@lobehub/chat 1.88.19 → 1.88.21
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.i18nrc.js +1 -1
- package/CHANGELOG.md +51 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/chat.json +3 -0
- package/locales/ar/models.json +92 -17
- package/locales/ar/setting.json +0 -12
- package/locales/bg-BG/chat.json +3 -0
- package/locales/bg-BG/models.json +92 -17
- package/locales/bg-BG/setting.json +0 -12
- package/locales/de-DE/chat.json +3 -0
- package/locales/de-DE/models.json +92 -17
- package/locales/de-DE/setting.json +0 -12
- package/locales/en-US/chat.json +3 -0
- package/locales/en-US/models.json +92 -17
- package/locales/en-US/setting.json +0 -12
- package/locales/es-ES/chat.json +3 -0
- package/locales/es-ES/models.json +92 -17
- package/locales/es-ES/setting.json +0 -12
- package/locales/fa-IR/chat.json +3 -0
- package/locales/fa-IR/models.json +92 -17
- package/locales/fa-IR/setting.json +0 -12
- package/locales/fr-FR/chat.json +3 -0
- package/locales/fr-FR/models.json +92 -17
- package/locales/fr-FR/setting.json +0 -12
- package/locales/it-IT/chat.json +3 -0
- package/locales/it-IT/models.json +92 -17
- package/locales/it-IT/setting.json +0 -12
- package/locales/ja-JP/chat.json +3 -0
- package/locales/ja-JP/models.json +92 -17
- package/locales/ja-JP/setting.json +0 -12
- package/locales/ko-KR/chat.json +3 -0
- package/locales/ko-KR/models.json +92 -17
- package/locales/ko-KR/setting.json +0 -12
- package/locales/nl-NL/chat.json +3 -0
- package/locales/nl-NL/models.json +92 -17
- package/locales/nl-NL/setting.json +0 -12
- package/locales/pl-PL/chat.json +3 -0
- package/locales/pl-PL/models.json +92 -17
- package/locales/pl-PL/setting.json +0 -12
- package/locales/pt-BR/chat.json +3 -0
- package/locales/pt-BR/models.json +92 -17
- package/locales/pt-BR/setting.json +0 -12
- package/locales/ru-RU/chat.json +3 -0
- package/locales/ru-RU/models.json +92 -17
- package/locales/ru-RU/setting.json +0 -12
- package/locales/tr-TR/chat.json +3 -0
- package/locales/tr-TR/models.json +92 -17
- package/locales/tr-TR/setting.json +0 -12
- package/locales/vi-VN/chat.json +3 -0
- package/locales/vi-VN/models.json +92 -17
- package/locales/vi-VN/setting.json +0 -12
- package/locales/zh-CN/chat.json +3 -0
- package/locales/zh-CN/models.json +89 -14
- package/locales/zh-CN/setting.json +0 -12
- package/locales/zh-TW/chat.json +3 -0
- package/locales/zh-TW/models.json +92 -17
- package/locales/zh-TW/setting.json +0 -12
- package/package.json +1 -1
- package/src/app/[variants]/(main)/settings/common/features/Appearance/ThemeSwatches/ThemeSwatchesNeutral.tsx +4 -2
- package/src/app/[variants]/(main)/settings/common/features/Appearance/ThemeSwatches/ThemeSwatchesPrimary.tsx +4 -2
- package/src/config/aiModels/deepseek.ts +5 -3
- package/src/config/aiModels/groq.ts +16 -29
- package/src/config/aiModels/hunyuan.ts +104 -82
- package/src/config/aiModels/novita.ts +27 -121
- package/src/config/aiModels/openai.ts +19 -2
- package/src/config/aiModels/openrouter.ts +59 -47
- package/src/config/aiModels/siliconcloud.ts +73 -39
- package/src/config/aiModels/volcengine.ts +3 -3
- package/src/config/aiModels/xai.ts +2 -0
- package/src/features/AgentSetting/AgentMeta/index.tsx +5 -0
- package/src/features/AgentSetting/AgentModal/index.tsx +1 -26
- package/src/features/ChatInput/ActionBar/Model/ControlsForm.tsx +12 -0
- package/src/features/ChatInput/ActionBar/Model/ReasoningEffortSlider.tsx +57 -0
- package/src/features/ModelSwitchPanel/index.tsx +10 -9
- package/src/features/PluginDevModal/MCPManifestForm/index.tsx +3 -1
- package/src/libs/model-runtime/novita/__snapshots__/index.test.ts.snap +1 -1
- package/src/locales/default/chat.ts +3 -0
- package/src/locales/default/setting.ts +0 -12
- package/src/services/chat.ts +5 -1
- package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +0 -5
- package/src/types/agent/chatConfig.ts +1 -0
- package/src/types/aiModel.ts +5 -1
@@ -341,9 +341,6 @@
|
|
341
341
|
"Qwen2.5-Coder-32B-Instruct": {
|
342
342
|
"description": "Qwen2.5-Coder-32B-Instruct est un grand modèle de langage conçu pour la génération de code, la compréhension de code et les scénarios de développement efficaces, avec une échelle de 32 milliards de paramètres, répondant à des besoins de programmation variés."
|
343
343
|
},
|
344
|
-
"SenseCat-5-1202": {
|
345
|
-
"description": "Basé sur la version V5.5, cette version présente des améliorations significatives par rapport à la précédente dans plusieurs dimensions, notamment les compétences de base en chinois et en anglais, la conversation, les connaissances en sciences, les connaissances en lettres, l'écriture, la logique mathématique et le contrôle du nombre de mots."
|
346
|
-
},
|
347
344
|
"SenseChat": {
|
348
345
|
"description": "Modèle de version de base (V4), longueur de contexte de 4K, avec de puissantes capacités générales."
