@lobehub/chat 1.88.20 → 1.88.22

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (78) hide show
  1. package/.i18nrc.js +1 -1
  2. package/CHANGELOG.md +51 -0
  3. package/changelog/v1.json +18 -0
  4. package/locales/ar/chat.json +3 -0
  5. package/locales/ar/models.json +92 -17
  6. package/locales/ar/setting.json +0 -12
  7. package/locales/bg-BG/chat.json +3 -0
  8. package/locales/bg-BG/models.json +92 -17
  9. package/locales/bg-BG/setting.json +0 -12
  10. package/locales/de-DE/chat.json +3 -0
  11. package/locales/de-DE/models.json +92 -17
  12. package/locales/de-DE/setting.json +0 -12
  13. package/locales/en-US/chat.json +3 -0
  14. package/locales/en-US/models.json +92 -17
  15. package/locales/en-US/setting.json +0 -12
  16. package/locales/es-ES/chat.json +3 -0
  17. package/locales/es-ES/models.json +92 -17
  18. package/locales/es-ES/setting.json +0 -12
  19. package/locales/fa-IR/chat.json +3 -0
  20. package/locales/fa-IR/models.json +92 -17
  21. package/locales/fa-IR/setting.json +0 -12
  22. package/locales/fr-FR/chat.json +3 -0
  23. package/locales/fr-FR/models.json +92 -17
  24. package/locales/fr-FR/setting.json +0 -12
  25. package/locales/it-IT/chat.json +3 -0
  26. package/locales/it-IT/models.json +92 -17
  27. package/locales/it-IT/setting.json +0 -12
  28. package/locales/ja-JP/chat.json +3 -0
  29. package/locales/ja-JP/models.json +92 -17
  30. package/locales/ja-JP/setting.json +0 -12
  31. package/locales/ko-KR/chat.json +3 -0
  32. package/locales/ko-KR/models.json +92 -17
  33. package/locales/ko-KR/setting.json +0 -12
  34. package/locales/nl-NL/chat.json +3 -0
  35. package/locales/nl-NL/models.json +92 -17
  36. package/locales/nl-NL/setting.json +0 -12
  37. package/locales/pl-PL/chat.json +3 -0
  38. package/locales/pl-PL/models.json +92 -17
  39. package/locales/pl-PL/setting.json +0 -12
  40. package/locales/pt-BR/chat.json +3 -0
  41. package/locales/pt-BR/models.json +92 -17
  42. package/locales/pt-BR/setting.json +0 -12
  43. package/locales/ru-RU/chat.json +3 -0
  44. package/locales/ru-RU/models.json +92 -17
  45. package/locales/ru-RU/setting.json +0 -12
  46. package/locales/tr-TR/chat.json +3 -0
  47. package/locales/tr-TR/models.json +92 -17
  48. package/locales/tr-TR/setting.json +0 -12
  49. package/locales/vi-VN/chat.json +3 -0
  50. package/locales/vi-VN/models.json +92 -17
  51. package/locales/vi-VN/setting.json +0 -12
  52. package/locales/zh-CN/chat.json +3 -0
  53. package/locales/zh-CN/models.json +89 -14
  54. package/locales/zh-CN/setting.json +0 -12
  55. package/locales/zh-TW/chat.json +3 -0
  56. package/locales/zh-TW/models.json +92 -17
  57. package/locales/zh-TW/setting.json +0 -12
  58. package/package.json +1 -1
  59. package/src/config/aiModels/deepseek.ts +5 -3
  60. package/src/config/aiModels/groq.ts +16 -29
  61. package/src/config/aiModels/hunyuan.ts +104 -82
  62. package/src/config/aiModels/novita.ts +27 -121
  63. package/src/config/aiModels/openai.ts +19 -2
  64. package/src/config/aiModels/openrouter.ts +59 -47
  65. package/src/config/aiModels/siliconcloud.ts +73 -39
  66. package/src/config/aiModels/volcengine.ts +3 -3
  67. package/src/config/aiModels/xai.ts +2 -0
  68. package/src/config/modelProviders/zeroone.ts +3 -0
  69. package/src/features/AgentSetting/AgentModal/index.tsx +1 -26
  70. package/src/features/ChatInput/ActionBar/Model/ControlsForm.tsx +12 -0
  71. package/src/features/ChatInput/ActionBar/Model/ReasoningEffortSlider.tsx +57 -0
  72. package/src/libs/model-runtime/novita/__snapshots__/index.test.ts.snap +1 -1
  73. package/src/locales/default/chat.ts +3 -0
  74. package/src/locales/default/setting.ts +0 -12
  75. package/src/services/chat.ts +5 -1
  76. package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +0 -5
  77. package/src/types/agent/chatConfig.ts +1 -0
  78. package/src/types/aiModel.ts +5 -1
@@ -341,9 +341,6 @@
341
341
  "Qwen2.5-Coder-32B-Instruct": {
342
342
  "description": "Qwen2.5-Coder-32B-Instruct, kod üretimi, kod anlama ve verimli geliştirme senaryoları için tasarlanmış büyük bir dil modelidir. Sektördeki en ileri 32B parametre ölçeğini kullanarak çeşitli programlama ihtiyaçlarını karşılayabilir."
343
343
  },
344
- "SenseCat-5-1202": {
345
- "description": "V5.5 tabanlı en son sürüm olup, önceki sürüme göre Çince ve İngilizce temel yetenekler, sohbet, fen bilgisi, sosyal bilimler, yazma, matematiksel mantık, kelime sayısı kontrolü gibi birkaç boyutta önemli iyileştirmeler göstermektedir."
346
- },
347
344
  "SenseChat": {
348
345
  "description": "Temel sürüm model (V4), 4K bağlam uzunluğu ile genel yetenekleri güçlüdür."
349
346
  },
@@ -356,6 +353,9 @@
356
353
  "SenseChat-5": {
357
354
  "description": "En son sürüm model (V5.5), 128K bağlam uzunluğu, matematiksel akıl yürütme, İngilizce diyalog, talimat takibi ve uzun metin anlama gibi alanlarda önemli gelişmeler göstermektedir ve GPT-4o ile karşılaştırılabilir."
