@lobehub/chat 1.84.23 → 1.84.25
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/apps/desktop/src/main/controllers/__tests__/BrowserWindowsCtr.test.ts +195 -0
- package/apps/desktop/src/main/controllers/__tests__/DevtoolsCtr.test.ts +44 -0
- package/apps/desktop/src/main/controllers/__tests__/MenuCtr.test.ts +82 -0
- package/apps/desktop/src/main/controllers/__tests__/ShortcutCtr.test.ts +64 -0
- package/apps/desktop/src/main/controllers/__tests__/TrayMenuCtr.test.ts +256 -0
- package/apps/desktop/src/main/controllers/__tests__/UpdaterCtr.test.ts +82 -0
- package/apps/desktop/src/main/services/fileSrv.ts +49 -10
- package/apps/desktop/vitest.config.ts +17 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/hotkey.json +4 -0
- package/locales/ar/models.json +55 -13
- package/locales/ar/providers.json +0 -3
- package/locales/bg-BG/hotkey.json +4 -0
- package/locales/bg-BG/models.json +55 -13
- package/locales/bg-BG/providers.json +0 -3
- package/locales/de-DE/hotkey.json +4 -0
- package/locales/de-DE/models.json +55 -13
- package/locales/de-DE/providers.json +0 -3
- package/locales/en-US/hotkey.json +4 -0
- package/locales/en-US/models.json +55 -13
- package/locales/en-US/providers.json +0 -3
- package/locales/es-ES/hotkey.json +4 -0
- package/locales/es-ES/models.json +55 -13
- package/locales/es-ES/providers.json +0 -3
- package/locales/fa-IR/hotkey.json +4 -0
- package/locales/fa-IR/models.json +55 -13
- package/locales/fa-IR/providers.json +0 -3
- package/locales/fr-FR/hotkey.json +4 -0
- package/locales/fr-FR/models.json +55 -13
- package/locales/fr-FR/providers.json +0 -3
- package/locales/it-IT/hotkey.json +4 -0
- package/locales/it-IT/models.json +55 -13
- package/locales/it-IT/providers.json +0 -3
- package/locales/ja-JP/hotkey.json +4 -0
- package/locales/ja-JP/models.json +55 -13
- package/locales/ja-JP/providers.json +0 -3
- package/locales/ko-KR/hotkey.json +4 -0
- package/locales/ko-KR/models.json +55 -13
- package/locales/ko-KR/providers.json +0 -3
- package/locales/nl-NL/hotkey.json +4 -0
- package/locales/nl-NL/models.json +55 -13
- package/locales/nl-NL/providers.json +0 -3
- package/locales/pl-PL/hotkey.json +4 -0
- package/locales/pl-PL/models.json +55 -13
- package/locales/pl-PL/providers.json +0 -3
- package/locales/pt-BR/hotkey.json +4 -0
- package/locales/pt-BR/models.json +55 -13
- package/locales/pt-BR/providers.json +0 -3
- package/locales/ru-RU/hotkey.json +4 -0
- package/locales/ru-RU/models.json +55 -13
- package/locales/ru-RU/providers.json +0 -3
- package/locales/tr-TR/hotkey.json +4 -0
- package/locales/tr-TR/models.json +55 -13
- package/locales/tr-TR/providers.json +0 -3
- package/locales/vi-VN/hotkey.json +4 -0
- package/locales/vi-VN/models.json +55 -13
- package/locales/vi-VN/providers.json +0 -3
- package/locales/zh-CN/hotkey.json +4 -0
- package/locales/zh-CN/models.json +55 -13
- package/locales/zh-CN/providers.json +0 -3
- package/locales/zh-TW/hotkey.json +4 -0
- package/locales/zh-TW/models.json +55 -13
- package/locales/zh-TW/providers.json +0 -3
- package/package.json +1 -1
- package/packages/electron-server-ipc/package.json +3 -0
- package/packages/electron-server-ipc/src/ipcClient.ts +58 -21
- package/packages/electron-server-ipc/src/ipcServer.test.ts +417 -0
- package/packages/electron-server-ipc/src/ipcServer.ts +21 -16
- package/src/const/hotkeys.ts +7 -0
- package/src/const/url.ts +1 -1
- package/src/features/User/UserPanel/useMenu.tsx +2 -1
- package/src/locales/default/hotkey.ts +4 -0
- package/src/services/__tests__/_url.test.ts +23 -0
- package/src/types/hotkey.ts +1 -0
- package/vitest.config.ts +3 -2
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 is een MoE-model dat zelf is ontwikkeld door DeepSeek Company. De prestaties van DeepSeek-V3 overtreffen die van andere open-source modellen zoals Qwen2.5-72B en Llama-3.1-405B, en presteert op het gebied van prestaties gelijkwaardig aan de wereldtop gesloten modellen zoals GPT-4o en Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 is een nieuw diep denkmodel (de m-versie heeft ingebouwde multimodale diep redeneringscapaciteiten), dat uitblinkt in wiskunde, programmeren, wetenschappelijke redenering en creatieve schrijfopdrachten, en in verschillende autoritaire benchmarks zoals AIME 2024, Codeforces, GPQA, het niveau van de top van de industrie bereikt of benadert. Ondersteunt een contextvenster van 128k en 16k output."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro is een nieuw geüpgradede multimodale groot model, dat ondersteuning biedt voor beeldherkenning met willekeurige resoluties en extreme beeldverhoudingen, en de visuele redenering, documentherkenning, begrip van gedetailleerde informatie en het volgen van instructies verbetert."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL is een visueel-taalmodel uit de Qwen2.5-reeks. Dit model heeft aanzienlijke verbeteringen op verschillende gebieden: het heeft een betere visuele begripscapaciteit, kan veelvoorkomende objecten herkennen, tekst, grafieken en lay-outs analyseren; als visueel agent kan het redeneren en het gebruik van tools dynamisch begeleiden; het ondersteunt het begrijpen van video's langer dan 1 uur en kan belangrijke gebeurtenissen vastleggen; het kan objecten in afbeeldingen nauwkeurig lokaliseren door bounding boxes of punten te genereren; het ondersteunt de generatie van gestructureerde uitvoer, met name geschikt voor facturen, tabellen en andere gescande gegevens."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 is een nieuwe generatie Qwen-model met aanzienlijk verbeterde capaciteiten, die op het gebied van redenering, algemeen gebruik, agent en meertaligheid op een leidende positie in de industrie staat, en ondersteunt de schakel tussen denkmodi."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 is een nieuwe generatie Qwen-model met aanzienlijk verbeterde capaciteiten, die op het gebied van redenering, algemeen gebruik, agent en meertaligheid op een leidende positie in de industrie staat, en ondersteunt de schakel tussen denkmodi."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 is een nieuwe generatie Qwen-model met aanzienlijk verbeterde capaciteiten, die op het gebied van redenering, algemeen gebruik, agent en meertaligheid op een leidende positie in de industrie staat, en ondersteunt de schakel tussen denkmodi."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 is een nieuwe generatie Qwen-model met aanzienlijk verbeterde capaciteiten, die op het gebied van redenering, algemeen gebruik, agent en meertaligheid op een leidende positie in de industrie staat, en ondersteunt de schakel tussen denkmodi."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 is een nieuwe generatie Qwen-model met aanzienlijk verbeterde capaciteiten, die op het gebied van redenering, algemeen gebruik, agent en meertaligheid op een leidende positie in de industrie staat, en ondersteunt de schakel tussen denkmodi."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 is de nieuwste serie van het Qwen-model, dat 128k context ondersteunt. In vergelijking met de huidige beste open-source modellen, overtreft Qwen2-72B op het gebied van natuurlijke taalbegrip, kennis, code, wiskunde en meertaligheid aanzienlijk de huidige toonaangevende modellen."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B is de open-source versie die een geoptimaliseerde gesprekservaring biedt voor gespreksapplicaties."