|
349
346
|
},
|
@@ -356,6 +353,9 @@
|
|
356
353
|
"SenseChat-5": {
|
357
354
|
"description": "Modèle de dernière version (V5.5), longueur de contexte de 128K, avec des capacités significativement améliorées dans le raisonnement mathématique, les dialogues en anglais, le suivi d'instructions et la compréhension de longs textes, rivalisant avec GPT-4o."
|
358
355
|
},
|
356
|
+
"SenseChat-5-1202": {
|
357
|
+
"description": "Basé sur la version V5.5 la plus récente, avec des améliorations significatives par rapport à la version précédente dans plusieurs dimensions telles que les capacités de base en chinois et en anglais, le dialogue, les connaissances scientifiques, les connaissances littéraires, la rédaction, la logique mathématique et le contrôle du nombre de mots."
|
358
|
+
},
|
359
359
|
"SenseChat-5-Cantonese": {
|
360
360
|
"description": "Longueur de contexte de 32K, surpassant GPT-4 dans la compréhension des dialogues en cantonais, rivalisant avec GPT-4 Turbo dans plusieurs domaines tels que les connaissances, le raisonnement, les mathématiques et la rédaction de code."
|
361
361
|
},
|
@@ -515,6 +515,12 @@
|
|
515
515
|
"ai21-jamba-1.5-mini": {
|
516
516
|
"description": "Un modèle multilingue de 52 milliards de paramètres (12 milliards actifs), offrant une fenêtre de contexte longue de 256K, des appels de fonction, une sortie structurée et une génération ancrée."
|
517
517
|
},
|
518
|
+
"ai21-labs/AI21-Jamba-1.5-Large": {
|
519
|
+
"description": "Un modèle multilingue de 398 milliards de paramètres (94 milliards actifs), offrant une fenêtre contextuelle longue de 256K, des appels de fonctions, une sortie structurée et une génération factuelle."
|
520
|
+
},
|
521
|
+
"ai21-labs/AI21-Jamba-1.5-Mini": {
|
522
|
+
"description": "Un modèle multilingue de 52 milliards de paramètres (12 milliards actifs), offrant une fenêtre contextuelle longue de 256K, des appels de fonctions, une sortie structurée et une génération factuelle."
|
523
|
+
},
|
518
524
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
519
525
|
"description": "Claude 3.5 Sonnet élève les normes de l'industrie, surpassant les modèles concurrents et Claude 3 Opus, avec d'excellentes performances dans une large gamme d'évaluations, tout en offrant la vitesse et le coût de nos modèles de niveau intermédiaire."
|
520
526
|
},
|
@@ -668,6 +674,12 @@
|
|
668
674
|
"cohere-command-r-plus": {
|
669
675
|
"description": "Command R+ est un modèle optimisé RAG de pointe conçu pour traiter des charges de travail de niveau entreprise."
|
670
676
|
},
|
677
|
+
"cohere/Cohere-command-r": {
|
678
|
+
"description": "Command R est un modèle génératif évolutif conçu pour l'utilisation avec RAG et les outils, permettant aux entreprises de déployer une IA de niveau production."
|
679
|
+
},
|
680
|
+
"cohere/Cohere-command-r-plus": {
|
681
|
+
"description": "Command R+ est un modèle optimisé RAG de pointe, conçu pour gérer des charges de travail d'entreprise."
|
682
|
+
},
|
671
683
|
"command": {
|
672
684
|
"description": "Un modèle de dialogue qui suit des instructions, offrant une haute qualité et une fiabilité accrue dans les tâches linguistiques, avec une longueur de contexte plus longue que notre modèle de génération de base."
|
673
685
|
},
|
@@ -1028,6 +1040,12 @@
|
|
1028
1040
|
"gemini-2.5-flash-preview-04-17": {
|
1029
1041
|
"description": "Gemini 2.5 Flash Preview est le modèle le plus rentable de Google, offrant des fonctionnalités complètes."
|
1030
1042
|
},
|
1043
|
+
"gemini-2.5-flash-preview-04-17-thinking": {
|
1044
|
+
"description": "Gemini 2.5 Flash Preview est le modèle le plus rentable de Google, offrant des fonctionnalités complètes."
|
1045
|
+
},
|
1046
|
+
"gemini-2.5-flash-preview-05-20": {
|
1047
|
+
"description": "Gemini 2.5 Flash Preview est le modèle le plus rentable de Google, offrant des fonctionnalités complètes."
|
1048
|
+
},
|
1031
1049
|
"gemini-2.5-pro-exp-03-25": {
|
1032
1050
|
"description": "Gemini 2.5 Pro Experimental est le modèle de pensée le plus avancé de Google, capable de raisonner sur des problèmes complexes en code, mathématiques et dans les domaines STEM, tout en utilisant un long contexte pour analyser de grands ensembles de données, des bibliothèques de code et des documents."
|
1033
1051
|
},
|
@@ -1262,23 +1280,17 @@
|
|
1262
1280
|
"grok-2-vision-1212": {
|
1263
1281
|
"description": "Ce modèle a été amélioré en termes de précision, de respect des instructions et de capacités multilingues."
|
1264
1282
|
},
|
1265
|
-
"grok-3
|
1266
|
-
"description": "Modèle phare,
|
1267
|
-
},
|
1268
|
-
"grok-3-fast-beta": {
|
1269
|
-
"description": "Modèle phare, spécialisé dans l'extraction de données, la programmation et le résumé de texte pour des applications d'entreprise, avec une connaissance approfondie des domaines financier, médical, juridique et scientifique."
|
1283
|
+
"grok-3": {
|
1284
|
+
"description": "Modèle phare, expert en extraction de données, programmation et résumé de texte pour des applications d'entreprise, avec une connaissance approfondie des domaines financier, médical, juridique et scientifique."