358
355
  },
356
+ "SenseChat-5-1202": {
357
+ "description": "V5.5 tabanlı en son sürüm olup, önceki sürüme kıyasla Çince ve İngilizce temel yetenekler, sohbet, fen bilimleri bilgisi, sosyal bilimler bilgisi, yazım, matematiksel mantık ve kelime sayısı kontrolü gibi birçok alanda belirgin gelişmeler sunar."
358
+ },
359
359
  "SenseChat-5-Cantonese": {
360
360
  "description": "32K bağlam uzunluğu ile, Kantonca diyalog anlama konusunda GPT-4'ü aşmakta, bilgi, akıl yürütme, matematik ve kod yazma gibi birçok alanda GPT-4 Turbo ile rekabet edebilmektedir."
361
361
  },
@@ -515,6 +515,12 @@
515
515
  "ai21-jamba-1.5-mini": {
516
516
  "description": "52B parametreli (12B aktif) çok dilli bir model, 256K uzun bağlam penceresi, fonksiyon çağrısı, yapılandırılmış çıktı ve temellendirilmiş üretim sunar."
517
517
  },
518
+ "ai21-labs/AI21-Jamba-1.5-Large": {
519
+ "description": "398 milyar parametreli (94 milyar aktif) çok dilli model, 256K uzun bağlam penceresi, fonksiyon çağrısı, yapılandırılmış çıktı ve gerçeklere dayalı üretim sunar."
520
+ },
521
+ "ai21-labs/AI21-Jamba-1.5-Mini": {
522
+ "description": "52 milyar parametreli (12 milyar aktif) çok dilli model, 256K uzun bağlam penceresi, fonksiyon çağrısı, yapılandırılmış çıktı ve gerçeklere dayalı üretim sunar."
523
+ },
518
524
  "anthropic.claude-3-5-sonnet-20240620-v1:0": {
519
525
  "description": "Claude 3.5 Sonnet, endüstri standartlarını yükselterek, rakip modelleri ve Claude 3 Opus'u geride bırakarak geniş bir değerlendirmede mükemmel performans sergilerken, orta seviye modellerimizin hızı ve maliyeti ile birlikte gelir."
520
526
  },
@@ -668,6 +674,12 @@
668
674
  "cohere-command-r-plus": {
669
675
  "description": "Command R+, kurumsal düzeyde iş yüklerini ele almak için tasarlanmış en son RAG optimize edilmiş bir modeldir."
670
676
  },
677
+ "cohere/Cohere-command-r": {
678
+ "description": "Command R, RAG ve araç kullanımı için ölçeklenebilir bir üretim modeli olup, işletmelerin üretim seviyesinde yapay zeka uygulamalarını gerçekleştirmesine olanak tanır."
679
+ },
680
+ "cohere/Cohere-command-r-plus": {
681
+ "description": "Command R+, işletme düzeyindeki iş yükleri için tasarlanmış, en gelişmiş RAG optimize modelidir."
682
+ },
671
683
  "command": {
672
684
  "description": "Dil görevlerinde yüksek kalite ve güvenilirlik sunan, talimatları izleyen bir diyalog modelidir ve temel üretim modelimize göre daha uzun bir bağlam uzunluğuna sahiptir."
673
685
  },
@@ -1028,6 +1040,12 @@
1028
1040
  "gemini-2.5-flash-preview-04-17": {
1029
1041
  "description": "Gemini 2.5 Flash Önizleme, Google'ın en iyi fiyat-performans oranına sahip modelidir ve kapsamlı özellikler sunar."
1030
1042
  },
1043
+ "gemini-2.5-flash-preview-04-17-thinking": {
1044
+ "description": "Gemini 2.5 Flash Önizleme, Google'ın en yüksek maliyet-performans modelidir ve kapsamlı özellikler sunar."
1045
+ },
1046
+ "gemini-2.5-flash-preview-05-20": {
1047
+ "description": "Gemini 2.5 Flash Önizleme, Google'ın en yüksek maliyet-performans modelidir ve kapsamlı özellikler sunar."
1048
+ },
1031
1049
  "gemini-2.5-pro-exp-03-25": {
1032
1050
  "description": "Gemini 2.5 Pro Deneysel, Google'ın en gelişmiş düşünce modeli olup, kod, matematik ve STEM alanlarındaki karmaşık sorunları akıl yürütebilmektedir. Ayrıca, uzun bağlamları kullanarak büyük veri setlerini, kod havuzlarını ve belgeleri analiz edebilir."
1033
1051
  },
@@ -1262,23 +1280,17 @@
1262
1280
  "grok-2-vision-1212": {
1263
1281
  "description": "Bu model, doğruluk, talimat takibi ve çok dilli yetenekler açısından geliştirilmiştir."
1264
1282
  },
1265
- "grok-3-beta": {
1266
- "description": "Amiral gemisi model, veri çıkarımı, programlama ve metin özeti gibi kurumsal uygulamalarda uzmandır ve finans, sağlık, hukuk ve bilim gibi alanlarda derin bir bilgiye sahiptir."
1283
+ "grok-3": {
1284
+ "description": "Amiral gemisi model olup, veri çıkarımı, programlama ve metin özetleme gibi kurumsal uygulamalarda uzmandır; finans, sağlık, hukuk ve bilim alanlarında derin bilgiye sahiptir."
1267
1285
  },
1268
- "grok-3-fast-beta": {
1269
- "description": "Amiral gemisi model, veri çıkarımı, programlama ve metin özeti gibi kurumsal uygulamalarda uzmandır ve finans, sağlık, hukuk ve bilim gibi alanlarda derin bir bilgiye sahiptir."
1286
+ "grok-3-fast": {
1287
+ "description": "Amiral gemisi model olup, veri çıkarımı, programlama ve metin özetleme gibi kurumsal uygulamalarda uzmandır; finans, sağlık, hukuk ve bilim alanlarında derin bilgiye sahiptir."
1270
1288
  },
1271
- "grok-3-mini-beta": {
1272
- "description": "Hafif model, konuşmadan önce düşünür. Hızlı ve akıllı çalışır, derin alan bilgisi gerektirmeyen mantıksal görevler için uygundur ve ham düşünce izlerini elde edebilir."
1289
+ "grok-3-mini": {
1290
+ "description": "Hafif model olup, konuşma öncesi düşünür. Hızlı ve akıllı çalışır, derin alan bilgisi gerektirmeyen mantıksal görevler için uygundur ve orijinal düşünce izlerini elde edebilir."