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "Het TeleChat2-model is een generatief semantisch groot model dat van de grond af aan is ontwikkeld door China Telecom, en ondersteunt functies zoals encyclopedische vraag-en-antwoord, codegeneratie en lange tekstgeneratie, en biedt gebruikers gespreksadviesdiensten. Het kan met gebruikers communiceren, vragen beantwoorden, helpen bij creatie en efficiënt en gemakkelijk informatie, kennis en inspiratie bieden. Het model presteert goed in het omgaan met hallucinatieproblemen, lange tekstgeneratie en logische begrip."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 72B-model heeft aanzienlijke verbeteringen in coderings- en wiskundige vaardigheden. Het model biedt ook meertalige ondersteuning, met meer dan 29 ondersteunde talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde uitvoer (vooral JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "Een nieuw open-source model dat algemene en codeercapaciteiten combineert, niet alleen de algemene gespreksvaardigheden van het oorspronkelijke Chat-model en de krachtige codeverwerkingscapaciteiten van het Coder-model behoudt, maar ook beter is afgestemd op menselijke voorkeuren. Bovendien heeft DeepSeek-V2.5 aanzienlijke verbeteringen gerealiseerd in schrijfopdrachten, instructievolging en meer."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 is een expert gemengd model met 685B parameters, de nieuwste iteratie van de vlaggenschip chatmodelreeks van het DeepSeek-team.\n\nHet is een opvolger van het [DeepSeek V3](/deepseek/deepseek-chat-v3) model en presteert uitstekend in verschillende taken."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 is een expert gemengd model met 685B parameters, de nieuwste iteratie van de vlaggenschip chatmodelreeks van het DeepSeek-team.\n\nHet is een opvolger van het [DeepSeek V3](/deepseek/deepseek-chat-v3) model en presteert uitstekend in verschillende taken."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 heeft de redeneringscapaciteiten van het model aanzienlijk verbeterd, zelfs met zeer weinig gelabelde gegevens. Voordat het model het uiteindelijke antwoord geeft, genereert het eerst een denkproces om de nauwkeurigheid van het uiteindelijke antwoord te verbeteren."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "Doubao-1.5 is een gloednieuw diepdenkend model dat uitblinkt in professionele gebieden zoals wiskunde, programmeren en wetenschappelijk redeneren, evenals in algemene taken zoals creatief schrijven. Het heeft op verschillende prestigieuze benchmarks zoals AIME 2024, Codeforces en GPQA niveaus bereikt die gelijk zijn aan of dicht bij de top van de industrie liggen. Ondersteunt een contextvenster van 128k en een output van 16k."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "Doubao-1.5 is een gloednieuw diepdenkend model dat uitblinkt in professionele gebieden zoals wiskunde, programmeren en wetenschappelijk redeneren, evenals in algemene taken zoals creatief schrijven. Het heeft op verschillende prestigieuze benchmarks zoals AIME 2024, Codeforces en GPQA niveaus bereikt die gelijk zijn aan of dicht bij de top van de industrie liggen. Ondersteunt een contextvenster van 128k en een output van 16k."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite is een nieuw geüpgradede multimodale groot model, dat ondersteuning biedt voor beeldherkenning met willekeurige resoluties en extreme beeldverhoudingen, en de visuele redenering, documentherkenning, begrip van gedetailleerde informatie en het volgen van instructies verbetert. Ondersteunt een contextvenster van 128k en een maximale outputlengte van 16k tokens."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp is Google's nieuwste experimentele multimodale AI-model, met next-gen functies, uitstekende snelheid, native tool-aanroepen en multimodale generatie."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental is Google's nieuwste experimentele multimodale AI-model, met aanzienlijke kwaliteitsverbeteringen ten opzichte van eerdere versies, vooral op het gebied van wereldkennis, code en lange context."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "Gemini 2.5 Flash Preview is het meest kosteneffectieve model van Google, dat uitgebreide functionaliteit biedt."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "Gemini 2.5 Pro Preview is Google's meest geavanceerde denkmodel, dat in staat is om te redeneren over complexe problemen in code, wiskunde en STEM-gebieden, en grote datasets, codebases en documenten te analyseren met behulp van lange context."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview is Google's meest geavanceerde denkmodel, in staat om te redeneren over complexe problemen in code, wiskunde en STEM-gebieden, en om grote datasets, codebases en documenten te analyseren met lange context."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B is geschikt voor het verwerken van middelgrote taken, met een goede kosteneffectiviteit."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash biedt next-gen functies en verbeteringen, waaronder uitstekende snelheid, native toolgebruik, multimodale generatie en een contextvenster van 1M tokens."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental is Google's nieuwste experimentele multimodale AI-model, met een aanzienlijke kwaliteitsverbetering ten opzichte van eerdere versies, vooral voor wereldkennis, code en lange context."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash is Google's meest geavanceerde hoofmodel, ontworpen voor geavanceerde redenering, codering, wiskunde en wetenschappelijke taken. Het bevat ingebouwde 'denkkracht', waardoor het in staat is om antwoorden te geven met een hogere nauwkeurigheid en gedetailleerde contextverwerking.\n\nLet op: dit model heeft twee varianten: denken en niet-denken. De outputprijs verschilt aanzienlijk afhankelijk van of de denkkracht is geactiveerd. Als u de standaardvariant kiest (zonder de ':thinking' suffix), zal het model expliciet vermijden om denk-tokens te genereren.\n\nOm gebruik te maken van de denkkracht en denk-tokens te ontvangen, moet u de ':thinking' variant kiezen, wat resulteert in hogere prijzen voor denk-output.\n\nBovendien kan Gemini 2.5 Flash worden geconfigureerd via de parameter 'max tokens for reasoning', zoals beschreven in de documentatie (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash is Google's meest geavanceerde hoofmodel, ontworpen voor geavanceerde redenering, codering, wiskunde en wetenschappelijke taken. Het bevat ingebouwde 'denkkracht', waardoor het in staat is om antwoorden te geven met een hogere nauwkeurigheid en gedetailleerde contextverwerking.\n\nLet op: dit model heeft twee varianten: denken en niet-denken. De outputprijs verschilt aanzienlijk afhankelijk van of de denkkracht is geactiveerd. Als u de standaardvariant kiest (zonder de ':thinking' suffix), zal het model expliciet vermijden om denk-tokens te genereren.\n\nOm gebruik te maken van de denkkracht en denk-tokens te ontvangen, moet u de ':thinking' variant kiezen, wat resulteert in hogere prijzen voor denk-output.\n\nBovendien kan Gemini 2.5 Flash worden geconfigureerd via de parameter 'max tokens for reasoning', zoals beschreven in de documentatie (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro is Google's meest geavanceerde AI-model, ontworpen voor geavanceerde redenering, codering, wiskunde en wetenschappelijke taken. Het beschikt over 'denkkracht', waardoor het in staat is om antwoorden te redeneren met een hogere nauwkeurigheid en gedetailleerde contextverwerking. Gemini 2.5 Pro heeft top prestaties behaald in meerdere benchmarktests, waaronder de eerste plaats op de LMArena-ranglijst, wat de uitstekende afstemming op menselijke voorkeuren en het vermogen om complexe problemen op te lossen weerspiegelt."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash biedt geoptimaliseerde multimodale verwerkingscapaciteiten, geschikt voor verschillende complexe taakscenario's."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large is het vlaggenschipmodel, dat uitblinkt in meertalige taken, complexe inferentie en codegeneratie, ideaal voor high-end toepassingen."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 biedt geavanceerde prestaties tegen 8 keer de kosten en vereenvoudigt de implementatie voor bedrijven fundamenteel."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo is een 12B-model dat is ontwikkeld in samenwerking met Mistral AI en NVIDIA, biedt efficiënte prestaties."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "Het QVQ-model is een experimenteel onderzoeksmodel ontwikkeld door het Qwen-team, gericht op het verbeteren van visuele redeneervaardigheden, vooral in het domein van wiskundige redenering."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "De QVQ visuele