|
1270
1285
|
},
|
1271
|
-
"grok-3-
|
1272
|
-
"description": "Modèle
|
1286
|
+
"grok-3-fast": {
|
1287
|
+
"description": "Modèle phare, expert en extraction de données, programmation et résumé de texte pour des applications d'entreprise, avec une connaissance approfondie des domaines financier, médical, juridique et scientifique."
|
1273
1288
|
},
|
1274
|
-
"grok-3-mini
|
1275
|
-
"description": "Modèle léger,
|
1289
|
+
"grok-3-mini": {
|
1290
|
+
"description": "Modèle léger, réfléchit avant de répondre. Rapide et intelligent, adapté aux tâches logiques ne nécessitant pas de connaissances approfondies, avec accès à la trace de pensée originale."
|
1276
1291
|
},
|
1277
|
-
"grok-
|
1278
|
-
"description": "
|
1279
|
-
},
|
1280
|
-
"grok-vision-beta": {
|
1281
|
-
"description": "Le dernier modèle de compréhension d'image, capable de traiter une variété d'informations visuelles, y compris des documents, des graphiques, des captures d'écran et des photos."
|
1292
|
+
"grok-3-mini-fast": {
|
1293
|
+
"description": "Modèle léger, réfléchit avant de répondre. Rapide et intelligent, adapté aux tâches logiques ne nécessitant pas de connaissances approfondies, avec accès à la trace de pensée originale."
|
1282
1294
|
},
|
1283
1295
|
"gryphe/mythomax-l2-13b": {
|
1284
1296
|
"description": "MythoMax l2 13B est un modèle linguistique combinant créativité et intelligence, intégrant plusieurs modèles de pointe."
|
@@ -1322,6 +1334,9 @@
|
|
1322
1334
|
"hunyuan-t1-latest": {
|
1323
1335
|
"description": "Le premier modèle d'inférence Hybrid-Transformer-Mamba à grande échelle de l'industrie, qui étend les capacités d'inférence, offre une vitesse de décodage exceptionnelle et aligne davantage les préférences humaines."
|
1324
1336
|
},
|
1337
|
+
"hunyuan-t1-vision": {
|
1338
|
+
"description": "Modèle de réflexion profonde multimodal Hunyuan, supportant des chaînes de pensée natives multimodales longues, excellent dans divers scénarios d'inférence d'images, avec une amélioration globale par rapport aux modèles de pensée rapide dans les problèmes scientifiques."
|
1339
|
+
},
|
1325
1340
|
"hunyuan-translation": {
|
1326
1341
|
"description": "Supporte la traduction entre le chinois et l'anglais, le japonais, le français, le portugais, l'espagnol, le turc, le russe, l'arabe, le coréen, l'italien, l'allemand, le vietnamien, le malais et l'indonésien, soit 15 langues au total, avec une évaluation automatisée basée sur le score COMET à partir d'un ensemble d'évaluation de traduction multi-scénarios, montrant une capacité de traduction globale supérieure à celle des modèles de taille similaire sur le marché."
|
1327
1342
|
},
|
@@ -1586,6 +1601,30 @@
|
|
1586
1601
|
"meta.llama3-8b-instruct-v1:0": {
|
1587
1602
|
"description": "Meta Llama 3 est un modèle de langage ouvert (LLM) destiné aux développeurs, chercheurs et entreprises, conçu pour les aider à construire, expérimenter et étendre de manière responsable leurs idées d'IA générative. En tant que partie intégrante d'un système de base pour l'innovation de la communauté mondiale, il est particulièrement adapté aux appareils à capacité de calcul et de ressources limitées, ainsi qu'à des temps d'entraînement plus rapides."
|
1588
1603
|
},
|
1604
|
+
"meta/Llama-3.2-11B-Vision-Instruct": {
|
1605
|
+
"description": "Excellentes capacités d'inférence d'images haute résolution, adapté aux applications de compréhension visuelle."
|
1606
|
+
},
|
1607
|
+
"meta/Llama-3.2-90B-Vision-Instruct": {
|
1608
|
+
"description": "Capacités avancées d'inférence d'images pour applications d'agents de compréhension visuelle."
|
1609
|
+
},
|
1610
|
+
"meta/Llama-3.3-70B-Instruct": {
|
1611
|
+
"description": "Llama 3.3 est le modèle open source multilingue le plus avancé de la série Llama, offrant des performances comparables à un modèle de 405 milliards de paramètres à très faible coût. Basé sur l'architecture Transformer, il est amélioré par un ajustement supervisé (SFT) et un apprentissage par renforcement avec retour humain (RLHF) pour une meilleure utilité et sécurité. Sa version optimisée pour les instructions est conçue pour les dialogues multilingues et surpasse de nombreux modèles de chat open source et propriétaires sur plusieurs benchmarks industriels. Date de coupure des connaissances : décembre 2023."
|
1612
|
+
},
|
1613
|
+
"meta/Meta-Llama-3-70B-Instruct": {
|
1614
|
+
"description": "Un puissant modèle de 70 milliards de paramètres, excellent en inférence, codage et applications linguistiques étendues."
|
1615
|
+
},
|
1616
|
+
"meta/Meta-Llama-3-8B-Instruct": {
|
1617
|
+
"description": "Un modèle polyvalent de 8 milliards de paramètres, optimisé pour les tâches de dialogue et de génération de texte."
|
1618
|
+
},
|
1619
|
+
"meta/Meta-Llama-3.1-405B-Instruct": {
|
1620
|
+
"description": "Modèle textuel Llama 3.1 ajusté aux instructions, optimisé pour les cas d'usage de dialogue multilingue, performant sur de nombreux benchmarks industriels parmi les modèles de chat open source et propriétaires disponibles."