1273
1291
  },
1274
- "grok-3-mini-fast-beta": {
1275
- "description": "Hafif model, konuşmadan önce düşünür. Hızlı ve akıllı çalışır, derin alan bilgisi gerektirmeyen mantıksal görevler için uygundur ve ham düşünce izlerini elde edebilir."
1276
- },
1277
- "grok-beta": {
1278
- "description": "Grok 2 ile karşılaştırılabilir performansa sahip, ancak daha yüksek verimlilik, hız ve işlevsellik sunar."
1279
- },
1280
- "grok-vision-beta": {
1281
- "description": "En son görüntü anlama modeli, belgeler, grafikler, ekran görüntüleri ve fotoğraflar gibi çeşitli görsel bilgileri işleyebilir."
1292
+ "grok-3-mini-fast": {
1293
+ "description": "Hafif model olup, konuşma öncesi düşünür. Hızlı ve akıllı çalışır, derin alan bilgisi gerektirmeyen mantıksal görevler için uygundur ve orijinal düşünce izlerini elde edebilir."
1282
1294
  },
1283
1295
  "gryphe/mythomax-l2-13b": {
1284
1296
  "description": "MythoMax l2 13B, birden fazla üst düzey modelin birleşimiyle yaratıcı ve zeka odaklı bir dil modelidir."
@@ -1322,6 +1334,9 @@
1322
1334
  "hunyuan-t1-latest": {
1323
1335
  "description": "Sektördeki ilk ultra büyük ölçekli Hybrid-Transformer-Mamba çıkarım modeli, çıkarım yeteneklerini genişletir, yüksek çözümleme hızı sunar ve insan tercihleri ile daha iyi hizalanır."
1324
1336
  },
1337
+ "hunyuan-t1-vision": {
1338
+ "description": "Hunyuan çok modlu anlayış derin düşünme modeli, çok modlu doğal uzun düşünce zincirini destekler, çeşitli görsel çıkarım senaryolarında uzmandır ve fen bilimleri problemlerinde hızlı düşünme modellerine kıyasla kapsamlı iyileşme sağlar."
1339
+ },
1325
1340
  "hunyuan-translation": {
1326
1341
  "description": "Çince ve İngilizce, Japonca, Fransızca, Portekizce, İspanyolca, Türkçe, Rusça, Arapça, Korece, İtalyanca, Almanca, Vietnamca, Malayca, Endonezyaca dahil olmak üzere 15 dil arasında çeviri desteği sunar. Çoklu senaryo çeviri değerlendirme setine dayalı otomatik değerlendirme COMET puanı ile, ondan fazla yaygın dildeki çeviri yetenekleri, pazarın aynı ölçekli modellerine göre genel olarak daha üstündür."
1327
1342
  },
@@ -1586,6 +1601,30 @@
1586
1601
  "meta.llama3-8b-instruct-v1:0": {
1587
1602
  "description": "Meta Llama 3, geliştiriciler, araştırmacılar ve işletmeler için açık bir büyük dil modelidir (LLM) ve onların üretken AI fikirlerini inşa etmelerine, denemelerine ve sorumlu bir şekilde genişletmelerine yardımcı olmak için tasarlanmıştır. Küresel topluluk yeniliğinin temel sistemlerinden biri olarak, sınırlı hesaplama gücü ve kaynaklara sahip, kenar cihazları ve daha hızlı eğitim süreleri için son derece uygundur."
1588
1603
  },
1604
+ "meta/Llama-3.2-11B-Vision-Instruct": {
1605
+ "description": "Yüksek çözünürlüklü görüntülerde üstün görsel çıkarım yeteneği sunar, görsel anlama uygulamaları için idealdir."
1606
+ },
1607
+ "meta/Llama-3.2-90B-Vision-Instruct": {
1608
+ "description": "Görsel anlama ajan uygulamaları için gelişmiş görüntü çıkarım yetenekleri sağlar."
1609
+ },
1610
+ "meta/Llama-3.3-70B-Instruct": {
1611
+ "description": "Llama 3.3, Llama serisinin en gelişmiş çok dilli açık kaynak büyük dil modeli olup, 405 milyar parametreli modellere kıyasla çok düşük maliyetle yüksek performans sunar. Transformer mimarisi temel alınmış, denetimli ince ayar (SFT) ve insan geri bildirimi ile güçlendirilmiş pekiştirmeli öğrenme (RLHF) ile faydalılık ve güvenlik artırılmıştır. Çok dilli diyaloglar için optimize edilmiş talimat ayarlı versiyonu, birçok endüstri kıyaslamasında açık ve kapalı sohbet modellerinden üstün performans gösterir. Bilgi kesim tarihi 2023 Aralık'tır."
1612
+ },
1613
+ "meta/Meta-Llama-3-70B-Instruct": {
1614
+ "description": "Çıkarım, kodlama ve geniş dil uygulamalarında üstün performans gösteren güçlü 70 milyar parametreli model."
1615
+ },
1616
+ "meta/Meta-Llama-3-8B-Instruct": {
1617
+ "description": "Diyalog ve metin üretimi görevleri için optimize edilmiş çok yönlü 8 milyar parametreli model."
1618
+ },
1619
+ "meta/Meta-Llama-3.1-405B-Instruct": {
1620
+ "description": "Llama 3.1 talimat ayarlı metin modeli, çok dilli diyalog senaryoları için optimize edilmiştir ve birçok açık ve kapalı sohbet modeli arasında yaygın endüstri kıyaslamalarında üstün performans sergiler."
1621
+ },
1622
+ "meta/Meta-Llama-3.1-70B-Instruct": {
1623
+ "description": "Llama 3.1 talimat ayarlı metin modeli, çok dilli diyalog senaryoları için optimize edilmiştir ve birçok açık ve kapalı sohbet modeli arasında yaygın endüstri kıyaslamalarında üstün performans sergiler."
1624
+ },
1625
+ "meta/Meta-Llama-3.1-8B-Instruct": {
1626
+ "description": "Llama 3.1 talimat ayarlı metin modeli, çok dilli diyalog senaryoları için optimize edilmiştir ve birçok açık ve kapalı sohbet modeli arasında yaygın endüstri kıyaslamalarında üstün performans sergiler."