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "De QVQ visuele redeneer model ondersteunt visuele input en denkketenoutput, en toont sterkere capaciteiten in wiskunde, programmeren, visuele analyse, creatie en algemene taken."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "Tongyi Qianwen code model."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "Een efficiënte en kosteneffectieve nieuwe generatie Embedding model, geschikt voor kennisretrieval, RAG-toepassingen en andere scenario's."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 is een 32B tweetalig (Chinees en Engels) open gewichten taalmodel, geoptimaliseerd voor codegeneratie, functieaanroepen en agenttaken. Het is voorgetraind op 15T hoogwaardige en herredeneringsdata en verder verfijnd met afstemming op menselijke voorkeuren, afwijzingssampling en versterkingsleren. Dit model presteert uitstekend in complexe redenering, artefactgeneratie en gestructureerde outputtaken, en heeft vergelijkbare prestaties behaald als GPT-4o en DeepSeek-V3-0324 in meerdere benchmarktests."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 is een 32B tweetalig (Chinees en Engels) open gewichten taalmodel, geoptimaliseerd voor codegeneratie, functieaanroepen en agenttaken. Het is voorgetraind op 15T hoogwaardige en herredeneringsdata en verder verfijnd met afstemming op menselijke voorkeuren, afwijzingssampling en versterkingsleren. Dit model presteert uitstekend in complexe redenering, artefactgeneratie en gestructureerde outputtaken, en heeft vergelijkbare prestaties behaald als GPT-4o en DeepSeek-V3-0324 in meerdere benchmarktests."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "De open-source versie van de nieuwste generatie voorgetrainde modellen van de GLM-4-serie, uitgebracht door Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 is een taalmodel met 9B parameters in de GLM-4 serie, ontwikkeld door THUDM. GLM-4-9B-0414 wordt getraind met dezelfde versterkingsleer- en afstemmingsstrategieën als het grotere 32B tegenhanger, en bereikt hoge prestaties in verhouding tot zijn formaat, waardoor het geschikt is voor implementaties met beperkte middelen die nog steeds sterke taalbegrip en generatiecapaciteiten vereisen."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 is een verbeterde redeneringsvariant van GLM-4-32B, speciaal gebouwd voor diepgaande wiskunde, logica en codegerichte probleemoplossing. Het past uitgebreide versterkingsleren toe (taakspecifiek en op basis van algemene parenvoorkeuren) om de prestaties van complexe meerstaps taken te verbeteren. In vergelijking met het basis GLM-4-32B-model heeft Z1 de mogelijkheden voor gestructureerde redenering en formele domeinen aanzienlijk verbeterd.\n\nDit model ondersteunt het afdwingen van 'denkstappen' via prompt-engineering en biedt verbeterde coherentie voor lange outputformaten. Het is geoptimaliseerd voor agentwerkstromen en ondersteunt lange context (via YaRN), JSON-toolaanroepen en fijnmazige samplingconfiguraties voor stabiele redenering. Zeer geschikt voor gebruikscases die diepgaand nadenken, meerstaps redenering of formele afleiding vereisen."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 is een verbeterde redeneringsvariant van GLM-4-32B, speciaal gebouwd voor diepgaande wiskunde, logica en codegerichte probleemoplossing. Het past uitgebreide versterkingsleren toe (taakspecifiek en op basis van algemene parenvoorkeuren) om de prestaties van complexe meerstaps taken te verbeteren. In vergelijking met het basis GLM-4-32B-model heeft Z1 de mogelijkheden voor gestructureerde redenering en formele domeinen aanzienlijk verbeterd.\n\nDit model ondersteunt het afdwingen van 'denkstappen' via prompt-engineering en biedt verbeterde coherentie voor lange outputformaten. Het is geoptimaliseerd voor agentwerkstromen en ondersteunt lange context (via YaRN), JSON-toolaanroepen en fijnmazige samplingconfiguraties voor stabiele redenering. Zeer geschikt voor gebruikscases die diepgaand nadenken, meerstaps redenering of formele afleiding vereisen."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 is een taalmodel met 9B parameters in de GLM-4 serie, ontwikkeld door THUDM. Het maakt gebruik van technieken die oorspronkelijk zijn toegepast op het grotere GLM-Z1 model, waaronder uitgebreide versterkingsleer, parenrangschikking afstemming en training voor redeneringsintensieve taken zoals wiskunde, codering en logica. Ondanks zijn kleinere formaat, presteert het krachtig in algemene redeneringstaken en overtreft het veel open-source modellen op zijn gewichtsniveau."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek is een bedrijf dat zich richt op onderzoek en toepassing van kunstmatige intelligentietechnologie, en hun nieuwste model DeepSeek-V2.5 combineert algemene dialoog- en codeverwerkingscapaciteiten, met significante verbeteringen in het afstemmen op menselijke voorkeuren, schrijfopdrachten en het volgen van instructies."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "Een door ByteDance ontwikkelde grote model. Bewezen in meer dan 50 interne zakelijke scenario's, met een dagelijks gebruik van triljoenen tokens, biedt het verschillende modaliteiten en creëert een rijke zakelijke ervaring voor bedrijven met hoogwaardige modelprestaties."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI is een toonaangevende aanbieder van geavanceerde taalmodellen, met een focus op functionele aanroepen en multimodale verwerking. Hun nieuwste model Firefunction V2 is gebaseerd op Llama-3 en geoptimaliseerd voor functieaanroepen, dialogen en het volgen van instructies. Het visuele taalmodel FireLLaVA-13B ondersteunt gemengde invoer van afbeeldingen en tekst. Andere opmerkelijke modellen zijn de Llama-serie en de Mixtral-serie, die efficiënte ondersteuning bieden voor meertalig volgen van instructies en genereren."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Wywołaj główne pole wyszukiwania na bieżącej stronie",
|
36
36
|
"title": "Szukaj"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Szybkie otwarcie głównego okna aplikacji",
|
40
|
+
"title": "Pokaż główne okno"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Przełączaj przypiętego asystenta w pasku bocznym, przytrzymując Ctrl i naciskając numery 0-9",
|
40
44
|
"title": "Szybkie przełączanie asystenta"
