒸馏和推理,适用于聊天机器人、编程和特定领域任务。"
|
1591
1630
|
},
|
@@ -1610,6 +1649,30 @@
|
|
1610
1649
|
"meta/llama-3.3-70b-instruct": {
|
1611
1650
|
"description": "先进的 LLM,擅长推理、数学、常识和函数调用。"
|
1612
1651
|
},
|
1652
|
+
"microsoft/Phi-3-medium-128k-instruct": {
|
1653
|
+
"description": "相同的Phi-3-medium模型,但具有更大的上下文大小,适用于RAG或少量提示。"
|
1654
|
+
},
|
1655
|
+
"microsoft/Phi-3-medium-4k-instruct": {
|
1656
|
+
"description": "一个140亿参数模型,质量优于Phi-3-mini,重点关注高质量、推理密集型数据。"
|
1657
|
+
},
|
1658
|
+
"microsoft/Phi-3-mini-128k-instruct": {
|
1659
|
+
"description": "相同的Phi-3-mini模型,但具有更大的上下文大小,适用于RAG或少量提示。"
|
1660
|
+
},
|
1661
|
+
"microsoft/Phi-3-mini-4k-instruct": {
|
1662
|
+
"description": "Phi-3家族中最小的成员,针对质量和低延迟进行了优化。"
|
1663
|
+
},
|
1664
|
+
"microsoft/Phi-3-small-128k-instruct": {
|
1665
|
+
"description": "相同的Phi-3-small模型,但具有更大的上下文大小,适用于RAG或少量提示。"
|
1666
|
+
},
|
1667
|
+
"microsoft/Phi-3-small-8k-instruct": {
|
1668
|
+
"description": "一个70亿参数模型,质量优于Phi-3-mini,重点关注高质量、推理密集型数据。"
|
1669
|
+
},
|
1670
|
+
"microsoft/Phi-3.5-mini-instruct": {
|
1671
|
+
"description": "Phi-3-mini模型的更新版。"
|
1672
|
+
},
|
1673
|
+
"microsoft/Phi-3.5-vision-instruct": {
|
1674
|
+
"description": "Phi-3-vision模型的更新版。"
|
1675
|
+
},
|
1613
1676
|
"microsoft/WizardLM-2-8x22B": {
|
1614
1677
|
"description": "WizardLM 2 是微软AI提供的语言模型,在复杂对话、多语言、推理和智能助手领域表现尤为出色。"
|
1615
1678
|
},
|
@@ -1628,6 +1691,15 @@
|
|
1628
1691
|
"mistral": {
|
1629
1692
|
"description": "Mistral 是 Mistral AI 发布的 7B 模型,适合多变的语言处理需求。"
|
1630
1693
|
},
|
1694
|
+
"mistral-ai/Mistral-Large-2411": {
|
1695
|
+
"description": "Mistral的旗舰模型,适合需要大规模推理能力或高度专业化的复杂任务(合成文本生成、代码生成、RAG或代理)。"
|
1696
|
+
},
|
1697
|
+
"mistral-ai/Mistral-Nemo": {
|
1698
|
+
"description": "Mistral Nemo是一种尖端的语言模型(LLM),在其尺寸类别中拥有最先进的推理、世界知识和编码能力。"
|
1699
|
+
},
|
1700
|
+
"mistral-ai/mistral-small-2503": {
|
1701
|
+
"description": "Mistral Small可用于任何需要高效率和低延迟的基于语言的任务。"
|
1702
|
+
},
|
1631
1703
|
"mistral-large": {
|
1632
1704
|
"description": "Mixtral Large 是 Mistral 的旗舰模型,结合代码生成、数学和推理的能力,支持 128k 上下文窗口。"
|
1633
1705
|
},
|
@@ -1769,6 +1841,9 @@
|
|
1769
1841
|
"openai/gpt-4o-mini": {
|
1770
1842
|
"description": "GPT-4o mini是OpenAI在GPT-4 Omni之后推出的最新模型,支持图文输入并输出文本。作为他们最先进的小型模型,它比其他近期的前沿模型便宜很多,并且比GPT-3.5 Turbo便宜超过60%。它保持了最先进的智能,同时具有显著的性价比。GPT-4o mini在MMLU测试中获得了 82% 的得分,目前在聊天偏好上排名高于 GPT-4。"
|
1771
1843
|
},
|
1844
|
+
"openai/o1": {
|
1845
|
+
