@lobehub/chat 1.88.19 → 1.88.21

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (82) hide show
  1. package/.i18nrc.js +1 -1
  2. package/CHANGELOG.md +51 -0
  3. package/changelog/v1.json +18 -0
  4. package/locales/ar/chat.json +3 -0
  5. package/locales/ar/models.json +92 -17
  6. package/locales/ar/setting.json +0 -12
  7. package/locales/bg-BG/chat.json +3 -0
  8. package/locales/bg-BG/models.json +92 -17
  9. package/locales/bg-BG/setting.json +0 -12
  10. package/locales/de-DE/chat.json +3 -0
  11. package/locales/de-DE/models.json +92 -17
  12. package/locales/de-DE/setting.json +0 -12
  13. package/locales/en-US/chat.json +3 -0
  14. package/locales/en-US/models.json +92 -17
  15. package/locales/en-US/setting.json +0 -12
  16. package/locales/es-ES/chat.json +3 -0
  17. package/locales/es-ES/models.json +92 -17
  18. package/locales/es-ES/setting.json +0 -12
  19. package/locales/fa-IR/chat.json +3 -0
  20. package/locales/fa-IR/models.json +92 -17
  21. package/locales/fa-IR/setting.json +0 -12
  22. package/locales/fr-FR/chat.json +3 -0
  23. package/locales/fr-FR/models.json +92 -17
  24. package/locales/fr-FR/setting.json +0 -12
  25. package/locales/it-IT/chat.json +3 -0
  26. package/locales/it-IT/models.json +92 -17
  27. package/locales/it-IT/setting.json +0 -12
  28. package/locales/ja-JP/chat.json +3 -0
  29. package/locales/ja-JP/models.json +92 -17
  30. package/locales/ja-JP/setting.json +0 -12
  31. package/locales/ko-KR/chat.json +3 -0
  32. package/locales/ko-KR/models.json +92 -17
  33. package/locales/ko-KR/setting.json +0 -12
  34. package/locales/nl-NL/chat.json +3 -0
  35. package/locales/nl-NL/models.json +92 -17
  36. package/locales/nl-NL/setting.json +0 -12
  37. package/locales/pl-PL/chat.json +3 -0
  38. package/locales/pl-PL/models.json +92 -17
  39. package/locales/pl-PL/setting.json +0 -12
  40. package/locales/pt-BR/chat.json +3 -0
  41. package/locales/pt-BR/models.json +92 -17
  42. package/locales/pt-BR/setting.json +0 -12
  43. package/locales/ru-RU/chat.json +3 -0
  44. package/locales/ru-RU/models.json +92 -17
  45. package/locales/ru-RU/setting.json +0 -12
  46. package/locales/tr-TR/chat.json +3 -0
  47. package/locales/tr-TR/models.json +92 -17
  48. package/locales/tr-TR/setting.json +0 -12
  49. package/locales/vi-VN/chat.json +3 -0
  50. package/locales/vi-VN/models.json +92 -17
  51. package/locales/vi-VN/setting.json +0 -12
  52. package/locales/zh-CN/chat.json +3 -0
  53. package/locales/zh-CN/models.json +89 -14
  54. package/locales/zh-CN/setting.json +0 -12
  55. package/locales/zh-TW/chat.json +3 -0
  56. package/locales/zh-TW/models.json +92 -17
  57. package/locales/zh-TW/setting.json +0 -12
  58. package/package.json +1 -1
  59. package/src/app/[variants]/(main)/settings/common/features/Appearance/ThemeSwatches/ThemeSwatchesNeutral.tsx +4 -2
  60. package/src/app/[variants]/(main)/settings/common/features/Appearance/ThemeSwatches/ThemeSwatchesPrimary.tsx +4 -2
  61. package/src/config/aiModels/deepseek.ts +5 -3
  62. package/src/config/aiModels/groq.ts +16 -29
  63. package/src/config/aiModels/hunyuan.ts +104 -82
  64. package/src/config/aiModels/novita.ts +27 -121
  65. package/src/config/aiModels/openai.ts +19 -2
  66. package/src/config/aiModels/openrouter.ts +59 -47
  67. package/src/config/aiModels/siliconcloud.ts +73 -39
  68. package/src/config/aiModels/volcengine.ts +3 -3