|
1621
|
+
},
|
1622
|
+
"meta/Meta-Llama-3.1-70B-Instruct": {
|
1623
|
+
"description": "Modèle textuel Llama 3.1 ajusté aux instructions, optimisé pour les cas d'usage de dialogue multilingue, performant sur de nombreux benchmarks industriels parmi les modèles de chat open source et propriétaires disponibles."
|
1624
|
+
},
|
1625
|
+
"meta/Meta-Llama-3.1-8B-Instruct": {
|
1626
|
+
"description": "Modèle textuel Llama 3.1 ajusté aux instructions, optimisé pour les cas d'usage de dialogue multilingue, performant sur de nombreux benchmarks industriels parmi les modèles de chat open source et propriétaires disponibles."
|
1627
|
+
},
|
1589
1628
|
"meta/llama-3.1-405b-instruct": {
|
1590
1629
|
"description": "LLM avancé, prenant en charge la génération de données synthétiques, la distillation de connaissances et le raisonnement, adapté aux chatbots, à la programmation et aux tâches spécifiques."
|
1591
1630
|
},
|
@@ -1610,6 +1649,30 @@
|
|
1610
1649
|
"meta/llama-3.3-70b-instruct": {
|
1611
1650
|
"description": "LLM avancé, spécialisé dans le raisonnement, les mathématiques, le bon sens et les appels de fonction."
|
1612
1651
|
},
|
1652
|
+
"microsoft/Phi-3-medium-128k-instruct": {
|
1653
|
+
"description": "Même modèle Phi-3-medium, mais avec une taille de contexte plus grande, adapté au RAG ou aux prompts courts."
|
1654
|
+
},
|
1655
|
+
"microsoft/Phi-3-medium-4k-instruct": {
|
1656
|
+
"description": "Modèle de 14 milliards de paramètres, de meilleure qualité que Phi-3-mini, axé sur des données de haute qualité et à forte intensité d'inférence."
|
1657
|
+
},
|
1658
|
+
"microsoft/Phi-3-mini-128k-instruct": {
|
1659
|
+
"description": "Même modèle Phi-3-mini, mais avec une taille de contexte plus grande, adapté au RAG ou aux prompts courts."
|
1660
|
+
},
|
1661
|
+
"microsoft/Phi-3-mini-4k-instruct": {
|
1662
|
+
"description": "Le plus petit membre de la famille Phi-3, optimisé pour la qualité et la faible latence."
|
1663
|
+
},
|
1664
|
+
"microsoft/Phi-3-small-128k-instruct": {
|
1665
|
+
"description": "Même modèle Phi-3-small, mais avec une taille de contexte plus grande, adapté au RAG ou aux prompts courts."
|
1666
|
+
},
|
1667
|
+
"microsoft/Phi-3-small-8k-instruct": {
|
1668
|
+
"description": "Modèle de 7 milliards de paramètres, de meilleure qualité que Phi-3-mini, axé sur des données de haute qualité et à forte intensité d'inférence."
|
1669
|
+
},
|
1670
|
+
"microsoft/Phi-3.5-mini-instruct": {
|
1671
|
+
"description": "Version mise à jour du modèle Phi-3-mini."
|
1672
|
+
},
|
1673
|
+
"microsoft/Phi-3.5-vision-instruct": {
|
1674
|
+
"description": "Version mise à jour du modèle Phi-3-vision."
|
1675
|
+
},
|
1613
1676
|
"microsoft/WizardLM-2-8x22B": {
|
1614
1677
|
"description": "WizardLM 2 est un modèle de langage proposé par Microsoft AI, qui excelle dans les domaines des dialogues complexes, du multilinguisme, du raisonnement et des assistants intelligents."
|
1615
1678
|
},
|
@@ -1628,6 +1691,15 @@
|
|
1628
1691
|
"mistral": {
|
1629
1692
|
"description": "Mistral est le modèle 7B lancé par Mistral AI, adapté aux besoins variés de traitement du langage."
|
1630
1693
|
},
|
1694
|
+
"mistral-ai/Mistral-Large-2411": {
|
1695
|
+
"description": "Le modèle phare de Mistral, adapté aux tâches complexes nécessitant une inférence à grande échelle ou une spécialisation élevée (génération de texte synthétique, génération de code, RAG ou agents)."
|
1696
|
+
},
|
1697
|
+
"mistral-ai/Mistral-Nemo": {
|
1698
|
+
"description": "Mistral Nemo est un modèle de langage de pointe (LLM) offrant les meilleures performances en inférence, connaissances mondiales et capacités de codage dans sa catégorie de taille."
|
1699
|
+
},
|
1700
|
+
"mistral-ai/mistral-small-2503": {
|
1701
|
+
"description": "Mistral Small est adapté à toute tâche linguistique nécessitant haute efficacité et faible latence."
|
1702
|
+
},
|
1631
1703
|
"mistral-large": {
|
1632
1704
|
"description": "Mixtral Large est le modèle phare de Mistral, combinant des capacités de génération de code, de mathématiques et de raisonnement, prenant en charge une fenêtre de contexte de 128k."
|
1633
1705
|
},
|
@@ -1769,6 +1841,9 @@
|
|
1769
1841
|
"openai/gpt-4o-mini": {
|
1770
1842
|
"description": "GPT-4o mini est le dernier modèle d'OpenAI lancé après GPT-4 Omni, prenant en charge les entrées d'images et de texte et produisant du texte en sortie. En tant que leur modèle compact le plus avancé, il est beaucoup moins cher que d'autres modèles de pointe récents et coûte plus de 60 % de moins que GPT-3.5 Turbo. Il maintient une intelligence de pointe tout en offrant un rapport qualité-prix significatif. GPT-4o mini a obtenu un score de 82 % au test MMLU et se classe actuellement au-dessus de GPT-4 en termes de préférences de chat."