1627
+ },
1589
1628
  "meta/llama-3.1-405b-instruct": {
1590
1629
  "description": "Gelişmiş LLM, sentetik veri üretimi, bilgi damıtma ve akıl yürütmeyi destekler, sohbet botları, programlama ve belirli alan görevleri için uygundur."
1591
1630
  },
@@ -1610,6 +1649,30 @@
1610
1649
  "meta/llama-3.3-70b-instruct": {
1611
1650
  "description": "Akıllı LLM, akıl yürütme, matematik, genel bilgi ve fonksiyon çağrılarında uzmandır."
1612
1651
  },
1652
+ "microsoft/Phi-3-medium-128k-instruct": {
1653
+ "description": "Aynı Phi-3-medium modeli, ancak daha büyük bağlam boyutuna sahip olup RAG veya az sayıda istem için uygundur."
1654
+ },
1655
+ "microsoft/Phi-3-medium-4k-instruct": {
1656
+ "description": "140 milyar parametreli model, Phi-3-mini'den daha yüksek kaliteye sahip olup, yüksek kaliteli ve çıkarım yoğun veriye odaklanır."
1657
+ },
1658
+ "microsoft/Phi-3-mini-128k-instruct": {
1659
+ "description": "Aynı Phi-3-mini modeli, ancak daha büyük bağlam boyutuna sahip olup RAG veya az sayıda istem için uygundur."
1660
+ },
1661
+ "microsoft/Phi-3-mini-4k-instruct": {
1662
+ "description": "Phi-3 ailesinin en küçük üyesi olup, kalite ve düşük gecikme için optimize edilmiştir."
1663
+ },
1664
+ "microsoft/Phi-3-small-128k-instruct": {
1665
+ "description": "Aynı Phi-3-small modeli, ancak daha büyük bağlam boyutuna sahip olup RAG veya az sayıda istem için uygundur."
1666
+ },
1667
+ "microsoft/Phi-3-small-8k-instruct": {
1668
+ "description": "70 milyar parametreli model, Phi-3-mini'den daha yüksek kaliteye sahip olup, yüksek kaliteli ve çıkarım yoğun veriye odaklanır."
1669
+ },
1670
+ "microsoft/Phi-3.5-mini-instruct": {
1671
+ "description": "Phi-3-mini modelinin güncellenmiş versiyonu."
1672
+ },
1673
+ "microsoft/Phi-3.5-vision-instruct": {
1674
+ "description": "Phi-3-vision modelinin güncellenmiş versiyonu."
1675
+ },
1613
1676
  "microsoft/WizardLM-2-8x22B": {
1614
1677
  "description": "WizardLM 2, Microsoft AI tarafından sağlanan bir dil modelidir ve karmaşık diyaloglar, çok dilli destek, akıl yürütme ve akıllı asistan alanlarında özellikle başarılıdır."
1615
1678
  },
@@ -1628,6 +1691,15 @@
1628
1691
  "mistral": {
1629
1692
  "description": "Mistral, Mistral AI tarafından sunulan 7B modelidir, değişken dil işleme ihtiyaçları için uygundur."
1630
1693
  },
1694
+ "mistral-ai/Mistral-Large-2411": {
1695
+ "description": "Mistral'in amiral gemisi modeli olup, büyük ölçekli çıkarım yetenekleri veya yüksek derecede uzmanlaşmış karmaşık görevler (metin sentezi, kod üretimi, RAG veya ajanlar) için uygundur."
1696
+ },
1697
+ "mistral-ai/Mistral-Nemo": {
1698
+ "description": "Mistral Nemo, boyut kategorisinde en gelişmiş çıkarım, dünya bilgisi ve kodlama yeteneklerine sahip ileri düzey bir dil modelidir (LLM)."
1699
+ },
1700
+ "mistral-ai/mistral-small-2503": {
1701
+ "description": "Mistral Small, yüksek verimlilik ve düşük gecikme gerektiren dil tabanlı görevler için uygundur."
1702
+ },
1631
1703
  "mistral-large": {
1632
1704
  "description": "Mixtral Large, Mistral'ın amiral gemisi modelidir, kod üretimi, matematik ve akıl yürütme yeteneklerini birleştirir, 128k bağlam penceresini destekler."
1633
1705
  },
@@ -1769,6 +1841,9 @@
1769
1841
  "openai/gpt-4o-mini": {
1770
1842
  "description": "GPT-4o mini, OpenAI'nin GPT-4 Omni'den sonra sunduğu en son modeldir; görsel ve metin girişi destekler ve metin çıktısı verir. En gelişmiş küçük model olarak, diğer son zamanlardaki öncü modellere göre çok daha ucuzdur ve GPT-3.5 Turbo'dan %60'tan fazla daha ucuzdur. En son teknolojiyi korurken, önemli bir maliyet etkinliği sunar. GPT-4o mini, MMLU testinde %82 puan almış olup, şu anda sohbet tercihleri açısından GPT-4'ün üzerinde bir sıralamaya sahiptir."
1771
1843
  },
1844
+ "openai/o1": {
1845
+ "description": "o1, OpenAI'nin yeni çıkarım modeli olup, metin ve görsel girişleri destekler ve metin çıktısı üretir; geniş kapsamlı genel bilgi gerektiren karmaşık görevler için uygundur. Model, 200K bağlam uzunluğuna ve 2023 Ekim bilgi kesim tarihine sahiptir."
1846
+ },
1772
1847
  "openai/o1-mini": {
1773
1848
  "description": "o1-mini, programlama, matematik ve bilim uygulama senaryoları için tasarlanmış hızlı ve ekonomik bir akıl yürütme modelidir. Bu model, 128K bağlam ve Ekim 2023 bilgi kesim tarihi ile donatılmıştır."