  69. package/src/config/aiModels/xai.ts +2 -0
  70. package/src/features/AgentSetting/AgentMeta/index.tsx +5 -0
  71. package/src/features/AgentSetting/AgentModal/index.tsx +1 -26
  72. package/src/features/ChatInput/ActionBar/Model/ControlsForm.tsx +12 -0
  73. package/src/features/ChatInput/ActionBar/Model/ReasoningEffortSlider.tsx +57 -0
  74. package/src/features/ModelSwitchPanel/index.tsx +10 -9
  75. package/src/features/PluginDevModal/MCPManifestForm/index.tsx +3 -1
  76. package/src/libs/model-runtime/novita/__snapshots__/index.test.ts.snap +1 -1
  77. package/src/locales/default/chat.ts +3 -0
  78. package/src/locales/default/setting.ts +0 -12
  79. package/src/services/chat.ts +5 -1
  80. package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +0 -5
  81. package/src/types/agent/chatConfig.ts +1 -0
  82. package/src/types/aiModel.ts +5 -1
@@ -341,9 +341,6 @@
341
341
  "Qwen2.5-Coder-32B-Instruct": {
342
342
  "description": "Qwen2.5-Coder-32B-Instructは、コード生成、コード理解、効率的な開発シーンのために設計された大規模言語モデルで、業界をリードする32Bパラメータ規模を採用しており、多様なプログラミングニーズに応えます。"
343
343
  },
344
- "SenseCat-5-1202": {
345
- "description": "V5.5 に基づく最新バージョンであり、前のバージョンに比べて中英語の基礎能力、チャット、理科知識、文科知識、執筆、数理論理、文字数制御などのいくつかの次元でのパフォーマンスが大幅に向上しています。"
346
- },
347
344
  "SenseChat": {
348
345
  "description": "基本バージョンのモデル (V4)、4Kのコンテキスト長で、汎用能力が強力です。"
349
346
  },
@@ -356,6 +353,9 @@
356
353
  "SenseChat-5": {
357
354
  "description": "最新バージョンのモデル (V5.5)、128Kのコンテキスト長で、数学的推論、英語の対話、指示のフォロー、長文理解などの分野での能力が大幅に向上し、GPT-4oに匹敵します。"
358
355
  },
356
+ "SenseChat-5-1202": {
357
+ "description": "V5.5をベースにした最新バージョンで、前バージョンに比べて中英語の基礎能力、チャット、理系知識、文系知識、ライティング、数理論理、文字数制御など複数の面で顕著に向上しています。"
358
+ },
359
359
  "SenseChat-5-Cantonese": {
360
360
  "description": "32Kのコンテキスト長で、広東語の対話理解においてGPT-4を超え、知識、推論、数学、コード作成などの複数の分野でGPT-4 Turboに匹敵します。"
361
361
  },
@@ -515,6 +515,12 @@
515
515
  "ai21-jamba-1.5-mini": {
516
516
  "description": "52Bパラメータ(12Bアクティブ)の多言語モデルで、256Kの長いコンテキストウィンドウ、関数呼び出し、構造化出力、基盤生成を提供します。"
517
517
  },
518
+ "ai21-labs/AI21-Jamba-1.5-Large": {
519
+ "description": "398Bパラメータ(うち94Bがアクティブ)の多言語モデルで、256Kの長いコンテキストウィンドウ、関数呼び出し、構造化出力、事実に基づく生成を提供します。"
520
+ },
521
+ "ai21-labs/AI21-Jamba-1.5-Mini": {
522
+ "description": "52Bパラメータ(うち12Bがアクティブ)の多言語モデルで、256Kの長いコンテキストウィンドウ、関数呼び出し、構造化出力、事実に基づく生成を提供します。"
523
+ },
518
524
  "anthropic.claude-3-5-sonnet-20240620-v1:0": {
519
525
  "description": "Claude 3.5 Sonnetは業界標準を向上させ、競合モデルやClaude 3 Opusを超える性能を持ち、広範な評価で優れたパフォーマンスを示し、私たちの中程度のモデルの速度とコストを兼ね備えています。"
520
526
  },
@@ -668,6 +674,12 @@
668
674
  "cohere-command-r-plus": {
669
675
  "description": "Command R+は、企業グレードのワークロードに対応するために設計された最先端のRAG最適化モデルです。"
670
676
  },
677
+ "cohere/Cohere-command-r": {
678
+ "description": "Command RはRAGやツール使用に特化した拡張可能な生成モデルで、企業が生産レベルのAIを実現できるよう設計されています。"
679
+ },
680
+ "cohere/Cohere-command-r-plus": {
681
+ "description": "Command R+は最先端のRAG最適化モデルで、企業レベルのワークロードに対応することを目的としています。"
682
+ },
671
683
  "command": {
672
684
  "description": "指示に従う対話モデルで、言語タスクにおいて高品質で信頼性が高く、私たちの基本生成モデルよりも長いコンテキスト長を持っています。"
673
685
  },
@@ -1028,6 +1040,12 @@
1028
1040
  "gemini-2.5-flash-preview-04-17": {
1029
1041
  "description": "Gemini 2.5 Flash Previewは、Googleのコストパフォーマンスに優れたモデルで、包括的な機能を提供します。"
1030
1042
  },
1043
+ "gemini-2.5-flash-preview-04-17-thinking": {
1044
+ "description": "Gemini 2.5 Flash PreviewはGoogleのコストパフォーマンスに優れたモデルで、包括的な機能を提供します。"
1045
+ },
1046
+ "gemini-2.5-flash-preview-05-20": {