"description": "o1是OpenAI新的推理模型,支持图文输入并输出文本,适用于需要广泛通用知识的复杂任务。该模型具有200K上下文和2023年10月的知识截止日期。"
|
1846
|
+
},
|
1772
1847
|
"openai/o1-mini": {
|
1773
1848
|
"description": "o1-mini是一款针对编程、数学和科学应用场景而设计的快速、经济高效的推理模型。该模型具有128K上下文和2023年10月的知识截止日期。"
|
1774
1849
|
},
|
@@ -259,9 +259,6 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "开启单次回复限制"
|
261
261
|
},
|
262
|
-
"enableReasoningEffort": {
|
263
|
-
"title": "开启推理强度调整"
|
264
|
-
},
|
265
262
|
"frequencyPenalty": {
|
266
263
|
"desc": "值越大,用词越丰富多样;值越低,用词更朴实简单",
|
267
264
|
"title": "词汇丰富度"
|
@@ -281,15 +278,6 @@
|
|
281
278
|
"desc": "值越大,越倾向不同的表达方式,避免概念重复;值越小,越倾向使用重复的概念或叙述,表达更具一致性",
|
282
279
|
"title": "表述发散度"
|
283
280
|
},
|
284
|
-
"reasoningEffort": {
|
285
|
-
"desc": "值越大,推理能力越强,但可能会增加响应时间和 Token 消耗",
|
286
|
-
"options": {
|
287
|
-
"high": "高",
|
288
|
-
"low": "低",
|
289
|
-
"medium": "中"
|
290
|
-
},
|
291
|
-
"title": "推理强度"
|
292
|
-
},
|
293
281
|
"submit": "更新模型设置",
|
294
282
|
"temperature": {
|
295
283
|
"desc": "数值越大,回答越有创意和想象力;数值越小,回答越严谨",
|
package/locales/zh-TW/chat.json
CHANGED
@@ -341,9 +341,6 @@
|
|
341
341
|
"Qwen2.5-Coder-32B-Instruct": {
|
342
342
|
"description": "Qwen2.5-Coder-32B-Instruct 是一款專為代碼生成、代碼理解和高效開發場景設計的大型語言模型,採用了業界領先的32B參數規模,能夠滿足多樣化的程式需求。"
|
343
343
|
},
|
344
|
-
"SenseCat-5-1202": {
|
345
|
-
"description": "是基於V5.5的最新版本,較上版本在中英文基礎能力、聊天、理科知識、文科知識、寫作、數理邏輯、字數控制等幾個維度的表現有顯著提升。"
|
346
|
-
},
|
347
344
|
"SenseChat": {
|
348
345
|
"description": "基礎版本模型 (V4),4K上下文長度,通用能力強大"
|
349
346
|
},
|
@@ -356,6 +353,9 @@
|
|
356
353
|
"SenseChat-5": {
|
357
354
|
"description": "最新版本模型 (V5.5),128K上下文長度,在數學推理、英文對話、指令跟隨以及長文本理解等領域能力顯著提升,比肩GPT-4o"
|
358
355
|
},
|
356
|
+
"SenseChat-5-1202": {
|
357
|
+
"description": "是基於 V5.5 的最新版本,較上版本在中英文基礎能力、聊天、理科知識、文科知識、寫作、數理邏輯、字數控制等幾個維度的表現有顯著提升。"
|
358
|
+
},
|
359
359
|
"SenseChat-5-Cantonese": {
|
360
360
|
"description": "32K上下文長度,在粵語的對話理解上超越了GPT-4,在知識、推理、數學及程式編寫等多個領域均能與GPT-4 Turbo相媲美"
|
361
361
|
},
|
@@ -515,6 +515,12 @@
|
|
515
515
|
"ai21-jamba-1.5-mini": {
|
516
516
|
"description": "一個52B參數(12B活躍)多語言模型,提供256K長上下文窗口、函數調用、結構化輸出和基於實體的生成。"
|
517
517
|
},
|
518
|
+
"ai21-labs/AI21-Jamba-1.5-Large": {
|
519
|
+
"description": "一個 398B 參數(94B 活躍)的多語言模型,提供 256K 長上下文視窗、函數呼叫、結構化輸出和基於事實的生成。"
|
520
|
+
},
|
521
|
+
"ai21-labs/AI21-Jamba-1.5-Mini": {
|
522
|
+
"description": "一個 52B 參數(12B 活躍)的多語言模型,提供 256K 長上下文視窗、函數呼叫、結構化輸出和基於事實的生成。"
|
523
|
+
},
|
518
524