1774
1849
  },
@@ -259,9 +259,6 @@
259
259
  "enableMaxTokens": {
260
260
  "title": "Max Token Sınırlamasını Etkinleştir"
261
261
  },
262
- "enableReasoningEffort": {
263
- "title": "Akıl yürütme yoğunluğunu ayarla"
264
- },
265
262
  "frequencyPenalty": {
266
263
  "desc": "Değer ne kadar büyükse, kelime dağarcığı o kadar zengin ve çeşitli olur; değer ne kadar düşükse, kelimeler o kadar sade ve basit olur.",
267
264
  "title": "Kelime Zenginliği"
@@ -281,15 +278,6 @@
281
278
  "desc": "Değer ne kadar büyükse, farklı ifade biçimlerine yönelme eğilimi artar, kavram tekrarından kaçınılır; değer ne kadar küçükse, tekrar eden kavramlar veya anlatımlar kullanma eğilimi artar, ifade daha tutarlı olur.",
282
279
  "title": "İfade Çeşitliliği"
283
280
  },
284
- "reasoningEffort": {
285
- "desc": "Değer ne kadar yüksekse, akıl yürütme yeteneği o kadar güçlüdür, ancak yanıt süresi ve Token tüketimini artırabilir",
286
- "options": {
287
- "high": "Yüksek",
288
- "low": "Düşük",
289
- "medium": "Orta"
290
- },
291
- "title": "Akıl yürütme yoğunluğu"
292
- },
293
281
  "submit": "Model ayarlarını güncelle",
294
282
  "temperature": {
295
283
  "desc": "Değer ne kadar büyükse, cevap o kadar yaratıcı ve hayal gücü dolu olur; değer ne kadar küçükse, cevap o kadar titizdir.",
@@ -43,6 +43,9 @@
43
43
  "reasoningBudgetToken": {
44
44
  "title": "Token tiêu tốn cho tư duy"
45
45
  },
46
+ "reasoningEffort": {
47
+ "title": "Cường độ suy luận"
48
+ },
46
49
  "title": "Chức năng mở rộng mô hình"
47
50
  },
48
51
  "history": {
@@ -341,9 +341,6 @@
341
341
  "Qwen2.5-Coder-32B-Instruct": {
342
342
  "description": "Qwen2.5-Coder-32B-Instruct là một mô hình ngôn ngữ lớn được thiết kế đặc biệt cho việc tạo mã, hiểu mã và các tình huống phát triển hiệu quả, với quy mô 32B tham số hàng đầu trong ngành, có thể đáp ứng nhu cầu lập trình đa dạng."
343
343
  },
344
- "SenseCat-5-1202": {
345
- "description": "Là phiên bản mới nhất dựa trên V5.5, có sự cải thiện đáng kể so với phiên bản trước về khả năng cơ bản tiếng Trung và tiếng Anh, trò chuyện, kiến thức khoa học tự nhiên, kiến thức nhân văn, viết lách, logic toán học, kiểm soát số từ, và nhiều khía cạnh khác."
346
- },
347
344
  "SenseChat": {
348
345
  "description": "Mô hình phiên bản cơ bản (V4), độ dài ngữ cảnh 4K, khả năng tổng quát mạnh mẽ."
349
346
  },
@@ -356,6 +353,9 @@
356
353
  "SenseChat-5": {
357
354
  "description": "Phiên bản mô hình mới nhất (V5.5), độ dài ngữ cảnh 128K, khả năng cải thiện đáng kể trong suy luận toán học, đối thoại tiếng Anh, theo dõi chỉ dẫn và hiểu biết văn bản dài, ngang tầm với GPT-4o."
358
355
  },
356
+ "SenseChat-5-1202": {
357
+ "description": "Phiên bản mới nhất dựa trên V5.5, cải thiện đáng kể về năng lực cơ bản tiếng Trung và tiếng Anh, trò chuyện, kiến thức khoa học tự nhiên, khoa học xã hội, viết lách, logic toán học và kiểm soát số lượng từ so với phiên bản trước."
358
+ },
359
359
  "SenseChat-5-Cantonese": {
360
360
  "description": "Độ dài ngữ cảnh 32K, vượt qua GPT-4 trong hiểu biết đối thoại tiếng Quảng Đông, có thể so sánh với GPT-4 Turbo trong nhiều lĩnh vực như kiến thức, suy luận, toán học và lập trình mã."
361
361
  },
@@ -515,6 +515,12 @@
515
515
  "ai21-jamba-1.5-mini": {
516
516
  "description": "Mô hình đa ngôn ngữ với 52B tham số (12B hoạt động), cung cấp cửa sổ ngữ cảnh dài 256K, gọi hàm, đầu ra có cấu trúc và tạo ra nội dung có căn cứ."
517
517
  },
518
+ "ai21-labs/AI21-Jamba-1.5-Large": {
519
+ "description": "Một mô hình đa ngôn ngữ với 398 tỷ tham số (94 tỷ tham số hoạt động), cung cấp cửa sổ ngữ cảnh dài 256K, gọi hàm, đầu ra có cấu trúc và sinh dựa trên sự thật."
520
+ },
521
+ "ai21-labs/AI21-Jamba-1.5-Mini": {
522
+ "description": "Một mô hình đa ngôn ngữ với 52 tỷ tham số (12 tỷ tham số hoạt động), cung cấp cửa sổ ngữ cảnh dài 256K, gọi hàm, đầu ra có cấu trúc và sinh dựa trên sự thật."
523
+ },
518
524
  "anthropic.claude-3-5-sonnet-20240620-v1:0": {
519
525
  "description": "Claude 3.5 Sonnet nâng cao tiêu chuẩn ngành, hiệu suất vượt trội hơn các mô hình cạnh tranh và Claude 3 Opus, thể hiện xuất sắc trong nhiều đánh giá, đồng thời có tốc độ và chi phí của mô hình tầm trung của chúng tôi."
520
526
  },
@@ -668,6 +674,12 @@
668
674
  "cohere-command-r-plus": {
669
675
  "description": "Command R+ là mô hình tối ưu hóa RAG hiện đại, được thiết kế để xử lý khối lượng công việc cấp doanh nghiệp."
670
676
  },
677
+ "cohere/Cohere-command-r": {
678
+ "description": "Command R là một mô hình sinh có thể mở rộng, được thiết kế cho việc sử dụng RAG và công cụ, giúp doanh nghiệp triển khai AI cấp sản xuất."
679
+ },
680
+ "cohere/Cohere-command-r-plus": {
681
+ "description": "Command R+ là mô hình tối ưu RAG tiên tiến nhất, được thiết kế để xử lý khối lượng công việc cấp doanh nghiệp."