1047
+ "description": "Gemini 2.5 Flash PreviewはGoogleのコストパフォーマンスに優れたモデルで、包括的な機能を提供します。"
1048
+ },
1031
1049
  "gemini-2.5-pro-exp-03-25": {
1032
1050
  "description": "Gemini 2.5 Pro Experimentalは、Googleの最先端の思考モデルであり、コード、数学、STEM分野の複雑な問題に対して推論を行うことができ、長いコンテキストを利用して大規模なデータセット、コードベース、文書を分析します。"
1033
1051
  },
@@ -1262,23 +1280,17 @@
1262
1280
  "grok-2-vision-1212": {
1263
1281
  "description": "このモデルは、精度、指示の遵守、そして多言語能力において改善されています。"
1264
1282
  },
1265
- "grok-3-beta": {
1266
- "description": "フラッグシップモデルで、データ抽出、プログラミング、テキスト要約などの企業向けアプリケーションに優れ、金融、医療、法律、科学などの分野において深い知識を持っています。"
1283
+ "grok-3": {
1284
+ "description": "フラッグシップモデルで、データ抽出、プログラミング、テキスト要約などの企業向けアプリケーションに優れ、金融、医療、法律、科学などの分野に深い知識を持ちます。"
1267
1285
  },
1268
- "grok-3-fast-beta": {
1269
- "description": "フラッグシップモデルで、データ抽出、プログラミング、テキスト要約などの企業向けアプリケーションに優れ、金融、医療、法律、科学などの分野において深い知識を持っています。"
1286
+ "grok-3-fast": {
1287
+ "description": "フラッグシップモデルで、データ抽出、プログラミング、テキスト要約などの企業向けアプリケーションに優れ、金融、医療、法律、科学などの分野に深い知識を持ちます。"
1270
1288
  },
1271
- "grok-3-mini-beta": {
1272
- "description": "軽量モデルで、会話の前に考えます。動作が速く、賢く、深い専門知識を必要としない論理的なタスクに適しており、原始的な思考の軌跡を取得できます。"
1289
+ "grok-3-mini": {
1290
+ "description": "軽量モデルで、会話前に思考します。高速かつスマートに動作し、深い専門知識を必要としない論理タスクに適しており、元の思考過程を取得できます。"
1273
1291
  },
1274
- "grok-3-mini-fast-beta": {
1275
- "description": "軽量モデルで、会話の前に考えます。動作が速く、賢く、深い専門知識を必要としない論理的なタスクに適しており、原始的な思考の軌跡を取得できます。"
1276
- },
1277
- "grok-beta": {
1278
- "description": "Grok 2と同等の性能を持ちながら、より高い効率、速度、機能を備えています。"
1279
- },
1280
- "grok-vision-beta": {
1281
- "description": "最新の画像理解モデルで、文書、グラフ、スクリーンショット、写真など、さまざまな視覚情報を処理できます。"
1292
+ "grok-3-mini-fast": {
1293
+ "description": "軽量モデルで、会話前に思考します。高速かつスマートに動作し、深い専門知識を必要としない論理タスクに適しており、元の思考過程を取得できます。"
1282
1294
  },
1283
1295
  "gryphe/mythomax-l2-13b": {
1284
1296
  "description": "MythoMax l2 13Bは複数のトップモデルを統合した創造性と知性を兼ね備えた言語モデルです。"
@@ -1322,6 +1334,9 @@
1322
1334
  "hunyuan-t1-latest": {
1323
1335
  "description": "業界初の超大規模Hybrid-Transformer-Mamba推論モデルであり、推論能力を拡張し、超高速なデコード速度を実現し、人間の好みにさらに整合します。"
1324
1336
  },
1337
+ "hunyuan-t1-vision": {
1338
+ "description": "混元多モーダル理解の深層思考モデルで、多モーダルのネイティブ長思考チェーンをサポートし、さまざまな画像推論シナリオに優れています。理系の難問においては速思考モデルよりも包括的に向上しています。"
1339
+ },
1325
1340
  "hunyuan-translation": {
1326
1341
  "description": "中国語、英語、日本語、フランス語、ポルトガル語、スペイン語、トルコ語、ロシア語、アラビア語、韓国語、イタリア語、ドイツ語、ベトナム語、マレー語、インドネシア語の15言語の相互翻訳をサポートし、多シーン翻訳評価セットに基づく自動評価COMETスコアを使用して、十数の一般的な言語間の翻訳能力が市場の同規模モデルを全体的に上回っています。"
1327
1342
  },
@@ -1586,6 +1601,30 @@
1586
1601
  "meta.llama3-8b-instruct-v1:0": {
1587
1602
  "description": "Meta Llama 3は、開発者、研究者、企業向けのオープンな大規模言語モデル(LLM)であり、生成AIのアイデアを構築、実験、責任を持って拡張するのを支援することを目的としています。世界的なコミュニティの革新の基盤システムの一部として、計算能力とリソースが限られたエッジデバイスや、より迅速なトレーニング時間に非常に適しています。"
1588
1603
  },
1604
+ "meta/Llama-3.2-11B-Vision-Instruct": {
1605
+ "description": "高解像度画像で優れた画像推論能力を発揮し、視覚理解アプリケーションに適しています。"
1606
+ },
1607
+ "meta/Llama-3.2-90B-Vision-Instruct": {
1608
+ "description": "視覚理解エージェントアプリケーション向けの高度な画像推論能力を備えています。"
1609
+ },
1610
+ "meta/Llama-3.3-70B-Instruct": {
1611
+ "description": "Llama 3.3はLlamaシリーズの最先端多言語オープンソース大型言語モデルで、非常に低コストで405Bモデルに匹敵する性能を体験できます。Transformer構造に基づき、教師あり微調整(SFT)と人間のフィードバックによる強化学習(RLHF)で有用性と安全性を向上。指示調整版は多言語対話に最適化され、多くの業界ベンチマークで多くのオープンソースおよびクローズドチャットモデルを上回る性能を示します。知識カットオフは2023年12月です。"
1612
+ },
1613
+ "meta/Meta-Llama-3-70B-Instruct": {
1614
+ "description": "推論、コーディング、幅広い言語アプリケーションで優れた性能を発揮する強力な700億パラメータモデルです。"
1615
+ },
1616