|
1771
1843
|
},
|
1844
|
+
"openai/o1": {
|
1845
|
+
"description": "o1 est le nouveau modèle d'inférence d'OpenAI, prenant en charge les entrées multimodales (texte et image) et produisant du texte, adapté aux tâches complexes nécessitant des connaissances générales étendues. Ce modèle dispose d'un contexte de 200K et d'une date de coupure des connaissances en octobre 2023."
|
1846
|
+
},
|
1772
1847
|
"openai/o1-mini": {
|
1773
1848
|
"description": "o1-mini est un modèle de raisonnement rapide et économique conçu pour les applications de programmation, de mathématiques et de sciences. Ce modèle dispose d'un contexte de 128K et d'une date limite de connaissance en octobre 2023."
|
1774
1849
|
},
|
@@ -259,9 +259,6 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Activer la limite de tokens par réponse"
|
261
261
|
},
|
262
|
-
"enableReasoningEffort": {
|
263
|
-
"title": "Activer l'ajustement de l'intensité de raisonnement"
|
264
|
-
},
|
265
262
|
"frequencyPenalty": {
|
266
263
|
"desc": "Plus la valeur est élevée, plus le vocabulaire est riche et varié ; plus la valeur est basse, plus le vocabulaire est simple et direct",
|
267
264
|
"title": "Richesse du vocabulaire"
|
@@ -281,15 +278,6 @@
|
|
281
278
|
"desc": "Plus la valeur est élevée, plus il y a tendance à utiliser des expressions différentes, évitant la répétition des concepts ; plus la valeur est basse, plus il y a tendance à utiliser des concepts ou des narrations répétitifs, rendant l'expression plus cohérente",
|
282
279
|
"title": "Diversité de l'expression"
|
283
280
|
},
|
284
|
-
"reasoningEffort": {
|
285
|
-
"desc": "Plus la valeur est élevée, plus la capacité de raisonnement est forte, mais cela peut augmenter le temps de réponse et la consommation de jetons",
|
286
|
-
"options": {
|
287
|
-
"high": "Élevé",
|
288
|
-
"low": "Bas",
|
289
|
-
"medium": "Moyen"
|
290
|
-
},
|
291
|
-
"title": "Intensité de raisonnement"
|
292
|
-
},
|
293
281
|
"submit": "Mettre à jour les paramètres du modèle",
|
294
282
|
"temperature": {
|
295
283
|
"desc": "Plus la valeur est élevée, plus les réponses sont créatives et imaginatives ; plus la valeur est basse, plus les réponses sont rigoureuses",
|
package/locales/it-IT/chat.json
CHANGED
@@ -341,9 +341,6 @@
|
|
341
341
|
"Qwen2.5-Coder-32B-Instruct": {
|
342
342
|
"description": "Qwen2.5-Coder-32B-Instruct è un grande modello linguistico progettato per la generazione di codice, la comprensione del codice e scenari di sviluppo efficienti, con una scala di 32 miliardi di parametri all'avanguardia nel settore, in grado di soddisfare esigenze di programmazione diversificate."
|
343
343
|
},
|
344
|
-
"SenseCat-5-1202": {
|
345
|
-
"description": "È l'ultima versione basata su V5.5, con miglioramenti significativi rispetto alla versione precedente in vari ambiti come le capacità di base in cinese e inglese, chat, conoscenze scientifiche, conoscenze umanistiche, scrittura, logica matematica e controllo del numero di parole."
|
346
|
-
},
|
347
344
|
"SenseChat": {
|
348
345
|
"description": "Modello di base (V4), lunghezza del contesto di 4K, con potenti capacità generali."
|
349
346
|
},
|
@@ -356,6 +353,9 @@
|
|
356
353
|
"SenseChat-5": {
|
357
354
|
"description": "Modello dell'ultima versione (V5.5), lunghezza del contesto di 128K, con capacità significativamente migliorate in ragionamento matematico, conversazioni in inglese, seguire istruzioni e comprensione di testi lunghi, paragonabile a GPT-4o."
|
358
355
|
},
|
356
|
+
"SenseChat-5-1202": {
|
357
|
+
"description": "Basato sulla versione V5.5 più recente, mostra miglioramenti significativi rispetto alla versione precedente in capacità di base in cinese e inglese, chat, conoscenze scientifiche e umanistiche, scrittura, logica matematica e controllo della lunghezza del testo."
|
358
|
+
},
|
359
359
|
"SenseChat-5-Cantonese": {
|
360
360
|
"description": "Lunghezza del contesto di 32K, supera GPT-4 nella comprensione delle conversazioni in cantonese, paragonabile a GPT-4 Turbo in vari ambiti come conoscenza, ragionamento, matematica e scrittura di codice."
|
361
361
|
},
|
@@ -515,6 +515,12 @@
|
|
515
515
|
"ai21-jamba-1.5-mini": {
|
516
516
|
"description": "Un modello multilingue con 52 miliardi di parametri (12 miliardi attivi), offre una finestra di contesto lunga 256K, chiamata di funzione, output strutturato e generazione ancorata."
|
517
517
|
},
|
518
|
+
"ai21-labs/AI21-Jamba-1.5-Large": {
|
519
|
+
"description": "Un modello multilingue con 398 miliardi di parametri (94 miliardi attivi), offre una finestra contestuale lunga 256K token, chiamate di funzione, output strutturati e generazione basata su fatti."
|
520
|
+
},
|
521
|
+
"ai21-labs/AI21-Jamba-1.5-Mini": {
|
522
|
+
"description": "Un modello multilingue con 52 miliardi di parametri (12 miliardi attivi), offre una finestra contestuale lunga 256K token, chiamate di funzione, output strutturati e generazione basata su fatti."
|
523
|
+
},
|
518
524
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
519
525
|
"description": "Claude 3.5 Sonnet ha elevato gli standard del settore, superando i modelli concorrenti e Claude 3 Opus, dimostrando prestazioni eccezionali in una vasta gamma di valutazioni, mantenendo la velocità e i costi dei nostri modelli di livello medio."