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
519
525
|
"description": "Claude 3.5 Sonnet提升了行業標準,性能超過競爭對手模型和Claude 3 Opus,在廣泛的評估中表現出色,同時具有我們中等層級模型的速度和成本。"
|
520
526
|
},
|
@@ -668,6 +674,12 @@
|
|
668
674
|
"cohere-command-r-plus": {
|
669
675
|
"description": "Command R+是一個最先進的RAG優化模型,旨在應對企業級工作負載。"
|
670
676
|
},
|
677
|
+
"cohere/Cohere-command-r": {
|
678
|
+
"description": "Command R 是一個可擴展的生成模型,旨在針對 RAG 和工具使用,使企業能夠實現生產級 AI。"
|
679
|
+
},
|
680
|
+
"cohere/Cohere-command-r-plus": {
|
681
|
+
"description": "Command R+ 是一個最先進的 RAG 優化模型,旨在應對企業級工作負載。"
|
682
|
+
},
|
671
683
|
"command": {
|
672
684
|
"description": "一個遵循指令的對話模型,在語言任務中表現出高質量、更可靠,並且相比我們的基礎生成模型具有更長的上下文長度。"
|
673
685
|
},
|
@@ -1028,6 +1040,12 @@
|
|
1028
1040
|
"gemini-2.5-flash-preview-04-17": {
|
1029
1041
|
"description": "Gemini 2.5 Flash Preview 是 Google 性價比最高的模型,提供全面的功能。"
|
1030
1042
|
},
|
1043
|
+
"gemini-2.5-flash-preview-04-17-thinking": {
|
1044
|
+
"description": "Gemini 2.5 Flash Preview 是 Google 性價比最高的模型,提供全面的功能。"
|
1045
|
+
},
|
1046
|
+
"gemini-2.5-flash-preview-05-20": {
|
1047
|
+
"description": "Gemini 2.5 Flash Preview 是 Google 性價比最高的模型,提供全面的功能。"
|
1048
|
+
},
|
1031
1049
|
"gemini-2.5-pro-exp-03-25": {
|
1032
1050
|
"description": "Gemini 2.5 Pro 實驗版是 Google 最先進的思維模型,能夠對代碼、數學和 STEM 領域的複雜問題進行推理,還能利用長上下文來分析大型數據集、代碼庫和文檔。"
|
1033
1051
|
},
|
@@ -1262,23 +1280,17 @@
|
|
1262
1280
|
"grok-2-vision-1212": {
|
1263
1281
|
"description": "該模型在準確性、指令遵循和多語言能力方面有所改進。"
|
1264
1282
|
},
|
1265
|
-
"grok-3
|
1266
|
-
"description": "
|
1267
|
-
},
|
1268
|
-
"grok-3-fast-beta": {
|
1269
|
-
"description": "旗艦級模型,擅長數據提取、程式設計和文本摘要等企業級應用,擁有金融、醫療、法律和科學等領域的深厚知識。"
|
1283
|
+
"grok-3": {
|
1284
|
+
"description": "旗艦級模型,擅長資料擷取、程式設計和文本摘要等企業級應用,擁有金融、醫療、法律和科學等領域的深厚知識。"
|
1270
1285
|
},
|
1271
|
-
"grok-3-
|
1272
|
-
"description": "
|
1286
|
+
"grok-3-fast": {
|
1287
|
+
"description": "旗艦級模型,擅長資料擷取、程式設計和文本摘要等企業級應用,擁有金融、醫療、法律和科學等領域的深厚知識。"
|
1273
1288
|
},
|
1274
|
-
"grok-3-mini
|
1275
|
-
"description": "
|
1289
|
+
"grok-3-mini": {
|
1290
|
+
"description": "輕量級模型,對話前會先思考。運行快速、智能,適用於不需要深層領域知識的邏輯任務,並能獲取原始的思維軌跡。"
|
1276
1291
|
},
|
1277
|
-
"grok-
|
1278
|
-
"description": "
|
1279
|
-
},
|
1280
|
-
"grok-vision-beta": {
|
1281
|
-
"description": "最新的圖像理解模型,可以處理各種各樣的視覺信息,包括文檔、圖表、截圖和照片等。"
|
1292
|
+
"grok-3-mini-fast": {
|
1293
|
+
"description": "輕量級模型,對話前會先思考。運行快速、智能,適用於不需要深層領域知識的邏輯任務,並能獲取原始的思維軌跡。"
|
1282
1294