+ "meta/Meta-Llama-3-8B-Instruct": {
1617
+ "description": "対話およびテキスト生成タスクに最適化された多用途の80億パラメータモデルです。"
1618
+ },
1619
+ "meta/Meta-Llama-3.1-405B-Instruct": {
1620
+ "description": "Llama 3.1の指示調整済みテキストモデルで、多言語対話ユースケースに最適化され、多くの利用可能なオープンソースおよびクローズドチャットモデルの中で一般的な業界ベンチマークで優れた性能を発揮します。"
1621
+ },
1622
+ "meta/Meta-Llama-3.1-70B-Instruct": {
1623
+ "description": "Llama 3.1の指示調整済みテキストモデルで、多言語対話ユースケースに最適化され、多くの利用可能なオープンソースおよびクローズドチャットモデルの中で一般的な業界ベンチマークで優れた性能を発揮します。"
1624
+ },
1625
+ "meta/Meta-Llama-3.1-8B-Instruct": {
1626
+ "description": "Llama 3.1の指示調整済みテキストモデルで、多言語対話ユースケースに最適化され、多くの利用可能なオープンソースおよびクローズドチャットモデルの中で一般的な業界ベンチマークで優れた性能を発揮します。"
1627
+ },
1589
1628
  "meta/llama-3.1-405b-instruct": {
1590
1629
  "description": "高度なLLMで、合成データ生成、知識蒸留、推論をサポートし、チャットボット、プログラミング、特定の分野のタスクに適しています。"
1591
1630
  },
@@ -1610,6 +1649,30 @@
1610
1649
  "meta/llama-3.3-70b-instruct": {
1611
1650
  "description": "高度なLLMで、推論、数学、常識、関数呼び出しに優れています。"
1612
1651
  },
1652
+ "microsoft/Phi-3-medium-128k-instruct": {
1653
+ "description": "同じPhi-3-mediumモデルですが、より大きなコンテキストサイズを持ち、RAGや少数ショットに適しています。"
1654
+ },
1655
+ "microsoft/Phi-3-medium-4k-instruct": {
1656
+ "description": "140億パラメータモデルで、Phi-3-miniよりも品質が高く、高品質で推論集約型のデータに重点を置いています。"
1657
+ },
1658
+ "microsoft/Phi-3-mini-128k-instruct": {
1659
+ "description": "同じPhi-3-miniモデルですが、より大きなコンテキストサイズを持ち、RAGや少数ショットに適しています。"
1660
+ },
1661
+ "microsoft/Phi-3-mini-4k-instruct": {
1662
+ "description": "Phi-3ファミリーで最小のメンバーで、品質と低遅延に最適化されています。"
1663
+ },
1664
+ "microsoft/Phi-3-small-128k-instruct": {
1665
+ "description": "同じPhi-3-smallモデルですが、より大きなコンテキストサイズを持ち、RAGや少数ショットに適しています。"
1666
+ },
1667
+ "microsoft/Phi-3-small-8k-instruct": {
1668
+ "description": "70億パラメータモデルで、Phi-3-miniよりも品質が高く、高品質で推論集約型のデータに重点を置いています。"
1669
+ },
1670
+ "microsoft/Phi-3.5-mini-instruct": {
1671
+ "description": "Phi-3-miniモデルのアップデート版です。"
1672
+ },
1673
+ "microsoft/Phi-3.5-vision-instruct": {
1674
+ "description": "Phi-3-visionモデルのアップデート版です。"
1675
+ },
1613
1676
  "microsoft/WizardLM-2-8x22B": {
1614
1677
  "description": "WizardLM 2はMicrosoft AIが提供する言語モデルで、複雑な対話、多言語、推論、インテリジェントアシスタントの分野で特に優れた性能を発揮します。"
1615
1678
  },
@@ -1628,6 +1691,15 @@
1628
1691
  "mistral": {
1629
1692
  "description": "Mistralは、Mistral AIがリリースした7Bモデルであり、多様な言語処理ニーズに適しています。"
1630
1693
  },
1694
+ "mistral-ai/Mistral-Large-2411": {
1695
+ "description": "Mistralのフラッグシップモデルで、大規模な推論能力や高度に専門化された複雑なタスク(合成テキスト生成、コード生成、RAG、エージェント)に適しています。"
1696
+ },
1697
+ "mistral-ai/Mistral-Nemo": {
1698
+ "description": "Mistral Nemoは最先端の言語モデル(LLM)で、そのサイズカテゴリにおいて最先端の推論、世界知識、コーディング能力を備えています。"
1699
+ },
1700
+ "mistral-ai/mistral-small-2503": {
1701
+ "description": "Mistral Smallは高効率かつ低遅延を必要とするあらゆる言語ベースのタスクに利用可能です。"
1702
+ },
1631
1703
  "mistral-large": {
1632
1704
  "description": "Mixtral Largeは、Mistralのフラッグシップモデルであり、コード生成、数学、推論の能力を組み合わせ、128kのコンテキストウィンドウをサポートします。"
1633
1705
  },
@@ -1769,6 +1841,9 @@
1769
1841
  "openai/gpt-4o-mini": {
1770
1842
  "description": "GPT-4o miniはOpenAIがGPT-4 Omniの後に発表した最新モデルで、画像とテキストの入力をサポートし、テキストを出力します。彼らの最先端の小型モデルとして、最近の他の最前線モデルよりもはるかに安価で、GPT-3.5 Turboよりも60%以上安価です。最先端の知能を維持しつつ、顕著なコストパフォーマンスを誇ります。GPT-4o miniはMMLUテストで82%のスコアを獲得し、現在チャットの好みでGPT-4よりも高い評価を得ています。"
1771
1843
  },
1844
+ "openai/o1": {
1845
+ "description": "o1はOpenAIの新しい推論モデルで、画像とテキストの入力をサポートし、テキストを出力します。広範な一般知識を必要とする複雑なタスクに適しています。このモデルは20万トークンのコンテキストと2023年10月の知識カットオフを備えています。"
1846
+ },
1772
1847
  "openai/o1-mini": {
1773