682
+ },
671
683
  "command": {
672
684
  "description": "Một mô hình đối thoại tuân theo chỉ dẫn, thể hiện chất lượng cao và đáng tin cậy trong các nhiệm vụ ngôn ngữ, đồng thời có độ dài ngữ cảnh dài hơn so với mô hình sinh cơ bản của chúng tôi."
673
685
  },
@@ -1028,6 +1040,12 @@
1028
1040
  "gemini-2.5-flash-preview-04-17": {
1029
1041
  "description": "Gemini 2.5 Flash Preview là mô hình có giá trị tốt nhất của Google, cung cấp đầy đủ các tính năng."
1030
1042
  },
1043
+ "gemini-2.5-flash-preview-04-17-thinking": {
1044
+ "description": "Gemini 2.5 Flash Preview là mô hình có hiệu suất chi phí tốt nhất của Google, cung cấp các tính năng toàn diện."
1045
+ },
1046
+ "gemini-2.5-flash-preview-05-20": {
1047
+ "description": "Gemini 2.5 Flash Preview là mô hình có hiệu suất chi phí tốt nhất của Google, cung cấp các tính năng toàn diện."
1048
+ },
1031
1049
  "gemini-2.5-pro-exp-03-25": {
1032
1050
  "description": "Gemini 2.5 Pro Experimental là mô hình tư duy tiên tiến nhất của Google, có khả năng suy luận về mã, toán học và các vấn đề phức tạp trong lĩnh vực STEM, đồng thời có thể phân tích các tập dữ liệu lớn, kho mã và tài liệu bằng cách sử dụng ngữ cảnh dài."
1033
1051
  },
@@ -1262,23 +1280,17 @@
1262
1280
  "grok-2-vision-1212": {
1263
1281
  "description": "Mô hình này đã được cải thiện về độ chính xác, khả năng tuân thủ hướng dẫn và khả năng đa ngôn ngữ."
1264
1282
  },
1265
- "grok-3-beta": {
1266
- "description": "Mô hình hàng đầu, chuyên về trích xuất dữ liệu, lập trình và tóm tắt văn bản cho các ứng dụng doanh nghiệp, kiến thức sâu rộng trong các lĩnh vực tài chính, y tế, pháp lý và khoa học."
1283
+ "grok-3": {
1284
+ "description": "Mô hình chủ lực, xuất sắc trong trích xuất dữ liệu, lập trình và tóm tắt văn bản cho các ứng dụng doanh nghiệp, sở hữu kiến thức sâu rộng trong các lĩnh vực tài chính, y tế, pháp lý và khoa học."
1267
1285
  },
1268
- "grok-3-fast-beta": {
1269
- "description": "Mô hình hàng đầu, chuyên về trích xuất dữ liệu, lập trình và tóm tắt văn bản cho các ứng dụng doanh nghiệp, kiến thức sâu rộng trong các lĩnh vực tài chính, y tế, pháp lý và khoa học."
1286
+ "grok-3-fast": {
1287
+ "description": "Mô hình chủ lực, xuất sắc trong trích xuất dữ liệu, lập trình và tóm tắt văn bản cho các ứng dụng doanh nghiệp, sở hữu kiến thức sâu rộng trong các lĩnh vực tài chính, y tế, pháp lý và khoa học."
1270
1288
  },
1271
- "grok-3-mini-beta": {
1272
- "description": "Mô hình nhẹ, sẽ suy nghĩ trước khi trò chuyện. Chạy nhanh, thông minh, phù hợp cho các nhiệm vụ logic không cần kiến thức chuyên sâu, và có thể thu thập được các dấu vết tư duy ban đầu."
1289
+ "grok-3-mini": {
1290
+ "description": "Mô hình nhẹ, suy nghĩ trước khi trả lời. Chạy nhanh, thông minh, phù hợp cho các nhiệm vụ logic không đòi hỏi kiến thức chuyên sâu và có thể truy xuất được chuỗi suy nghĩ gốc."
1273
1291
  },
1274
- "grok-3-mini-fast-beta": {
1275
- "description": "Mô hình nhẹ, sẽ suy nghĩ trước khi trò chuyện. Chạy nhanh, thông minh, phù hợp cho các nhiệm vụ logic không cần kiến thức chuyên sâu, và có thể thu thập được các dấu vết tư duy ban đầu."
1276
- },
1277
- "grok-beta": {
1278
- "description": "Có hiệu suất tương đương với Grok 2, nhưng hiệu quả, tốc độ và tính năng cao hơn."
1279
- },
1280
- "grok-vision-beta": {
1281
- "description": "Mô hình hiểu hình ảnh mới nhất, có khả năng xử lý nhiều loại thông tin hình ảnh khác nhau, bao gồm tài liệu, biểu đồ, ảnh chụp màn hình và ảnh."
1292
+ "grok-3-mini-fast": {
1293
+ "description": "Mô hình nhẹ, suy nghĩ trước khi trả lời. Chạy nhanh, thông minh, phù hợp cho các nhiệm vụ logic không đòi hỏi kiến thức chuyên sâu và có thể truy xuất được chuỗi suy nghĩ gốc."
1282
1294
  },
1283
1295
  "gryphe/mythomax-l2-13b": {
1284
1296
  "description": "MythoMax l2 13B là mô hình ngôn ngữ kết hợp giữa sáng tạo và trí thông minh, kết hợp nhiều mô hình hàng đầu."
@@ -1322,6 +1334,9 @@
1322
1334
  "hunyuan-t1-latest": {
1323
1335
  "description": "Mô hình suy luận Hybrid-Transformer-Mamba quy mô siêu lớn đầu tiên trong ngành, mở rộng khả năng suy luận, tốc độ giải mã cực nhanh, và tiếp tục điều chỉnh theo sở thích của con người."
1324
1336
  },
1337
+ "hunyuan-t1-vision": {
1338
+ "description": "Mô hình suy nghĩ sâu đa phương thức Hunyuan, hỗ trợ chuỗi suy nghĩ dài nguyên bản đa phương thức, xuất sắc trong các tình huống suy luận hình ảnh đa dạng, cải thiện toàn diện so với mô hình suy nghĩ nhanh trong các bài toán khoa học tự nhiên."