|
520
526
|
},
|
@@ -668,6 +674,12 @@
|
|
668
674
|
"cohere-command-r-plus": {
|
669
675
|
"description": "Command R+ è un modello ottimizzato per RAG all'avanguardia progettato per affrontare carichi di lavoro di livello aziendale."
|
670
676
|
},
|
677
|
+
"cohere/Cohere-command-r": {
|
678
|
+
"description": "Command R è un modello generativo scalabile progettato per l'uso con RAG e strumenti, che consente alle aziende di implementare AI a livello produttivo."
|
679
|
+
},
|
680
|
+
"cohere/Cohere-command-r-plus": {
|
681
|
+
"description": "Command R+ è un modello ottimizzato all'avanguardia per RAG, progettato per gestire carichi di lavoro aziendali."
|
682
|
+
},
|
671
683
|
"command": {
|
672
684
|
"description": "Un modello di dialogo che segue le istruzioni, con alta qualità e maggiore affidabilità nelle attività linguistiche, e una lunghezza di contesto più lunga rispetto ai nostri modelli generativi di base."
|
673
685
|
},
|
@@ -1028,6 +1040,12 @@
|
|
1028
1040
|
"gemini-2.5-flash-preview-04-17": {
|
1029
1041
|
"description": "Gemini 2.5 Flash Preview è il modello più conveniente di Google, che offre funzionalità complete."
|
1030
1042
|
},
|
1043
|
+
"gemini-2.5-flash-preview-04-17-thinking": {
|
1044
|
+
"description": "Gemini 2.5 Flash Preview è il modello Google con il miglior rapporto qualità-prezzo, che offre funzionalità complete."
|
1045
|
+
},
|
1046
|
+
"gemini-2.5-flash-preview-05-20": {
|
1047
|
+
"description": "Gemini 2.5 Flash Preview è il modello Google con il miglior rapporto qualità-prezzo, che offre funzionalità complete."
|
1048
|
+
},
|
1031
1049
|
"gemini-2.5-pro-exp-03-25": {
|
1032
1050
|
"description": "Gemini 2.5 Pro Experimental è il modello di pensiero più avanzato di Google, in grado di ragionare su problemi complessi in codice, matematica e nei campi STEM, e di analizzare grandi set di dati, codebase e documenti utilizzando contesti lunghi."
|
1033
1051
|
},
|
@@ -1262,23 +1280,17 @@
|
|
1262
1280
|
"grok-2-vision-1212": {
|
1263
1281
|
"description": "Questo modello ha migliorato l'accuratezza, il rispetto delle istruzioni e le capacità multilingue."
|
1264
1282
|
},
|
1265
|
-
"grok-3
|
1266
|
-
"description": "Modello di punta,
|
1267
|
-
},
|
1268
|
-
"grok-3-fast-beta": {
|
1269
|
-
"description": "Modello di punta, specializzato in estrazione di dati, programmazione e sintesi di testi per applicazioni aziendali, con una profonda conoscenza nei settori finanziario, medico, legale e scientifico."
|
1283
|
+
"grok-3": {
|
1284
|
+
"description": "Modello di punta, eccelle in estrazione dati, programmazione e sintesi testuale per applicazioni aziendali, con profonda conoscenza nei settori finanziario, medico, legale e scientifico."
|
1270
1285
|
},
|
1271
|
-
"grok-3-
|
1272
|
-
"description": "Modello
|
1286
|
+
"grok-3-fast": {
|
1287
|
+
"description": "Modello di punta, eccelle in estrazione dati, programmazione e sintesi testuale per applicazioni aziendali, con profonda conoscenza nei settori finanziario, medico, legale e scientifico."
|
1273
1288
|
},
|
1274
|
-
"grok-3-mini
|
1275
|
-
"description": "Modello leggero
|
1289
|
+
"grok-3-mini": {
|
1290
|
+
"description": "Modello leggero che riflette prima di rispondere. Veloce e intelligente, adatto a compiti logici che non richiedono conoscenze di dominio profonde, con tracciamento del processo di pensiero originale."
|
1276
1291
|
},
|
1277
|
-
"grok-
|
1278
|
-
"description": "
|
1279
|
-
},
|
1280
|
-
"grok-vision-beta": {
|
1281
|
-
"description": "L'ultimo modello di comprensione delle immagini, in grado di gestire una vasta gamma di informazioni visive, tra cui documenti, grafici, screenshot e fotografie."
|
1292
|
+
"grok-3-mini-fast": {
|
1293
|
+
"description": "Modello leggero che riflette prima di rispondere. Veloce e intelligente, adatto a compiti logici che non richiedono conoscenze di dominio profonde, con tracciamento del processo di pensiero originale."
|
1282
1294
|
},
|
1283
1295
|
"gryphe/mythomax-l2-13b": {
|
1284
1296
|
"description": "MythoMax l2 13B è un modello linguistico che combina creatività e intelligenza, unendo diversi modelli di punta."
|
@@ -1322,6 +1334,9 @@
|
|
1322
1334
|
"hunyuan-t1-latest": {
|
1323
1335
|
"description": "Il primo modello di inferenza ibrido su larga scala Hybrid-Transformer-Mamba del settore, che espande le capacità di inferenza, offre una velocità di decodifica eccezionale e allinea ulteriormente le preferenze umane."
|
1324
1336
|
},
|
1337
|
+
"hunyuan-t1-vision": {
|
1338
|
+
"description": "Modello di comprensione multimodale profonda Hunyuan, supporta catene di pensiero native multimodali, eccelle in vari scenari di ragionamento visivo e migliora significativamente rispetto ai modelli di pensiero rapido nei problemi scientifici."