1848
  "description": "o1-miniは、プログラミング、数学、科学のアプリケーションシーンに特化して設計された迅速で経済的な推論モデルです。このモデルは128Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
1774
1849
  },
@@ -259,9 +259,6 @@
259
259
  "enableMaxTokens": {
260
260
  "title": "単一応答制限を有効にする"
261
261
  },
262
- "enableReasoningEffort": {
263
- "title": "推論強度調整を有効にする"
264
- },
265
262
  "frequencyPenalty": {
266
263
  "desc": "値が大きいほど、言葉がより豊かで多様になります。値が小さいほど、言葉はより素朴でシンプルになります。",
267
264
  "title": "語彙の豊かさ"
@@ -281,15 +278,6 @@
281
278
  "desc": "値が大きいほど、異なる表現方法を好み、概念の繰り返しを避けます。値が小さいほど、繰り返しの概念や表現を使用する傾向が強く、一貫性のある表現になります。",
282
279
  "title": "表現の多様性"
283
280
  },
284
- "reasoningEffort": {
285
- "desc": "値が大きいほど推論能力が高まりますが、応答時間とトークン消費が増加する可能性があります",
286
- "options": {
287
- "high": "高",
288
- "low": "低",
289
- "medium": "中"
290
- },
291
- "title": "推論強度"
292
- },
293
281
  "submit": "モデル設定を更新",
294
282
  "temperature": {
295
283
  "desc": "数値が大きいほど、回答はより創造的で想像力に富む;数値が小さいほど、回答はより厳密になる",
@@ -43,6 +43,9 @@
43
43
  "reasoningBudgetToken": {
44
44
  "title": "사고 소모 토큰"
45
45
  },
46
+ "reasoningEffort": {
47
+ "title": "추론 강도"
48
+ },
46
49
  "title": "모델 확장 기능"
47
50
  },
48
51
  "history": {
@@ -341,9 +341,6 @@
341
341
  "Qwen2.5-Coder-32B-Instruct": {
342
342
  "description": "Qwen2.5-Coder-32B-Instruct는 코드 생성, 코드 이해 및 효율적인 개발 시나리오를 위해 설계된 대형 언어 모델로, 업계 최고의 32B 매개변수 규모를 채택하여 다양한 프로그래밍 요구를 충족합니다."
343
343
  },
344
- "SenseCat-5-1202": {
345
- "description": "V5.5를 기반으로 한 최신 버전으로, 이전 버전보다 중문 및 영문 기본 능력, 채팅, 이과 지식, 인문학 지식, 작문, 수리 논리, 글자 수 조절 등 여러 측면에서 성능이 크게 향상되었습니다."
346
- },
347
344
  "SenseChat": {
348
345
  "description": "기본 버전 모델(V4), 4K 컨텍스트 길이, 일반적인 능력이 강력합니다."
349
346
  },
@@ -356,6 +353,9 @@
356
353
  "SenseChat-5": {
357
354
  "description": "최신 버전 모델(V5.5), 128K 컨텍스트 길이, 수학적 추론, 영어 대화, 지시 따르기 및 긴 텍스트 이해 등 분야에서 능력이 크게 향상되어 GPT-4o와 견줄 수 있습니다."
358
355
  },
356
+ "SenseChat-5-1202": {
357
+ "description": "V5.5 기반 최신 버전으로, 이전 버전 대비 중영문 기본 능력, 대화, 이과 지식, 문과 지식, 작문, 수리 논리, 글자 수 조절 등 여러 측면에서 현저한 향상을 이루었습니다."
358
+ },
359
359
  "SenseChat-5-Cantonese": {
360
360
  "description": "32K 컨텍스트 길이, 광둥어 대화 이해에서 GPT-4를 초월하며, 지식, 추론, 수학 및 코드 작성 등 여러 분야에서 GPT-4 Turbo와 견줄 수 있습니다."
361
361
  },
@@ -515,6 +515,12 @@
515
515
  "ai21-jamba-1.5-mini": {
516
516
  "description": "52B 매개변수(12B 활성)의 다국어 모델로, 256K 긴 컨텍스트 창, 함수 호출, 구조화된 출력 및 기반 생성 기능을 제공합니다."
517
517
  },
518
+ "ai21-labs/AI21-Jamba-1.5-Large": {
519
+ "description": "398B 매개변수(활성 94B)를 가진 다국어 모델로, 256K 길이의 컨텍스트 창, 함수 호출, 구조화된 출력 및 사실 기반 생성을 제공합니다."
520
+ },
521
+ "ai21-labs/AI21-Jamba-1.5-Mini": {
522
+ "description": "52B 매개변수(활성 12B)를 가진 다국어 모델로, 256K 길이의 컨텍스트 창, 함수 호출, 구조화된 출력 및 사실 기반 생성을 제공합니다."
523
+ },
518
524
  "anthropic.claude-3-5-sonnet-20240620-v1:0": {
519
525
  "description": "Claude 3.5 Sonnet는 업계 표준을 향상시켜 경쟁 모델 및 Claude 3 Opus를 초월하며, 광범위한 평가에서 뛰어난 성능을 보이고, 중간 수준 모델의 속도와 비용을 갖추고 있습니다."
520
526
  },
@@ -668,6 +674,12 @@
668
674
  "cohere-command-r-plus": {
669
675
  "description": "Command R+는 기업급 작업을 처리하기 위해 설계된 최첨단 RAG 최적화 모델입니다."
670
676
  },
677
+ "cohere/Cohere-command-r": {
678
+ "description": "Command R은 RAG 및 도구 사용에 최적화된 확장 가능한 생성 모델로, 기업이 생산 수준의 AI를 구현할 수 있도록 설계되었습니다."
679
+ },
680
+ "cohere/Cohere-command-r-plus": {
681
+ "description": "Command R+는 최첨단 RAG 최적화 모델로, 기업용 워크로드에 대응하도록 설계되었습니다."
682
+ },
671
683
  "command": {
672
684
  "description": "지시를 따르는 대화 모델로, 언어 작업에서 높은 품질과 신뢰성을 제공하며, 우리의 기본 생성 모델에 비해 더 긴 컨텍스트 길이를 가지고 있습니다."