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 to model MoE opracowany przez firmę DeepSeek. Wyniki DeepSeek-V3 w wielu testach przewyższają inne modele open source, takie jak Qwen2.5-72B i Llama-3.1-405B, a jego wydajność jest porównywalna z najlepszymi zamkniętymi modelami na świecie, takimi jak GPT-4o i Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 to nowy model głębokiego myślenia (wersja m z wbudowaną natywną zdolnością do wielomodalnego wnioskowania), który wyróżnia się w dziedzinach takich jak matematyka, programowanie, wnioskowanie naukowe oraz twórcze pisanie, osiągając poziom bliski pierwszej ligi w wielu uznawanych benchmarkach, takich jak AIME 2024, Codeforces, GPQA. Wspiera okno kontekstowe 128k oraz 16k wyjścia."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro to nowo zaktualizowany model multimodalny, który obsługuje rozpoznawanie obrazów o dowolnej rozdzielczości i ekstremalnych proporcjach, wzmacniając zdolności wnioskowania wizualnego, rozpoznawania dokumentów, rozumienia szczegółowych informacji i przestrzegania instrukcji."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL to model językowo-wizualny z serii Qwen2.5. Ten model przynosi znaczące poprawy w wielu aspektach: posiada lepsze zdolności zrozumienia wizualnego, umożliwiając rozpoznawanie powszechnych obiektów, analizowanie tekstu, wykresów i układu; jako wizualny agent może wnioskować i dynamicznie kierować użyciem narzędzi; obsługuje zrozumienie filmów o długości przekraczającej 1 godzinę i łapanie kluczowych zdarzeń; może precyzyjnie lokalizować obiekty na obrazach poprzez generowanie ramki granicznej lub punktów; obsługuje generowanie danych strukturalnych, szczególnie przydatnych dla skanowanych danych, takich jak faktury i tabele."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 to nowa generacja modelu Qwen, która znacznie zwiększa zdolności w zakresie wnioskowania, ogólnych zadań, agentów i wielojęzyczności, osiągając wiodące w branży wyniki oraz wspierając przełączanie trybu myślenia."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 to nowa generacja modelu Qwen, która znacznie zwiększa zdolności w zakresie wnioskowania, ogólnych zadań, agentów i wielojęzyczności, osiągając wiodące w branży wyniki oraz wspierając przełączanie trybu myślenia."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 to nowa generacja modelu Qwen, która znacznie zwiększa zdolności w zakresie wnioskowania, ogólnych zadań, agentów i wielojęzyczności, osiągając wiodące w branży wyniki oraz wspierając przełączanie trybu myślenia."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 to nowa generacja modelu Qwen, która znacznie zwiększa zdolności w zakresie wnioskowania, ogólnych zadań, agentów i wielojęzyczności, osiągając wiodące w branży wyniki oraz wspierając przełączanie trybu myślenia."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 to nowa generacja modelu Qwen, która znacznie zwiększa zdolności w zakresie wnioskowania, ogólnych zadań, agentów i wielojęzyczności, osiągając wiodące w branży wyniki oraz wspierając przełączanie trybu myślenia."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 to najnowsza seria modeli Qwen, obsługująca kontekst 128k. W porównaniu do obecnie najlepszych modeli open source, Qwen2-72B znacznie przewyższa w zakresie rozumienia języka naturalnego, wiedzy, kodowania, matematyki i wielu języków."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B to otwarta wersja, oferująca zoptymalizowane doświadczenie dialogowe dla aplikacji konwersacyjnych."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "Model TeleChat2 to generatywny model semantyczny opracowany przez China Telecom, który wspiera funkcje takie jak pytania i odpowiedzi encyklopedyczne, generowanie kodu oraz generowanie długich tekstów, oferując użytkownikom usługi konsultacyjne. Model ten potrafi prowadzić interakcje z użytkownikami, odpowiadać na pytania, wspierać twórczość oraz efektywnie pomagać w pozyskiwaniu informacji, wiedzy i inspiracji. Model wykazuje dobre wyniki w zakresie problemów z halucynacjami, generowaniem długich tekstów oraz rozumieniem logicznym."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 72B ma znacząco poprawione zdolności w zakresie kodowania i matematyki. Oferuje również wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model ten wykazuje znaczną poprawę w zakresie przestrzegania instrukcji, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "Nowy, otwarty model łączący zdolności ogólne i kodowe, który nie tylko zachowuje ogólne zdolności dialogowe oryginalnego modelu Chat, ale także potężne zdolności przetwarzania kodu modelu Coder, lepiej dostosowując się do ludzkich preferencji. Ponadto, DeepSeek-V2.5 osiągnął znaczne poprawy w zadaniach pisarskich, przestrzeganiu instrukcji i wielu innych obszarach."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 to model mieszany z 685B parametrami, będący najnowszą iteracją flagowej serii modeli czatu zespołu DeepSeek.\n\nDziedziczy po modelu [DeepSeek V3](/deepseek/deepseek-chat-v3) i wykazuje doskonałe wyniki w różnych zadaniach."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 to model mieszany z 685B parametrami, będący najnowszą iteracją flagowej serii modeli czatu zespołu DeepSeek.\n\nDziedziczy po modelu [DeepSeek V3](/deepseek/deepseek-chat-v3) i wykazuje doskonałe wyniki w różnych zadaniach."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 znacznie poprawił zdolności wnioskowania modelu przy minimalnej ilości oznaczonych danych. Przed wygenerowaniem ostatecznej odpowiedzi, model najpierw wygeneruje fragment myślenia, aby zwiększyć dokładność końcowej odpowiedzi."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "Model głębokiego myślenia Doubao-1.5, nowa generacja, wyróżnia się w dziedzinach takich jak matematyka, programowanie, rozumowanie naukowe oraz w zadaniach ogólnych, takich jak twórcze pisanie. Osiąga lub zbliża się do poziomu czołowych graczy w branży w wielu uznawanych benchmarkach, takich jak AIME 2024, Codeforces, GPQA. Obsługuje okno kontekstowe o wielkości 128k oraz 16k wyjścia."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "Model głębokiego myślenia Doubao-1.5, nowa generacja, wyróżnia się w dziedzinach takich jak matematyka, programowanie, rozumowanie naukowe oraz w zadaniach ogólnych, takich jak twórcze pisanie. Osiąga lub zbliża się do poziomu czołowych graczy w branży w wielu uznawanych benchmarkach, takich jak AIME 2024, Codeforces, GPQA. Obsługuje okno kontekstowe o wielkości 128k oraz 16k wyjścia."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite to nowo zaktualizowany model multimodalny, który obsługuje rozpoznawanie obrazów o dowolnej rozdzielczości i ekstremalnych proporcjach, wzmacniając zdolności wnioskowania wizualnego, rozpoznawania dokumentów, rozumienia szczegółowych informacji i przestrzegania instrukcji. Obsługuje okno kontekstowe 128k, maksymalna długość wyjścia to 16k tokenów."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp to najnowszy eksperymentalny model AI multimodalnego Google, posiadający cechy nowej generacji, doskonałą prędkość, natywne wywołania narzędzi oraz generację multimodalną."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental to najnowszy eksperymentalny model AI o wielu modalnościach od Google, który w porównaniu do wcześniejszych wersji oferuje pewne poprawy jakości, szczególnie w zakresie wiedzy o świecie, kodu i długiego kontekstu."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "Gemini 2.5 Flash Preview to najbardziej opłacalny model Google, oferujący wszechstronne funkcje."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "Gemini 2.5 Pro Preview to najnowocześniejszy model myślenia Google, zdolny do wnioskowania w zakresie kodu, matematyki i złożonych problemów w dziedzinie STEM, a także do analizy dużych zbiorów danych, repozytoriów kodu i dokumentów przy użyciu długiego kontekstu."