|
},
|
1283
1295
|
"gryphe/mythomax-l2-13b": {
|
1284
1296
|
"description": "MythoMax l2 13B 是一款合併了多個頂尖模型的創意與智能相結合的語言模型。"
|
@@ -1322,6 +1334,9 @@
|
|
1322
1334
|
"hunyuan-t1-latest": {
|
1323
1335
|
"description": "業界首個超大規模 Hybrid-Transformer-Mamba 推理模型,擴展推理能力,超強解碼速度,進一步對齊人類偏好。"
|
1324
1336
|
},
|
1337
|
+
"hunyuan-t1-vision": {
|
1338
|
+
"description": "混元多模態理解深度思考模型,支援多模態原生長思維鏈,擅長處理各種圖片推理場景,在理科難題上相比快思考模型全面提升。"
|
1339
|
+
},
|
1325
1340
|
"hunyuan-translation": {
|
1326
1341
|
"description": "支持中文和英語、日語、法語、葡萄牙語、西班牙語、土耳其語、俄語、阿拉伯語、韓語、義大利語、德語、越南語、馬來語、印尼語15種語言互譯,基於多場景翻譯評測集自動化評估COMET評分,在十餘種常用語種中外互譯能力上整體優於市場同規模模型。"
|
1327
1342
|
},
|
@@ -1586,6 +1601,30 @@
|
|
1586
1601
|
"meta.llama3-8b-instruct-v1:0": {
|
1587
1602
|
"description": "Meta Llama 3 是一款面向開發者、研究人員和企業的開放大型語言模型 (LLM),旨在幫助他們構建、實驗並負責任地擴展他們的生成 AI 想法。作為全球社區創新的基礎系統的一部分,它非常適合計算能力和資源有限、邊緣設備和更快的訓練時間。"
|
1588
1603
|
},
|
1604
|
+
"meta/Llama-3.2-11B-Vision-Instruct": {
|
1605
|
+
"description": "在高解析度影像上表現出色的影像推理能力,適用於視覺理解應用。"
|
1606
|
+
},
|
1607
|
+
"meta/Llama-3.2-90B-Vision-Instruct": {
|
1608
|
+
"description": "適用於視覺理解代理應用的高階影像推理能力。"
|
1609
|
+
},
|
1610
|
+
"meta/Llama-3.3-70B-Instruct": {
|
1611
|
+
"description": "Llama 3.3 是 Llama 系列最先進的多語言開源大型語言模型,以極低成本體驗媲美 405B 模型的效能。基於 Transformer 結構,並透過監督微調(SFT)和人類回饋強化學習(RLHF)提升實用性和安全性。其指令調校版本專為多語言對話優化,在多項產業基準上表現優於眾多開源和封閉聊天模型。知識截止日期為 2023 年 12 月。"
|
1612
|
+
},
|
1613
|
+
"meta/Meta-Llama-3-70B-Instruct": {
|
1614
|
+
"description": "一個強大的 700 億參數模型,在推理、編碼和廣泛的語言應用方面表現出色。"
|
1615
|
+
},
|
1616
|
+
"meta/Meta-Llama-3-8B-Instruct": {
|
1617
|
+
"description": "一個多功能的 80 億參數模型,針對對話和文本生成任務進行優化。"
|
1618
|
+
},
|
1619
|
+
"meta/Meta-Llama-3.1-405B-Instruct": {
|
1620
|
+
"description": "Llama 3.1 指令調校的文本模型,針對多語言對話用例進行優化,在許多可用的開源和封閉聊天模型中,在常見產業基準上表現優異。"
|
1621
|
+
},
|
1622
|
+
"meta/Meta-Llama-3.1-70B-Instruct": {
|
1623
|
+
"description": "Llama 3.1 指令調校的文本模型,針對多語言對話用例進行優化,在許多可用的開源和封閉聊天模型中,在常見產業基準上表現優異。"
|
1624
|
+
},
|
1625
|
+
"meta/Meta-Llama-3.1-8B-Instruct": {
|
1626
|
+
"description": "Llama 3.1 指令調校的文本模型,針對多語言對話用例進行優化,在許多可用的開源和封閉聊天模型中,在常見產業基準上表現優異。"
|
1627
|
+
},
|
1589
1628
|
"meta/llama-3.1-405b-instruct": {
|
1590
1629
|
"description": "高級 LLM,支持合成數據生成、知識蒸餾和推理,適用於聊天機器人、編程和特定領域任務。"
|
1591
1630
|
},
|
@@ -1610,6 +1649,30 @@
|
|
1610
1649
|
"meta/llama-3.3-70b-instruct": {
|
1611
1650
|
"description": "先進的 LLM,擅長推理、數學、常識和函數調用。"
|
1612
1651
|
},
|
1652
|
+