673
685
  },
@@ -1028,6 +1040,12 @@
1028
1040
  "gemini-2.5-flash-preview-04-17": {
1029
1041
  "description": "Gemini 2.5 Flash Preview는 Google의 가장 가성비 높은 모델로, 포괄적인 기능을 제공합니다."
1030
1042
  },
1043
+ "gemini-2.5-flash-preview-04-17-thinking": {
1044
+ "description": "Gemini 2.5 Flash Preview는 Google의 최고의 가성비 모델로, 포괄적인 기능을 제공합니다."
1045
+ },
1046
+ "gemini-2.5-flash-preview-05-20": {
1047
+ "description": "Gemini 2.5 Flash Preview는 Google의 최고의 가성비 모델로, 포괄적인 기능을 제공합니다."
1048
+ },
1031
1049
  "gemini-2.5-pro-exp-03-25": {
1032
1050
  "description": "Gemini 2.5 Pro Experimental은 Google의 최첨단 사고 모델로, 코드, 수학 및 STEM 분야의 복잡한 문제를 추론할 수 있으며, 긴 문맥을 활용하여 대규모 데이터 세트, 코드베이스 및 문서를 분석할 수 있습니다."
1033
1051
  },
@@ -1262,23 +1280,17 @@
1262
1280
  "grok-2-vision-1212": {
1263
1281
  "description": "이 모델은 정확성, 지시 준수 및 다국어 능력에서 개선되었습니다."
1264
1282
  },
1265
- "grok-3-beta": {
1266
- "description": "플래그십 모델로, 데이터 추출, 프로그래밍 텍스트 요약 등 기업용 애플리케이션에 강점을 가지고 있으며, 금융, 의료, 법률 과학 분야에 대한 깊은 지식을 보유하고 있습니다."
1283
+ "grok-3": {
1284
+ "description": "플래그십 모델로, 데이터 추출, 프로그래밍, 텍스트 요약 등 기업용 애플리케이션에 능하며 금융, 의료, 법률, 과학 분야에 대한 깊은 지식을 보유하고 있습니다."
1267
1285
  },
1268
- "grok-3-fast-beta": {
1269
- "description": "플래그십 모델로, 데이터 추출, 프로그래밍 텍스트 요약 등 기업용 애플리케이션에 강점을 가지고 있으며, 금융, 의료, 법률 과학 분야에 대한 깊은 지식을 보유하고 있습니다."
1286
+ "grok-3-fast": {
1287
+ "description": "플래그십 모델로, 데이터 추출, 프로그래밍, 텍스트 요약 등 기업용 애플리케이션에 능하며 금융, 의료, 법률, 과학 분야에 대한 깊은 지식을 보유하고 있습니다."
1270
1288
  },
1271
- "grok-3-mini-beta": {
1272
- "description": "경량 모델로, 대화 전에 먼저 생각합니다. 빠르고 스마트하게 실행되며, 깊은 분야 지식이 필요하지 않은 논리적 작업에 적합하고 원래의 사고 경로를 파악할 수 있습니다."
1289
+ "grok-3-mini": {
1290
+ "description": "경량 모델로, 대화 전에 먼저 사고합니다. 빠르고 지능적으로 작동하며, 깊은 도메인 지식이 필요 없는 논리 작업에 적합하고 원시 사고 경로를 획득할 수 있습니다."
1273
1291
  },
1274
- "grok-3-mini-fast-beta": {
1275
- "description": "경량 모델로, 대화 전에 먼저 생각합니다. 빠르고 스마트하게 실행되며, 깊은 분야 지식이 필요하지 않은 논리적 작업에 적합하고 원래의 사고 경로를 파악할 수 있습니다."
1276
- },
1277
- "grok-beta": {
1278
- "description": "Grok 2와 유사한 성능을 가지지만, 더 높은 효율성, 속도 및 기능을 제공합니다."
1279
- },
1280
- "grok-vision-beta": {
1281
- "description": "최신 이미지 이해 모델로, 문서, 차트, 스크린샷 및 사진 등 다양한 시각 정보를 처리할 수 있습니다."
1292
+ "grok-3-mini-fast": {
1293
+ "description": "경량 모델로, 대화 전에 먼저 사고합니다. 빠르고 지능적으로 작동하며, 깊은 도메인 지식이 필요 없는 논리 작업에 적합하고 원시 사고 경로를 획득할 수 있습니다."
1282
1294
  },
1283
1295
  "gryphe/mythomax-l2-13b": {
1284
1296
  "description": "MythoMax l2 13B는 여러 최상위 모델을 통합한 창의성과 지능이 결합된 언어 모델입니다."
@@ -1322,6 +1334,9 @@
1322
1334
  "hunyuan-t1-latest": {
1323
1335
  "description": "업계 최초의 초대형 Hybrid-Transformer-Mamba 추론 모델로, 추론 능력을 확장하고, 뛰어난 디코딩 속도를 자랑하며, 인간의 선호에 더욱 부합합니다."
1324
1336
  },
1337
+ "hunyuan-t1-vision": {
1338
+ "description": "혼원 다중모달 이해 심층 사고 모델로, 다중모달 원천 사고 체인을 지원하며 다양한 이미지 추론 시나리오에 능숙합니다. 이과 문제에서 빠른 사고 모델 대비 전반적인 성능 향상을 보입니다."