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview to najnowocześniejszy model myślenia Google, zdolny do wnioskowania w złożonych problemach związanych z kodem, matematyką i dziedzinami STEM, a także do analizy dużych zbiorów danych, repozytoriów kodu i dokumentów przy użyciu długiego kontekstu."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B nadaje się do przetwarzania zadań średniej i małej skali, łącząc efektywność kosztową."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash oferuje funkcje i ulepszenia nowej generacji, w tym doskonałą prędkość, natywne korzystanie z narzędzi, generowanie multimodalne oraz okno kontekstowe o długości 1M tokenów."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental to najnowszy eksperymentalny model AI Google, który w porównaniu do wcześniejszych wersji wykazuje pewne poprawy jakości, szczególnie w zakresie wiedzy o świecie, kodu i długiego kontekstu."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash to najnowocześniejszy model główny Google, zaprojektowany z myślą o zaawansowanym wnioskowaniu, kodowaniu, matematyce i zadaniach naukowych. Zawiera wbudowaną zdolność 'myślenia', co pozwala mu na dostarczanie odpowiedzi z wyższą dokładnością i szczegółowym przetwarzaniem kontekstu.\n\nUwaga: ten model ma dwa warianty: myślenie i niemyslenie. Ceny wyjściowe różnią się znacznie w zależności od tego, czy zdolność myślenia jest aktywowana. Jeśli wybierzesz standardowy wariant (bez sufiksu ':thinking'), model wyraźnie unika generowania tokenów myślenia.\n\nAby skorzystać z zdolności myślenia i otrzymać tokeny myślenia, musisz wybrać wariant ':thinking', co spowoduje wyższe ceny wyjściowe za myślenie.\n\nPonadto Gemini 2.5 Flash można konfigurować za pomocą parametru 'maksymalna liczba tokenów do wnioskowania', jak opisano w dokumentacji (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash to najnowocześniejszy model główny Google, zaprojektowany z myślą o zaawansowanym wnioskowaniu, kodowaniu, matematyce i zadaniach naukowych. Zawiera wbudowaną zdolność 'myślenia', co pozwala mu na dostarczanie odpowiedzi z wyższą dokładnością i szczegółowym przetwarzaniem kontekstu.\n\nUwaga: ten model ma dwa warianty: myślenie i niemyslenie. Ceny wyjściowe różnią się znacznie w zależności od tego, czy zdolność myślenia jest aktywowana. Jeśli wybierzesz standardowy wariant (bez sufiksu ':thinking'), model wyraźnie unika generowania tokenów myślenia.\n\nAby skorzystać z zdolności myślenia i otrzymać tokeny myślenia, musisz wybrać wariant ':thinking', co spowoduje wyższe ceny wyjściowe za myślenie.\n\nPonadto Gemini 2.5 Flash można konfigurować za pomocą parametru 'maksymalna liczba tokenów do wnioskowania', jak opisano w dokumentacji (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro to najnowocześniejszy model AI Google, zaprojektowany z myślą o zaawansowanym wnioskowaniu, kodowaniu, matematyce i zadaniach naukowych. Posiada zdolność 'myślenia', co pozwala mu na wnioskowanie z wyższą dokładnością i szczegółowym przetwarzaniem kontekstu. Gemini 2.5 Pro osiągnęło najwyższą wydajność w wielu testach porównawczych, w tym zajmując pierwsze miejsce w rankingu LMArena, co odzwierciedla doskonałe dostosowanie do preferencji ludzkich i zdolności rozwiązywania złożonych problemów."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash oferuje zoptymalizowane możliwości przetwarzania multimodalnego, odpowiednie do różnych złożonych scenariuszy zadań."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large to flagowy model, doskonały w zadaniach wielojęzycznych, złożonym wnioskowaniu i generowaniu kodu, idealny do zaawansowanych zastosowań."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 oferuje najnowocześniejszą wydajność przy kosztach 8 razy niższych, a także zasadniczo upraszcza wdrożenia w przedsiębiorstwach."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo, opracowany przez Mistral AI i NVIDIA, to model 12B o wysokiej wydajności."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "Model QVQ jest eksperymentalnym modelem badawczym opracowanym przez zespół Qwen, skoncentrowanym na zwiększeniu zdolności w zakresie rozumowania wizualnego, szczególnie w dziedzinie rozumowania matematycznego."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "Model wizualnego wnioskowania QVQ, wspierający wejścia wizualne oraz wyjścia w
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "Model wizualnego wnioskowania QVQ, wspierający wejścia wizualne oraz wyjścia w formie łańcucha myślenia, wykazuje silniejsze zdolności w matematyce, programowaniu, analizie wizualnej, twórczości oraz ogólnych zadaniach."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "Model kodowania Qwen, oparty na ogólnym zrozumieniu."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "Nowej generacji model Embedding, efektywny i ekonomiczny, odpowiedni do wyszukiwania wiedzy, aplikacji RAG i innych scenariuszy."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 to dwujęzyczny (chińsko-angielski) model językowy o otwartych wagach 32B, zoptymalizowany do generowania kodu, wywołań funkcji i zadań agentowych. Został wstępnie wytrenowany na 15T wysokiej jakości danych i danych do ponownego wnioskowania, a następnie udoskonalony przy użyciu dostosowania do preferencji ludzkich, próbkowania odrzucającego i uczenia przez wzmocnienie. Model wykazuje doskonałe wyniki w złożonym wnioskowaniu, generowaniu artefaktów i zadaniach związanych z wyjściem strukturalnym, osiągając wyniki porównywalne z GPT-4o i DeepSeek-V3-0324 w wielu testach porównawczych."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 to dwujęzyczny (chińsko-angielski) model językowy o otwartych wagach 32B, zoptymalizowany do generowania kodu, wywołań funkcji i zadań agentowych. Został wstępnie wytrenowany na 15T wysokiej jakości danych i danych do ponownego wnioskowania, a następnie udoskonalony przy użyciu dostosowania do preferencji ludzkich, próbkowania odrzucającego i uczenia przez wzmocnienie. Model wykazuje doskonałe wyniki w złożonym wnioskowaniu, generowaniu artefaktów i zadaniach związanych z wyjściem strukturalnym, osiągając wyniki porównywalne z GPT-4o i DeepSeek-V3-0324 w wielu testach porównawczych."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "Otwarta wersja najnowszej generacji modelu pretrenowanego GLM-4 wydanego przez Zhipu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 to model językowy o 9 miliardach parametrów w serii GLM-4 opracowany przez THUDM. GLM-4-9B-0414 wykorzystuje te same strategie uczenia przez wzmocnienie i dostosowania, co jego większy model odpowiadający 32B, osiągając wysoką wydajność w stosunku do swojej skali, co czyni go odpowiednim do wdrożeń z ograniczonymi zasobami, które nadal wymagają silnych zdolności rozumienia i generowania języka."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 to wzmocniona wariant wnioskowania GLM-4-32B, zaprojektowana do rozwiązywania głębokich problemów matematycznych, logicznych i związanych z kodem. Wykorzystuje rozszerzone uczenie przez wzmocnienie (specyficzne dla zadań i oparte na ogólnych preferencjach par) w celu poprawy wydajności w złożonych zadaniach wieloetapowych. W porównaniu do podstawowego modelu GLM-4-32B, Z1 znacznie poprawia zdolności w zakresie wnioskowania strukturalnego i formalnego.\n\nModel wspiera wymuszanie kroków 'myślenia' poprzez inżynierię podpowiedzi i zapewnia poprawioną spójność dla długich formatów wyjściowych. Jest zoptymalizowany pod kątem przepływów pracy agentów i wspiera długi kontekst (przez YaRN), wywołania narzędzi JSON oraz konfiguracje drobnoziarnistego próbkowania dla stabilnego wnioskowania. Idealny do przypadków użycia wymagających przemyślanego, wieloetapowego wnioskowania lub formalnych dedukcji."