1339
+ },
1325
1340
  "hunyuan-translation": {
1326
1341
  "description": "Hỗ trợ dịch giữa 15 ngôn ngữ bao gồm tiếng Trung, tiếng Anh, tiếng Nhật, tiếng Pháp, tiếng Bồ Đào Nha, tiếng Tây Ban Nha, tiếng Thổ Nhĩ Kỳ, tiếng Nga, tiếng Ả Rập, tiếng Hàn, tiếng Ý, tiếng Đức, tiếng Việt, tiếng Mã Lai và tiếng Indonesia, dựa trên bộ đánh giá dịch tự động hóa COMET, có khả năng dịch giữa các ngôn ngữ phổ biến tốt hơn so với các mô hình cùng quy mô trên thị trường."
1327
1342
  },
@@ -1586,6 +1601,30 @@
1586
1601
  "meta.llama3-8b-instruct-v1:0": {
1587
1602
  "description": "Meta Llama 3 là một mô hình ngôn ngữ lớn (LLM) mở dành cho các nhà phát triển, nhà nghiên cứu và doanh nghiệp, nhằm giúp họ xây dựng, thử nghiệm và mở rộng ý tưởng AI sinh một cách có trách nhiệm. Là một phần của hệ thống cơ sở hạ tầng đổi mới toàn cầu, nó rất phù hợp cho các thiết bị biên và thời gian huấn luyện nhanh hơn với khả năng tính toán và tài nguyên hạn chế."
1588
1603
  },
1604
+ "meta/Llama-3.2-11B-Vision-Instruct": {
1605
+ "description": "Khả năng suy luận hình ảnh xuất sắc trên hình ảnh độ phân giải cao, phù hợp cho các ứng dụng hiểu biết thị giác."
1606
+ },
1607
+ "meta/Llama-3.2-90B-Vision-Instruct": {
1608
+ "description": "Khả năng suy luận hình ảnh nâng cao dành cho các ứng dụng đại lý hiểu biết thị giác."
1609
+ },
1610
+ "meta/Llama-3.3-70B-Instruct": {
1611
+ "description": "Llama 3.3 là mô hình ngôn ngữ lớn đa ngôn ngữ mã nguồn mở tiên tiến nhất trong dòng Llama, mang lại hiệu suất tương đương mô hình 405 tỷ tham số với chi phí rất thấp. Dựa trên kiến trúc Transformer, được cải thiện qua huấn luyện giám sát (SFT) và học tăng cường từ phản hồi con người (RLHF) để nâng cao tính hữu ích và an toàn. Phiên bản tinh chỉnh chỉ dẫn được tối ưu cho đối thoại đa ngôn ngữ, vượt trội trên nhiều chuẩn mực ngành so với nhiều mô hình trò chuyện mã nguồn mở và đóng. Kiến thức cập nhật đến tháng 12 năm 2023."
1612
+ },
1613
+ "meta/Meta-Llama-3-70B-Instruct": {
1614
+ "description": "Một mô hình mạnh mẽ với 70 tỷ tham số, thể hiện xuất sắc trong suy luận, mã hóa và các ứng dụng ngôn ngữ đa dạng."
1615
+ },
1616
+ "meta/Meta-Llama-3-8B-Instruct": {
1617
+ "description": "Một mô hình đa năng với 8 tỷ tham số, được tối ưu cho các nhiệm vụ đối thoại và tạo văn bản."
1618
+ },
1619
+ "meta/Meta-Llama-3.1-405B-Instruct": {
1620
+ "description": "Mô hình văn bản Llama 3.1 được tinh chỉnh chỉ dẫn, tối ưu cho các trường hợp sử dụng đối thoại đa ngôn ngữ, thể hiện xuất sắc trên nhiều chuẩn mực ngành so với nhiều mô hình trò chuyện mã nguồn mở và đóng hiện có."
1621
+ },
1622
+ "meta/Meta-Llama-3.1-70B-Instruct": {
1623
+ "description": "Mô hình văn bản Llama 3.1 được tinh chỉnh chỉ dẫn, tối ưu cho các trường hợp sử dụng đối thoại đa ngôn ngữ, thể hiện xuất sắc trên nhiều chuẩn mực ngành so với nhiều mô hình trò chuyện mã nguồn mở và đóng hiện có."
1624
+ },
1625
+ "meta/Meta-Llama-3.1-8B-Instruct": {
1626
+ "description": "Mô hình văn bản Llama 3.1 được tinh chỉnh chỉ dẫn, tối ưu cho các trường hợp sử dụng đối thoại đa ngôn ngữ, thể hiện xuất sắc trên nhiều chuẩn mực ngành so với nhiều mô hình trò chuyện mã nguồn mở và đóng hiện có."
1627
+ },
1589
1628
  "meta/llama-3.1-405b-instruct": {
1590
1629
  "description": "LLM cao cấp, hỗ trợ tạo dữ liệu tổng hợp, chưng cất kiến thức và suy luận, phù hợp cho chatbot, lập trình và các nhiệm vụ chuyên biệt."
1591
1630
  },
@@ -1610,6 +1649,30 @@
1610
1649
  "meta/llama-3.3-70b-instruct": {
1611
1650
  "description": "Mô hình LLM tiên tiến, xuất sắc trong suy luận, toán học, kiến thức chung và gọi hàm."
1612
1651
  },
1652
+ "microsoft/Phi-3-medium-128k-instruct": {
1653
+ "description": "Cùng mô hình Phi-3-medium nhưng với kích thước ngữ cảnh lớn hơn, phù hợp cho RAG hoặc ít gợi ý."
1654
+ },
1655
+ "microsoft/Phi-3-medium-4k-instruct": {
1656
+ "description": "Mô hình 14 tỷ tham số, chất lượng vượt trội so với Phi-3-mini, tập trung vào dữ liệu suy luận chất lượng cao."
1657
+ },
1658
+ "microsoft/Phi-3-mini-128k-instruct": {
1659
+ "description": "Cùng mô hình Phi-3-mini nhưng với kích thước ngữ cảnh lớn hơn, phù hợp cho RAG hoặc ít gợi ý."
1660
+ },
1661
+ "microsoft/Phi-3-mini-4k-instruct": {
1662
+ "description": "Thành viên nhỏ nhất trong gia đình Phi-3, được tối ưu cho chất lượng và độ trễ thấp."