"microsoft/Phi-3-medium-128k-instruct": {
|
1653
|
+
"description": "相同的 Phi-3-medium 模型,但具有更大的上下文大小,適用於 RAG 或少量提示。"
|
1654
|
+
},
|
1655
|
+
"microsoft/Phi-3-medium-4k-instruct": {
|
1656
|
+
"description": "一個 140 億參數模型,品質優於 Phi-3-mini,重點關注高品質、推理密集型資料。"
|
1657
|
+
},
|
1658
|
+
"microsoft/Phi-3-mini-128k-instruct": {
|
1659
|
+
"description": "相同的 Phi-3-mini 模型,但具有更大的上下文大小,適用於 RAG 或少量提示。"
|
1660
|
+
},
|
1661
|
+
"microsoft/Phi-3-mini-4k-instruct": {
|
1662
|
+
"description": "Phi-3 家族中最小的成員,針對品質和低延遲進行優化。"
|
1663
|
+
},
|
1664
|
+
"microsoft/Phi-3-small-128k-instruct": {
|
1665
|
+
"description": "相同的 Phi-3-small 模型,但具有更大的上下文大小,適用於 RAG 或少量提示。"
|
1666
|
+
},
|
1667
|
+
"microsoft/Phi-3-small-8k-instruct": {
|
1668
|
+
"description": "一個 70 億參數模型,品質優於 Phi-3-mini,重點關注高品質、推理密集型資料。"
|
1669
|
+
},
|
1670
|
+
"microsoft/Phi-3.5-mini-instruct": {
|
1671
|
+
"description": "Phi-3-mini 模型的更新版。"
|
1672
|
+
},
|
1673
|
+
"microsoft/Phi-3.5-vision-instruct": {
|
1674
|
+
"description": "Phi-3-vision 模型的更新版。"
|
1675
|
+
},
|
1613
1676
|
"microsoft/WizardLM-2-8x22B": {
|
1614
1677
|
"description": "WizardLM 2 是微軟AI提供的語言模型,在複雜對話、多語言、推理和智能助手領域表現尤為出色。"
|
1615
1678
|
},
|
@@ -1628,6 +1691,15 @@
|
|
1628
1691
|
"mistral": {
|
1629
1692
|
"description": "Mistral 是 Mistral AI 發布的 7B 模型,適合多變的語言處理需求。"
|
1630
1693
|
},
|
1694
|
+
"mistral-ai/Mistral-Large-2411": {
|
1695
|
+
"description": "Mistral 的旗艦模型,適合需要大規模推理能力或高度專業化的複雜任務(合成文本生成、程式碼生成、RAG 或代理)。"
|
1696
|
+
},
|
1697
|
+
"mistral-ai/Mistral-Nemo": {
|
1698
|
+
"description": "Mistral Nemo 是一種尖端的語言模型(LLM),在其尺寸類別中擁有最先進的推理、世界知識和編碼能力。"
|
1699
|
+
},
|
1700
|
+
"mistral-ai/mistral-small-2503": {
|
1701
|
+
"description": "Mistral Small 可用於任何需要高效率和低延遲的基於語言的任務。"
|
1702
|
+
},
|
1631
1703
|
"mistral-large": {
|
1632
1704
|
"description": "Mixtral Large 是 Mistral 的旗艦模型,結合代碼生成、數學和推理的能力,支持 128k 上下文窗口。"
|
1633
1705
|
},
|
@@ -1769,6 +1841,9 @@
|
|
1769
1841
|
"openai/gpt-4o-mini": {
|
1770
1842
|
"description": "GPT-4o mini是OpenAI在GPT-4 Omni之後推出的最新模型,支持圖文輸入並輸出文本。作為他們最先進的小型模型,它比其他近期的前沿模型便宜很多,並且比GPT-3.5 Turbo便宜超過60%。它保持了最先進的智能,同時具有顯著的性價比。GPT-4o mini在MMLU測試中獲得了82%的得分,目前在聊天偏好上排名高於GPT-4。"
|
1771
1843
|
},
|
1844
|
+
"openai/o1": {
|
1845
|
+
"description": "o1 是 OpenAI 新的推理模型,支援圖文輸入並輸出文本,適用於需要廣泛通用知識的複雜任務。該模型具有 200K 上下文和 2023 年 10 月的知識截止日期。"
|
1846
|
+
},
|
1772
1847
|
"openai/o1-mini": {
|
1773
1848
|
"description": "o1-mini是一款針對程式設計、數學和科學應用場景而設計的快速、經濟高效的推理模型。該模型具有128K上下文和2023年10月的知識截止日期。"