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 to wzmocniona wariant wnioskowania GLM-4-32B, zaprojektowana do rozwiązywania głębokich problemów matematycznych, logicznych i związanych z kodem. Wykorzystuje rozszerzone uczenie przez wzmocnienie (specyficzne dla zadań i oparte na ogólnych preferencjach par) w celu poprawy wydajności w złożonych zadaniach wieloetapowych. W porównaniu do podstawowego modelu GLM-4-32B, Z1 znacznie poprawia zdolności w zakresie wnioskowania strukturalnego i formalnego.\n\nModel wspiera wymuszanie kroków 'myślenia' poprzez inżynierię podpowiedzi i zapewnia poprawioną spójność dla długich formatów wyjściowych. Jest zoptymalizowany pod kątem przepływów pracy agentów i wspiera długi kontekst (przez YaRN), wywołania narzędzi JSON oraz konfiguracje drobnoziarnistego próbkowania dla stabilnego wnioskowania. Idealny do przypadków użycia wymagających przemyślanego, wieloetapowego wnioskowania lub formalnych dedukcji."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 to model językowy o 9 miliardach parametrów w serii GLM-4 opracowany przez THUDM. Wykorzystuje techniki pierwotnie zastosowane w większym modelu GLM-Z1, w tym rozszerzone uczenie przez wzmocnienie, dostosowanie rankingowe w parach oraz trening do zadań intensywnie wymagających wnioskowania, takich jak matematyka, kodowanie i logika. Mimo mniejszej skali, wykazuje silną wydajność w ogólnych zadaniach wnioskowania i przewyższa wiele modeli open source na poziomie swoich wag."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek to firma skoncentrowana na badaniach i zastosowaniach technologii sztucznej inteligencji, której najnowszy model DeepSeek-V2.5 łączy zdolności do prowadzenia ogólnych rozmów i przetwarzania kodu, osiągając znaczące postępy w zakresie dostosowywania do preferencji ludzkich, zadań pisarskich i przestrzegania instrukcji."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "Model dużych rozmiarów opracowany przez ByteDance. Potwierdzony w ponad 50 scenariuszach biznesowych wewnątrz firmy, z codziennym użyciem bilionów tokenów, co pozwala na ciągłe doskonalenie. Oferuje różnorodne możliwości modalne, tworząc bogate doświadczenia biznesowe dla przedsiębiorstw dzięki wysokiej jakości modelom."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI to wiodący dostawca zaawansowanych modeli językowych, skoncentrowany na wywołaniach funkcji i przetwarzaniu multimodalnym. Jego najnowszy model Firefunction V2 oparty na Llama-3, zoptymalizowany do wywołań funkcji, dialogów i przestrzegania instrukcji. Model wizualny FireLLaVA-13B wspiera mieszane wejścia obrazów i tekstu. Inne znaczące modele to seria Llama i seria Mixtral, oferujące efektywne wsparcie dla wielojęzycznego przestrzegania instrukcji i generacji."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Abrir a caixa de pesquisa principal da página atual",
|
36
36
|
"title": "Pesquisar"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Abrir rapidamente a janela principal do aplicativo",
|
40
|
+
"title": "Mostrar janela principal"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Troque o assistente fixo na barra lateral pressionando Ctrl e um número de 0 a 9",
|
40
44
|
"title": "Troca rápida de assistente"
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 é um modelo MoE desenvolvido internamente pela DeepSeek. Os resultados de várias avaliações do DeepSeek-V3 superaram outros modelos de código aberto, como Qwen2.5-72B e Llama-3.1-405B, e seu desempenho é comparável aos melhores modelos fechados do mundo, como GPT-4o e Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "O Doubao-1.5 é um novo modelo de pensamento profundo (a versão m possui capacidade nativa de raciocínio multimodal), destacando-se em áreas profissionais como matemática, programação, raciocínio científico e tarefas gerais como escrita criativa, alcançando ou se aproximando do nível de elite em várias referências de prestígio como AIME 2024, Codeforces, GPQA."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro é um modelo multimodal atualizado, suportando reconhecimento de imagens de qualquer resolução e proporções extremas, melhorando a capacidade de raciocínio visual, reconhecimento de documentos, compreensão de informações detalhadas e seguimento de instruções."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL é o modelo de linguagem visual da série Qwen2.5. Este modelo apresenta melhorias significativas em vários aspectos: possui capacidade aprimorada de compreensão visual, podendo reconhecer objetos comuns, analisar textos, gráficos e layouts; atua como um agente visual capaz de raciocinar e orientar dinamicamente o uso de ferramentas; suporta a compreensão de vídeos longos com mais de 1 hora de duração, capturando eventos-chave; pode localizar objetos em imagens com precisão através da geração de caixas delimitadoras ou pontos; suporta a geração de saídas estruturadas, sendo especialmente útil para dados digitalizados como faturas e tabelas."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "O Qwen3 é um novo modelo de grande escala da Tongyi Qianwen com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, tarefas gerais, agentes e multilinguismo, e suporta a alternância de modos de pensamento."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "O Qwen3 é um novo modelo de grande escala da Tongyi Qianwen com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, tarefas gerais, agentes e multilinguismo, e suporta a alternância de modos de pensamento."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "O Qwen3 é um novo modelo de grande escala da Tongyi Qianwen com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, tarefas gerais, agentes e multilinguismo, e suporta a alternância de modos de pensamento."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "O Qwen3 é um novo modelo de grande escala da Tongyi Qianwen com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, tarefas gerais, agentes e multilinguismo, e suporta a alternância de modos de pensamento."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "O Qwen3 é um novo modelo de grande escala da Tongyi Qianwen com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, tarefas gerais, agentes e multilinguismo, e suporta a alternância de modos de pensamento."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 é a mais recente série do modelo Qwen, suportando 128k de contexto. Em comparação com os melhores modelos de código aberto atuais, o Qwen2-72B supera significativamente os modelos líderes em várias capacidades, incluindo compreensão de linguagem natural, conhecimento, código, matemática e multilinguismo."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B é uma versão de código aberto, oferecendo uma experiência de diálogo otimizada para aplicações de conversa."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "O modelo TeleChat2 é um modelo semântico gerador desenvolvido de forma independente pela China Telecom, que suporta funções como perguntas e respostas enciclopédicas, geração de código e geração de textos longos, oferecendo serviços de consulta de diálogo aos usuários, permitindo interações de diálogo, respondendo perguntas e auxiliando na criação, ajudando os usuários a obter informações, conhecimento e inspiração de forma eficiente e conveniente. O modelo apresenta um desempenho notável em questões de alucinação, geração de textos longos e compreensão lógica."