1339
+ },
1325
1340
  "hunyuan-translation": {
1326
1341
  "description": "중국어, 영어, 일본어, 프랑스어, 포르투갈어, 스페인어, 터키어, 러시아어, 아랍어, 한국어, 이탈리아어, 독일어, 베트남어, 말레이어, 인도네시아어 등 15개 언어 간의 상호 번역을 지원하며, 다중 시나리오 번역 평가 집합을 기반으로 한 자동화 평가 COMET 점수를 통해, 10여 개의 일반 언어에서의 상호 번역 능력이 시장의 동급 모델보다 전반적으로 우수합니다."
1327
1342
  },
@@ -1586,6 +1601,30 @@
1586
1601
  "meta.llama3-8b-instruct-v1:0": {
1587
1602
  "description": "Meta Llama 3은 개발자, 연구자 및 기업을 위한 오픈 대형 언어 모델(LLM)로, 생성 AI 아이디어를 구축하고 실험하며 책임감 있게 확장하는 데 도움을 주기 위해 설계되었습니다. 전 세계 커뮤니티 혁신의 기초 시스템의 일환으로, 계산 능력과 자원이 제한된 환경, 엣지 장치 및 더 빠른 훈련 시간에 매우 적합합니다."
1588
1603
  },
1604
+ "meta/Llama-3.2-11B-Vision-Instruct": {
1605
+ "description": "고해상도 이미지에서 뛰어난 이미지 추론 능력을 발휘하며, 시각적 이해 애플리케이션에 적합합니다."
1606
+ },
1607
+ "meta/Llama-3.2-90B-Vision-Instruct": {
1608
+ "description": "시각적 이해 에이전트 애플리케이션에 적합한 고급 이미지 추론 능력입니다."
1609
+ },
1610
+ "meta/Llama-3.3-70B-Instruct": {
1611
+ "description": "Llama 3.3은 Llama 시리즈의 최첨단 다국어 오픈소스 대형 언어 모델로, 매우 낮은 비용으로 405B 모델에 필적하는 성능을 경험할 수 있습니다. Transformer 구조를 기반으로 하며, 감독 미세조정(SFT)과 인간 피드백 강화 학습(RLHF)을 통해 유용성과 안전성을 향상시켰습니다. 지침 조정 버전은 다국어 대화에 최적화되어 있으며, 여러 산업 벤치마크에서 다수의 오픈소스 및 폐쇄형 챗 모델을 능가합니다. 지식 기준일은 2023년 12월입니다."
1612
+ },
1613
+ "meta/Meta-Llama-3-70B-Instruct": {
1614
+ "description": "추론, 코딩 및 광범위한 언어 응용 분야에서 뛰어난 성능을 보이는 강력한 700억 매개변수 모델입니다."
1615
+ },
1616
+ "meta/Meta-Llama-3-8B-Instruct": {
1617
+ "description": "대화 및 텍스트 생성 작업에 최적화된 다목적 80억 매개변수 모델입니다."
1618
+ },
1619
+ "meta/Meta-Llama-3.1-405B-Instruct": {
1620
+ "description": "Llama 3.1 지침 조정 텍스트 모델로, 다국어 대화 사례에 최적화되어 있으며, 다수의 오픈소스 및 폐쇄형 챗 모델 중에서 일반 산업 벤치마크에서 우수한 성능을 보입니다."
1621
+ },
1622
+ "meta/Meta-Llama-3.1-70B-Instruct": {
1623
+ "description": "Llama 3.1 지침 조정 텍스트 모델로, 다국어 대화 사례에 최적화되어 있으며, 다수의 오픈소스 및 폐쇄형 챗 모델 중에서 일반 산업 벤치마크에서 우수한 성능을 보입니다."
1624
+ },
1625
+ "meta/Meta-Llama-3.1-8B-Instruct": {
1626
+ "description": "Llama 3.1 지침 조정 텍스트 모델로, 다국어 대화 사례에 최적화되어 있으며, 다수의 오픈소스 및 폐쇄형 챗 모델 중에서 일반 산업 벤치마크에서 우수한 성능을 보입니다."
1627
+ },
1589
1628
  "meta/llama-3.1-405b-instruct": {
1590
1629
  "description": "합성 데이터 생성, 지식 증류 및 추론을 지원하는 고급 LLM으로, 챗봇, 프로그래밍 및 특정 분야 작업에 적합합니다."
1591
1630
  },
@@ -1610,6 +1649,30 @@
1610
1649
  "meta/llama-3.3-70b-instruct": {
1611
1650
  "description": "추론, 수학, 상식 및 함수 호출에 능숙한 고급 LLM입니다."
1612
1651
  },
1652
+ "microsoft/Phi-3-medium-128k-instruct": {
1653
+ "description": "동일한 Phi-3-medium 모델이지만 더 큰 컨텍스트 크기를 제공하여 RAG 또는 소량 프롬프트에 적합합니다."
1654
+ },
1655
+ "microsoft/Phi-3-medium-4k-instruct": {
1656
+ "description": "140억 매개변수 모델로, Phi-3-mini보다 품질이 우수하며 고품질 추론 집약적 데이터에 중점을 둡니다."
1657
+ },
1658
+ "microsoft/Phi-3-mini-128k-instruct": {
1659
+ "description": "동일한 Phi-3-mini 모델이지만 더 큰 컨텍스트 크기를 제공하여 RAG 또는 소량 프롬프트에 적합합니다."
1660
+ },
1661
+ "microsoft/Phi-3-mini-4k-instruct": {
1662
+ "description": "Phi-3 시리즈 중 가장 작은 모델로, 품질과 저지연에 최적화되어 있습니다."
1663
+ },
1664
+ "microsoft/Phi-3-small-128k-instruct": {
1665
+ "description": "동일한 Phi-3-small 모델이지만 더 큰 컨텍스트 크기를 제공하여 RAG 또는 소량 프롬프트에 적합합니다."