|
1774
1849
|
},
|
@@ -259,9 +259,6 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "啟用單次回覆限制"
|
261
261
|
},
|
262
|
-
"enableReasoningEffort": {
|
263
|
-
"title": "開啟推理強度調整"
|
264
|
-
},
|
265
262
|
"frequencyPenalty": {
|
266
263
|
"desc": "值越大,用詞越豐富多樣;值越低,用詞更樸實簡單",
|
267
264
|
"title": "詞彙豐富度"
|
@@ -281,15 +278,6 @@
|
|
281
278
|
"desc": "值越大,越傾向不同的表達方式,避免概念重複;值越小,越傾向使用重複的概念或敘述,表達更具一致性",
|
282
279
|
"title": "表述發散度"
|
283
280
|
},
|
284
|
-
"reasoningEffort": {
|
285
|
-
"desc": "值越大,推理能力越強,但可能會增加回應時間和 Token 消耗",
|
286
|
-
"options": {
|
287
|
-
"high": "高",
|
288
|
-
"low": "低",
|
289
|
-
"medium": "中"
|
290
|
-
},
|
291
|
-
"title": "推理強度"
|
292
|
-
},
|
293
281
|
"submit": "更新模型設定",
|
294
282
|
"temperature": {
|
295
283
|
"desc": "數值越大,回答越有創意和想像力;數值越小,回答越嚴謹",
|
package/package.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
{
|
2
2
|
"name": "@lobehub/chat",
|
3
|
-
"version": "1.88.
|
3
|
+
"version": "1.88.22",
|
4
4
|
"description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
5
5
|
"keywords": [
|
6
6
|
"framework",
|
@@ -1,5 +1,5 @@
|
|
1
1
|
import { AIChatModelCard } from '@/types/aiModel';
|
2
|
-
|
2
|
+
// https://api-docs.deepseek.com/zh-cn/quick_start/pricing
|
3
3
|
const deepseekChatModels: AIChatModelCard[] = [
|
4
4
|
{
|
5
5
|
abilities: {
|
@@ -11,13 +11,14 @@ const deepseekChatModels: AIChatModelCard[] = [
|
|
11
11
|
displayName: 'DeepSeek V3',
|
12
12
|
enabled: true,
|
13
13
|
id: 'deepseek-chat',
|
14
|
+
maxOutput: 8192,
|
14
15
|
pricing: {
|
15
16
|
cachedInput: 0.5,
|
16
17
|
currency: 'CNY',
|
17
18
|
input: 2,
|
18
19
|
output: 8,
|
19
20
|
},
|
20
|
-
releasedAt: '
|
21
|
+
releasedAt: '2025-03-24',
|
21
22
|
type: 'chat',
|
22
23
|
},
|
23
24
|
{
|
@@ -31,13 +32,14 @@ const deepseekChatModels: AIChatModelCard[] = [
|
|
31
32
|
displayName: 'DeepSeek R1',
|
32
33
|
enabled: true,
|
33
34
|
id: 'deepseek-reasoner',
|
35
|
+
maxOutput: 8192,
|
34
36
|
pricing: {
|
35
37
|
cachedInput: 1,
|
36
38
|
currency: 'CNY',
|
37
39
|
input: 4,
|
38
40
|
output: 16,
|
39
41
|
},
|
40
|
-
releasedAt: '2025-
|
42
|
+
releasedAt: '2025-05-28',
|
41
43
|
type: 'chat',
|
42
44
|
},
|
43
45
|
];
|
@@ -42,8 +42,8 @@ const groqChatModels: AIChatModelCard[] = [
|
|
42
42
|
id: 'meta-llama/llama-4-maverick-17b-128e-instruct',
|
43
43
|
maxOutput: 8192,
|
44
44
|
pricing: {
|
45
|
-
input: 0.