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct é um dos mais recentes modelos de linguagem de grande escala lançados pela Alibaba Cloud. Este modelo de 72B apresenta melhorias significativas em áreas como codificação e matemática. O modelo também oferece suporte multilíngue, abrangendo mais de 29 idiomas, incluindo chinês e inglês. O modelo teve melhorias significativas em seguir instruções, entender dados estruturados e gerar saídas estruturadas (especialmente JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "Um novo modelo de código aberto que integra capacidades gerais e de codificação, não apenas preservando a capacidade de diálogo geral do modelo Chat original e a poderosa capacidade de processamento de código do modelo Coder, mas também alinhando-se melhor às preferências humanas. Além disso, o DeepSeek-V2.5 também alcançou melhorias significativas em várias áreas, como tarefas de escrita e seguimento de instruções."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "O DeepSeek V3 é um modelo misto especializado com 685B de parâmetros, sendo a mais recente iteração da série de modelos de chat da equipe DeepSeek.\n\nEle herda o modelo [DeepSeek V3](/deepseek/deepseek-chat-v3) e se destaca em várias tarefas."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "O DeepSeek V3 é um modelo misto especializado com 685B de parâmetros, sendo a mais recente iteração da série de modelos de chat da equipe DeepSeek.\n\nEle herda o modelo [DeepSeek V3](/deepseek/deepseek-chat-v3) e se destaca em várias tarefas."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 melhorou significativamente a capacidade de raciocínio do modelo com muito poucos dados rotulados. Antes de fornecer a resposta final, o modelo gera uma cadeia de pensamento para aumentar a precisão da resposta final."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "O modelo de pensamento profundo Doubao-1.5 apresenta um desempenho excepcional em áreas especializadas como matemática, programação e raciocínio científico, além de tarefas gerais como escrita criativa. Ele alcançou ou se aproximou do nível de elite da indústria em várias referências respeitáveis, como AIME 2024, Codeforces e GPQA. Suporta uma janela de contexto de 128k e uma saída de 16k."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "O modelo de pensamento profundo Doubao-1.5 apresenta um desempenho excepcional em áreas especializadas como matemática, programação e raciocínio científico, além de tarefas gerais como escrita criativa. Ele alcançou ou se aproximou do nível de elite da indústria em várias referências respeitáveis, como AIME 2024, Codeforces e GPQA. Suporta uma janela de contexto de 128k e uma saída de 16k."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite é um modelo multimodal atualizado, suportando reconhecimento de imagens de qualquer resolução e proporções extremas, melhorando a capacidade de raciocínio visual, reconhecimento de documentos, compreensão de informações detalhadas e seguimento de instruções. Suporta uma janela de contexto de 128k, com comprimento de saída de até 16k tokens."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "O Gemini 2.0 Flash Exp é o mais recente modelo experimental de IA multimodal do Google, com características de próxima geração, velocidade excepcional, chamadas nativas de ferramentas e geração multimodal."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental é o mais recente modelo de IA multimodal experimental do Google, apresentando melhorias de qualidade em comparação com versões anteriores, especialmente em conhecimento mundial, código e contextos longos."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "O Gemini 2.5 Flash Preview é o modelo mais acessível do Google, oferecendo uma gama completa de funcionalidades."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "O Gemini 2.5 Pro Preview é o modelo de pensamento mais avançado do Google, capaz de raciocinar sobre problemas complexos em código, matemática e áreas STEM, além de analisar grandes conjuntos de dados, bibliotecas de código e documentos usando longos contextos."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "O Gemini 2.5 Pro Preview é o modelo de pensamento mais avançado do Google, capaz de raciocinar sobre problemas complexos em código, matemática e áreas STEM, além de analisar grandes conjuntos de dados, bibliotecas de código e documentos usando longos contextos."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B é adequado para o processamento de tarefas de pequeno a médio porte, combinando custo e eficiência."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash oferece funcionalidades e melhorias de próxima geração, incluindo velocidade excepcional, uso nativo de ferramentas, geração multimodal e uma janela de contexto de 1M tokens."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "O Gemini 2.0 Flash Experimental é o mais recente modelo de IA multimodal experimental do Google, com melhorias de qualidade em comparação com versões anteriores, especialmente em conhecimento do mundo, código e longos contextos."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "O Gemini 2.5 Flash é o modelo principal mais avançado do Google, projetado para raciocínio avançado, codificação, matemática e tarefas científicas. Ele possui a capacidade de 'pensar' embutida, permitindo que forneça respostas com maior precisão e um tratamento de contexto mais detalhado.\n\nNota: Este modelo possui duas variantes: com e sem 'pensamento'. A precificação da saída varia significativamente dependendo da ativação da capacidade de pensamento. Se você escolher a variante padrão (sem o sufixo ':thinking'), o modelo evitará explicitamente gerar tokens de pensamento.\n\nPara aproveitar a capacidade de pensamento e receber tokens de pensamento, você deve escolher a variante ':thinking', que resultará em uma precificação de saída de pensamento mais alta.\n\nAlém disso, o Gemini 2.5 Flash pode ser configurado através do parâmetro 'número máximo de tokens para raciocínio', conforme descrito na documentação (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "O Gemini 2.5 Flash é o modelo principal mais avançado do Google, projetado para raciocínio avançado, codificação, matemática e tarefas científicas. Ele possui a capacidade de 'pensar' embutida, permitindo que forneça respostas com maior precisão e um tratamento de contexto mais detalhado.\n\nNota: Este modelo possui duas variantes: com e sem 'pensamento'. A precificação da saída varia significativamente dependendo da ativação da capacidade de pensamento. Se você escolher a variante padrão (sem o sufixo ':thinking'), o modelo evitará explicitamente gerar tokens de pensamento.\n\nPara aproveitar a capacidade de pensamento e receber tokens de pensamento, você deve escolher a variante ':thinking', que resultará em uma precificação de saída de pensamento mais alta.\n\nAlém disso, o Gemini 2.5 Flash pode ser configurado através do parâmetro 'número máximo de tokens para raciocínio', conforme descrito na documentação (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "O Gemini 2.5 Pro é o modelo de IA mais avançado do Google, projetado para raciocínio avançado, codificação, matemática e tarefas científicas. Ele possui a capacidade de 'pensar', permitindo que raciocine com maior precisão e um tratamento de contexto mais detalhado. O Gemini 2.5 Pro obteve desempenho de topo em vários testes de referência, incluindo o primeiro lugar no ranking LMArena, refletindo uma excelente capacidade de alinhamento com preferências humanas e resolução de problemas complexos."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash oferece capacidades de processamento multimodal otimizadas, adequadas para uma variedade de cenários de tarefas complexas."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large é o modelo de destaque, especializado em tarefas multilíngues, raciocínio complexo e geração de código, sendo a escolha ideal para aplicações de alto nível."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "O Mistral Medium 3 oferece desempenho de ponta a um custo 8 vezes menor e simplifica fundamentalmente a implantação empresarial."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo é um modelo de 12B desenvolvido em colaboração entre a Mistral AI e a NVIDIA, oferecendo desempenho eficiente."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "O modelo QVQ é um modelo de pesquisa experimental desenvolvido pela equipe Qwen, focado em melhorar a capacidade de raciocínio visual, especialmente na área de raciocínio matemático."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "O modelo de raciocínio visual QVQ