1666
+ },
1667
+ "microsoft/Phi-3-small-8k-instruct": {
1668
+ "description": "70억 매개변수 모델로, Phi-3-mini보다 품질이 우수하며 고품질 추론 집약적 데이터에 중점을 둡니다."
1669
+ },
1670
+ "microsoft/Phi-3.5-mini-instruct": {
1671
+ "description": "Phi-3-mini 모델의 업데이트 버전입니다."
1672
+ },
1673
+ "microsoft/Phi-3.5-vision-instruct": {
1674
+ "description": "Phi-3-vision 모델의 업데이트 버전입니다."
1675
+ },
1613
1676
  "microsoft/WizardLM-2-8x22B": {
1614
1677
  "description": "WizardLM 2는 Microsoft AI가 제공하는 언어 모델로, 복잡한 대화, 다국어, 추론 및 스마트 어시스턴트 분야에서 특히 뛰어난 성능을 보입니다."
1615
1678
  },
@@ -1628,6 +1691,15 @@
1628
1691
  "mistral": {
1629
1692
  "description": "Mistral은 Mistral AI에서 출시한 7B 모델로, 변화하는 언어 처리 요구에 적합합니다."
1630
1693
  },
1694
+ "mistral-ai/Mistral-Large-2411": {
1695
+ "description": "Mistral의 플래그십 모델로, 대규모 추론 능력이나 고도로 전문화된 복잡한 작업(합성 텍스트 생성, 코드 생성, RAG 또는 에이전트)에 적합합니다."
1696
+ },
1697
+ "mistral-ai/Mistral-Nemo": {
1698
+ "description": "Mistral Nemo는 최첨단 언어 모델(LLM)로, 해당 크기 범주에서 최상의 추론, 세계 지식 및 코딩 능력을 갖추고 있습니다."
1699
+ },
1700
+ "mistral-ai/mistral-small-2503": {
1701
+ "description": "Mistral Small은 고효율 및 저지연이 필요한 모든 언어 기반 작업에 사용할 수 있습니다."
1702
+ },
1631
1703
  "mistral-large": {
1632
1704
  "description": "Mixtral Large는 Mistral의 플래그십 모델로, 코드 생성, 수학 및 추론 능력을 결합하여 128k 컨텍스트 창을 지원합니다."
1633
1705
  },
@@ -1769,6 +1841,9 @@
1769
1841
  "openai/gpt-4o-mini": {
1770
1842
  "description": "GPT-4o mini는 OpenAI가 GPT-4 Omni 이후에 출시한 최신 모델로, 이미지와 텍스트 입력을 지원하며 텍스트를 출력합니다. 가장 진보된 소형 모델로, 최근의 다른 최첨단 모델보다 훨씬 저렴하며, GPT-3.5 Turbo보다 60% 이상 저렴합니다. 최첨단 지능을 유지하면서도 뛰어난 가성비를 자랑합니다. GPT-4o mini는 MMLU 테스트에서 82%의 점수를 기록했으며, 현재 채팅 선호도에서 GPT-4보다 높은 순위를 차지하고 있습니다."
1771
1843
  },
1844
+ "openai/o1": {
1845
+ "description": "o1은 OpenAI의 새로운 추론 모델로, 이미지와 텍스트 입력을 지원하며 텍스트를 출력합니다. 광범위한 일반 지식이 필요한 복잡한 작업에 적합합니다. 이 모델은 20만 토큰의 컨텍스트와 2023년 10월 기준 지식을 보유하고 있습니다."
1846
+ },
1772
1847
  "openai/o1-mini": {
1773
1848
  "description": "o1-mini는 프로그래밍, 수학 및 과학 응용 프로그램을 위해 설계된 빠르고 경제적인 추론 모델입니다. 이 모델은 128K의 컨텍스트와 2023년 10월의 지식 기준일을 가지고 있습니다."
1774
1849
  },
@@ -259,9 +259,6 @@
259
259
  "enableMaxTokens": {
260
260
  "title": "단일 응답 제한 활성화"
261
261
  },
262
- "enableReasoningEffort": {
263
- "title": "추론 강도 조정 활성화"
264
- },
265
262
  "frequencyPenalty": {
266
263
  "desc": "값이 클수록 단어 선택이 더 다양하고 풍부해지며, 값이 작을수록 단어 선택이 더 간단하고 소박해집니다.",
267
264
  "title": "어휘 다양성"
@@ -281,15 +278,6 @@
281
278
  "desc": "값이 클수록 다양한 표현 방식으로 기울어져 개념의 반복을 피하고, 값이 작을수록 반복적인 개념이나 서술을 사용하는 경향이 있어 표현이 더 일관됩니다.",
282
279
  "title": "표현의 다양성"
283
280
  },
284
- "reasoningEffort": {
285
- "desc": "값이 클수록 추론 능력이 강해지지만, 응답 시간과 토큰 소모가 증가할 수 있습니다.",
286
- "options": {
287
- "high": "높음",
288
- "low": "낮음",
289
- "medium": "중간"
290
- },
291
- "title": "추론 강도"
292
- },
293
281
  "submit": "모델 설정 업데이트",
294
282
  "temperature": {
295
283
  "desc": "값이 클수록 답변이 더 창의적이고 상상력이 풍부해지며, 값이 작을수록 답변이 더 엄격해집니다.",
@@ -43,6 +43,9 @@
43
43
  "reasoningBudgetToken": {
44
44
  "title": "Denken verbruik Token"
45
45
  },
46
+ "reasoningEffort": {
47
+ "title": "Redeneringsinspanning"
48
+ },
46
49
  "title": "Modeluitbreidingsfunctie"
47
50
  },
48
51
  "history": {