1663
+ },
1664
+ "microsoft/Phi-3-small-128k-instruct": {
1665
+ "description": "Cùng mô hình Phi-3-small nhưng với kích thước ngữ cảnh lớn hơn, phù hợp cho RAG hoặc ít gợi ý."
1666
+ },
1667
+ "microsoft/Phi-3-small-8k-instruct": {
1668
+ "description": "Mô hình 7 tỷ tham số, chất lượng vượt trội so với Phi-3-mini, tập trung vào dữ liệu suy luận chất lượng cao."
1669
+ },
1670
+ "microsoft/Phi-3.5-mini-instruct": {
1671
+ "description": "Phiên bản cập nhật của mô hình Phi-3-mini."
1672
+ },
1673
+ "microsoft/Phi-3.5-vision-instruct": {
1674
+ "description": "Phiên bản cập nhật của mô hình Phi-3-vision."
1675
+ },
1613
1676
  "microsoft/WizardLM-2-8x22B": {
1614
1677
  "description": "WizardLM 2 là mô hình ngôn ngữ do AI của Microsoft cung cấp, thể hiện xuất sắc trong các lĩnh vực đối thoại phức tạp, đa ngôn ngữ, suy luận và trợ lý thông minh."
1615
1678
  },
@@ -1628,6 +1691,15 @@
1628
1691
  "mistral": {
1629
1692
  "description": "Mistral là mô hình 7B do Mistral AI phát hành, phù hợp cho các nhu cầu xử lý ngôn ngữ đa dạng."
1630
1693
  },
1694
+ "mistral-ai/Mistral-Large-2411": {
1695
+ "description": "Mô hình chủ lực của Mistral, phù hợp cho các nhiệm vụ phức tạp cần khả năng suy luận quy mô lớn hoặc chuyên môn cao (tổng hợp văn bản, tạo mã, RAG hoặc đại lý)."
1696
+ },
1697
+ "mistral-ai/Mistral-Nemo": {
1698
+ "description": "Mistral Nemo là một mô hình ngôn ngữ tiên tiến (LLM), sở hữu khả năng suy luận, kiến thức thế giới và mã hóa hàng đầu trong phân khúc kích thước của nó."
1699
+ },
1700
+ "mistral-ai/mistral-small-2503": {
1701
+ "description": "Mistral Small phù hợp cho bất kỳ nhiệm vụ dựa trên ngôn ngữ nào cần hiệu quả cao và độ trễ thấp."
1702
+ },
1631
1703
  "mistral-large": {
1632
1704
  "description": "Mixtral Large là mô hình hàng đầu của Mistral, kết hợp khả năng sinh mã, toán học và suy luận, hỗ trợ cửa sổ ngữ cảnh 128k."
1633
1705
  },
@@ -1769,6 +1841,9 @@
1769
1841
  "openai/gpt-4o-mini": {
1770
1842
  "description": "GPT-4o mini là mô hình mới nhất của OpenAI, được phát hành sau GPT-4 Omni, hỗ trợ đầu vào hình ảnh và văn bản, và đầu ra văn bản. Là mô hình nhỏ tiên tiến nhất của họ, nó rẻ hơn nhiều so với các mô hình tiên tiến gần đây khác và rẻ hơn hơn 60% so với GPT-3.5 Turbo. Nó giữ lại trí thông minh tiên tiến nhất trong khi có giá trị sử dụng đáng kể. GPT-4o mini đạt 82% điểm trong bài kiểm tra MMLU và hiện đứng đầu về sở thích trò chuyện so với GPT-4."
1771
1843
  },
1844
+ "openai/o1": {
1845
+ "description": "o1 là mô hình suy luận mới của OpenAI, hỗ trợ đầu vào hình ảnh và văn bản, đồng thời xuất ra văn bản, phù hợp cho các nhiệm vụ phức tạp đòi hỏi kiến thức phổ quát rộng rãi. Mô hình này có ngữ cảnh 200K và kiến thức cập nhật đến tháng 10 năm 2023."
1846
+ },
1772
1847
  "openai/o1-mini": {
1773
1848
  "description": "o1-mini là một mô hình suy diễn nhanh chóng và tiết kiệm chi phí, được thiết kế cho các ứng dụng lập trình, toán học và khoa học. Mô hình này có ngữ cảnh 128K và thời điểm cắt kiến thức vào tháng 10 năm 2023."
1774
1849
  },
@@ -259,9 +259,6 @@
259
259
  "enableMaxTokens": {
260
260
  "title": "Bật giới hạn phản hồi một lần"
261
261
  },
262
- "enableReasoningEffort": {
263
- "title": "Bật điều chỉnh cường độ suy luận"
264
- },
265
262
  "frequencyPenalty": {
266
263
  "desc": "Giá trị càng lớn, từ ngữ càng phong phú đa dạng; giá trị càng thấp, từ ngữ càng đơn giản mộc mạc",
267
264
  "title": "Độ phong phú từ vựng"
@@ -281,15 +278,6 @@
281
278
  "desc": "Giá trị càng lớn, càng có xu hướng sử dụng các cách diễn đạt khác nhau, tránh lặp lại khái niệm; giá trị càng nhỏ, càng có xu hướng sử dụng các khái niệm hoặc mô tả lặp lại, thể hiện tính nhất quán cao hơn",
282
279
  "title": "Độ phân tán trong diễn đạt"
283
280
  },
284
- "reasoningEffort": {
285
- "desc": "Giá trị càng lớn, khả năng suy luận càng mạnh, nhưng có thể làm tăng thời gian phản hồi và tiêu tốn Token",
286
- "options": {
287
- "high": "Cao",
288
- "low": "Thấp",
289
- "medium": "Trung bình"
290
- },
291
- "title": "Cường độ suy luận"
292
- },
293
281
  "submit": "Cập nhật cài đặt mô hình",
294
282
  "temperature": {
295
283
  "desc": "Giá trị càng lớn, câu trả lời càng sáng tạo và giàu trí tưởng tượng; giá trị càng nhỏ, câu trả lời càng nghiêm ngặt",
@@ -43,6 +43,9 @@
43
43
  "reasoningBudgetToken": {
44
44
  "title": "思考消耗 Token"
45
45
  },
46
+ "reasoningEffort": {
47
+ "title": "推理强度"
48
+ },
46
49
  "title": "模型扩展功能"
47
50
  },
48
51
  "history": {