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "O modelo de raciocínio visual QVQ da Tongyi Qianwen suporta entrada visual e saída de cadeia de pensamento, demonstrando habilidades mais fortes em matemática, programação, análise visual, criação e tarefas gerais."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "Modelo de código Qwen."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "Modelo de Embedding de nova geração, eficiente e econômico, adequado para recuperação de conhecimento, aplicações RAG e outros cenários."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "O GLM-4-32B-0414 é um modelo de linguagem de pesos abertos bilíngue (chinês-inglês) de 32B, otimizado para geração de código, chamadas de função e tarefas baseadas em agentes. Ele foi pré-treinado em 15T de dados de alta qualidade e re-raciocínio, e aprimorado com alinhamento de preferências humanas, amostragem de rejeição e aprendizado por reforço. Este modelo se destaca em raciocínio complexo, geração de artefatos e tarefas de saída estruturada, alcançando desempenho comparável ao GPT-4o e DeepSeek-V3-0324 em vários testes de referência."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "O GLM-4-32B-0414 é um modelo de linguagem de pesos abertos bilíngue (chinês-inglês) de 32B, otimizado para geração de código, chamadas de função e tarefas baseadas em agentes. Ele foi pré-treinado em 15T de dados de alta qualidade e re-raciocínio, e aprimorado com alinhamento de preferências humanas, amostragem de rejeição e aprendizado por reforço. Este modelo se destaca em raciocínio complexo, geração de artefatos e tarefas de saída estruturada, alcançando desempenho comparável ao GPT-4o e DeepSeek-V3-0324 em vários testes de referência."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "Versão de código aberto da última geração do modelo pré-treinado GLM-4, lançado pela Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 é um modelo de linguagem de 9 bilhões de parâmetros da série GLM-4 desenvolvido pela THUDM. O GLM-4-9B-0414 é treinado usando as mesmas estratégias de aprendizado por reforço e alinhamento de seu modelo correspondente maior de 32B, alcançando alto desempenho em relação ao seu tamanho, tornando-o adequado para implantações com recursos limitados que ainda exigem forte capacidade de compreensão e geração de linguagem."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "O GLM-Z1-32B-0414 é uma variante de raciocínio aprimorada do GLM-4-32B, construída para resolver problemas de matemática profunda, lógica e voltados para código. Ele aplica aprendizado por reforço estendido (tarefa específica e baseado em preferências emparelhadas gerais) para melhorar o desempenho em tarefas complexas de múltiplos passos. Em comparação com o modelo base GLM-4-32B, o Z1 melhora significativamente as capacidades de raciocínio estruturado e formal.\n\nEste modelo suporta a execução forçada de etapas de 'pensamento' por meio de engenharia de prompts e oferece maior coerência para saídas de formato longo. Ele é otimizado para fluxos de trabalho de agentes e suporta longos contextos (via YaRN), chamadas de ferramentas JSON e configurações de amostragem de granularidade fina para raciocínio estável. É ideal para casos de uso que exigem raciocínio cuidadoso, de múltiplos passos ou deduções formais."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "O GLM-Z1-32B-0414 é uma variante de raciocínio aprimorada do GLM-4-32B, construída para resolver problemas de matemática profunda, lógica e voltados para código. Ele aplica aprendizado por reforço estendido (tarefa específica e baseado em preferências emparelhadas gerais) para melhorar o desempenho em tarefas complexas de múltiplos passos. Em comparação com o modelo base GLM-4-32B, o Z1 melhora significativamente as capacidades de raciocínio estruturado e formal.\n\nEste modelo suporta a execução forçada de etapas de 'pensamento' por meio de engenharia de prompts e oferece maior coerência para saídas de formato longo. Ele é otimizado para fluxos de trabalho de agentes e suporta longos contextos (via YaRN), chamadas de ferramentas JSON e configurações de amostragem de granularidade fina para raciocínio estável. É ideal para casos de uso que exigem raciocínio cuidadoso, de múltiplos passos ou deduções formais."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 é um modelo de linguagem de 9 bilhões de parâmetros da série GLM-4 desenvolvido pela THUDM. Ele utiliza técnicas inicialmente aplicadas a modelos maiores do GLM-Z1, incluindo aprendizado por reforço expandido, alinhamento de classificação em pares e treinamento para tarefas intensivas em raciocínio, como matemática, código e lógica. Apesar de seu tamanho menor, ele demonstra um desempenho robusto em tarefas gerais de raciocínio e supera muitos modelos de código aberto em seu nível de peso."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "A DeepSeek é uma empresa focada em pesquisa e aplicação de tecnologia de inteligência artificial, cujo modelo mais recente, DeepSeek-V2.5, combina capacidades de diálogo geral e processamento de código, alcançando melhorias significativas em alinhamento com preferências humanas, tarefas de escrita e seguimento de instruções."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "Um grande modelo desenvolvido internamente pela ByteDance. Validado através da prática em mais de 50 cenários de negócios dentro da ByteDance, com um uso diário de trilhões de tokens, continuamente aprimorado, oferece diversas capacidades multimodais, criando uma rica experiência de negócios para as empresas com resultados de modelo de alta qualidade."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI é um fornecedor líder de serviços de modelos de linguagem avançados, focando em chamadas de função e processamento multimodal. Seu modelo mais recente, Firefunction V2, baseado em Llama-3, é otimizado para chamadas de função, diálogos e seguimento de instruções. O modelo de linguagem visual FireLLaVA-13B suporta entradas mistas de imagem e texto. Outros modelos notáveis incluem a série Llama e a série Mixtral, oferecendo suporte eficiente para seguimento e geração de instruções multilíngues."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Вызвать основное поле поиска на текущей странице",
|
36
36
|
"title": "Поиск"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Быстро открыть главное окно приложения",
|
40
|
+
"title": "Показать главное окно"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Переключаться между закрепленными помощниками в боковой панели, удерживая Ctrl и нажимая цифры от 0 до 9",
|
40
44
|
"title": "Быстрое переключение помощника"
|