|
46
|
-
output: 0.
|
45
|
+
input: 0.2,
|
46
|
+
output: 0.6,
|
47
47
|
},
|
48
48
|
type: 'chat',
|
49
49
|
},
|
@@ -76,17 +76,6 @@ const groqChatModels: AIChatModelCard[] = [
|
|
76
76
|
},
|
77
77
|
type: 'chat',
|
78
78
|
},
|
79
|
-
{
|
80
|
-
contextWindowTokens: 131_072,
|
81
|
-
displayName: 'DeepSeek R1 Distill Llama 70B SpecDec',
|
82
|
-
id: 'deepseek-r1-distill-llama-70b-specdec',
|
83
|
-
maxOutput: 16_384,
|
84
|
-
pricing: {
|
85
|
-
input: 0.75,
|
86
|
-
output: 0.99,
|
87
|
-
},
|
88
|
-
type: 'chat',
|
89
|
-
},
|
90
79
|
{
|
91
80
|
abilities: {
|
92
81
|
functionCall: true,
|
@@ -157,7 +146,7 @@ const groqChatModels: AIChatModelCard[] = [
|
|
157
146
|
},
|
158
147
|
{
|
159
148
|
contextWindowTokens: 32_768,
|
160
|
-
displayName: '
|
149
|
+
displayName: 'Mistral Saba 24B',
|
161
150
|
id: 'mistral-saba-24b',
|
162
151
|
pricing: {
|
163
152
|
input: 0.79,
|
@@ -165,24 +154,10 @@ const groqChatModels: AIChatModelCard[] = [
|
|
165
154
|
},
|
166
155
|
type: 'chat',
|
167
156
|
},
|
168
|
-
{
|
169
|
-
abilities: {
|
170
|
-
functionCall: true,
|
171
|
-
},
|
172
|
-
contextWindowTokens: 32_768,
|
173
|
-
description: 'Mixtral 8x7B 提供高容错的并行计算能力,适合复杂任务。',
|
174
|
-
displayName: 'Mixtral 8x7B Instruct',
|
175
|
-
id: 'mixtral-8x7b-32768',
|
176
|
-
pricing: {
|
177
|
-
input: 0.24,
|
178
|
-
output: 0.24,
|
179
|
-
},
|
180
|
-
type: 'chat',
|
181
|
-
},
|
182
157
|
{
|
183
158
|
contextWindowTokens: 131_072,
|
184
159
|
displayName: 'Llama Guard 4 12B',
|
185
|
-
id: 'meta-llama/
|
160
|
+
id: 'meta-llama/llama-guard-4-12b',
|
186
161
|
maxOutput: 128,
|
187
162
|
pricing: {
|
188
163
|
input: 0.2,
|
@@ -206,6 +181,18 @@ const groqChatModels: AIChatModelCard[] = [
|
|
206
181
|
id: 'allam-2-7b',
|
207
182
|
type: 'chat',
|
208
183
|
},
|
184
|
+
{
|
185
|
+
contextWindowTokens: 512,
|
186
|
+
displayName: 'Llama Prompt Guard 2 22M',
|
187
|
+
id: 'meta-llama/llama-prompt-guard-2-22m',
|
188
|
+
type: 'chat',
|
189
|
+
},
|
190
|
+
{
|
191
|
+
contextWindowTokens: 512,
|
192
|
+
displayName: 'Llama Prompt Guard 2 86M',
|
193
|
+
id: 'meta-llama/llama-prompt-guard-2-86m',
|
194
|
+
type: 'chat',
|
195
|
+
},
|
209
196
|
];
|
210
197
|
|
211
198
|
export const allModels = [...groqChatModels];
|