|
1339
|
+
},
|
1325
1340
|
"hunyuan-translation": {
|
1326
1341
|
"description": "Supporta la traduzione tra cinese e inglese, giapponese, francese, portoghese, spagnolo, turco, russo, arabo, coreano, italiano, tedesco, vietnamita, malese e indonesiano, per un totale di 15 lingue, con valutazione automatica basata su un set di valutazione di traduzione multi-scenario e punteggio COMET, mostrando complessivamente prestazioni superiori rispetto ai modelli di dimensioni simili sul mercato in termini di capacità di traduzione reciproca tra le lingue più comuni."
|
1327
1342
|
},
|
@@ -1586,6 +1601,30 @@
|
|
1586
1601
|
"meta.llama3-8b-instruct-v1:0": {
|
1587
1602
|
"description": "Meta Llama 3 è un modello di linguaggio di grandi dimensioni (LLM) open source progettato per sviluppatori, ricercatori e aziende, per aiutarli a costruire, sperimentare e scalare responsabilmente le loro idee di AI generativa. Come parte di un sistema di base per l'innovazione della comunità globale, è particolarmente adatto per dispositivi a bassa potenza e risorse limitate, oltre a garantire tempi di addestramento più rapidi."
|
1588
1603
|
},
|
1604
|
+
"meta/Llama-3.2-11B-Vision-Instruct": {
|
1605
|
+
"description": "Eccelle nelle capacità di ragionamento su immagini ad alta risoluzione, adatto ad applicazioni di comprensione visiva."
|
1606
|
+
},
|
1607
|
+
"meta/Llama-3.2-90B-Vision-Instruct": {
|
1608
|
+
"description": "Capacità avanzate di ragionamento su immagini per applicazioni di agenti di comprensione visiva."
|
1609
|
+
},
|
1610
|
+
"meta/Llama-3.3-70B-Instruct": {
|
1611
|
+
"description": "Llama 3.3 è il modello linguistico open source multilingue più avanzato della serie Llama, che offre prestazioni paragonabili a un modello da 405 miliardi di parametri a costi estremamente contenuti. Basato su architettura Transformer, migliorato tramite fine-tuning supervisionato (SFT) e apprendimento rinforzato con feedback umano (RLHF) per utilità e sicurezza. La versione ottimizzata per istruzioni è progettata per dialoghi multilingue e supera molti modelli di chat open source e proprietari in diversi benchmark industriali. Data di cut-off della conoscenza: dicembre 2023."
|
1612
|
+
},
|
1613
|
+
"meta/Meta-Llama-3-70B-Instruct": {
|
1614
|
+
"description": "Un potente modello da 70 miliardi di parametri, eccellente in ragionamento, codifica e ampie applicazioni linguistiche."
|
1615
|
+
},
|
1616
|
+
"meta/Meta-Llama-3-8B-Instruct": {
|
1617
|
+
"description": "Un modello versatile da 8 miliardi di parametri, ottimizzato per compiti di dialogo e generazione di testo."
|
1618
|
+
},
|
1619
|
+
"meta/Meta-Llama-3.1-405B-Instruct": {
|
1620
|
+
"description": "Modello testuale Llama 3.1 ottimizzato per istruzioni, progettato per casi d'uso di dialogo multilingue, con prestazioni eccellenti in molti benchmark industriali rispetto a numerosi modelli di chat open source e proprietari."
|
1621
|
+
},
|
1622
|
+
"meta/Meta-Llama-3.1-70B-Instruct": {
|
1623
|
+
"description": "Modello testuale Llama 3.1 ottimizzato per istruzioni, progettato per casi d'uso di dialogo multilingue, con prestazioni eccellenti in molti benchmark industriali rispetto a numerosi modelli di chat open source e proprietari."
|
1624
|
+
},
|
1625
|
+
"meta/Meta-Llama-3.1-8B-Instruct": {
|
1626
|
+
"description": "Modello testuale Llama 3.1 ottimizzato per istruzioni, progettato per casi d'uso di dialogo multilingue, con prestazioni eccellenti in molti benchmark industriali rispetto a numerosi modelli di chat open source e proprietari."
|
1627
|
+
},
|
1589
1628
|
"meta/llama-3.1-405b-instruct": {
|
1590
1629
|
"description": "LLM avanzato, supporta la generazione di dati sintetici, la distillazione della conoscenza e il ragionamento, adatto per chatbot, programmazione e compiti specifici."
|
1591
1630
|
},
|
@@ -1610,6 +1649,30 @@
|
|
1610
1649
|
"meta/llama-3.3-70b-instruct": {
|
1611
1650
|
"description": "LLM avanzato, specializzato in ragionamento, matematica, conoscenze generali e chiamate di funzione."
|
1612
1651
|
},
|
1652
|
+
"microsoft/Phi-3-medium-128k-instruct": {
|
1653
|
+
"description": "Stesso modello Phi-3-medium, ma con una dimensione del contesto maggiore, adatto per RAG o pochi prompt."
|
1654
|
+
},
|
1655
|
+
"microsoft/Phi-3-medium-4k-instruct": {
|
1656
|
+
"description": "Un modello da 14 miliardi di parametri, con qualità superiore a Phi-3-mini, focalizzato su dati di alta qualità e intensivi di ragionamento."
|
1657
|
+
},
|
1658
|
+
"microsoft/Phi-3-mini-128k-instruct": {
|
1659
|
+
"description": "Stesso modello Phi-3-mini, ma con una dimensione del contesto maggiore, adatto per RAG o pochi prompt."
|
1660
|
+
},
|
1661
|
+
"microsoft/Phi-3-mini-4k-instruct": {
|
1662
|
+
"description": "Il membro più piccolo della famiglia Phi-3, ottimizzato per qualità e bassa latenza."
|
1663
|
+
},
|
1664
|
+
"microsoft/Phi-3-small-128k-instruct": {
|
1665
|
+
"description": "Stesso modello Phi-3-small, ma con una dimensione del contesto maggiore, adatto per RAG o pochi prompt."
|
1666
|
+
},
|
1667
|
+
"microsoft/Phi-3-small-8k-instruct": {
|
1668
|
+
"description": "Un modello da 7 miliardi di parametri, con qualità superiore a Phi-3-mini, focalizzato su dati di alta qualità e intensivi di ragionamento."
|
1669
|
+
},
|
1670
|
+
"microsoft/Phi-3.5-mini-instruct": {
|
1671
|
+
"description": "Versione aggiornata del modello Phi-3-mini."
|
1672
|
+
},
|
1673
|
+
"microsoft/Phi-3.5-vision-instruct": {
|
1674
|
+
"description": "Versione aggiornata del modello Phi-3-vision."
|
1675
|
+
},
|
1613
1676
|
"microsoft/WizardLM-2-8x22B": {
|
1614
1677
|
"description": "WizardLM 2 è un modello linguistico fornito da Microsoft AI, particolarmente efficace in conversazioni complesse, multilingue, ragionamento e assistenti intelligenti."
|
1615
1678
|
},
|
@@ -1628,6 +1691,15 @@
|
|
1628
1691
|
"mistral": {
|
1629
1692
|
"description": "Mistral è un modello da 7B lanciato da Mistral AI, adatto per esigenze di elaborazione linguistica variabili."
|
1630
1693
|
},
|
1694
|
+
"mistral-ai/Mistral-Large-2411": {
|
1695
|
+
"description": "Il modello di punta di Mistral, ideale per compiti complessi che richiedono capacità di ragionamento su larga scala o alta specializzazione (generazione di testo sintetico, generazione di codice, RAG o agenti)."
|
1696
|
+
},
|
1697
|
+
"mistral-ai/Mistral-Nemo": {
|
1698
|
+
"description": "Mistral Nemo è un modello linguistico all'avanguardia (LLM) che offre capacità di ragionamento, conoscenza del mondo e codifica tra le migliori nella sua categoria di dimensioni."
|
1699
|
+
},
|
1700
|
+
"mistral-ai/mistral-small-2503": {
|
1701
|
+
"description": "Mistral Small è adatto a qualsiasi compito basato sul linguaggio che richieda alta efficienza e bassa latenza."
|
1702
|
+
},
|
1631
1703
|
"mistral-large": {
|
1632
1704
|
"description": "Mixtral Large è il modello di punta di Mistral, combinando capacità di generazione di codice, matematica e ragionamento, supporta una finestra di contesto di 128k."
|
1633
1705
|
},
|
@@ -1769,6 +1841,9 @@
|
|
1769
1841
|
"openai/gpt-4o-mini": {
|
1770
1842
|
"description": "GPT-4o mini è il modello più recente di OpenAI, lanciato dopo GPT-4 Omni, che supporta input visivi e testuali e produce output testuali. Come il loro modello di piccole dimensioni più avanzato, è molto più economico rispetto ad altri modelli all'avanguardia recenti e costa oltre il 60% in meno rispetto a GPT-3.5 Turbo. Mantiene un'intelligenza all'avanguardia, offrendo un notevole rapporto qualità-prezzo. GPT-4o mini ha ottenuto un punteggio dell'82% nel test MMLU e attualmente è classificato più in alto di GPT-4 per preferenze di chat."
|
1771
1843
|
},
|
1844
|
+
"openai/o1": {
|
1845
|
+
"description": "o1 è il nuovo modello di ragionamento di OpenAI, supporta input di testo e immagini e produce output testuali, adatto a compiti complessi che richiedono una vasta conoscenza generale. Il modello ha un contesto di 200K token e una data di cut-off della conoscenza a ottobre 2023."
|
1846
|
+
},
|
1772
1847
|
"openai/o1-mini": {
|
1773
1848
|
"description": "o1-mini è un modello di inferenza rapido ed economico progettato per applicazioni di programmazione, matematica e scienza. Questo modello ha un contesto di 128K e una data di cutoff della conoscenza di ottobre 2023."
|
1774
1849
|
},
|
@@ -259,9 +259,6 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Abilita limite di risposta singola"
|
261
261
|
},
|
262
|
-
"enableReasoningEffort": {
|
263
|
-
"title": "Attiva la regolazione dell'intensità del ragionamento"
|
264
|
-
},
|
265
262
|
"frequencyPenalty": {
|
266
263
|
"desc": "Maggiore è il valore, più ricca e varia sarà la scelta delle parole; minore è il valore, più semplici e dirette saranno le parole",
|
267
264
|
"title": "Ricchezza del vocabolario"
|
@@ -281,15 +278,6 @@
|
|
281
278
|
"desc": "Maggiore è il valore, maggiore sarà la tendenza a esprimere in modi diversi, evitando ripetizioni; minore è il valore, maggiore sarà la tendenza a utilizzare concetti o narrazioni ripetute, rendendo l'espressione più coerente",
|
282
279
|
"title": "Divergenza espressiva"
|
283
280
|
},
|
284
|
-
"reasoningEffort": {
|
285
|
-
"desc": "Maggiore è il valore, più forte è la capacità di ragionamento, ma potrebbe aumentare il tempo di risposta e il consumo di Token",
|
286
|
-
"options": {
|
287
|
-
"high": "Alto",
|
288
|
-
"low": "Basso",
|
289
|
-
"medium": "Medio"
|
290
|
-
},
|
291
|
-
"title": "Intensità del ragionamento"
|
292
|
-
},
|
293
281
|
"submit": "Aggiorna impostazioni modello",
|
294
282
|
"temperature": {
|
295
283
|
"desc": "Maggiore è il valore, più creativi e fantasiosi saranno le risposte; minore è il valore, più rigorose saranno le risposte",
|